
 

 

 

 

 

 

TR/06/86      June 1986 
 
 

EXPERIMENTAL  INVESTIGATION 
OF AN INTERIOR  SEARCH METHOD 

WITHIN A SIMPLEX FRAMEWORK 
 

by 
 

Gau tam Mi t ra ,  Mehrdad  Tamiz  

And  Joseph  Yadegar  

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Brunel University Research Archive

https://core.ac.uk/display/334768?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

w9259231 



 
 

 
 
 

Contents

1. Introduct ion

2.  Background and Overview
 
2. .1 Approaches Within Simplex Framework 

2.2 Approaches Outside Simplex Framework 

3. Descr ipt ion of  the Method

3.1 Computing a Direction of Steepest Gradient 

3 .2  Computing an Improved Non-Basic  Feasible  Solut ion 

3.3  Purif icat ion   Procedure 

3 . 4  S t a t e me n t  o f  t h e  A l g o r i t h m 

3.5 An Example 

4. Experimental   Resul ts  

4 .1  Al te rna t ive  Solu t ion  S t ra teg ies  

4 .2  Presentat ion and Discussion of  Resul ts  

4 .3  Other  Computat ional  Considerat ions  

5.  Conclusions

6.  Acknowledgments

7. References 





Abstract 

A steepest gradient method for solving Linear Programming (LP) 
problems, followed by a procedure for purifying a non-basic solution to 
an improved extreme point solution have been embedded within an 
otherwise simplex based optimiser.  The algorithm is designed to be 
hybrid in nature and exploits  many aspects of sparse matrix and revised 
simplex technology. The interior search step terminates at  a boundary 
point which is  usually non-basic.  This is  then followed by a series of 
minor pivotal  steps which lead to a basic feasible solution with a 
superior objective function value.  I t  is  concluded that  the procedures 
discussed in this paper are l ikely to have three possible applications,  
which are 

 
 
 

( i )  i m p r o v i n g  a  n o n - b a s i c  f e a s i b l e  s o l u t i o n  t o  a  s u p e r i o r
 e x t r e m e  p o i n t  s o l u t i o n ,  
                    
( i i i )  a n  i m p r o v e d  s t a r t i n g  p o i n t  f o r  t h e  r e v i s e d  s i m p l e x  

m e t h o d ,  a n d  
                  

( i i i)  a n  e f f i c i e n t  i m p l e m e n t a t i o n  o f  t h e  m u l t i p l e  p r i c e    
s t r a t e g y  o f  t h e  r e v i s e d  s i m p l e x  m e t h o d .  





1.      Int roduct ion 
 

In recent years there has been growing interest in developing alternative 
(polynomially bounded) algorithms for the Linear Programming (LP) 
problem. The long standing open question, "whether there can be any 
polynomial-time algorithm for LP" was resolved when Khachian [KHAC 79] 
developed the ellipsoid algorithm. However, algorithm is 
unsatisfactory for practical problem (of even small size) and its average 
behaviour is inferior to the modern simplex based LP-codes. The   recent 
work the polynomial-time projection algorithm, of Karmarkar [KARM 84] 
has sparked off enormous interest in the operations research community. 
 

Our motivation in this research has been to develop a feasible direction 
method for LP which exploits many aspects of sparse matrix and revised 
simplex   technology. The   reason  for working within a simplex framework 
i s  t o  e x p l o i t  i t s  d e s c r i p t i v e  p r o p e r t i e s .  F o r  i n s t a n c e ,  s h a d o w  p r i c e ,  
post optimal information, uniqueness or otherwise of the optimal solution 
are easily computed. 
 

The outcome of this work may lead to three possible applications:  
 

 (i) A part of our method may be used as a 'purification' step to 
terminate an interior search procedure In this context,  we 
define the purification step as the algorithmic procedure by 
which we turn a non-basic feasible solution to a 'nearby' as 
well as improved extreme point (basic feasible) solution. A 
number of algorithms [MANG 81a], [KARM 84] which use interior 
search method (see section 2.1) are able to process large LP 
problems with special structure, in a computationally efficient 
manner.  In these procedures the purification step may be 
used as the most apt termination step which can also provide 
all  the simplex  information.  In the computational results  
reported by Nickels et  al .  [NIRO 85],  I t  is  interesting to note 
that  in about 25% - 30% of the total  number of "Karmarkar 
i terations",  one reaches around 80% of the optimum value of 
the objective function.  We  believe that  introduction of a 
purification step would be most appropriate at  this point .  

 

(ii) It  is well known that in many contexts an advanced starting 
basis,  as obtained by the 'crashing' method, reduces the 
number of iterations in the simplex algorithm. Depending on 
the context of the problem our method may be applied initially 
to provide such an advanced basis. 

 

(iii) Our experimental investigations show that when the search 
directions are restricted to small numbers (5-10 in most 
models) this approach performs efficiently. We   outline   later 
on that  in this si tuation the method is  nearly equivalent to 
the well established method of multiple pricing [MURT 81, 
pp50-55],    [MPSX   71], [APEX    77]. However,  our method uses 
only one working area and amounts to an efficient 
implementation of the multiple price strategy. 

 

The rest of the  paper is organised as   follows: 
 

A  b r ie f  overv iew of  the  p rev ious  work  done  in  th i s  a rea  i s  g iven  in  
Sec t ion  2 .  In  Sec t ion  3 ,   we   desc r ibe  our  method  in  fu l l  and  g ive  an  
i l lus t ra t ive  example .  Resu l t s  o f  our  exper imenta l  inves t iga t ion  a re  
repor ted  in  Sec t ion   4 ,   and   we  conc lude  the  paper   Sec t ion  5 .  
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2.  Background   and   Overview
 

The simplex algorithm is sti l l  established as the most efficient and 
favoured method to solve general l inear programming problems. 
Borgwardt [BORG 82a], [BORG 82b] proved that the expected number of 
iterations in the solution of an LP problem by a simplex based algorithm 
is polynomial,  thereby explaining the efficiency obtained when simplex 
algorithms   are   used   for   practical   problem   solving. However,  its worst 
case   behaviour is not polynomial [KLMI 72] 
 
Since the first  publication of the simplex method by Dantzig [DANT 51], 
there has been many attempts to find better ways to solve LP problems. 
These experiments may be classified as  either  improvements  of  the 
simplex algorithm or non-simplex methods. Improvements are for 
instance: LU factorization and sparse update procedures [FOTO 72], price 
strategies – the Devex pricing method of Harris [HARR 73], strategies for 
(multiple) pivot columns selection during the price pass [MURT 81, pp.  
50-55] ,  procedures  for  obtaining advanced s tar t ing basis  known as  
'Crash' procedure    [MPSX    71],    [APEX   77],    [SCIC   78]. However,   as    the 
term 'improvements' suggests, the basic idea of the simplex algorithm to 
move from an extreme point (basic solution) to an adjacent extreme point 
of   the   polytope   has   been   maintained. 
  
To reduce computational effort,  various methods of the non-simplex type 
have been proposed which avoid the 'crawling along the edges' of the 
polytope  in   the   simplex algorithm. 
 
More recently Karmarkar [KARM 84] proposed a polynomial-time algorithm 
for  so lv ing  LP problems.  This  a lgor i thm is  shown to  have  the  
complexi ty  of  o (n 3 . 5 L 2 ) ,  where  n  i s  the  number  of  var iab les  and  L  i s  
the  number  of  b i t s  in  the  input .  This  i s  super ior  to  Khachian 's  
a lgori thm [KHAC 79]  which has  the 0{n6L2)  complexi ty .  In  addi t ion to  
the complexity result  Karmarkar 's algorithm has also been shown to be an 
efficient computational method in some contexts.  However, the wide 
ranging claims that  i t  is  superior to the simplex algorithm in all  
instances has not been established and continues to be disputed.  We 
refer the reader to the November 85 issue of SIAM Newsletter [SIAM 85] 
which contains three articles on Karmarkar 's algorithm and its reception. 
 

As stated earlier a number of interior search methods are of relevance to 
our approach. In the next section we review them very briefly and 
classify them in two groups. 
 

2. 1   Approaches Within Simplex Framework
 

a)     Zoutendijk   (1960) 
 

Various methods of feasible directions have been studied by Zoutendijk 
[ZOUT   60],    [ZOUT   76]. He   shows   in   detail   how   the   simplex   method  can 
be considered as a method of feasible directions, and he also shows how 
the  l a t t e r  can  be  app l i ed  to  so lve  l inea r ly  cons t ra ined  non- l inea r  
p rogramming   problems. 
 
b) Dantzig and   Wolfe: The Decomposition Scheme (1961). 
 

This scheme [DANT 63] is in effect an interior search method in relation 
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to   the  'Full   Problem’. This is because, basic   feasible solutions    to   the 
'Subproblems' are linearly combined to create a non-basic feasible trial  
solution to the full  problem. 
 

c)  'BASIC Procedure of MPSX   (1965) 
 

The BASIC procedure of MPSX [MPSX 71] is a system macro that provides 
a basic solution to a problem. The basic solution    is   obtained    from    the 
variables of a number of sub problems which are amalgamated by this 
macro. This procedure  assumes     that   basic  solutions   of   each  sub 
problem   have   been   supplied. Thus,   it   applies   the   simplex method to   a 
restricted problem made up of the columns of the indicated basic                      
variables. The     procedure    terminates    when    a    basic (possibly feasible) 
solution   is   obtained. 
d) Cooper   and    Kennington    (1979) 
 

In the paper [COKE 79], they describe a block pivoting approach for 
linear programs in which at most two non-basic variables are exchanged 
at  any i terat ive s tep.  They also give  a feasible  direct ion method which 
is  essentially Wolfe's [WOLF 63] reduced gradient procedure for convex 
non-linear    programs    over polyhedral    feasible    region. No    computational 
result is given. 
e) Sherali,   Soyster   and   Baines   (1983) 
 

The paper  [SHSO 83]  descr ibes  an advanced basis  creat ion method (or  
block-pivoting) within    the    simplex    approach. This    involves    exchanging 
several   non-basic variables   at   each   iterative    step. They   also   implement 
a variation of the feasible directions method by Cooper and Kennington 
[COKE 79] and, in addition, attempt to prevent near binding constraints 
from quickly restricting motion along an improving feasible direction. 
Computational results are presented for randomly generated problems with 
a    maximum    of    50    constraints    and    100    variables. They    conclude    that 
creating an advanced starting point (basis) may computationally be an 
attractive approach for solving LP problems, whereas feasible directions 
method   is   not. 
f) Murty  and   Fathi   (1984) 
 

Each major iterative cycle of the method [MUFA 84] starts with a Basic
Feasible Solution (BFS), and then one moves in a profitable direction to a                                
non-basic    solution   X while    retaining   feasibility. The    direction    to   move                         
is obtained by using the updated columns of the non-basic variables                                
eligible to enter the basis (by the negative reduced cost criterion).                               
The    point    x   is    not,    in    general,    a    basic    solution. Subsequently, the 
algorithm goes through several reduction steps until a new BFS is                                
obtained at which the objective value is better than or the same as that                                
at X. The major iterative cycle is repeated with the new computed BFS.
Under non-degeneracy assumption, this method terminates after a finite                                
number   of   major iterative   cycles. 
 

It is shown that the procedure (of moving from a non-basic feasible                                 
solution to a BES with the same or better objective value) can be                                
carried out using pivot steps and maintaining a basis inverse as in the                                 
usual   simplex   algorithm. 
 

No computational results are given, but they state that the initial results 
on randomly generated problems are encouraging. This method is close 
to    our    approach. However,    we     have    investigated    an    efficient    revised                         
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simplex implementation, and   a   full   description   of  our   method   is   postponed                     
until   section   3. 

g)     Beale,   Hattersley and   James   (1985) 

The main motivation of their approach [BEHA 85] is to generate an                                
advanced starting basis. This is accomplished in the following manner. 

Given   the   standard   LP   problem 

P 1: minimise      
jxj

n

1j
c∑

=

 subject    to       
ibjn

1j
xjia =∑

=

,m....,,1i =  

       jujxj1 ≤≤ n,1,....,j =  

t h e y  t r a n s fo r m  i t  t o  a  r e l a t e d  ( r e l a x e d )  q u a d r a t i c  p r o b l e m 
 

P2: m i n i m i s e          ∑
=

∑
=

+
n

1j
2

m

1i
irMjxjc

 

       s u b j e c t   to    jujxj1 ≤≤ ,n,....,1j =  

             and                     ∑
=

−=
n

1j
jxjiaibir .m1,....,i =  

This formulation becomes equivalent to P1 as   M .∞→  

Having obtained an approximate solution to P2, which is a non-basic                      
solutiontoP1,they apply the 'BASIC’ algorithmto achieve an advanced 
starting basis for P1. They have reported encouraging results for                              
representative   LP   problems. 

2.2   Approaches   Outside   Simplex   Framework

(a)   Mangasarian   (1981/1983) 

Given an LP problem, he considers [MANG 81] a Convex Quadratic 
Programming (QP) problem which is a perturbation of the original LP 
problem. He then   applies    the   well    known   iterative    technique   of               
successive over relaxation to the dual of the QP problem. This in                                 
turn  leads  to  an  optimum  solution  of  the  original  LP. 
 
In [MANG 83], Mangasrian reports solution of randomly generated LP                                
problems of substantial dimensions, ranging from 500x1000 to                               
5000x20000.                  
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(b)    Karmarkar    (1984)  

The projection method of Karmarkar [KARM 84] first transforms the 
original LP to an equivalent canonical form. Subsequently at each 
iteration the current feasible solution is projected to the centre of a 
simplex, and this is essentially a scaling operation. The algorithm                          
then follows a direction of descent with a prescribed step size t o                      
ensure feasibility and to guarantee reasonable progress. A cleverly                              
formulated potential function is employed to monitor the progress of the 
algorithm. This is essential to the proof of polynomial-time                    
complexity of the algorithm. 

The projection method approaches the optimal solution from an                             
interior feasible point and never visits any extreme point solution                                
until an optimal solution is reached. In [CHYE 85] Chiy and Ye                    
describe how the Simplex and Karmarkar algorithms can come under                                
a unified framework. This is achieved by varying the weights in a                                
weighted   gradient   projection   method. 

(c)   Murty   (1985) 

The algorithm as described in [MURT 85] is a variant of the 
gradient projection method for LP and starts with an interior point 
of the set of feasible solutions. The algorithm terminates after a                                 
finite number of (major iterative cycles), each of which consists of 
at most n steps (minor iterative cycles) where n is the number 
of variables in the LP. At each minor cycle within a major                                
iterative cycle a tentative steepest descent direction is computed. 
Subsequently, one tests to establish if a move of sufficient length 
can be made in that direction without reaching a boundary point. 
If this is not possible, it then moves to the next step until the n 
steps are exhausted. If a direction for the move is not selected in 
a (major) cycle after n steps, this indicates that the current 
(feasible interior) point is close to an extreme point optimum solution 
of  the LP. Murty mentions   that   a   well   known   subroutine   (similar                     
to our purification step, described in Section 3) can be used to                                 
move from an interior point to an extreme point. 

Other authors such as Lemke [LEMK 61] and Rosen [ROSEN 60] have                                 
also described gradient projection methods for solving LP problems.                             
However, these algorithms were not restricted to interior feasible                                
points, and no positive computational results were reported. 

 

3.     Description of the Method                                                                                              
Consider  the  LP  problem: 

maximise   xo   =          (3.1) jx
n

1j
jc∑

=

s u b j e c t    to        (3.2)  m1,....,iib
n

1j
jxjia ==∑

=
     ..0jx >

For the convenience of exposit ion,  the above statement is  also set  out in 
vector notation as:  
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maximise      ox

 subject  to                  (3.3) ∑
=

=
n

0j
bjxja

  w h e r e     a n d   b   a r e   m+ 1   v e c t o r s   a s   d e f i n e d   b e l o w :  ja

 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

mb
.
.
.

1b
0

band

jma
.
.
.
j1a
jc_

ja,

0
.
.
.
0
1

0a
 

          n....1,j =
 

An equivalent but transformed system of equations, as obtained after a 
number of pivotal operations may be expressed as: 

  bjxja
n

0j
=∑

=

                (3.4) 

Traditionally   the   first   entry   of  ja   is   denoted   by      (j=l,...,n)    which   is                          jd
the reduced cost coefficient  for the column  j. 
 
Let and  denote the sets defining the indices of the Basic and                           BS NS
Non-basic   variables   respectively,      

  

          (3.5) 
{ }
{ n1m

m1

i,.....,iNS
i,.....,i0,BS

+=
=

}
whereby   { }.n0,1,.....,NSUBS =

3.1   Computing  a Direction of  Steepest  Gradient

In simplex algorithm by increasing the value of a single non-basic 
variable j whose corresponding dj is negative the objective function x
value is increased. Since all  the remaining non-basic variables   are held   
at  zero level,  this is an edge following direction. 

By considering a number of directions for which the dj 's  are negative                         
and taking their l inear combination, we obtain a new profitable direction 
to move which may point to the interior of the polytope. 

Consider   a   subset   Q  of   SN   such   that ,  
   { 0jdandNSj|j }<∈=Q      (3.6) 
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define    a  trial  direction of  search  which   is  expressed  as: α,
  

  ∑
∈

∑
∈

−=−−∑
∈

=−=
Qj Qj

jajdBja1Bjd
Qj

jajd 1-α    (3.7) 

 
where  is the inverse of the basis matrix for the system of                                  1B−
transformed equations set out in (3.4). At any step the set SB (3.5)                                  
defines  the   basis   matrix  B. 
From a computational point of view it should be noted that the direction                                  

,∝ defined in (3.7), is obtained by first creating a column using the                                  
linear combination and then performing the standard FTRAN                                  ∑ − jajd

(forward   transformation)   operation. 

3.2   Computing   an  Improved   Non-Basic   Feasible   Solution

Define  a   scalar   t  as 
 

  ⎥
⎦

⎤
⎢
⎣

⎡
>∝>

∝∝==
∝

= 0iand0
i

ib

i
ibnim

m1,...,i
p

p

b
t    (3.8) 

 
then t is the maximum value of a feasible step length in the new 
(steepest  gradient)  direction ∝ .  Naturally,  the standard ratio test ,  that                
is the choose row operation of the simplex method is applied to compute                                  
t. In this step at least one basic variable drops to zero and the number                                  
of variables taking positive values (assuming non-degeneracy) are given                                  
by |SB U Q|-l. The corresponding non-basic solution may be represented                                  
using the current basis and the updated solution values of the basic                                  
variables   held at level   e j, w he re 

   Q.jforjtdje ∈−=       (3.9) 

thus 

    ∝=∑
∈

−−=∑
∈

− t
Qj

jajdt
Qj

jaje     (3.10) 

It   is easily   deduced   from   (3.7),   (3.9)   and   (3.10)   that 

(i) the  improvement  in  solution  value  is  by  the  amount                                                 

    ∑
∈Qj

,2jdt  
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(ii)   the   basic   variable  values   are   updated   by   the   relation 

    ∝⎥
⎦

⎤
⎢
⎣

⎡
∝

−
−−∝=−−=−

p
pbbtbb                                                              

or in vector notation 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

∝

∝

−

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

−
=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

→

m

.
.
P
.
.o

mb

p.
.
b

.
.
b

mb
.
.o
.
.b

rowthp

' α
α P

Poo b

 

  It  is easy to see that the variable  in the p
Pix th row after 

update takes the value

 .0p
p

pb
pbpbpix =∝

∝

−
−−=−

=
      
     (3.11) 

3.3   Purification  Procedure
Starting from a nonbasic feasible solution, as obtained above, a basic 
feasible solution with a superior objective function value is obtained by 
following a sequence of pivotal steps. This we call a purification 
procedure. In these steps starting with | SB   U   Q| -1 variables taking                             
positive values, we obtain a basic solution by reducing one variable to                                  
zero level at each pivotal step and increasing the objective function                                  
value. 
 

Non-basic Variables with Negative    jd

These variables are increased from their current level of ej to a higher                                  
level  by  the   standard   ratio  test of  simplex. 
 

Let  

  
i

min
j

p
pa

b
=−

−
⎥
⎦

⎤
⎢
⎣

⎡
>

−
>−

−

−
0ib,0jia

jia
ib            (3.12) 

 

now   a   pivotal   operation   is   carried   out   on   āpj   whereby  a   new   ETA-vector 
is   created   and   the   solution   values   are   updated. The   solution   value   for                   
the   variable   xj   which   pivots   into   the   pth   row   is   now   updated    by   the 
simple  upper  bound   algorithm.   Thus xj   takes   the  value 

jpa
pb

jex j −
−

+=  
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If   no   positive   pivot  is  found   then   the   problem  is   unbounded. 

Non-basic   Variables   with   Positive   dj

These   variables   are   decreased   from   the   current   level   of   ej    to   a   lower                       
level  which  is 

  ⎥
⎦

⎤
⎢
⎣

⎡
−
−

+=
j

jj
pa

pbex ,0max       (3.13)

Where 

⎭
⎬
⎫

⎩
⎨
⎧ >

−
<−

−−

−
= 0,0amin ib

jia
ib

ipja
pb

ji  

If in Expression (3,13) xj is set to zero, then the solution values of the                                  
current basic variables are updated by the standard procedure of the                                  
simple   upper   bound  algorithm,   whereby 

    jajeb'b +−
=−  

Otherwise a pivotal operation is carried out on āpj and a new ETA-vector                                  
is   created. 

 

3.4   Statement  of  the  Algorithm

This algorithm can now be stated as a finite number of major iterative                                  
cycles.        Each   major  cycle  comprises  two   minor  procedures  which are: 

minor   procedure   1 computing   a   direction   of   steepest   gradient         
 -  Section 3 , 1 - followed  by  computing                                  
 an improved non-basic feasible solution                         
 -   Section   3 . 2 ,  

minor   procedure   2   purificat ion   procedure   -   Section   3.3. 

Since in each major cycle, we move from one basic feasible solution to a                         
superior basic feasible solution, two basic feasible solutions separated by                                 
one major cycle are most unlikely to be adjacent. The finiteness of the                           
algorithm follows naturally from the finiteness proof of the simplex                                  
method. 

The computational effort required in each step of the minor procedure 2                                
(the purification procedure) is in effect equivalent to an iterative step of                                 
the simplex method. It follows from the description given in Section 3.3                        
that  in    | Q |    such   steps   this   purification   procedure   is  completed.        At   the 
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beginning  of     each     major    cycle    when     the    first     nonbasic     solution  is 
derived,   a   basic   variable   is   driven   to   zero   value   -   see    (3.11).    Hence           
at  least  one  move  of  the    minor    cycle    is    always    equivalent    to    a    zero 
move. 
 

 
3.5   An   Example 
 
Consider   the   problem                                                                                                      
 

maximise       x1  +   x2   +   x3
 

subject   to  
 
 
 
 
 
      
 

      
 

                        x1        x2,       x3,      x4 ,       x5,      x6,        x7,        x8,          >          0 
 
where   x4   to  xe   are   slack   variables. 
 

The   bounded   polytope   representing     the     constraints     is     illustrated     in                     
Figure   3.1. 
 

 
Minor  Procedure   1 
 
Starting  from  the   point   P°    X°     (0,0,0),    we     compute     the     steepest                     
direction  ∝    by   the  relation   (3.7),  whereby 
 

∝     =       

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

10
17

3
16

6
0

binitialllyand

4
4/37

1
9
4
3

 

Then by the    ratio    rule    of    (3.8), we    have    t    =    6/4,    which    gives the 
maximum feasible step length along direction    ∝       terminating   on   the   face                 
where   the   slack   variable   x4   =   0. Thus   updated   basic   variables   values                
are 
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and  the   non-basic   variables   are   held   at    x1  =  x2  =  x3   = 1.5 
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 3 x1 + 2x2 -   x3 + x4        =  6 
 3 x1 + 2x2 + 4 x3   + x5      = 16 
 3 x1   - 4 x3     + x6    =   3 
9/4x1 + 4 x3 + 3 x3       + x7  = 17 
    x1 + 2 x2 +    x3            + x8  = 10 
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Minor   Procedure   2 

Choose x1 as the non-basic variable and by the ratio rule (3.12) we 
choose    element  4 in    row 1  as pivot. This    leads    to    a    zero    move 
whereby P1 m P2 but x4 becomes nonbasic at zero level. The variable 
x1    becomes   basic   and   after   bound   update   takes   the   value    1,5.    After             
two further minor iterations whereby x2 and x3 are made basic variables,                      
the  optimum   solution   is   reached   at   P4. 

4.      Experimental   Results

The summary information covering five test problems used in our 
investigation  are      set     out      in     Table      4.1. These     problems     are  
representative industrial test problems and are taken from the lower end                              
of the collection of benchmark problems which have been compiled to                             
validate   our   FORTLP   system   [MITY   85],   [TAMI   86]. 

For the purpose of comparison a number of alternative strategies were 
used   to   solve   these   test   problems. These   strategies   are   described   in                  
Section   4.1   and   the   results  are   discussed   in   Section   4.2. 

4.1   Alternative   Solution  Strategies

Altogether  four   strategies   were   used   in  our  investigation: 

(i)       Simplex 

  The primal simplex algorithm with full price of the A-matrix in 
  each    pass   was    used. A   single    price   strategy    was   followed         
  whereby   the   variable   with   most   negative   dj   was   chosen. 

(ii)      Full  Interior   Search:  All  Dir 

The interior search method as described earlier was used,                          
whereby the direction of steepest descent was computed by                         
first choosing the variables (directions) with negative dj and                         
then weighting   them  by  the  dj  values   themselves. 

(iii)   Interior   Search   with   10   Best   Directions:   10   Best   Dir 

In this strategy we considered upto a maximum of 10 variables 
chosen   in   the   order   of   the   most   negative   dj.      The   search                
direction   was   computed   as   in   (ii)   above. 

(iv)     As   in   (iii)   with   Modifications:   5/10   Best  Dir 

In this strategy, initially 10 variables were chosen as in (iii) 
above.  In each major cycle, however, 5 minor iterations  were                         
carried   out. The   five   variables   made   basic   in   this   way   were          
chosen in the order of the solution values at which they were 
held.  In all  major    cycles    upto    5    variables    were    chosen.                   
Also if any of the residual variables were chosen again, i.e.                        
variables not pivoted into the basis, then the corresponding                       
solution  values   were   updated. 

page   12 



 
 

TABLE   4.1 TEST   PROBLEMS  

 
PROBLEM

 
NAME

 
SOURCE

 
NO OF

 
NO OF

 
NO OF

 
NO OF

   
ROWS COLUMNS NON-ZEROS DISTINCT   

NON- ZEROS 

1 ATLAS464 BP 315 458 2965  413 
2 BLMODEL2 HAVERL 255  550 2100  176 
3 DOAE SIA 339 1066 8142  538 
4 AIRCRAFT BA 162  202  505  301 
5 MULTITIM BRUNEL 28 48 130 11 

4.2   Presentation   and   Discussion   of   Results

The experimental results are presented in Table 4,2 and 4,3. Comparing 
the solution times in Table 4.2, taken by the alternative strategies to 
solve the five test problems, the strategy (iv) seems to perform 
uniformly well and always superior to the simplex method. Performance                                 
of strategy (iii) is less uniform and is only comparable to the simplex 
method. Strategy     (ii)      involving      the      full      interior      search      is   
computationally inefficient. In analysing the results set out in table 4.2                                
and table 4.3 it is worth noting that a full iteration comprises FTRAN,                              
BTRAN, PRICE and CHUZRO, whereas a minor iteration involves only FTRAN                                       
and   CHUZRO. 

TABLE   4.2 EXPERIMENTAL   RESULTS  

NO OF MINOR ITERATIONSPROBLEM ALTERNATIVE 
STRATEGIES

NO OF FULL 
ITERATIONS With eta set to lower

TOTAL 
TIME

    bound Sees
1 Simplex 2328 — — 2045

All Dir 90 2225 5605 3275
10 Best Dir 411 1952 2141 2148

 5/10 Best Dir 518 1609 1093 1440

2 Simplex 399 - - 68
All Dir. 36 342 1602 182
10 Best Dir. 69 267 418 79

 5/10 Best Dir   77 248   144 55

3 Simplex 444 - - 129
All Dir 15 690 2463 236
10 Best Dir 90 425 474 93

 5/10 Best Dir 146 458    380 118

4 Simplex 161 - - 4 4
All Dir. 3 67 76 4.7
10 Best Dir. 7 60 6 3.5

 5/10 Best Dir   12   60      6 3.9

5 Simplex 44 - — 0 39
All Dir. 13 51 82 0.60
10 Best Dir. 14 39 68 0.54

 5/10 Best Dir  19   44    54 0.73

    All  times  are   in   seconds  of  Honeywell  Multics   DP68   cpu   processing. 
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In    Table    4.3,    the    times    spent    in    each    of    the    four    major    processing         
subroutines   are   set   out. Comparing   simplex   and   the   strategy   (iv),   we                           
see   considerable   improvement   in   times   spent   in   BTRAN   and   PRICE.    This 
is  of  course   at   the   expense  of  mainly   FTRAN  and   also   CHUZRO. 

4.3   Other  Computational  Considerations

Within   the   structure   of  the   simplex,   the   minor   procedure   2   has   a   number                    
of  computational  relations  and   implications. 

Flagging   of   Columns 

During the application of the minor procedure 2, it is possible to identify 
and flag out columns. Consider a (transformed) column āj such that the 
dj   >   0. The   corresponding   variable   xj   is   reduced   from   its   current                  
solution  value  using  relations  as  in   (3.13). 

If it is established that āij > 0 for all i = l,…,m, then the variable xj 
can    be    flagged    to    zero.  This    is    because    the    column    represents    a                
redundant   relation   in   the   dual  problem   which   is   always   satisfied.   Such  
a step is not worthwhile within revised simplex method as it requires                                  
additional  work   involving  columns   with   dj   >   0. 

Equivalence  with  Multiple  Price 

When a restricted set of directions are chosen during minor procedure 1. 
the subsequent minor procedure 2 can be interpreted as the multiple 
price   strategy   within   the   simplex   method. In   the   traditional   multiple                       
pricing method, if ten variables with negative dj are chosen, then ten 
work    areas    are    used. After    a    number    of    minor    iterative    steps    a              
superior basic feasible solution is obtained out of the m original and                                  
the ten chosen variables. In our minor procedure 2, exactly the same                                 
result is achieved, but, it has the advantage of requiring only one work                                  
area. 

The  'BASIC’  Procedure 

The MPSX BASIC procedure as described in Section 2.1 is often used to 
obtain a 'basic feasible solution starting from a nonbasic feasible solution 
to a  constraint  set.'    In   this   approach   only   the   chosen   variables   are                        
admitted in a restricted problem and subsequently the simplex method is 
applied   to   obtain   a   basic   solution. This   compares   with   the   multiple                              
price    strategy    described    above. Again    our    purification    procedure                              
achieves exactly the same result through a series of pivotal operations.                                  
We understand that SCICONIC [BEAL 85] also uses an implementation of                           
BASIC   similar   to  ours 
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TABLE 4.3:     Experimental Results

Time in Seconds for the Strategies 

PROBLEM SUBROUTINE SIMPLEX All  Di r . 10 Best Dir. 5/10 Best Dir.

1 FTRAN      
BTRAN  
PRICE 
CHUZRO 

644 
570 
101 
  45 

2252 
    33 
   0.4 
  165 

1278 
  123 
    26 
    95 

813 
133 
   32 
    67 

2 
FTRAN      
BTRAN  
PRICE   
CHUZRO 

    8 
  14 
    5 
    2 

  132 
       7 
  0.03 
     27 

 47  
    9 
    3 
  10 

 
  27  
    9 
    4  
    6 

3 FTRAN         
BTRAN  
PRICE  
CHUZRO 

  17 
  19 
  79 
   7 

  162 
      1 
     2 
    60 

  42 
   4 
   22 
   18 

  43 
    8 
  42 
  18 

4 FTRAN 
BTRAN PRICE 
CHUZRO 

    0.9  
    1.5 
    0.5  
     0.5 

        1.8 
       0.6 

         0.06
       1.2 

       1.2 
       0.7 
       0.1 
       0.6 

  1.3 
  0.8  
  0.1 
   0.7 

5 
FTRAN 
BTRAN PRICE 
CHUZRO 

     0.06  
     0.11  
     0.14 
     0.07 

         0.27 
        0.05  
        0.02 
       0.27 

         0.17 
         0.04 
         0.08 
         0.24 

    0.23 
    0.07 
    0.13 
    0.22 

All times are in  seconds of Honeywell Multics 
DP68 cpu processing. 
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5.     Conclusions

The method as described in this paper and our limited experimental                                  
results indicate that some of the procedures are worth while in their                                  
own  right  and  fit  naturally  within  the  revised   simplex  structure. 

In view of the upsurge of interest in interior search methods, we believe 
it is necessary to provide a procedure which given an interior point, 
generates a near by extreme point (optimal or nonoptimal) with a 
superior   function    value.Our    purification    procedure    naturally   fulfils                                 
this  role. 
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