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Abstract Monitoring water quality in urban stream is
of utmost importance for water resources managers,
who are pressured to optimize monitoring schemes in
order to reduce costs. The present study aims to use the
results of a 2-year-long water quality monitoring pro-
gram of an urban stream in Portugal to identify improve-
ment opportunities. The urban stream under study was
subjected to wastewater treatment plants effluent dis-
charges, leachates from a major sealed landfill, low-
class housing effluents, and nonpoint sources of pollu-
tion. Contributing watersheds are mostly artificial sur-
faces and agricultural land, which irrigate directly from

the river. River water quality was evaluated on 11 sam-
pling locations for 24 months from October 2013 to
September 2015. The present paper describes statistical
analysis of the results obtained for 12 physicochemical
parameters in order to optimize the monitoring scheme.
Cluster analysis detected a seasonal variation in the
water quality and a spatial pattern based on the major
point sources of pollution. A factor analysis showed that
the parameters that mostly contribute to water quality
assessment in this urban river are alkalinity, ammonia,
electrical conductivity, pH, temperature, and dissolved
oxygen. Results suggest that the monitoring efforts—
and associated costs—may be reduced by decreasing
monitoring frequency, sampling points, and monitored
parameters. The statistical analysis described in this
study may be replicated in other water quality monitor-
ing programs, providing useful and important informa-
tion for the systematic and iterative assessment of the
adequacy of water quality sampling programs towards a
sustainable management of water quality surveillance.

Keywords Water quality . Urban stream .Monitoring
scheme .Multivariate statistical analysis . Spatial
variation . Temporal variation

Introduction

Rivers and streams have been the major sources of water
for crop irrigation, energy production, drinking, trans-
portation, and wastewater disposal. Contamination of
this resource may pose a threat to the environment and
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public health. Streams provide several ecosystem ser-
vices, like water provision, climate regulation, flood
protection, fish production, and recreation opportunities.
The recognition of the important connection existing
between natural and socio-economic systems, particu-
larly in urban environments, and the rising awareness
regarding the ecosystem services provided by urban
streams makes water management plans strongly sup-
ported by the general public (Everard and Moggridge
2012; Hua and Chen 2019; Sarvilinna et al. 2017).

In urban areas, land is covered by impervious and
semi-impervious surfaces such as buildings, pavements,
and compacted landscapes, which decrease rainfall in-
filtration and increase stormwater runoff in both volume
and velocity. This runoff carries pollutants that may
harm biodiversity, impair water use, and make recrea-
tional areas unsafe and unpleasant, contributing to spa-
tiotemporal changes in water quality (Duan et al. 2016),
pronounced in the Mediterranean region due to its sea-
sonal precipitation patterns (Sánchez-Montoya et al.
2012).

Land use and water quality relationship has been
studied for various climates and water body types
(Andrade et al. 2008; Duan et al. 2016; Fataei 2011;
Pejman et al. 2009; Zhang et al. 2009). Nonetheless, a
definite correlation is yet to be attained due to multiple
anthropogenic activities and man-made modification of
watersheds characteristics (Yu et al. 2016).

In urban areas, stormwater is the major nonpoint
source of pollution in water bodies because it carries
pollutants like sediment from disturbed soils and con-
struction sites; hydrocarbons from road traffic and vehi-
cle exhausts; business, industries, and housing not con-
nected to the sewage system; nutrients from lawn care
and agricultural fields; and even pet wastes. The impor-
tance of adequately planned stormwater control mea-
sures in urban areas has been highlighted in recent
studies (Bahrami et al. 2019; Sadeghi and Kharaghani
2018) due to the increasing urbanization and uncer-
tainties associated with climate change impact. Water
quality monitoring programs are essential tools to sup-
port decision-making on these issues.

Point sources of water pollution include industrial
and domestic wastes and polluted tributaries and rivers
that discharge into water bodies. In a study conducted by
Vilmin et al. (2016) in the Seine River, it was demon-
strated that wastewater treatment plants (WWTP) efflu-
ents are the major factor for water pollution and that it is
highly affected by runoff.

Nutrients like phosphorus and nitrogen promote
weed and algae growth in streams. Nitrate sources in
an urban environment include fertilizers used in small
agricultural fields, lawns, and gardens, leaking septic
systems, sewage treatment plants outfalls, domestic pet
excreta, and combustion of fossil fuels (Halstead et al.
2014; Rauch and Morrison 2012). Phosphorus is found
in rocks and soil, fertilizers, leaves and grass left on
paved areas, and orthophosphate from vehicle exhaust.
Because phosphorus compounds attach to soil particles,
when the soil is disturbed by construction, the adsorbed
phosphorus on the soil particles is free to move and to be
carried by runoff.

To effectively manage river water resources, water
quality assessment is imperious. The Water Framework
Directive (WFD) was published with the aim to assure
adequate quality in European water bodies (European
Community 2000). However, considerable monitoring
efforts are required, and the effective use of sampling
resources is seldom practiced (Kotamäki et al. 2019).
Representative sampling sites and variables must be
defined to reduce monitoring costs. Multivariate statis-
tical tools and exploratory data analysis have been used
for data reduction and interpretation of large data sets in
water quality assessment (Andrade et al. 2011; Arora
et al. 2014; Bu et al. 2010; Pejman et al. 2009; Sánchez-
Montoya et al. 2012; Vega et al. 1998).

Ongoing monitoring programs should be systemati-
cally evaluated, and for that, it is necessary to extract
meaningful information from large and complicated
data sets without missing useful information and opti-
mize the monitoring network by recognizing the repre-
sentative parameters, delineating monitoring sites, and
identifying latent pollution sources (Kotamäki et al.
2019; Pekey et al. 2004; Shrestha and Kazama 2007).
Multivariate data analysis in water quality studies has
been widely used in locating monitoring sites and
selecting water quality parameters (Andrade et al.
2011; Mutlu 2019).

The main objective of this study is to optimize the
monitoring scheme of an urban river by reduction of
sampling points and/or monitored parameters. Multivar-
iate statistical techniques identify similarities and dis-
similarities between sampling stations and correspond-
ing pollution sources and evaluate seasonality of water
quality. This analysis is expected to increase the knowl-
edge of water quality spatiotemporal variation, enabling
a more effective and sustainable management of moni-
toring resources.
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Materials and methods

Study site

The Tinto River is located between parallels 41°08′N
and 41°13′N and meridians 8°31′W and 8°36′W
(Fig. 1). The river is in the Iberic-Macaronesian
ecoregion based on system A classification of the
WFD (European Community 2000). It is a lowland,
small basin (23 km2), granitic with clayey alluvial ma-
terial. The river is a tributary (11.4 km) of the major river
Douro, Portugal.

Land use within this basin is mostly artificial surface
(75%), agricultural areas (20%), and forests and semi-
natural areas (5%) (Fig. 1). Some low-class housings are
not connected to the public sewage system and drain
directly into the river. A major sealed sanitary landfill
and two wastewater treatment plants effluents discharge
directly into the Tinto River (Fig. 1). River water is used
for irrigation of fresh produce and corn and also for the
dilution of leachates from the landfill and effluents from
the WWTP.

Climate is classified as Csb (dry summer) according
to the Koppen-Geiger classification system (Climate -
data 2020). The mean annual temperature is 14.6 °C,
and the mean annual precipitation is 1223 mm, with an
average of nine wet days per month (NMI&NBC 2016)
distributed as shown in Fig. 2.

Data set

The Tinto River has been under a monitoring scheme to
access its ecological status, according to the WFD
(European Community 2000). This monitoring scheme
comprises 11 sampling locations (Fig. 1) analyzed
monthly for physicochemical and hydromorphological
parameters and quarterly for benthic macroinvertebrate
characterization. Detailed information on this monitor-
ing scheme, including experimental methodology can
be found elsewhere (Jesus et al. 2020). Monitoring point
A is a spring well, where water flows from the aquifer to
the surface and may be considered groundwater.

As referred above, the present study uses statistical
analysis of the experimental results obtained in the Tinto
River monitoring program to identify cost reduction
opportunities. The parameters under analysis are listed
in Table 1 and cover general physicochemical elements
supporting biological elements (European Community
2000). The pooled data set comprises 3168 results (11

locations, 12 parameters, 24 months of data acquisition)
obtained from October 2013 to September 2015.

Statistical methods

In this study, the statistical analysis was performed using
SPSS software (version 24). Multivariate statistical
methods were used for water quality assessment in time
and space, classification, interpretation, and reduction of
data set. Data was standardized by the z score method to
render data dimensionless and minimize the difference
of variance in variables and the influence of different
units of measurement (Dillon and Goldstein 1984). The
three-sigma rule was used to eliminate outliers. All data
that fell outside three standard deviations from the mean
were removed.

Cluster analysis (CA)

Cluster analysis groups cases into classes based on the
similarities and dissimilarities between classes. Cluster
analysis was carried out to analyze separately the time
effect and the effect of sample location on river water
quality. The agglomerative hierarchical cluster analysis
with a combination of the complete linkage method and
the squared Euclidean distances was applied (Andrade
et al. 2011; Bu et al. 2010), acknowledging that dendro-
gram interpretation has some degree of subjectivity on
the number of clusters, which are chosen by the user
(Andrade et al. 2008). The mean value of each of the
analyzed parameters of the respectively formed clusters
was submitted to the t test at a 5% significance level.

Principal component analysis/factor analysis (PCA/FA)

Principal component analysis (PCA) is a dimensionality
reduction technique that changes the original variables
into new uncorrelated variables, called principal com-
ponents, which are linear combinations of the original
ones with minimum loss of original information (Dillon
and Goldstein 1984). The PCA/FAwas applied to the z-
normalized variables on the dry season and wet season
clusters and also for the high pollution and low pollution
clusters. The Kaiser-Meyer-Olkin (KMO) and Bartlett’s
Sphericity tests on the parameter correlationmatrix were
applied to the data set to indicate validity of the PCA
(Andrade et al. 2008).
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The selected principal components showed an eigen-
value greater than one, a criterion that measures the
significance of the factor. Factor analysis (FA) interpre-
tation may be easier using the rotation procedure which
increases the contribution of variables with higher sig-
nificance and reduces the contribution of variables with
less significance. Varifactors (VF) were generated based
on the varimax rotation with Kaiser normalization.

Results and discussion

The mean value for each parameter and monitoring
point was comparedwith the most restrictive Portuguese
legal limiting recommended value for irrigation, fishery,
and general use (DL 236/98) or indicated by the Portu-
guese National Water Institute (INAG 2009). Parame-
ters ALK, EC, and COD do not have a legal limit nor an
indicative one. The monitoring points in which these
recommended values were not satisfied are highlighted
in Table 2. TSS and TEMP are not limiting parameters

for water use at any point in the river, whereas BOD5,
NO2, and NH4 are a limiting factor for water quality at
all points but point A. Point Awater may be considered
as groundwater, and that is evident from some parameter
values (pH and alkalinity) due to the granitic nature of
the bedrock, lack of aeration (DO), and less sources of
pollution (NO2, NH4, PO4, EC).

Parameters ALK, NH4, PO4, and DO are mostly
associated with the river major sources of pollution—
WWTPs (points I, and K), landfill (point D), and pol-
luted tributary (point C). This result makes sense, be-
cause these parameters are mostly associated with sew-
age (EPA 2001). These parameter values show improve-
ment in the subsequent monitoring points, indicating
that the river has capacity to recover from point sources
of pollution even in the presence of nonpoint sources.
Nonetheless, knowing the mean annual value of a pa-
rameter does not show monthly or seasonal variation,
therefore besides a spatial cluster, a temporal cluster was
also developed.

Clusters analysis

Temporal cluster (TC)

The dendrogram (Fig. 3) indicates two clusters, consis-
tent with the climate and hydrological conditions: dry
season, July, August, September, and October, and wet
season, November, December, January, February,
March, April, May, and June (Fig. 2). It is evident that
there is a difference between the summer/early autumn
seasons (July–October) and the rest of the year. The dry
season begins with the month in which the temperature
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Fig. 1 Study area, monitoring
points and associated watersheds,
tributaries and major effluent
points, and land use

Fig. 2 Weather characterization of Tinto River basin
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is the highest and rainfall is the lowest of the year
(Fig. 2), reflecting the watersheds hydrologic response
to the lowest runoff and dryer soil conditions.

Spatial cluster (SC)

The dendrogram (Fig. 4) indicates three clusters from
the 11monitoring points: Point A; points, B, E, F, G, and
H; and points C, D, I, J, and K. Point A is a spring
protected by a hut, for which the cluster was called
spring (Fig. 1). Points C, D, I, J, and K are downstream
from point sources of pollution—a polluted tributary, a
sanitary landfill, and two wastewater treatment plants—
for which the cluster was called high pollution. The
other monitoring points were clustered in what was
called the low pollution cluster. Results suggest that
water quality does not depend on the geographic posi-
tion because clusters were not formed by neighboring
sites.

Mean pH and TSS showed no statistical difference (t
test with α = 0.05) between the dry season and wet
season (Fig. 5). DO was statistically lower for the dry
season, probably due to the increase in oxygen con-
sumption by the processes of biological degradation of
organic matter, lower runoff and turbulence resulting in
less aeration, and also warmer water that holds less
dissolved oxygen (Pejman et al. 2009). All other param-
eters were statistically higher for the dry season than for
the wet season, possibly due to a higher precipitation in
the wet season and resulting runoff that dilutes

pollutants and due to increased agricultural activities in
the dry season.

It is evident from Table 2 and Fig. 4 that point A
(spring cluster) is different from the other monitoring
points, and therefore, a t-test was performed only on the
high pollution and low pollution cluster. The mean pH
and NO3 showed no statistical difference between the
high pollution and low pollution clusters. DO was sta-
tistically lower for the high pollution cluster, implying
an organic pollution source. All other parameters are
statistically higher for the high pollution cluster. This
result suggests that the point sources of pollution over-
come the nonpoint sources of pollution in the Tinto
River water quality.

Principal component analysis/factor analysis (PCA/
FA)

Temporal cluster (TC)

The PCA/FA applied to the z-normalized variables
on the dry season and wet season clusters showed a
KMO of 0.56 and 0.71 for the dry season and wet
season, respectively, and the Bartlett’s test of sphe-
ricity was significant in both cases indicating ade-
quacy of PCA/FA to provide significant reductions
in dimension (Andrade et al. 2008; Zhang et al.
2009).

Table 1 Physicochemical parameters under analysis and its correspondence with the WFD ((European Community 2000)

WFD Parameters Method

Thermal
conditions

Water temperature (TEMP) In loco using a portable apparatus (HANNA Instruments-HI 99300)

pH In loco using a portable apparatus (WTW - PH 315i)

Acidification
status

Alkalinity (ALK) In lab standard method 2320B (APHA - American Public Health Association 1999)

Dissolved oxygen (DO) In loco using a portable apparatus (YSI-ProODO)

Biochemical oxygen demand,
5 days (BOD5)

In lab standard method 5210B (APHA - American Public Health Association 1999)

Oxygenation Chemical oxygen demand
(COD)

In lab standard method 5220B (APHA - American Public Health Association 1999)

Nutrients Nitrates (NO3) In lab standard method 4500-NO3
−B (APHA - American Public Health Association 1999)

Nitrites (NO2) In lab standard method 4500-NO2
−B (APHA - American Public Health Association 1999)

Ammonia (NH4) In lab standard method 4500-NH3
−G (APHA - American Public Health Association 1999)

Phosphates (PO4) In lab standard method 4500-P E (APHA - American Public Health Association 1999)

Salinity Electrical conductivity (EC) In loco using a portable apparatus (HANNA Instruments-HI 99300)

Total suspended solids (TSS) In lab standard method 2540 D (APHA - American Public Health Association 1999)
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Four VFs were selected, which explain 74.9% and
75.0% of the variance for dry season and wet season,
respectively. The variables that most significantly con-
tribute to temporal variations of water quality are indi-
cated in Fig. 6 considering the loadings of varimax
rotation factors (VF). A factor loading above 0.5 is
considered moderate up to 0.75, after which is consid-
ered strong, while values under 0.5 are weak and are not
to be considered (Bu et al. 2010; Liu et al. 2003; Pejman
et al. 2009).

In the dry season cluster, VF1 explained that
37.5% of total variance had strong positive loadings
from EC, pH, and TEMP and moderate positive

loadings of NO2, PO4, and ALK. VF2 explained
15.3% of total variance, with strong positive load-
ings from NH4, moderate loadings from ALK, and
strong negative loadings from DO (as described
above, DO is inversely proportional). VF3 explained
13.4% of total variance and had strong positive
loadings from BOD5 and moderate positive loadings
from TSS and NO3. VF4 explained 8.7% of total
variance and showed a strong positive loading from
COD. The EC, pH, TEMP, and NH4 are the most
significant parameters contributing to water quality
variations for the dry season, associated with soil
genesis, agricultural fertilization, and sewage

Table 2 Mean values vs. legal limiting values and indicative values (INAG 2009)

Parameter Units Limit values A B C D E F G H I J K

TEMP oC < 28 16 16 16.5 16.2 16.3 16.4 16.9 17.7 18.5 18.1 19.4

pH Sor. 6.5 – 8.4 5.1 6.3 6.9 7 7 7 7.3 7.2 7.1 7.3 7

ALK mg CaCO3/L 11.6 20.9 80.7 100 72.2 60.6 56 56.2 84.4 85.3 89.3

DO mg O2/L > 5 2.7 7.7 4.7 5.4 6.6 6.2 7.2 7.1 4.7 6.7 6

BOD5 mg O2/L < 5 4.7 5.1 14.7 13.1 9 9.7 9.3 9.2 19.8 20.1 16.1

COD mg O2/L 13.8 26.6 45.4 38.5 29.6 31 29.9 24.5 52.6 49.5 45

NO2 mg NO2/L <0.03 0 0.1 0.9 1.2 1.2 1.4 1.5 1.3 2.4 2.4 1.6

NO3 mg NO3/L < 25 26.9 24.5 20.2 30 37.2 33.3 39.5 43.8 58.2 49.6 45.7

NH4 mg NH4/L < 0.2 0 0.4 6.3 9.7 6 3.8 2.5 1.9 10.9 9.7 6.9

PO4 mg PO4/L < 0.1 0.1 0.1 0.8 0.4 0.2 0.2 0.2 0.2 1.4 1.2 2.1

EC µS/cm 158 181 373 410 350 344 348 350 513 473 541

TSS mg/L < 25 4.2 10.9 14.6 8.9 6.8 8.6 6.4 9.2 14.5 16.3 17.7

Highlighted cell values indicate that the parameter is not within the legal limits

Fig 3 Dendrogram based on seasonality (month of the year) Fig. 4 Dendrogram based on monitoring point location
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effluents, explaining the impact of irrigated agricul-
tural practices in the dry summer season.

In the wet season, VF1 explained 40.2% of total
variance, with strong positive loadings from ALK,
NH4, and EC and moderate positive loadings from
NO2 and pH. VF2 explained 14.7% of total vari-
ance, with strong positive loadings from TSS and

moderate positive loadings from BOD5. VF3 ex-
plained 11.0% of total variance, with strong positive
loadings from DO, moderate positive loadings from
pH, and moderate negative loadings from TEMP.
VF4 explained 9.2% of total variance, with strong
positive loadings from NO3 and moderate positive
loadings from PO4. ALK, NH4, EC, and TSS are the
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most significant parameters contributing to water
quality variations for the wet season, mostly associ-
ated with sewage discharges and sediment erosion
and transport from natural surface runoff, highlight-
ing the contribution of NH4, NO2, and NO3 pro-
duced by combustion processes (Nabelkova et al.
2012).

Spatial cluster (SC)

The PCA/FA applied to the z-normalized variables on
the high pollution and low pollution clusters showed a
KMO of 0.71 and 0.41 for the high pollution and low
pollution, respectively, and the Bartlett’s test of spheric-
ity was significant in both cases indicating adequacy of
PCA/FA to provide significant reductions in dimension
(Andrade et al. 2008; Zhang et al. 2009).

Three and four VFs were selected for the high
pollution and low pollution, respectively. VFs ex-
plain 65.5% and 71.8% of the variance for the high
pollution and low pollution, respectively. The vari-
ables that most significantly contribute to temporal

variations of water quality are indicated in Fig. 7
considering the loadings of varimax rotation factors
(VF).

In the high pollution cluster, VF1 explained 38.2% of
total variance and had strong positive loadings from ALK
and NH4 and strong negative loadings from DO and
moderate positive loadings of EC. VF2 explained 14.8%
of total variance, with moderate positive loadings from
PO4, NO3, TEMP, NO2, and EC. VF3 explained 12.6% of
total variance and had strong positive loadings from TSS
and moderate positive loadings from PH and BOD.

In the low pollution cluster, VF1 explained 35.5% of
total variance, with strong positive loadings from ALK
and NH4 and moderate positive loadings from EC, PO4,
and pH. VF2 explained 14.6% of the total variance, with
strong positive loadings from TEMP, moderate positive
loadings from NO2, and moderate negative loadings
from DO. VF3 explained 12.0% of total variance, with
moderate positive loadings from BOD, TSS, and NO3.
VF4 explained 9.7% of total variance, with moderate
positive loadings from pH and moderate negative load-
ings from COD. Interestingly, the parameters that
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mostly contribute to water quality evaluation are ALK
and NH4, in both high and low pollution clusters and
also DO for the high pollution cluster.

Conclusions

The health and well-being of urban populations are
greatly influenced by urban streams and their ecosystem
services, justifying the need for adequate water quality
monitoring programs. However, effective use of moni-
toring resources is required to assure the sustainable
management of water quality surveillance.

Statistical analysis performed on the results of a 2-
year-long monitoring program in urban Tinto River
suggested improvement opportunities. It was found
that six of the 12 analyzed physicochemical parameters
had a major contribution on the assessment of water
quality: alkalinity, ammonia concentration, electrical
conductivity, pH, water temperature, and dissolved
oxygen concentration. It was also found that

monitoring points were spatially clustered based not
on geographic proximity but on proximity to a major
point source of pollution (WWTP, landfill, polluted
tributary) and that monitoring points were temporally
clustered based on the climatic conditions of dry hot
summers and cold wet winters.

As a main conclusion of the present study, the results
obtained with cluster analysis and principal component
analysis/factorial analysis suggest that the monitoring
program of urban Tinto River could comprise fewer
monitoring sites and monitored parameters and that the
sampling frequency could be reduced. These measures
would have considerable impact on monitoring costs
without compromising the quality of the results obtained
in the monitoring program. Simple statistical analysis as
those described in this paper could be used by water
resources managers to systematically and iteratively
evaluate the adequacy of urban water quality sampling
programs, in order to optimize the use of resources.
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