

タイトル Title	Congenital chloride diarrhea needs to be distinguished from Bartter and Gitelman syndrome
著者 Author(s)	Matsunoshita, Natsuki / Nozu, Kandai / Yoshikane, Masahide / Kawaguchi, Azusa / Fujita, Naoya / Morisada, Naoya / Ishimori, Shingo / Yamamura, Tomohiko / Minamikawa, Shogo / Horinouchi, Tomoko / Nakanishi, Keita / Fujimura, Junya / Ninchoji, Takeshi / Morioka, Ichiro / Nagase, Hiroaki / Taniguchi-Ikeda, Mariko / Kaito, Hiroshi / Iijima, Kazumoto
掲載誌・巻号・ページ Citation	Journal of Human Genetics,63:887–892
刊行日 Issue date	2018-05-30
資源タイプ Resource Type	Journal Article / 学術雑誌論文
版区分 Resource Version	author
権利 Rights	© 2020 Springer Nature
DOI	10.1038/s10038-018-0470-7
Jalcdoi	
URL	http://www.lib.kobe-u.ac.jp/handle_kernel/90007470

PDF issue: 2021-11-16

1 [Original article]

 $\mathbf{2}$

3 Congenital chloride diarrhea needs to be distinguished from Bartter and Gitelman

4 syndrome

 $\mathbf{5}$

6	Natsuki Matsunoshita, MD, PhD ¹⁾²⁾ , *Kandai Nozu, MD, PhD ¹⁾ , Masahide Yoshikane, MD ³⁾ ,
7	Azusa Kawaguchi, MD ⁴), Naoya Fujita, MD ⁴), Naoya Morisada, MD, PhD ¹), Shingo Ishimori,
8	MD ¹⁾ , Tomohiko Yamamura, MD ¹⁾ , Shogo Minamikawa, MD ¹⁾ , Tomoko Horinouchi, MD ¹⁾ ,
9	Keita Nakanishi, MD ¹⁾ , Junya Fujimura, MD ¹⁾ , Takeshi Ninchoji, MD, PhD ¹⁾ , Ichiro Morioka,
10	MD, PhD ¹⁾ , Hiroaki Nagase, MD, PhD ¹⁾ , Mariko Taniguchi-Ikeda, MD, PhD ¹⁾ , Hiroshi Kaito,
11	MD, PhD ¹⁾ , Kazumoto Iijima, MD, PhD ¹⁾
12	
13	1) Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
14	2) Department of Pediatrics, Kita-harima Medical Center, Ono, Japan
15	3) Department of Pediatrics, Kainan Hospital, Yatomi, Japan
16	4) Department of Child Nephrology, Aichi Children's Health and Medical Center, Daifu,
17	Japan
18	

19 **Corresponding author**

20	Kandai Nozu	, MD, PhD
----	-------------	-----------

- 21 Department of Pediatrics, Kobe University Graduate School of Medicine,
- 22 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
- 23 Tel: +81-382-6090, fax: +81-382-6099, e-mail: nozu@med.kobe-u.ac.jp

- 25 **Running title:** Targeted sequencing for pseudo-BS/GS
- 26 **COI Statement:** The authors have nothing to disclose.
- 27 Support Sources: This study was supported by a grant from the Ministry of Health, Labour
- and Welfare (Japan) for Research on Rare Intractable Diseases in the Kidney and Urinary
- 29 Tract (H24-nanchitou (nan)-ippan-041 to Kazumoto Iijima) in the "Research on Measures for
- 30 Intractable Diseases" Project, and a Grant-in-Aid for Scientific Research (KAKENHI) from
- 31 the Ministry of Education, Culture, Sports, Science and Technology of Japan (Subject ID:
- 32 15K09691 to Kandai Nozu and 17H04189 to Kazumoto Iijima).

33 Key words

- 34 Pseudo-Bartter syndrome, Pseudo-Gitelman syndrome, Targeted sequencing, Next-generation
- 35 sequencing, Congenital chloride diarrhea, *SLC26A3*
- 36 Word count abstract: 195
- 37 Word count text: 2163

39 Abstract

Pseudo-Bartter/Gitelman syndrome (p-BS/GS) encompasses a clinically heterogeneous group 40of inherited or acquired disorders similar to Bartter syndrome (BS) or Gitelman syndrome 41(GS), both renal salt-losing tubulopathies. Phenotypic overlap frequently occurs between 42p-BS/GS and BS/GS, which are difficult to diagnose based on their clinical presentation and 43require genetic tests for accurate diagnosis. In addition, p-BS/GS can occur as a result of 44other inherited diseases such as cystic fibrosis, autosomal dominant hypocalcemia, Dent 45disease or congenital chloride diarrhea (CCD). However, the detection of variants in genes 46 other than known BS/GS-causing genes by conventional Sanger sequencing requires 47substantial time and resources. We studied 27 cases clinically diagnosed with BS/GS but with 48negative genetic tests for known BS/GS genes. We conducted targeted sequencing for 22 49genes including genes responsible for tubulopathies and other inherited diseases manifesting 50with p-BS/GS symptoms. We detected SLC26A3 gene variants responsible for CCD in two 51patients. In Patient 1, we found SLC26A3 compound heterozygous variants: c.354delC; and 52c.1008insT. In Patient 2, we identified compound heterozygous variants: c.877G>A, 5354p.(Glu293Lys); and c.1008insT. Our results suggest that a comprehensive genetic screening system using targeted sequencing is useful for the diagnosis of patients with p-BS/GS with 55alternative genetic origins. 56

58 Introduction

Bartter syndrome (BS) and Gitelman syndrome (GS) are autosomal recessive inherited 59salt-loss tubulopathies characterized by hypokalemic metabolic alkalosis with normal or low 60 blood pressure despite hyperreninemia and hyperaldosteronemia. BS is reportedly caused by 61pathogenic variants in genes encoding renal tubular ion transporters or channels, leading 62directly or indirectly to loss of function ¹⁻⁶. Types I, II, IV, and IVb BS usually present during 63 the neonatal period with relatively severe symptoms (antenatal BS), whereas type III BS 64(classic BS) and GS present during early childhood with milder symptoms. Moreover, 65variants in known disease-related genes have not been identified in about half of the patients 66 with clinically diagnosed BS/GS⁷. This suggests that some clinical conditions may cause a 6768 BS-like disorder, or pseudo-BS/GS (p-BS/GS), associated with loss of sodium or chloride in the urine, stool, or vomitus, or with chloride-intake deficiency, resulting in clinical symptoms 69 identical to those of BS/GS. It is difficult to clearly distinguish between p-BS/GS and BS/GS 70 based on clinical findings owing to phenotypic overlap. Moreover, some other inherited 71diseases, such as cystic fibrosis⁸, autosomal dominant hypocalcemia^{9, 10}, Dent disease¹¹ or 72congenital chloride diarrhea (CCD)¹² can also cause p-BS/GS symptoms. Despite the need 73for accurate genetic diagnosis in this heterogeneous group, the traditional strategy for genetic 74testing using single-gene Sanger sequencing lacks power for a comprehensive analysis and 75requires substantial time and resources to analyze many candidate genes. 76

77	Recently, next-generation sequencing (NGS) has become available for the diagnosis
78	of a number of disorders in clinical practice ¹²⁻¹⁶ . NGS can be used to analyze the whole
79	genome sequence or whole exome sequence (WES). NGS is useful not only to discover new
80	pathogenic genes for an unknown cause of genetic disease, but also to comprehensively
81	analyze known causative genes, simultaneously, by targeted sequencing. A recent study
82	demonstrated that a disease-related gene, SLC26A3, was identified by the application of
83	targeted sequencing in 5 of 39 patients with suspected BS but who did not have pathogenic
84	variants in known genes for this disease ¹² .
85	In this study, we studied 27 cases clinically diagnosed with BS/GS for whom genetic
86	tests for known BS/GS genes using Sanger sequencing were negative. We conducted targeted
87	sequencing for 22 genes including genes responsible for tubulopathies and other inherited
88	diseases manifesting as p-BS/GS.
89	
90	Methods
91	Ethics
92	All procedures were approved by the Institutional Review Board (IRB) of Kobe University
93	Graduate School of Medicine and in accordance with the Helsinki Declaration of 1975, as
94	revised in 2000 (IRB number: 301). Informed consent was obtained from all patients or their
95	parents.

97 **Patients**

98	We studied 27	cases clinically	diagnosed	with BS/GS an	d for whom	genetic tests	for BS/GS
			<u> </u>			0	

- 99 genes; *SLC12A1, KCNJ1, CLCNKB*, BSND and *SLC12A3*, using Sanger sequencing were
- 100 negative. Ten cases who were negative for *SLC26A3* variants examined by Sanger sequencing
- 101 were also included ¹⁷. We conducted targeted sequencing for 22 genes, including genes
- 102 responsible for tubulopathies and other inherited diseases manifesting as p-BS/GS (Table 2).
- 103 Clinical information for all 27 patients is shown in Supplementary Table 1.

104

105 **Preparation of the patients' DNA and NGS**

106	Genomic DNA samples wer	e extracted from peripheral	l blood mononuclear cells	s using the
-----	-------------------------	-----------------------------	---------------------------	-------------

- 107 QuickGene whole blood kit S (Kurabo, Osaka, Japan). For NGS library preparation, we
- 108 designed and used a comprehensive diagnosis custom gene panel using the HaloPlex target
- 109 enrichment system kit (Agilent Technologies, Santa Clara, CA) according to the
- 110 manufacturer's instructions, including 22 known genes associated with inherited
- 111 tubulopathies and p-BS/GS (Table 2). Libraries were sequenced on a MiSeq platform
- 112 (Illumina, San Diego, CA, USA). The sequence data that were generated were analyzed using
- 113 SureCall software (Agilent Technologies, Santa Clara, CA). Variants were confirmed by
- 114 standard Sanger sequencing using a 3130 genetic analyzer (Thermo Fisher Scientific).

We identified *SLC26A3* gene compound heterozygous variants responsible for congenital chloride diarrhea (CCD) in two cases. These variants were confirmed by Sanger sequencing (Figure 1). We did not detect any causative gene variants in the other 25 cases. Detailed clinical pictures for these two cases are as follows. Clinical data are shown in Table 1.

121

122 Patient 1

123	Patient 1 was a 6-month-old boy. He was born to unrelated parents at 37 weeks after a
124	hydramniotic pregnancy, with a birth weight of 2500 g, and had no family history. He
125	presented with polyuria from birth (after diagnosis, this was determined to have been watery
126	diarrhea) and was admitted to a local hospital at 8 days of age because of poor sucking, 15%
127	weight loss and jaundice. Although laboratory tests revealed severe hyponatremia,
128	dehydration and hyperbilirubinemia and suspected BS/GS, further examinations to determine
129	the cause were not conducted at that time. At 6 months of age, he was again admitted to the
130	same local hospital with failure to thrive and suspected viral gastroenteritis (watery diarrhea).
131	He received fluid replacement treatment for the correction of electrolytes and dehydration,
132	followed by daily oral sodium chloride and potassium chloride. His symptoms resolved and
133	electrolyte abnormality normalized. His clinical characteristics and laboratory test results are

134	shown in Table 1. He was clinically diagnosed with BS/GS based on the clinical presentation,
135	including polyhydramnios, hypokalemia, metabolic alkalosis, hyperreninemia and
136	hyperaldosteronemia. After confirming the absence of obvious acquired disorders, we
137	performed genetic tests using Sanger sequencing based on the genetic analysis algorithm
138	proposed by Peters et al. ¹⁸ , but there were no variants in known genes responsible for
139	BS/GS.
140	
141	Patient 2
142	Patient 2 was a 7-year-old girl who was born to unrelated parents at 37 weeks after a
143	hydramniotic pregnancy, with a birth weight of 3195 g, but with no family history. At 3
144	months of age, she was admitted to a local hospital owing to failure to thrive and acute
145	gastroenteritis (watery diarrhea). She received fluid replacement treatment for the correction
146	of electrolytes and dehydration. Her symptoms resolved and electrolyte abnormality
147	normalized. At 6 months of age, in follow-up examination, she showed hyponatremia,
148	hypokalemia, metabolic alkalosis, hyperreninemia and hyperaldosteronemia, and was
149	clinically diagnosed with BS/GS. She started to receive daily treatment with oral sodium
150	chloride, potassium chloride and an NSAID (non-steroid anti-inflammatory drug). However,
151	genetic analysis was not conducted at that time. At the age of 7 years, she visited the local
152	hospital for the purpose of a second opinion. Her clinical characteristics and laboratory test

153	results are shown in Table 1. After confirming the absence of apparent acquired disorders, we
154	performed genetic tests using Sanger sequencing, but there were no pathogenic variants in
155	known genes for BS/GS.
156	In Patient 1, we found compound heterozygous variants: c.354delC; and c.1008insT. Each
157	parent was found to be heterozygous for one of these variants. In Patient 2, compound
158	heterozygous variants were also identified: c.877G>A, p.Glu293Lys; and c.1008insT.
159	p.Glu293Lys was a novel missense variant, and was predicted to be pathogenic by three
160	variant prediction tools, Mutation Taster (http://www.mutationtaster.org/), PolyPhen2
161	(http://genetics.bwh.harvard.edu/pph2/), and SIFT (http://sift.jcvi.org/). Each parent was
162	found to be heterozygous for one of these variants.

164 **Discussion**

This study demonstrates a comprehensive genetic screening approach using NGS with a custom panel and revealed the causative gene variants in two p-BS/GS patients. We identified these rare pathogenic variants in *SLC26A3*, a gene which has been associated with CCD, a distinct inherited disease manifesting p-BS/GS symptoms. This finding suggests that NGS is useful for the genetic diagnosis of p-BS/GS. These two patients were misdiagnosed as having BS/GS because they presented with clinical symptoms identical to BS/GS, such as polyhydramnios, hypokalemic metabolic alkalosis, hyperreninemia, hyperaldosteronemia and

172	failure to thrive. It was not until the genetic test revealed them as having CCD that chronic
173	diarrhea in these two cases was considered an important symptom for diagnosis of the
174	underlying disease. In Patient 1 the chronic diarrhea was even initially misdiagnosed as
175	polyuria with the watery stool mistaken for urine.
176	As previously reported, p-BS/GS may be caused by a wide variety of inherited
177	conditions, including cystic fibrosis, autosomal dominant hypocalcemia, Dent disease or
178	CCD, or acquired conditions, such as surreptitious diuretic use, laxative abuse, a chronic
179	chloride deficient diet or cyclic vomiting ³ . Thus, identification of disease-causing disorders
180	is essential for accurate diagnosis. In this study, we conducted comprehensive genetic
181	screening for genes that can cause p-BS/GS including CFTR, CASR, CLCN5, OCRL and
182	SLC26A3 and detected pathogenic variants in SLC26A3 in two cases (Table 2). We recently
183	reported that acquired p-BS/GS was particularly common among adult women with lower
184	body mass index (BMI) and estimated glomerular filtration rate (eGFR). These results
185	suggested that age at diagnosis, sex, BMI, and eGFR should be taken into consideration for
186	the differential diagnosis. Moreover, we found that patients with p-BS/GS had a significantly
187	lower mean fractional excretion of sodium and chloride (FENa and FECl) than patients with
188	BS/GS (FENa 0.32 ± 0.28% vs. 1.62 ± 0.79%, respectively; $P < 0.001$, FECl 0.44 ± 0.45% vs.
189	$2.80 \pm 1.44\%$, respectively; $P < 0.001$), because of sodium chloride loss into not urine but
190	stool in p-BS/GS ⁷ . In the current two cases, both patients showed low levels of FENa and

FECl. The measurement of FENa and FECl may help to diagnose p-BS/GS caused by *SLC26A3* pathogenic variants.

193	CCD is a rare autosomal recessive disease that is characterized by persistent watery
194	diarrhea with high fecal chloride from infancy, failure to thrive, hypochloremia, hypokalemia,
195	hyponatremia and metabolic alkalosis. The SLC26A3 gene encodes an intestinal Cl ⁻ /HCO3 ⁻
196	exchanger protein ^{19, 20} . Some previous reports suggested that CCD patients were easily
197	misdiagnosed as BS/GS because of excessive loss of sodium chloride into the stool, resulting
198	in a BS/GS-like phenotype ²¹ . Early and precise diagnosis improves the prognosis of CCD,
199	and appropriate electrolyte treatment prevents significant morbidity or mortality ^{22, 23} . In the
200	current study, two patients were not diagnosed with CCD, despite showing the symptoms of
201	watery diarrhea and dehydration during admission in infancy. Patient 2 was not correctly
202	diagnosed until 7 years of age. This case indicates that it is quite difficult for clinicians to
203	make a precise diagnosis of this quite rare inherited disease based on the patient's limited
204	clinical data. The reason these two cases were not accurately diagnosed with CCD was
205	speculated to be because this disease is not widely recognized even by neonatologists.
206	Comprehensive gene testing usually needs high cost and it should be avoided as much as
207	possible. For that reason, it is necessary to remember CCD as a differential diagnosis for
208	BS/GS.

209

Previous reports have described the possible existence of unidentified inherited

210	disorders in patients with p-BS/GS and the existence of new loci other than those in genes
211	already identified for these phenotypes ^{3, 24} . In fact, a novel causative gene for transient
212	antenatal BS, <i>MAGED2</i> , was identified quite recently 25 . We recently reported 56 % of
213	p-BS/GS patients had apparent acquired underlying causes of hypokalemia and metabolic
214	alkalosis, including excessive diuretic or laxative abuse, or anorexia. On the other hand, no
215	clear underlying causes were identified in the remaining 44% of p-BS/GS patients despite
216	detailed interviews. This suggests some of those p-BS/GS patients might be caused by
217	inherited causes other than BS/GS 7 . In this study, we conducted targeted sequencing for 27
218	cases from those who were suspected to have inherited diseases.
219	Identification of defects in other genes may significantly improve our understanding
220	of the underlying mechanisms of salt homeostasis. NGS is a promising tool which is expected
221	to allow the genetic characterization of these undiagnosed cases and to allow for the detection
222	of unidentified pathogenic variants. Choi et al. ¹² recently identified pathogenic SLC26A3
223	variants responsible for CCD using NGS in 5 of 39 p-BS patients with no pathogenic variants
224	in known genes for BS. A recent publication by Mori et al. also reported that they designed a
225	NGS custom panel for major inherited kidney diseases and applied the panel to 73 patients
226	clinically diagnosed with some type of inherited kidney diseases, allowing a fast, easy, and
227	comprehensive diagnosis regardless of the disease type 15

NGS is a highly relevant technology for use in the diagnosis of BS/GS and it has

229	largely replaced single-gene Sanger sequencing. Moreover, early assessment and
230	classification of BS/GS and p-BS/GS are becoming increasingly important because of the
231	clinical and genetic heterogeneity underlying p-BS/GS resulting from many different
232	inherited disorders. This technology will lead to improvements in our understanding of the
233	causative disorder and will provide better assessment of prognosis, detection of complications
234	in organs other than the kidneys, better treatment choice, carrier diagnosis and genetic
235	counseling. These multiple advantages may significantly contribute to improving the
236	patient's life.
237	In conclusion, our results suggest that comprehensive analysis using NGS with targeted
238	sequencing is useful for detecting genetic mutations in some cases with p-BS/GS.
239	
240	Statement of Financial Support: This study was supported by a grant from the Ministry of
241	Health, Labour and Welfare (Japan) for Research on Rare Intractable Diseases in the Kidney
242	and Urinary Tract (H24-nanchitou (nan)-ippan-041 to Kazumoto Iijima) in the "Research on
243	Measures for Intractable Diseases" Project, and a Grant-in-Aid for Scientific Research
244	(KAKENHI) from the Ministry of Education, Culture, Sports, Science and Technology of
245	Japan (Subject ID: 15K09691 to Kandai Nozu and 26293203 to Kazumoto Iijima).
246	

Conflict of interest

All the authors have declared no competing interest.

251 References

2521. Simon, D.B., Bindra, R.S., Mansfield, T.A., Nelson-Williams, C., Mendonca, E., 253Stone, R. et al. Mutations in the chloride channel gene, CLCNKB, cause Bartter's syndrome type III. Nat Genet. 17, 171-178 (1997). 254Birkenhager, R., Otto, E., Schurmann, M.J., Vollmer, M., Ruf, E.M., Maier-Lutz, I. et 2. 255al. Mutation of BSND causes Bartter syndrome with sensorineural deafness and 256kidney failure. Nat Genet. 29, 310-314 (2001). 257Seyberth, H.W. & Schlingmann, K.P. Bartter- and Gitelman-like syndromes: 2583. salt-losing tubulopathies with loop or DCT defects. Pediatr Nephrol. 26, 1789-1802 259(2011). 2604. Simon, D.B., Karet, F.E., Hamdan, J.M., DiPietro, A., Sanjad, S.A. & Lifton, R.P. 261262Bartter's syndrome, hypokalaemic alkalosis with hypercalciuria, is caused by 263mutations in the Na-K-2Cl cotransporter NKCC2. Nat Genet. 13, 183-188 (1996). 2645. Simon, D.B., Karet, F.E., Rodriguez-Soriano, J., Hamdan, J.H., DiPietro, A., Trachtman, H. et al. Genetic heterogeneity of Bartter's syndrome revealed by 265mutations in the K+ channel, ROMK. Nat Genet. 14, 152-156 (1996). 2666. Simon, D.B., Nelson-Williams, C., Bia, M.J., Ellison, D., Karet, F.E., Molina, A.M. et 267268al. Gitelman's variant of Bartter's syndrome, inherited hypokalaemic alkalosis, is caused by mutations in the thiazide-sensitive Na-Cl cotransporter. Nat Genet. 12, 26927024-30 (1996). 7. Matsunoshita, N., Nozu, K., Shono, A., Nozu, Y., Fu, X.J., Morisada, N. et al. 271272Differential diagnosis of Bartter syndrome, Gitelman syndrome, and 273pseudo-Bartter/Gitelman syndrome based on clinical characteristics. Genet Med. 18, 180-188 (2016). 2742758. Kennedy, J.D., Dinwiddie, R., Daman-Willems, C., Dillon, M.J. & Matthew, D.J. Pseudo-Bartter's syndrome in cystic fibrosis. Arch Dis Child. 65, 786-787 (1990). 2762779. Kamiyoshi, N., Nozu, K., Urahama, Y., Matsunoshita, N., Yamamura, T., Minamikawa, S. et al. Pathogenesis of hypokalemia in autosomal dominant 278279hypocalcemia type 1. Clin Exp Nephrol. 20, 253-257 (2016). 28010. Vargas-Poussou, R., Huang, C., Hulin, P., Houillier, P., Jeunemaitre, X., Paillard, M. et al. Functional characterization of a calcium-sensing receptor mutation in severe 281282autosomal dominant hypocalcemia with a Bartter-like syndrome. J Am Soc Nephrol. 28313, 2259-2266 (2002). Bogdanovic, R., Draaken, M., Toromanovic, A., Dordevic, M., Stajic, N. & Ludwig, 28411. M. A novel CLCN5 mutation in a boy with Bartter-like syndrome and partial growth 285hormone deficiency. Pediatr Nephrol. 25, 2363-2368 (2010). 28612. Choi, M., Scholl, U.I., Ji, W., Liu, T., Tikhonova, I.R., Zumbo, P. et al. Genetic 287

288		diagnosis by whole exome capture and massively parallel DNA sequencing. Proc Natl
289		Acad Sci USA. 106, 19096-19101 (2009).
290	13.	Antoniadi, T., Buxton, C., Dennis, G., Forrester, N., Smith, D., Lunt, P. et al.
291		Application of targeted multi-gene panel testing for the diagnosis of inherited
292		peripheral neuropathy provides a high diagnostic yield with unexpected
293		phenotype-genotype variability. BMC Med Genet. 16, 84 (2015).
294	14.	Lim, E.C., Brett, M., Lai, A.H., Lee, S.P., Tan, E.S., Jamuar, S.S. et al.
295		Next-generation sequencing using a pre-designed gene panel for the molecular
296		diagnosis of congenital disorders in pediatric patients. Hum Genomics. 9, 33 (2015).
297	15.	Mori, T., Hosomichi, K., Chiga, M., Mandai, S., Nakaoka, H., Sohara, E. et al.
298		Comprehensive genetic testing approach for major inherited kidney diseases, using
299		next-generation sequencing with a custom panel. Clin Exp Nephrol. 21, 63-75 (2017).
300	16.	Polla, D.L., Cardoso, M.T., Silva, M.C., Cardoso, I.C., Medina, C.T., Araujo, R. et al.
301		Use of Targeted Exome Sequencing for Molecular Diagnosis of Skeletal Disorders.
302		<i>PLoS One.</i> 10 , e0138314 (2015).
303	17.	Ishimori, S., Kaito, H., Matsunoshita, N., Otsubo, H., Hashimoto, F., Ninchoji, T. et al.
304		SLC26A3 gene analysis in patients with Bartter and Gitelman syndromes and the
305		clinical characteristics of patients with unidentified mutations. Kobe J Med Sci. 59,
306		E36-43 (2013).
307	18.	Peters, M., Jeck, N., Reinalter, S., Leonhardt, A., Tonshoff, B., Klaus, G.G. et al.
308		Clinical presentation of genetically defined patients with hypokalemic salt-losing
309		tubulopathies. Am J Med. 112, 183-190 (2002).
310	19.	Holmberg, C., Perheentupa, J., Launiala, K. & Hallman, N. Congenital chloride
311		diarrhoea. Clinical analysis of 21 Finnish patients. Arch Dis Child. 52, 255-267
312		(1977).
313	20.	Norio, R., Perheentupa, J., Launiala, K. & Hallman, N. Congenital chloride diarrhea,
314		an autosomal recessive disease. Genetic study of 14 Finnish and 12 other families.
315		<i>Clin Genet.</i> 2 , 182-192 (1971).
316	21.	Wedenoja, S., Pekansaari, E., Hoglund, P., Makela, S., Holmberg, C. & Kere, J.
317		Update on SLC26A3 mutations in congenital chloride diarrhea. Hum Mutat. 32,
318		715-722 (2011).
319	22.	Lee, D.H. & Park, Y.K. Antenatal differential diagnosis of congenital chloride
320		diarrhea: a case report. J Obstet Gynaecol Res. 38, 957-961 (2012).
321	23.	Saneian, H. & Bahraminia, E. Congenital chloride diarrhea misdiagnosed as
322		pseudo-Bartter syndrome. J Res Med Sci. 18, 822-824 (2013).
323	24.	Zelikovic, I. Hypokalaemic salt-losing tubulopathies: an evolving story. Nephrol Dial
324		Transplant. 18, 1696-1700 (2003).
325	25.	Laghmani, K., Beck, B.B., Yang, S.S., Seaayfan, E., Wenzel, A., Reusch, B. et al.

326Polyhydramnios, Transient Antenatal Bartter's Syndrome, and MAGED2 Mutations.327N Engl J Med. 374, 1853-1863 (2016).

i gui e legenus

331 Fig. 1

- 332 Results of genetic analysis confirmed by Sanger sequencing
- A. Patient 1: Genetic analysis revealed *SLC26A3* compound heterozygous variants:
- 334 c.354delC(Top); and c.1008insT(Bottom). The former variant was in exon 4 of the maternal
- allele, leading to an out-of-frame product. The latter was in exon 9 of the paternal allele,
- 336 leading to an out-of-frame product.
- B. Patient 2: Genetic analysis showed *SLC26A3* compound heterozygous variants: c.877G>A,
- 338 p.(Glu293Lys); and c.1008insT. The former variant was in exon 7 of the maternal allele, and
- 339 was identified as a pathogenic novel missense variant by three variant prediction tools. The
- 340 latter was in exon 9 of the paternal allele, resulting in an out-of-frame product.

341

342

343

Parameter	Patient 1	Patient 2	
Sex	Male	Female	
Age at analysis	6 months old	7 years old	
Age at diagnosis of BS	6 months old	6 months old	
Treatment	oral sodium chloride, potassium chloride	oral sodium chloride, potassium chloride, NSAID	
Body weight (kg)	5.9 (-2.3SD)	21.7 (-0.5SD)	
Body height (cm)	61 (-2.8SD)	119.7 (-0.4SD)	
BMI (kg/m2)	15.9	15.1	
Blood pH level	7.491	7.383	
Blood HCO ₃ ⁻ level (mEq/l)	39.4	28.1	
Serum Na ⁺ level (mEq/l)	133	137	
Serum K ⁺ level (mEq/l)	2.3	2.5	
Serum Cl ⁻ level (mEq/l)	74	102	
Serum Mg ²⁺ level (mg/dl)	2.7	1.7	
Serum creatinine (mg/dl)	0.27	0.31	
Estimated GFR (ml/min/1.73m2)	58.4	129.1	
Plasma renin activity (ng/ml/hr)	170	5.5	
Plasma aldosterone level (pg/ml)	928	9.8	
Urinary Ca ²⁺ /creatinine ratio (mg/mg)	0.01	0.15	
FENa (%)	0.17	0.46	
FEC1 (%)	0.09	0.36	
Echogram	Normal	Normal	
Responsible gene	SLC26A3	SLC26A3	
Mutation	c.1008insT/c.354delC	c.1008insT/c.877G>A	

Table 1. Clinical characteristics and results of genetic diagnosis in patients

	8	8
	Genes	Diseases
1	SLC12A1 <u>NM_000338.2</u>	Type I Bartter syndrome
2	KCNJ1 <u>NM_000220.4</u>	Type II Bartter syndrome
3	CLCNKB <u>NM_000085.4</u>	Type III Bartter syndrome, hypomagnesemia
4	BSND <u>NM_057176.2</u>	Type IV Bartter syndrome
5	CLCNKA <u>NM_004070.3</u>	Type IVb Bartter syndrome
6	SLC12A3 <u>NM_000339.2</u>	Gitelman syndrome, hypomagnesemia
7	CASR <u>NM_000388.3</u>	Type V Bartter syndrome, hypomagnesemia
8	MAGED2 <u>NM_177433.2</u>	Transient antenatal Bartter syndrome
9	CFTR <u>NM_000492.3</u>	Cystic fibrosis
10	CLCN5 <u>NM_000084.4</u>	Type I Dent disease
11	OCRL <u>NM_000276.3</u>	Type II Dent disease
12	SLC26A3 <u>NM_000111.2</u>	Congenital chloride diarrhea
13	KCNJ10 <u>NM_002241.4</u>	EAST syndrome
14	CLDN16 <u>NM_006580.3</u>	Hypomagnesemia
15	CLDN19 <u>NM_148960.2</u>	Hypomagnesemia
16	FXYD2 <u>NM_001680.4</u>	Hypomagnesemia
17	EGF <u>NM_001963.4</u>	Hypomagnesemia
18	TRPM6 <u>NM_017662.4</u>	Hypomagnesemia
19	KCNA1 <u>NM_000217.2</u>	Hypomagnesemia
20	CNNM2 <u>NM_017649.4</u>	Hypomagnesemia
21	HNF1B <u>NM_000458.3</u>	Hypomagnesemia, CAKUT, ADTKD
22	SLC41A3	Hypomagnesemia (mice)

Table 2. Gene list for targeted sequencing in this study

349 CAKUT, congenital anomalies of the kidney and urinary tract

350 ADTKD, autosomal dominant tubulo-interstitial kidney disease

351

Patient ID	Gender	Age at diagnosis	Age at present	BMI	eGFR	Clinical symptoms	Serum K	Serum Mg	HCO3-
		(years old)	(years old)	(kg/m2)	ml/min/1.73m2		(mEq/L)	(mEq/L)	(mmol/L)
A14	Male	1	12	18	53.4	Epilepsy	2.8	1.5	27.6
B26	Female	0.7	3	-	117.1	None	2.1	1.9	29.2
B36	Female	17	18	24.3	82	None	2.4	1.7	25
B40	Female	antenatal	7	13.5	184	Polyhydramnios, Polyurea	2.2	2.3	26
B44	Male	36	36	25.6	85	None	2.2	2.1	25.8
B70	Female	27	27	22.5	111	None	2.7	1.9	25.3
B71	Male	1	1	-	91.2	Failure to thrive	2.4	2.6	47.2
B80	Male	0.6	0.7	-	-	Failure to thrive	3.2	2	34.9
B83	Female	49	49	20.9	65	Depression	3.4	1.1	27.3
B90	Female	26	56	20.8	27	None	2.1	1.5	29.6
B118	Male	0.5	34	29.2	91	Failure to thrive, Tetany	2.9	1.7	30.6
B120	Female	20	38	16.6	53	None	2.2	1.9	38.2
B121	Male	42	53	28.6	89	Fatigue, Tetany	2.7	1.5	32.7
B125	Male	27	42	25.1	108	None	3.7	1.8	26.6
B141	Female	30	48	18.5	59	Cramp	2.2	1.9	38.9
B145	Female	20	44	22.7	75	None	3.2	2.2	25.2
B152	Male	28	28	19.2	82	None	2.5	1	31.1
B154	Female	33	34	17.9	91	None	2.3	1.9	33.7
B162	Male	33	38	24.3	51	None	3.1	3.2	32.8
B164	Male	0.3	0.5	-	-	Failure to thrive	3.6	2.1	32.1
B169	Male	7	7	24.8	141.1	None	2.4	1.8	32.7
B177	Female	42	42	22.6	120	Fatigue	1.9	1.1	34.6
B188	Female	1	3	-	131.1	Failure to thrive	1.7	2.7	42.5
B190	Female	38	38	18.3	80	Fatigue, Cramp	3	2	18.6
B195	Female	2	2	-	141.4	Muscle weakness	1.8	1.9.	29.2
Patient 1	Male	0.5	7	15.9	58.4	Failure to thrive	2.3	2.7	39.4
Patient 2	Female	0.5	1	-	129.1	Failure to thrive	3.7	1.7	28.1

Supplementary Table 1 Clinical characteristics of all patients included in this study

BMI: Body mass index eGFR: estimated glomerular filtration rate Figure 1

