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1. Introduction

This contribution is mainly devoted to report on the results of Ref. [1], where we dealt with

the dynamical quarks effects on the gluon propagation and applied this knowledge to the analysis

of the chiral symmetry restoration with increasing number of light fermion flavours. Quantum

chromodynamics (QCD) with large number of massless fermion flavors has seen a resurgence

of interest due to its connection with technicolor models, originally proposed by Weinberg and

Susskind [2], which fall into the category of Beyond the Standard Model Theories. They possess

intrinsically attractive features. They do not resort to fundamental scalars to reconcile local gauge

symmetry with massive mediators of interaction and have close resemblance with well-studied

fundamental strong interactions, i.e., QCD. However, their simple versions do not live up to the

experimental electroweak precision constraints, in particular the ones related to flavor changing

neutral currents. Walking models containing a conformal window and an infrared fixed point can

possibly cure this defect and become phenomenologically viable [3]. This scenario motivates the

investigation of QCD for similar characteristics. One looks for such behavior of QCD for large

number of light flavors albeit less than the critical value where asymptotic freedom sets in, i.e.,

N
c1

f = 16.5, a Nobel prize winning result known since the advent of QCD, [4]. Just as N f dictates

the peculiar behavior of QCD in the ultraviolet, we expect it to determine the onslaught of its

emerging phenomena in the infrared, i.e., chiral symmetry breaking and confinement.

Whereas the self interaction of gluons provides anti-screening, the production of virtual quark-

antiquark pairs screens and debilitates the strength of this interaction of non abelian origin. For

real QCD, light flavors are small in number and hence yield to the gluonic influence which triggers

confinement and chiral symmetry breaking. One needs to establish if there is another critical value

N
c2

f < N
c1

f which can sufficiently dilute the gluon-gluon interactions to restore chiral symmetry and

deconfine color degrees of freedom. Such a phase transition lies at the non perturbative boundary

of the interactions under scrutiny and hence we cannot expect to extract sufficiently reliable infor-

mation from multiloop calculations of the QCD β -function. Purely non perturbative techniques are

required to tackle the problem. Lattice studies in the infrared indicate that just below N
c1

f , chiral

symmetry remains unbroken and color degrees of freedom are unconfined [5]. Below this confor-

mal window, for an 8 < N
c2

f < 12, the evolution of the beta function in the infrared is such that

QCD enters the phase of dynamical mass generation as well as confinement.

Modern lattice analyses for this matter appear to strongly argue in favour of a restoration

for the chiral symmetric phase taking place somewhere between N f ∼ 8 and N f ∼ 10 [6, 7]. In

particular, the authors of ref. [7], with their study of the meson spectrum in lattice QCD with

eight light flavours using the Highly Improved Staggered Quark action, gathered some striking

evidences that N f = 8 QCD still lies in the broken chiral symmetry phase but, at the sime time,

suffering the effects from a remnant of the infrared conformality (a large anomalous dimension

for the quark mass renormalization constant) indicating that the unbroken phase is recovered near

above N f ∼ 8. In the present work, we intend to combine the Schwinger-Dyson machinery, well

adjusted to account for QCD phenomenology in the pion sector, with the very last lattice data

including twisted-mass dynamical light flavours in order to provide with a model for the chiral

restoration mechanism, in quantitative agreement with the above mentioned lattice studies.
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2. Chiral phase transition picture from Schwinger-Dyson and Lattice gluon

propagators

In continuum, Schwinger-Dyson equations (SDEs) of QCD provide an ideal framework to

study its infrared properties, [8]. These are the fundamental equations of any quantum field theory,

linking all its defining Green functions to each other through intricately coupled nonlinear integral

equations. As their formal derivation through variational principle makes no appeal to the weak-

ness of the interaction strength, they naturally connect the perturbative ultraviolet physics with its

emerging non perturbative properties in the infrared sector within the same framework. The sim-

plest two-point quark propagator is a basic object to analyze dynamical chiral symmetry breaking

and confinement. Within the formalism of the SDEs, the inverse quark propagator can be expressed

as

S−1(p) = Z2(iγ · p+m)+Σ(p) , (2.1)

where Σ(p) is the quark self energy:

Σ(p) = Z1

∫

d4q

(2π)4
g2

∆µν(p−q)
λ a

2
γµS(q)Γa

ν(q, p) , (2.2)

where Z1 =Z1(µ
2,Λ2) and Z2 =Z2(µ

2,Λ2) are the renormalization constants associated respec-

tively with the quark-gluon vertex and the quark propagator. Λ is the ultraviolet regulator and µ is

the renormalization point. The solution to this equation is

S−1(p) =
iγ · p+M(p2)

Z(p2,µ2)
, (2.3)

where Z(p2,µ2) is the quark wavefunction renormalization and the quark mass function M(p2) is

renormalization group invariant. This equation involves the quark-gluon vertex Γ
a
ν(q, p) and the

gluon propagator ∆µν(p− q). Very much attention will be paid in the next subsection to the two-

point function as a crucial input to study the quark propagator. Here, in the following, the only

other ingredient, the three-point quark-gluon vertex Γ
a
ν(q, p), will be briefly discussed.

Significant advances have been made in pinning it down through its key attributes in the ul-

traviolet and infrared domains [9]. More recently, the seeds of the most general ansatz for the

fermion-boson vertex appeared in [10] and its full blown extension was presented in [11]. Further-

more, given the general nature of constraints and the simplicity of the construction, a straightfor-

ward extension of this approach is expected to yield an ansatz adequate to the task of representing

the dressed-quark-gluon vertex. Before this is achieved, we restrict ourselves to an effective though

efficacious approach. Following the lead of Maris et. al. [12], we employ the following suitable

ansatz which has sufficient integrated strength in the infrared to achieve dynamical mass genera-

tion:

Z1g2
∆µν(p−q)Γν(p,q)→ g2

eff(q
2) ∆

N
µν(p−q,N f )

λ a

2
γν , (2.4)

where

∆
N
µν ,N f

(q) =
D(q2,N f )

q2

[

δµν −
qµqν

q2

]

. (2.5)
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In the next subsection, the nonperturbative gluon dressing function, D(q2,N f ), will appear mod-

elled and accounting thus for the effects from the dynamical light flavours on the gluon propagation.

Concerning the effective coupling, geff, it has been chosen to be

g2
eff(q

2)D(q2,N f ) =
D(q2,N f )

D(q2,2)
g2

MT(q
2) , (2.6)

where g2
MT stands for the effective coupling ansatz proposed by Maris et. al. in ref. [12] and

built there to incorporate also the nonperturbative information from the gluon propagator (as it is

assumed to multiply the tree-level one) . Thus, Eq. (2.6) for two degenerate light fermion flavours

allows to reproduce correctly the static as well as dynamic properties of mesons below 1 GeV (see

for example review [13] and references therein) while, by fixing the right number of flavours in

the perturbative tail of g2
MT , it also reproduces the appropriate ultraviolet behaviour, for any flavour

number.

2.1 Modelling the flavour behaviour for the gluon propagator

The second ingredient needed to solve Eq. (2.1) with (2.2,2.3) is the two-point gluon Green

function, ∆µν , that has been the object of a patient effort, spanning several decades, addressed

to unravel its infrared behaviour. Lattice as well as SDE studies have finally converged on its

massive or so called decoupling solution (see for example [14]). After the gluon propagator solution

in the quenched approximation has been chiselled, we now have the first quantitatively reliable

glimpses of its quark flavor dependence by incorporating N f = 0,2 light dynamical quark flavors 1

and 2+1+1 (2 light degenerate quarks, with masses ranging from 20 to 50 [MeV], and two non

degenerate flavors for the strange and the charm quarks, with their respective masses set to 95

[MeV] and 1.51 [GeV]) [21]. As we demonstrate shortly, in this last 2+1+1 case, the number

of light quarks corresponds effectively to 3. This is exactly the result derived from the recently

developed "partially unquenched" approach to incorporate flavor effects in the gluon SDE, [22].

Their work is in agreement with one of [21] when the charm flavor is assumed to decouple from

gluons. It should not be worthless to remark that the same N f =2+1+1 gauge fields have been also

used to compute the running strong coupling and estimate accurately the value of ΛMS, in very

good agreement with experiments [23].

Moreover, our modern understanding of the flavor dependence of the gluon propagator pro-

vides us with the solid basis to use the following non perturbative model [24]:

D(q2) =
z(µ2) q2(q2 +M2)

q4 +q2
(

M2 −13g2〈A2〉/24
)

+M2m2
0

(2.7)

to describe the gluon dressing renormalized in MOM scheme at q2 = µ2. This model is based on the

tree-level gluon propagator obtained with the Renormalized Gribov-Zwanziger (RGZ) action [25]

which have been shown to describe properly the lattice data in the infrared sector (see refs. [26,

24]). The overall factor z(µ2) is introduced to guarantee the multiplicative MOM renormalization

prescription, namely, D(µ2) = 1, and implies no physical consequence as the effective coupling,

1The dynamical flavors have been generated, within the framework of ETM collaboration [15, 16, 17, 18], with the

mass-twisted lattice action [19], while N f = 0 data have been borrowed from [20].
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Figure 1: (Left) Lattice gluon propagator data in terms of momenta for different number of fermion flavors

and fits with Eq. (2.7) and the parameters of Eqs. (2.9,2.10). (Right) Parameters g2 < A2 > and 1/m2
0 in

terms of the numbers of flavors and the fits with Eqs. (2.9,2.10). The blue squares stand for the extrapolated

results at N f =4 we used for Fig. 2.

geff, is further adjusted to reproduce properly the meson phenomenology. Then, we apply Eq. (2.7)

to reproduce the gluon propagator lattice data analyzed in Ref. [21] and thus fit its mass parameters.

M2 is related to the condensate of auxiliary fields, emerging merely to preserve locality for the RGZ

action. A free fit of the lattice data suggests that it does not depend on the number of fermion flavors

(we find M2 = 4.85 [GeV2]). Dimension two gluon condensate 〈A2〉, [27], and

m2
0 = z(µ2) lim

q2→0

q2

D(q2)
(2.8)

are flavor dependent and we look for their best fits. In order to cover a wide range of possibilities

within reason, we assume their evolution with the flavor number to be driven either by a simple

linear scaling law

m−1
0 (N f ) = m−1

0 (0) (1−AN f )

g2〈A2〉(N f ) = g2〈A2〉(0) (1−BN f ) , (2.9)

as data appear to suggest, or by an exponential law

m−1
0 (N f ) = m−1

0 (0) e−AN f

g2〈A2〉(N f ) = g2〈A2〉(0) e−BN f , (2.10)

which allows for the possibility that the gluon propagator becomes infinitely massive only when

the number of light quark flavors tends to infinity. The best-fit of the m0 and g2〈A2〉 from lattice

data will require m0(0) = 0.333 GeV and g2〈A2〉(0) = 7.856, in both cases, A = 0.083 and B =

0.080, for the linear case, and A = 0.095 and B = 0.091, for the exponential one. Eq. (2.7) now

provides prediction for the gluon propagator for arbitrarily large N f , as can be seen in the right

plot Fig. 1, while the right one shows the corresponding gluon propagator along with the lattice

data superimposed [21]. We also include some very recent gluon propagator data obtained from

5
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lattice simulations with four degenerate light twisted-mass flavors 2. These new data are rather well

described by Eq. (2.7) evaluated for the mass parameters extrapolated to N f =4 with Eq. (2.9) (see

the zoomed plot in Fig. 2). This observation strongly supports that N f =2+1+1 gluon data indeed

correspond to three light flavors.

Figure 2: The same of the left plot of Fig. 1 but only with the parameters for the linear case and incorporating

new small-volume lattice data for 4 degenerate fermion flavors.

Thus, we can efficaciously model the dilution of the gluon-gluon interactions with increasing

flavor number in order to study the chiral restoration mechanism. We can now employ the gap

equation to provide quantitative details of chiral symmetry breaking in terms of the quark mass

function for an increasing number of light quarks.

2.2 Results

In the following, we mostly discuss the results obtained by employing the linear law and state

the effect of exponential extrapolation afterwards. Note that we have not considered the flavor

dependence which would arise from the quark-gluon vertex (no explicit handle on this dependence

is available at the moment). Otherwise said, as can be seen from Eq. (2.6), we take the effective

coupling geff, in the IR, to depend on N f only through the gluon dressing function. The latter can

be fairly justified by the results of [21] (see Eq.(5.2)) which suggest that an effective coupling can

be constructed such that there is an absence of any flavor dependence in the infrared region, more

precisely starting from q2 . 1 GeV2.

Once the quark mass function is available for varying light quark flavors (see Fig. 3 for the

linear case), one can investigate any of the interrelated order parameters, namely, the Euclidean

2The gluon propagator lattice data for 4 light flavors have been borrowed from ETMC [28]. Simulated at small

volumes, they are only available for momenta above 1.25 GeV and hardly allow for a fit with Eq. (2.7). Nevertheless,

they can be used to check our modelling of the flavor evolution.
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Figure 3: The quark mass function diminishes height for increasing light quark flavors (here with Eq. (2.9)

Above N f ≈ 7.07, only the chirally symmetric solution exists.

pole mass defined as m2
dyn+M2(p2 = m2

dyn) = 0, the quark-antiquark condensate which is obtained

from the trace of the quark propagator or the pion leptonic decay constant fπ defined through the

Pagel-Stokar equation [29], or through considering the residue at the pion pole of the meson propa-

gator. Each of these quantities involves the quark wave-function renormalization, the mass function

and/or its derivatives and is hence calculable from the solution for the full quark propagator. More-

over, these order parameters can help to locate the critical number of flavors above which chiral

symmetry is restored.

We investigate these three order parameters and choose to present here the Euclidean pole

mass of the quark in Fig. 4 for the linear (exponential) case and show that, at a critical value of

about Nc
f ≈ 7.1 (Nc

f ≈ 9.4), chiral symmetry appears restored. The phase transition appears second

order, described by the following mean field behavior (solid lines in Fig. 4) :

mdyn ∼

√

N
c2

f −N f . (2.11)

It has been established that confinement is related to the analytic properties of QCD Schwinger

functions which are the Euclidean space Green functions, namely, propagators and vertices. One

deduces from the reconstruction theorem [30] that the only Schwinger functions which can be as-

sociated with expectation values in the Hilbert space of observables; namely, the set of measurable

expectation values, are those that satisfy the axiom of reflection positivity. When that happens, the

real-axis mass-pole splits, moving into pairs of complex conjugate singularities. No mass-shell can

be associated with a particle whose propagator exhibits such singularity structure. We define the

7
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Figure 4: Quark pole mass in the Euclidean space clearly demonstrates that chiral symmetry is restored

above a critical number of quark flavors. Blue (red) points correspond to linear (exponential) case. The solid

line is the mean-field scaling, Eq.(2.11)

following Schwinger function:

∆(t) =
∫

d3x

∫

d4 p

(2π)4
ei(p4t+p·x)σs(p2) , (2.12)

to study the analytic properties of the quark propagator; where σs(p2) is the scalar term for the

quark propagator in Eq. (2.3), that can be written in terms of the quark wavefunction renormaliza-

tion and mass function as Z(p2,µ2)M(p2)/(p2 +M(p2)). One can show that if there is a stable

asymptotic state associated with this propagator, with a mass m, then

∆(t)∼ e−mt , (2.13)

whereas two complex conjugate mass-like singularities, with complex masses µ = a± ib lead to

an oscillating behavior of the sort

∆(t)∼ e−atcos(bt +δ ) (2.14)

for large t, [31]. Fig. 5 analyzes this function for varying N f , in the linear extrapolation case. The

existence of oscillations clearly demonstrates that the quarks correspond to a confined excitation for

small N f . With increasing N f , the onslaught of oscillations moves towards higher values of t and

eventually never takes place above a critical N f when quarks deconfine and correspond to a stable

asymptotic state. As an order parameter of confinement, we therefore employ ν(N f ) = 1/τ1(N f ),

where τ1(N f ) is the location of the first singularity, [32]. The first oscillation is pushed to infinity

when confinement is lost. It is notable that when the dynamically generated mass approaches zero,

ν(N f ) diminishes rapidly (see right plot of Fig. 5). This highlights the intimate connection between
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Figure 5: (Left) Spatially averaged Euclidean space 2-point Schwinger function ∆(t) develops oscillations

for large times which corresponds to the non-existence of asymptotically stable free quark states. For suf-

ficiently large values of N f , the first minimum of these oscillations is pushed all the way to infinity, thus

ensuring the existence of a pole on the time-like axis, a property of free particle propagators. (Right) The or-

der parameter for confinement ν(N f ) = 1/τ1(N f ), where τ1(N f ) is the location of the first zero of Eq. (2.12)

Comparison with Fig. 4 suggests that quarks get deconfined when chiral symmetry is restored.

chiral symmetry restoration and deconfinement. In fact, within our numerical accuracy, Nc
f is found

to be the same for both the transitions.

The results with the exponential and linear flavor extrapolations are qualitatively the same,

leading to identical conclusions. They only quantitatively differ by the critical flavor numbers,

although both are pretty much in the same ballpark: Nc
f ≃ 7.1 and Nc

f ≃ 9.4. Note that both the

parameterizations, so far apart as to have an infinitely massive gluon at N f ≈ 12 or N f ⇒ ∞, restore

chiral symmetry and trigger deconfinement at so similar value of light quark flavors.

3. Conclusions

We have benefited from the latest lattice result for the quark flavor dependence of the gluon

propagator in the infrared, as well as from a RGE-grounded nonperturbative model for this IR

gluon propagator, in order to perform a Poincare-covariant SDE analysis for the quark propagator.

This provided with an efficacious model for dilution of the gluon-gluon interaction with increasing

number of light quarks and we applied it to study the evolution with the light-flavors number of the

quark chiral behaviour. A nonperturbative picture for the chiral symmetry restoration mechanism

emerges thus from this analysis. The quantitative analysis, following this approach, hints towards

chiral symmetry restoration in QCD when the number of light quark flavors exceeds a critical value

of N
c2

f ≈ 8.2±1.2. This is in perfect agreement with the state-of-the-art for the direct lattice inves-

tigations on the chiral symmetry restoration in QCD [6, 7] and supports that the model presented

here for the chiral restoration mechanism is properly capturing most of the relevant physics for the

problem we deal with.
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Furthermore, we have also studied an order parameter for the QCD confinement-deconfinement

transition, which is based on the analytic properties of the quark two-point Schwinger function, and

located numerically the critical point at the same number of flavors as chiral symmetry restoration

took place. That chiral symmetry appears restored when quarks get deconfined, within the ap-

proach we followed, highlights the intimate connection betweem both fundamental phenomena of

QCD. This is a main result of this work.

Acknowledgments We acknowledge D. Schaich for a fruitful communication. This work was

supported by the grants: CIC, UMICH, Mexico, 4.10 and 4.22, CONACyT (Mexico) 82230 and

128534, and MINECO (Spain) research project FPA2011-23781.

References

[1] A. Bashir, A. Raya and J. Rodriguez-Quintero, Phys. Rev. D 88, 054003 (2013); arXiv:1302.5829

[hep-ph].

[2] S. Weinberg, Phys. Rev. D 13, 974 (1976); S. Weinberg, Phys. Rev. D 19, 1277 (1979); L. Susskind,

Phys. Rev. D 20, 2619 (1979).

[3] B. Holdom, Phys. Lett. B 150, 301 (1985); K. Yamawaki, M. Bando and K. Matumoto, Phys. Rev.

Lett. 56, 1335 (1986); T. W. Appelquist, D. Karabali and L. C. R. Wijewardhana, Phys. Rev. Lett. 57,

957 (1986).

[4] D. J. Gross and F. Wilczek, Phy. Rev. Lett. 30, 1343 (1973); H. D. Politzer, Phy. Rev. Lett. 30, 1346

(1973).

[5] T. Appelquist et. al., Phys. Rev. Lett. 104, 071601 (2010); T. Appelquist, G. T. Fleming and

E. T. Neil, Phys. Rev. D 79, 076010 (2009); Z. Fodor et. al., Phys. Lett. B 681, 353 (2009);

K.-I. Nagai et. al., Phys. Rev. D 80, 074508 (2009); L. Del Debbio et. al., Phys. Rev. D 82, 014510

(2010); A. Hasenfratz, Phys. Rev. D 82, 014506 (2010).

[6] M. Hayakawa, K.-I. Ishikawa, Y. Osaki, S. Takeda, S. Uno, N. Yamada, Phys. Rev. D 83 074509

(2011); "Approaching Conformality with Ten Flavors", T. Appelquist, R. C. Brower, M. I. Buchoff,

M. Cheng, S. D. Cohen, G. T. Fleming, J. Kiskis, M. Lin, H. Na, E. T. Neil, J. C. Osborn, C. Rebbi,

D. Schaich, C. Schroeder, G. Voronov, P. Vranas, arXiv:1204.6000 [hep-ph] (2012) ; Y. Iwasaki,

"Conformal Window and Correlation Functions in Lattice Conformal QCD", e-Print:

arXiv:1212.4343 [hep-lat] (2012); "Scale-dependent Mass Anomalous Dimension from Dirac

Eigenmodes", A. Cheng, A. Hasenfratz, G. Petropoulos, D. Schaich, arXiv:1301.1355 [hep-lat]

(2013).

[7] Y. Aoki, T. Aoyama, M. Kurachi, T. Maskawa, K-I Nagai, H. Ohki, A. Shibata, K. Yamawaki, T.

Yamazaki; "Walking Signals in Nf=8 QCD on the Lattice", arXiv:1302.6859 [hep-lat] (2013).

[8] F. Dyson, Phys. Rev. 75, 1736 (1949); J. S. Schwinger, Proc. Nat. Acad. Sci. 37, 452 (1951);

J. S. Schwinger, Proc. Nat. Acad. Sci. 37, 455 (1951).

[9] J. S. Ball and T-W. Chiu, Phys. Rev. D 22, 2542 (1980); D. C. Curtis and M. R. Pennington, Phys.

Rev. D 42, 4165 (1990); Z. Dong, H. J. Munczek and C. D. Roberts, Phys. Lett. B 33, 536 (1994);

A. Bashir and M. R. Pennington, Phys. Rev. D 50, 7679 (1994); A. Kizilersu and M. R. Pennington,

Phys. Rev. D 79 125020 (2009).

[10] A. Bashir, A. Raya, S. Sánchez-Madrigal, Phys. Rev. D 84, 036013 (2011).

10



P
o
S
(
Q
C
D
-
T
N
T
-
I
I
I
)
0
3
7

Dynamical quarks effects on the gluon propagation J. Rodríguez-Quintero

[11] A. Bashir, R. Bermudez, L. Chang, C. D. Roberts, Phys. Rev. C 85, 045205 (2012).

[12] P. Maris, C. D. Roberts and P. C. Tandy, Phys. Lett. B 420, 267 (1998); P. Maris and C. D. Roberts,

Phys. Rev. C 58 3659 (1998).

[13] A. Bashir, L. Chang, I. C. Clot, B. El-Bennich, Y-X. Liu, C. D. Roberts, P. C. Tandy, Commun. Theor.

Phys. 58, 79, (2012).

[14] I. L. Bogolubsky, E. M. Ilgenfritz, M. Muller-Preussker and A. Sternbeck, Phys. Lett. B 676, 69

(2009); A. C. Aguilar, D. Binosi, and J. Papavassiliou, Phys. Rev. D 78, 025010 (2008); P. Boucaud,

J. Leroy, A. L. Yaouanc, J. Micheli, O. Péne, and J. Rodríguez-Quintero, J. High Energy Phys. 06,

099 (2008); D. Dudal, J. A. Gracey, S. P. Sorella, N. Vandersickel, and H. Verschelde, Phys. Rev. D

78, 065047 (2008).

[15] R. Baron, P. Boucaud, J. Carbonell, A. Deuzeman, V. Drach, F. Farchioni, V. Gimenez and

G. Herdoiza et al., JHEP 1006, 111 (2010).

[16] R. Baron et al. [ETM Collaboration], PoS LATTICE 2010, 123 (2010).

[17] B. Blossier et al. [ETM Collaboration], Phys. Rev. D 82, 034510 (2010).

[18] B. Blossier, P. .Boucaud, M. Brinet, F. De Soto, X. Du, M. Gravina, V. Morenas and O. Pene et al.,

Phys. Rev. D 85, 034503 (2012),

[19] R. Frezzotti et al. [Alpha Collaboration], JHEP 0108, 058 (2001).

[20] I. L. Bogolubsky, E. M. Ilgenfritz, M. Muller-Preussker and A. Sternbeck, PoS LAT 2007, 290 (2007).

[21] A. Ayala, A. Bashir, D. Binosi, M. Cristoforetti and J. Rodriguez-Quintero, Phys. Rev. D 86,

074512(2012).

[22] A. C. Aguilar, D. Binosi and J. Papavassiliou, Phys. Rev. D 86 (2012) 014032 [arXiv:1204.3868

[hep-ph]].

[23] B. Blossier, P. .Boucaud, M. Brinet, F. De Soto, X. Du, V. Morenas, O. Pene and K. Petrov et al.,

Phys. Rev. Lett. 108 (2012) 262002 [arXiv:1201.5770 [hep-ph]]; B. Blossier et al. [ETM

Collaboration], arXiv:1310.3763 [hep-ph].

[24] D. Dudal, O. Oliveira and J. Rodriguez-Quintero, Phys. Rev. D 86, 105005 (2012).

[25] D. Dudal, J. A. Gracey, S. P. Sorella, N. Vandersickel and H. Verschelde, Phys. Rev. D 78 (2008)

065047 [arXiv:0806.4348 [hep-th]].

[26] D. Dudal, O. Oliveira and N. Vandersickel, Phys. Rev. D 81 (2010) 074505 [arXiv:1002.2374

[hep-lat]].

[27] P. Boucaud, A. Le Yaouanc, J. P. Leroy, J. Micheli, O. Pene and J. Rodriguez-Quintero, Phys. Lett. B

493 (2000) 315 [hep-ph/0008043]; F. V. Gubarev and V. I. Zakharov, Phys. Lett. B 501 (2001) 28

[hep-ph/0010096]; K. -I. Kondo, Phys. Lett. B 514 (2001) 335 [hep-th/0105299]; H. Verschelde,

K. Knecht, K. Van Acoleyen and M. Vanderkelen, Phys. Lett. B 516 (2001) 307 [hep-th/0105018];

D. Dudal, H. Verschelde and S. P. Sorella, Phys. Lett. B 555 (2003) 126 [hep-th/0212182]; E. Ruiz

Arriola, P. O. Bowman and W. Broniowski, Phys. Rev. D 70 (2004) 097505 [hep-ph/0408309].

[28] P. .Boucaud, M. Brinet, F. De Soto, V. Morènas, O. Pène, K. Petrov and J. Rodríguez-Quintero,

arXiv:1312.1514 [hep-lat].

[29] H. Pagels and S. Stokar, Phys. Rev. D 20 2947 (1979).

11



P
o
S
(
Q
C
D
-
T
N
T
-
I
I
I
)
0
3
7

Dynamical quarks effects on the gluon propagation J. Rodríguez-Quintero

[30] R. F. Streater and A. S. Wightman, "PCT, spin and statistics, and all that," (1989); J. Glimm and

A. Jaffee, "Quantum Physics. A Functional Point of View," Springer-Verlag, New York(1981).

[31] P. Maris, Phys. Rev. D 52 6087 (1995).

[32] A. Bashir, A. Raya, S. Sánchez-Madrigal, C.D. Roberts, Few Body Sys. 46, 229 (2009).

12


