Australasian Accounting, Business and Finance Journal

Volume 8 | Issue 5

Article 4

2014

An Empirical Investigation of Trade Flows Between Australia and its Major Trading Partners

Samuel Belicka Victoria University, Australia, samuel.belicka@vu.edu.au

Ali Salman Saleh Qatar University, Doha, Qatar, asaleh@qu.edu.qa

Follow this and additional works at: https://ro.uow.edu.au/aabfj Copyright ©2015 Australasian Accounting Business and Finance Journal and Authors.

Recommended Citation

Belicka, Samuel and Saleh, Ali Salman, An Empirical Investigation of Trade Flows Between Australia and its Major Trading Partners, *Australasian Accounting, Business and Finance Journal*, 8(5), 2014, 47-78. doi:10.14453/aabfj.v8i5.4

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au

An Empirical Investigation of Trade Flows Between Australia and its Major Trading Partners

Abstract

This study introduces Net Export (NX) models to examine the determinants of the trade flows between Australia and eight selected trading partner (TP) countries (China, France, Germany, Malaysia, Singapore, Thailand, United Kingdom, United States of America) in four selected Trade Deficit (TD) categories (Pharmaceutical Products; Nuclear Reactors, Boilers, Machinery and Mechanical Appliances; Electrical Machinery and Equipment; Sound Recorders and Producers, and Vehicles Other Than Railway or Tramway Rolling-Stock). A total of 29 NX models are estimated, which are based on both the monetary and Quantity (QTY) values. Findings in this study suggest that macroeconomic variables such as money supply, interest rates and savings rates have no-significant effect in the determination of the NX levels in the selected categories. This highlights that monetary policy cannot influence the NX levels in the selected TD categories in Australia. This study also identifies some policy implications which arise from this paper.

Keywords

Australia; Trade deficit; Trading partners; Net export models; Estimation

An Empirical Investigation of Trade Flows Between Australia and its Major Trading Partners

Samuel Belicka¹ and Ali Salman Saleh²

Abstract:

This study introduces Net Export (NX) models to examine the determinants of the trade flows between Australia and eight selected trading partner (TP) countries (China, France, Germany, Malaysia, Singapore, Thailand, United Kingdom, United States of America) in four selected Trade Deficit (TD) categories (Pharmaceutical Products; Nuclear Reactors, Boilers, Machinery and Mechanical Appliances; Electrical Machinery and Equipment; Sound Recorders and Producers, and Vehicles Other Than Railway or Tramway Rolling-Stock). A total of 29 NX models are estimated, which are based on both the monetary and Quantity (QTY) values. Findings in this study suggest that macroeconomic variables such as money supply, interest rates and savings rates have no-significant effect in the determination of the NX levels in the selected TD categories in Australia. This study also identifies some policy implications which arise from this paper.

Keywords: Australia; Trade deficit; Trading partners; Net export models; Estimation

JEL Code(s): F14, O24

¹ Victoria University, Melbourne, Australia. Email: samuel.belicka@vu.edu.au

² Department of Finance and Economics, College of Business and Economics, Qatar University, Doha, Qatar. Email: asaleh@qu.edu.qa

I. Introduction

Research in the area of trade flows between Australia and China, France, Germany, Malaysia, Singapore, Thailand, United Kingdom and United States of America is scant. To our knowledge, there is only one study (see, for instance, Kyereme, 2002) that examined the key determinants of Net Export (NX) between the United States of America and Australia. Despite the growing Trade Deficit (TD) between Australia and these selected TD and relevant industries (such as Pharmaceutical Products, Nuclear Reactors, Boilers, Machinery and Mechanical Appliances etc.) involved in international trade, there is only very limited research in this area. The existing literature is sporadic and selective in their focus on industries, countries and the export (X) and import (M) determinants/ variables. According to the extensive list of empirical studies such as McColl & Nicol (1980), Labys & Cohen (2006), Swift (2005), Bahmani-Oskooee & Wang (2007), Mulgan (2008), there is strong evidence to show that systematic, intensive and in-depth research has not been undertaken in respect to Australia's trading partners in selected TD categories within the current literature. In this study, our objective is to introduce Net Export (NX) models to analyse the determinants of the trade flows from the theoretical and empirical perspectives between Australia and eight selected Trading partner countries (China, France, Germany, Malaysia, Singapore, Thailand, United Kingdom, United States of America) during the period of 1990-2006. This study has focused on this particular period because during this period, the Australian economy has experienced the longest period of economic growth and the Australian dollar has significantly appreciated, especially during the start of the year 2006 (one of the year of commodity export boom). The NX model estimated will clearly identify which macroeconomic variables are significant in explaining the NX level in the four selected TD categories (Category 30 - Pharmaceutical Products; Category 84 - Nuclear Reactors, Boilers, Machinery and Mechanical Appliances; Parts Thereof; Category 85 -Electrical Machinery and Equipment and Parts Thereof; Sound Recorders and Producers, Television Image and Sound Recorders and Reproducers, and Parts and Accessories of Such Articles and Category 87 - Vehicles Other Than Railway or Tramway Rolling-Stock, and Parts and Accessories). Additionally, the existing studies (see, for example, Kyereme, 2002 and Duasa, 2007) which estimated the NX models did not incorporate the key variables such as interest rates and savings rates which based on the economic theory playing a significant influence in determination of the NX levels. To our knowledge there are no existing studies which specifically investigate the NX between Australia and its trading partner countries in any of the above specific categories, which generate the need to introduce the NX models in these categories to identify and to better understand the variables responsible for the trade balance in these categories. We believe conducting such analysis is important for policy implications and to ascertain what macroeconomic variables are influencing the NX levels in the selected categories. For example, the existing studies lack the emphasis on the interest rates and saving rates and their effects on the NX levels. As a result, this study will establish the significance of these two variables with respect to the NX levels in these categories and in turn it will clarify its significance for policy makers.

The NX models estimated in this study are concerned with bilateral trade analysis between Australia and the selected trade partner countries in the four selected TD categories. Bilateral trade analysis in comparison to multilateral trade analysis are likely to divulge additional information that are distinctive for each trading partner country analysed and as a result, it is likely to provide supplementary information to the relevant industries and trade policy makers.

The NX in this study refers to the trade balance between Australia and the selected trading partner countries in the selected TD categories. The selected categories in this study are growing industries in Australia in respect to their contribution to Gross domestic Product (GDP) and at the same time Australia is experiencing a significant and growing TD in these categories. All NX models estimated are examined on a bilateral basis in order to establish the patterns and determinants of a two-way trade between Australia and the selected trade partner countries. According to Kyereme (2002), the bilateral trade analyses when compared to the multilateral trade analysis are likely to provide policy makers with more comprehensive trade balance information. This includes 'country specific' variables that are significant in trade flows determination, which in turn can assist policy makers to tailor more effective trade policies.

II. A Review of the Literature

According to the Keynesian open macroeconomic model, a country's GDP is one of the major determinants of the NX levels, which argues that contractionary fiscal policy reduces the TD, while expansionary fiscal policy increases the TD levels. This method in the current literature is known as the 'absorption approach'. The 'absorption approach' has been pioneered by Harberger (1950), Meade (1951) and Alexander (1959), which specifies that any trade balance improvements can be achieved only by increasing the domestic aggregate income over aggregate expenditure.

Econometric analysis of the NX in the current literature is limited. Investigating the relationship between the trade balance and the net trade flows has been a main focus in the literature (Bahmani-Oskooee (1992), Martín & Velázquez (2002), Kyereme (2002) and Duasa (2007)). Two most relevant empirical studies that have estimated the NX are the studies by Kyereme (2002) and Duasa (2007), while Tang (2008) has reviewed the study by Duasa (2007). The study by Kyereme (2002) estimated the NX between the United States of America and Australia, while the study by Duasa (2007) estimated the NX between Malaysia and the Association of Southeast Asian Nations (ASEAN) countries. The dependent variables used in these two studies by Kyereme (2002) and Duasa (2007) are the United States of America's NX over the Australian NX and the ratio of the X over M between Malaysia and ASEAN countries respectively.

Kyereme (2002) used four independent variables which include the Gross Domestic Product (GDP), exchange rates (EXR), money supply (MS) and interest rates (IR), while the GDP, MS and IR are all expressed as a ratio of the United States of America's values relative to the Australian values and the EXR is expressed as value of one unit of the AUD in terms of the USD. The major findings in this study suggest that the IR is the most significant variable, followed by the GDP, MS and EXR. Furthermore, all variables except the MS and the EXR are statistically significant at 1 per cent level, while the MS is significant at a 5 per cent level and the EXR is not statistically significant. Finally, the 3 independent variables (GDP, MS and EXR) have a negative relationship with the NX and the IR is having a positive relationship with the NX.

Duasa (2007) used three independent variables which includes the Malaysian EXR, GDP and MS. The overall finding in this study shows a weak statistical link between the NX and the EXR, while the links between the NX - GDP and the NX - MS are statistically significant at a 1 per cent level of significance. In overall, in the long-run, the independent variables GDP and EXR shows a negative relationship with the NX and the MS shows a positive

relationship with the NX. However, the coefficients estimated using the ECM shows a negative relationship between the NX and all these 3 independent variables.

The major difference between these two studies is that Kyereme (2002) compared to Duasa (2007) has used in the model the IR variable as an additional independent variable. Furthermore, Kyereme has taken into account the values of both the domestic and foreign macroeconomic variables, while Duasa has included only the Malaysian domestic macroeconomic variables in the model. Tang (2008) has criticized the approach adopted by Duasa (2007), on the basis that the independent variables the GDP and MS are only observed for the Malaysian economy, while the foreign GDP and MS are not taken into account. In addition, according to Tang (2008), the IR is an important dependent variable and should be included in the NX model; however, Duasa (2007) has omitted this variable.

Both NX models estimated by Kyereme (2002) and Duasa (2007), have used an aggregated X and M volumes as a dependent variable, without reference to any specific category. This approach is likely to have some shortcomings, for instance, different trade categories is likely to respond differently to changes in the macroeconomic variables. Hence, the estimation of the NX models with reference to specific trade categories is likely to reveal more specific information on a category-by-category basis. Kyereme (2002) recognized the potential downsides of his model and clearly suggests that further research in this area is required, which includes and is not limited, to model modification and inclusion of an additional variable(s) in order to develop a more robust NX model. Hence, these above studies suffer from many limitations such as lack of emphasis on variables such as interest rates and savings rates which based on the economic theory playing a significant influence in determination of the NX levels. Furthermore, the existing studies mainly focus on the United States of America and Malaysia, and none of them focus on Australia.

III. Theoretical Framework and Methodology

In this study we follow Duasa's (2007) approach in determining the dependent variable, where the NX will be expressed as a ratio of the X to M between Australia and the selected TD country, in the selected TD category. This approach as Bahmani-Oskooee (1991) suggested is preferable, since it is not sensitive to the units of measurement and interpretation of such ratio refers to real trade balance. In addition, the usage of the ratio maintains a positive value of the NX, irrespective of whether the trade balance is a positive or negative value; hence, the variables can be expressed in a natural logarithm if required. Due to these advantages, the NX ratio has been used in numerous empirical studies, which includes studies by Bahmani-Oskooee & Brooks (1999), Onafowora (2003) and Duasa (2007).

Existing studies which provide empirical evidence on the relationship between GDP levels and the trade flows include Balassa (1967), Goldstein & Khan (1978; 1985), Silvapulle & Phillips (1985), Arize (1987), Lawrence 1990, Koshal *et al.* (1992), Carone (1996), Warr & Wollmer (1996), Belessiotis & Giuseppe (1997), Baharumshah (2001), Boyd *et al.* (2001); Chinn (2004), Havrila (2004), Lau *et al.* (2004), Kyereme (2002) and Duasa (2007).

Based on the above review of empirical studies, the NX model can be expressed in the following form:

$$X_{D(i)}{}^{t} / M_{D(i)}{}^{t} = f\left[\left(GDP_{D}{}^{t} / GDP_{j}{}^{t}\right)\right]$$
(1)

Where: X_D' and M_D' is the Australian (or domestic) X and M respectively, '*i*' is the industry for the category *i*, '*j*' is the foreign country *j* and '*t*' is the time period.

Another independent variable that is traditionally used in the analysis of the balance of payment and the trade models is the EXR, where the EXR theoretically determines the relative prices of the X and M volumes, and hence the NX levels. This method in the current literature is known as the 'elasticity approach' or as the 'imperfect substitute' model. The 'elasticity approach' attempts to establish whether the devaluation of the country currency improves the country's trade balance according to the Marshall-Lerner condition³. Studies that analysed the trade balance using the elasticities approach include Frenkel *et al.* (1969), Dornbusch (1975), Johnson (1976) and Boyd *et al.* (2001) and Xu (2008).

From the point of economic theory, the EXR is likely to have a significant impact on the X and M flows and this is supported by an enormous number of empirical studies (see, for instance, Himarios (1989), Bahmani-Oskooee (2001), Kyereme (2002) and Bahmani-Oskooee & Wang (2007)). These studies have found a significant relationship between the trade balance and the EXR. On the other hand, studies by Greenwood (1984), Mahdavi & Sohrabian (1993), Rahman *et al.* (1997) and Duasa (2007) have found rather weak empirical evidence on the relationship between the EXR and the X and M flows. Based on these empirical findings, inconclusive evidence exists as to whether the EXR are statistically significant in determining the X and M flows. In order to shed some light as to whether the EXR is statistically significant in determining the X and M flows between Australia and the selected TD countries and categories, the EXR variable will be included in the NX models estimated in this study. The EXR variable was also used in the studies by Kyereme (2002) and Duasa (2007), which have estimated the NX between the United States of America, Australia, Malaysia and ASEAN countries respectively. The NX model in this form is presented in Equation 2 as follows:

$$X_{D(i)}^{t} / M_{D(i)}^{t} = f\left[\left(GDP_{D}^{t} / GDP_{j}^{t}\right), EXR_{D/F}\right]$$
(2)

Where: $'EXR_{D/F}'$ is the EXR of the Australian Dollar per one unit of the foreign currency.

Finally, another method used in the analysis of the balance of payments can be viewed from a 'monetary' point of view. This approach puts forward that the MS and demand for money is likely to influence the country's trade balance and other components of the balance of payments. According to the monetary approach, the excess MS in the economy causes a balance of payments deficit and as a result, the balance of payments dis-equilibrium should be addressed with an appropriate monetary policy. Polak (1957), Hahn (1959), Prais (1961) and Mundell (1971) argue that the balance of payment should be viewed primarily from a 'monetary' point of view. Recent empirical studies, which have included money variables in the trade models, include Liew *et al.* (2003), Kyereme (2002) and Duasa (2007). As a result, the MS variable will be included in the NX model and the NX model in this form is presented in Equation 3 as follows:

³ The Marshall-Lerner condition stipulates that if the sum of the price elasticity of the X and M (in absolute values) exceed unity, the devaluation of the country's currency will improve the trade balance. However, based on empirical evidence, the relative depreciating of the currency in relations to other trading partners currencies will lead to the improvement in trade balance only in the long-run, while in the short-run, the trade balance will deteriorate. This phenomenon is known as a 'J-curve' (Dornbusch *et al.*, 2002); however, the empirical support for the J-curve phenomena is inconclusive, and some studies show the evidence for the J-curve phenomena (Bahmani-Oskooee, 1985), while others such as Himarios (1989) do not.

$$X_{D(i)}^{t} / M_{D(i)}^{t} = f\left[\left(GDP_{D}^{t} / GDP_{j}^{t}\right) EXR_{D/F}^{t}, \left(MS_{D}^{t} / MS_{j}^{t}\right)\right]$$
(3)

Where: $'MS_D'$ and $'MS_i'$ is the Australian and foreign country MS (M3) respectively.

According to Tang (2008, p.128), the independent variables GDP, EXR and MS presented in Equation 3 represents an 'open economy' macro equilibrium variables rather than from the 'absorption approach' and the 'monetary' point of view. Tang (2008) criticised Duasa (2007) for estimating the NX model presented in this above form, and suggested that the IR should be included in the NX model. Following the suggestion by Tang (2008) and the empirical study by Kyereme (2002), the NX model in this study incorporates the IR variable and the NX model in this form is presented in Equation 4 as follows:

$$X_{D(i)}^{t} / M_{D(i)}^{t} = f \left[\left(GDP_{D}^{t} / GDP_{j}^{t} \right) EXR_{D/F}^{t}, \left(MS_{D}^{t} / MS_{j}^{t} \right), \left(IR_{D}^{t} / IR_{j}^{t} \right) \right]$$
(4)

Where: $'IR_{D}'$ and $'IR_{i}'$ is the Australian and foreign country IR respectively.

By referring to the Keynesian Investment-Saving and Liquidity Preference-Money Supply (IS-LM), the equilibrium in an open economy is achieved when equilibrium in the goods and money market exists. The Saving (S) is likely to play an important part in the trade balance determination. Based on the S and Investment (I) framework, the Current Account (CRA) = S – I, which can be also expressed as a Trade Balance = S – I (Griswold, 2007 and Tang, 2008). Based on this S and I framework, there is a strong argument to include the SVR as an additional independent variable in the NX model. Tang (2008) suggests the importance of the inclusion of the SVR variable in this model, while Kyereme (2002) suggests that the estimation and/or inclusion of an additional variable(s). Based on this review, an additional independent variable - the SVR will be included in the NX model and the NX model in this form is presented in Equation 5 as follows:

$$X_{D(i)}^{t} / M_{D(i)}^{t} = f \Big[\Big(GDP_{D}^{t} / GDP_{j}^{t} \Big) EXR_{D/F}^{t}, \Big(MS_{D}^{t} / MS_{j}^{t} \Big), \Big(IR_{D}^{t} / IR_{j}^{t} \Big), \Big(SVR_{D}^{t} / SVR_{j}^{t} \Big) \Big]$$
(5)

Where: $|SVR_p|$ and $|SVR_i|$ is the Australian and foreign country SVR respectively.

Based on this review, the NX model which will be estimated is presented in Equation 6 as follows:

$$NX_{ii}^{\ t} = \alpha_0 + \alpha_1 GDP^t + \alpha_2 EXR^t + \alpha_3 MS^t + \alpha_4 IR^t + \alpha_5 SVR^t + \varepsilon^t$$
(6)

Where: $'\alpha_0'$ is the intercept, $'\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5'$ are the slope coefficients, $'\varepsilon'$ is a random error, '*NX*' is the ratio of the Australian X over the Australian M, '*GDP*'' is the ratio of the Australian GDP level over foreign country GDP level, '*EXR*'' is the EXR of the Australian Dollar per one unit of the foreign currency, '*MS*'' is the ratio of the Australian MS (M3) over foreign country MS (M3) levels, '*IR*'' is the ratio of the Australian IR over foreign country IR, '*SVR*'' is the Australian SVR over foreign country SVR, '*i*' is the industry for the category *i*, '*j*' is a country *j* and '*t*' is a time period.

The expected a priory signs for variables in Equation 6 are negative for $'\alpha_1, \alpha_2, \alpha_3'$ and positive for $'\alpha_4, \alpha_5'$. For $'\alpha_1'$ other things being equal, as the Australian GDP relative to foreign GDP increases by a greater amount, it is expected that the trade balance will worsen (as the M volume tends to increase and as a result the ratio of the Australian X over the Australian M will decrease), hence a negative a priori sign. For $'\alpha_2'$ other things being equal,

as the Australian dollar appreciates against the foreign currency, it is expected that the trade balance will worsen (as an appreciation of the Australian currency is likely to increase the M levels and to decrease the X levels and as a result, the ratio of the Australian X over the Australian M will decrease), hence a negative a priori sign. For ' α_3 ' other things being equal, as the Australian MS increases by greater amounts than the foreign MS, it is expected that the trade balance will worsen (as the M volume tend to increase and as a result, the ratio of the Australian X over the Australian M will decrease), hence a negative a priori sign. For ' α_4 ' other things being equal, as the Australian IR increases by a greater amount than a foreign IR, it is expected that the trade balance will improve (as the M volume tends to decrease and as a result, the ratio of the Australian X over the Australian M will increase), hence a positive a priori sign. Finally, for ' α_5 ' other things being equal, as the Australian SVR increases by a greater amount than a foreign SVR, it is expected that the trade balance will improve (as the M volume tends to decrease and as a result, the ratio of the Australian X over the Australian M will increase), hence a positive a priori sign.

Having determined the the theoretical NX model, an important aspect to consider is whether to use a linear or non-linear NX model. According to Khan & Ross (1975; 1977) and Salas (1982), when the estimated model is used for forecasting, the linear model is a more suitable form. However, when the purpose of the study is to establish to what degree the changes in the explanatory variables affect the dependant variable overtime, the preferred model is the log-log form. Model estimation in log-log form has been adopted in a vast number of studies (see, for instance, Kyereme (2002) and Duasa (2007)). Hence, the functional form for the NX model, which will be estimated for the selected TD categories and countries, will be in the log-log form. According to Gujarati (2003, p.421), this approach will not only produce elasticities but it is also likely to reduce the problems with heteroscedasticity⁴. The adopted functional form for the NX in the log-log form is presented in Equation 7 as follows:

$$LnNX_{ij}{}^{t} = \alpha_0 + \alpha_1 LnGDP^{t} + \alpha_2 LnEXR^{t} + \alpha_3 LnMS^{t} + \alpha_4 LnIR^{t} + \alpha_5 LnSVR^{t} + \varepsilon^{t}$$
(7)

Where: 'Ln' is the natural logarithm for the corresponding variables.

The aim of the methodology used in this study is to ensure that all NX models estimated are conforming to the 9 classical model assumptions (Gujarati, 2003), in order to obtain an unbiased estimates for the population parameters. If one or more of these assumptions are violated, it can lead to problems associated with biased coefficient and standard error estimates. This in turn will ultimately affect the validity of the inferential statistics about estimates and finally, the distribution assumed during the tests will become inappropriate. According to Phillips (1986), if these assumptions are violated, the t-tests and F- tests are unlikely to be reliable. On the other hand, if these 9 classical assumptions are satisfied, the regression model is likely to produce the Best Unbiased Estimators (BUE) for the population regression parameters. However, the classical assumptions for the regression model estimation assume that the time-series data for both the dependent and independent variable(s) are stationary. This implies that the mean, variances and autocovariances do not change overtime. On the contrary, this assumption is frequently violated and as a result, it is likely to lead to autocorrelation, a non-normality problem and most importantly to cause spurious regression⁵ (Gujarati, 2003).

⁴ Heteroscedasticity is a common problem when cross-sectional data is used, which is the case in this study.

 $^{^{5}}$ A spurious regression produces a high R-square and high t-statistics; however, despite these desirable properties of the overall regression results, they are without any economic meaning. For a more detail explanation of the properties of the spurious regression, refer to Granger & Newbold (1974). According to Gujarati (2003), another indication of spurious regression is when R-square > DW, where DW is Durbin-Watson statistic.

Since the 9 classical assumptions and stationarity are critical, the adopted estimation procedures will commence by testing the variables for the presence of the unit root (non-stationarity). The tests for non-stationarity will include both informal and formal procedures. The informal procedure includes plotting the time-series data and observing the trend (both the linear and non-linear) and any possible relationship and the formal method will include the Dickey-Fuller Test (DFT), Augmented Dickey-Fuller Test (ADFT) (Dickey & Fuller, 1979) and the Phillips-Perron Test (PPT) (Phillips & Perron, 1988).

Once the variables are tested for non-stationarity and if none of the variables have a unit root, the Ordinary Least Squares (OLS) will be applied, followed by the standard diagnostic tests. If some variables have a unit root and some do not, the first difference or second difference (if required) will be taken off the variables which have a unit root. Once these variables (with a unit-root) after differencing becomes stationary, the OLS will be applied followed by the standard diagnostic tests. If all variables have a unit root and such variables are stationary in the first difference form I(1) or in any other form i.e. $I(2)^6$, I(3), such variables can be potentially cointegrated, consequently, the Johansen Maximum Likelihood Procedure (JMLP) test for cointegration will be carried out. If the JMLP reveals one cointegrating equation, the Error Correction Model (ECM) will be applied followed by the standard diagnostic tests. However, if the JMLP reveals more than one cointegrating equation, the Vector Autoregression Model (VARM) will be applied, followed by the standard diagnostic tests.

IV. DATA AND DATA SOURCES

The Australian X and M trade data for all the selected trading partner countries and categories are obtained from the Trade Data International (TDI). The Australian GDP (ABS, 2008 d) and the SVR (ABS, 2008a) data are obtained from the Australian Bureau of Statistics (ABS). The Australian EXR⁷ for all the selected TD countries except for Thailand (RBA, 2009a), MS (RBA, 2009c) and IR (RBA, 2009d) are obtained from the Reserve Bank of Australia (RBA).

The units of the X and M between Australia and the selected TD countries and categories in the monetary values are expressed in millions of Australian Dollars (AUD) in both the HS-2 and HS-4 (Harmonized Commodity Description and Coding System - Second and fourth Levels of aggregation).

Furthermore, the units of the X and M values based on Quantity (QTY) in all estimated models between Australia and the selected TD countries are in single units. Finally, the Australian GDP and SVR⁸ are expressed in millions of AUD, MS is expressed in billions of AUD, and the IR⁹ are expressed in percentage per annum.

The data for China is obtained from the Organization for Economic Cooperation and Development (OECD), RBA and The People's Bank of China. The GDP data is are obtained from OECD (2008a), the EXR are obtained from the RBA (2009a), the MS, IR data are obtained from OECD (2008b), and the SVR data is obtained from The People's Bank of China (2009). The GDP¹⁰ and MS¹¹ are expressed in billions of Chinese Yuan, the SVR¹²

⁶ If it is more than 2 '>I(2)', the coefficient(s) estimated cannot be meaningfully interpreted.

⁷ The EXR data from the RBA are originally in monthly time-intervals and for the purpose of this analysis converted to quarterly time-series by taking an average of the corresponding 3 monthly EXR's, while the EXR for Thailand are originally in quarterly time intervals. Furthermore, all EXR (except for the TWI) are expressed as value of one unit of foreign currency in terms of the Australian currency.

⁸ The Australian SVR originally is expressed in millions of Australian Dollars.; however, these figures are converted to AUD bill. in order to be consistent with most of the other TD countries data.

⁹ The lending standard variable rates.

¹⁰The Chinese GDP data is only available from 1995:Q1 and is expressed in billions of Yuan, while these data are converted to AUD, mill. in order to be consistent with the Australian GDP data.

¹¹ The Chinese MS (M3) data is converted to billions of AUD in order to be consistent with the Australian MS data.

data is expressed in 100s of millions of Yuan, and the IR is expressed in percentage per annum.

The data for France and Germany are obtained from the Bank of France (BOF), Deutsche Bundesbank, OECD and RBA. The GDP data for France and Germany are obtained from the OECD (2008a), the EXR¹³ is obtained from the RBA (2009a), and the MS data for France and Germany are obtained from the BOF (2008a) and Deutsche Bundesbank (2009) respectively. Furthermore, the IR data for France and Germany are obtained from the OECD (2008b) and the SVR data for France and Germany are obtained from BOF (2008b) and OECD (2008b) respectively. The GDP¹⁴ data for both France and Germany are expressed in billions of euro, the MS¹⁵ is expressed in millions of euro and the IR¹⁶ for France and Germany are expressed in millions of euro, while the SVR¹⁸ for Germany is expressed in billions of euro.

The data for Malaysia is obtained from the Department of Statistics Malaysia (DOSM) and the RBA. The GDP data is obtained from the DOSM (2009) and the EXR is obtained from the RBA (2009a), while the Malaysian GDP^{19} is expressed in millions of Malaysian Ringgit.

The data for Singapore is obtained from the Monetary Authority of Singapore (MAS), the RBA and the Singapore Department of Statistics. The GDP data is obtained from the Singapore Department of Statistics (2009), the EXR is obtained from RBA (2009a), while the MS (MAS, 2008a), IR (MAS, 2008b) and SVR (MAS, 2008c) data are obtained from the MAS. The GDP²⁰, MS²¹ and SVR²² are expressed in millions of Singaporean Dollars (SGD) and the IR²³ is expressed in percentage per annum.

The data for Thailand is obtained from the Bank of Thailand (BOT) and the Thailand National Economic and Social Development Board (NESDB). The GDP data is obtained

 20 The GDP data for Singapore is converted to millions of AUD in order to be consistent with the Australian GDP.

¹² The Chinese SVR refers to net savings data and is only available from 2000:Q1. The net savings data is originally expressed in monthly intervals and in 100s Yuan, mill. These data are converted to quarterly time intervals (as the values at the end of the period) and to billions of AUD in order to be consistent with the Australian SVR data.

¹³ The structural break in the EXR for France and Germany exists, due to the introduction of the Euro currency on January 1, 1999, when France's Franc and Germans' Mark were replaced by the common European currency Euro. Consequently, the EXR for these 2 countries is proxy by the Trade-Weighted Index (TWI). This proxy can be considered reliable, since according to the RBA (2009b), the European Euro is on the third highest position in the TWI table, where the total Australian trade weight with the European countries (which includes France and Germany) accounts for 11.65 per cent of the total Australian trade.

¹⁴ The GDP data for France and Germany is converted to millions of AUD in order to be consistent with the Australian GDP. Furthermore, as the EXR for Euro is not available before January 1999, the period between 1990:Q1 and 1998:Q4 is the EXR estimate only, which has been used for conversion of the France and German GDP to millions of AUD for this period. ¹⁵ The original MS data (M2) for Europe and Germany are represented in millions of AUD for this period.

¹⁵ The original MS data (M3) for France and Germany are expressed in millions of euro and are in monthly intervals. These data are converted to billions of AUD and to the quarterly time-series (as the values at the end of the period) in order to be consistent with the Australian MS data. Additionally, the MS data for these 2 countries correspond to the MS for the whole Euro Area and are available only from 1997:Q3, consequently the MS for period between 1990:Q1 and 1997:Q2, are again estimates only. The main reason why the whole Euro Area MS data for these 2 countries is used is due to the nature of the MS data for individual European countries (individual European countries (individual European countries used is due to the total MS for the whole Euro Area). However, since such contribution can be negative (for any individual country contribution), such data are considered not suitable since the log values cannot be taken from negative values. Due to this, the MS data for France and Germany used in this study are those for the whole Euro Area.

¹⁶ The IR data for France and Germany due to breakdowns in series, which are associated with the European Union integration, are proxy by the 10-year government bonds yield.

¹⁷ The France SVR are originally expressed in monthly intervals and in millions of euro; these data are converted to quarterly time intervals (as the values at the end of the period) and are converted to billions of AUD in order to be consistent with the Australian SVR data. ¹⁸ The Germany SVR are originally expressed in quarterly intervals and in billions of euro. These data are converted to AUD, bill. in order

¹⁸ The Germany SVR are originally expressed in quarterly intervals and in billions of euro. These data are converted to AUD, bill. in order to be consistent with the Australian SVR data.

¹⁹ The Malaysian GDP data is obtained from the DOSM on special request. This data is originally expressed in millions of Malaysian Ringgit, which is converted to millions of AUD in order to be consistent with the Australian GDP data.

 $^{^{21}}$ The original MS data (M3) for Singapore is expressed in millions of Singaporean Dollars, in monthly intervals and are available from 1991:Q1. This data is converted to billions of AUD, and to the quarterly time-series (as the values at the end of the period) in order to be consistent with the Australian MS data.

²² The Singaporean SVR is originally expressed in millions of Singaporean Dollars, in monthly intervals and are available from 1991:Q1 This data is converted to the quarterly time-series (as the values at the end of the period) and to billions of AUD in order to be consistent with the Australian SVR data.
²³ The IR data for Singapore is originally in monthly time-intervals, which are converted to quarterly time-series (as the values at the end of the period) and the series (as the values at the end of the period).

²⁵ The IR data for Singapore is originally in monthly time-intervals, which are converted to quarterly time-series (as the values at the end of the period) in order to be consistent with the Australian IR data.

from the NESDB (2008), while the EXR (BOT, 2008a), the MS (BOT, 2008b), the IR (BOT, 2007a) and the SVR (BOT, 2007b) data are all obtained from the BOT. The GDP²⁴, MS^{25} and SVR^{26} are expressed in millions of Thai baht and the IR^{27} are expressed in percentage per annum.

The data for the United Kingdom is obtained from the Bank of England (BOE), the OECD and the RBA. The GDP data is obtained from the OECD (2008a), the EXR from the RBA (2009a), the MS from the OECD (2008b), whilst the IR (BOE, 2009a) and SVR (BOE, 2009b) are obtained from the BOE. The GDP²⁸, MS²⁹ are expressed in billions of Pound Sterlingand SVR³⁰ is expressed in millions of Pound Sterling, while the IR is expressed in percentage per annum.

The data for the United States of America is obtained from the OECD, the RBA and the U.S. Board of Governors of the Federal Reserve System. The GDP data is obtained from the OECD (2008a), the EXR from the RBA (2009a), the MS from the OECD (2008b), whilst the IR (The U.S. Board of Governors of the Federal Reserve System, 2008a) and the SVR (The U.S. Board of Governors of the Federal Reserve System, 2008b) are obtained from the U.S. Board of Governors of the Federal Reserve System. The GDP³¹, MS³² are expressed in millions of U.S. dollars (USD) and SVR³³ are expressed in billions of USD, while the IR³⁴ are expressed in percentage per annum.

²⁴ The GDP data for Thailand is converted to millions of AUD, in order to be consistent with the Australian GDP, while Thailand's GDP data is available from 1993:Q1.

 $^{^{25}}$ The original MS data (M3) for Thailand is expressed in millions of Thai baht and are in monthly intervals. This data is converted to billions of AUD, and to the quarterly time-series (as the values at the end of the period) in order to be consistent with the Australian MS data.

²⁶ Thailand's SVR is originally expressed in millions of Thai baht, in quarterly time intervals and are available from 1992:Q4. This data is converted to millions of AUD, in order to be consistent with the Australian SVR data.

²⁷ The IR data for Thailand is originally in monthly time-intervals, which are converted to quarterly time-series (as the values at the end of the period) in order to be consistent with the Australian IR data.

²⁸ The GDP data for the United Kingdom is converted to millions of AUD, in order to be consistent with the Australian GDP.

²⁹ The original MS data (M3) for the United Kingdom is converted to billions of AUD, in order to be consistent with the Australian MS data.
³⁰ The United Kingdom's SVR is converted to billions of AUD, in order to be consistent with the Australian SVR data.

³¹ The GDP data for the United States of America is converted to millions of AUD, in order to be consistent with the Australian GDP.

³² The original MS data (M3) for The United States of America is converted to billions of AUD in order to be consistent with the Australian MS data. Furthermore, this data is only available until 2005:Q4 as the Board of Federal Reserve System has ceased the publication of the 'M3' and its components for The United States of America on March 23, 2006. For more information visit: http://www.federalreserve.gov/releases/h6/discm3.htm

³³ The United States of America's SVR is originally in monthly time-intervals, which are converted to quarterly time-series (as an average of the corresponding 3 months period) and to billions of AUD, in order to be consistent with the Australian SVR data.

³⁴ The IR data for The United States of America is originally in monthly time-intervals, which is converted to quarterly time-series (as the values at the end of the period) in order to be consistent with the Australian IR data.

V. EMPIRICAL FINDINGS

Table 1 shows the NX models that will be estimated in this section. This table consists of 29 NX models, however, as each of these models are estimated based on AUD and QTY values, the NX models estimated in this study are 58 in total. Tables 2-5 shows all 58 NX models estimated, which includes the estimated coefficients, corresponding t-ratios and diagnostic tests results.

Table 1: NET EXPORT – ESTIMATED MODELS (AUD & QTY)

HS-2								
AUSTRALIA -	30	84	85	87				
China	Yes (n=28) ^j	Yes (n=28) ^j	Yes (n=28) ^j	Yes (n=28) ^j				
France	Yes (n=68) *	Yes (n=68) ^a	Yes (n=68) ^a	Yes (n=42) ^g				
Germany	Yes (n=68) ^a	Yes (n=68) ^a	Yes (n=68) ^a	Yes (n=68) ^a				
Malaysia	No	Yes (n=68) ^a	Yes (n=68) ^a	Yes (n=68) ^a				
Singapore	No	Yes (n=64) ^b	Yes (n=64) ^b	Yes (n=64) ^b				
Thailand	No	Yes (n=56) ^d	Yes (n=56) ^d	Yes (n=56) ^d				
United Kingdom	Yes (n=68) ^a	Yes (n=68) ^a	Yes (n=68) ^a	Yes (n=68) ^a				
United States of America	Yes (n=64) ^c	Yes (n=64) °	Yes (n=64) ^c	Yes (n=64) ^c				

^a 1990;Q1 - 2006;Q4; ^b 1991;Q1 - 2006;Q4; ^c 1990;Q1 - 2005;Q4; ^d 1993;Q1 - 2006;Q4; ^g 1996;Q3 - 2006;Q4; ^j 2000;Q1 - 2006;Q4; ^d 1993;Q1 - 2006;Q4; ^b 1996;Q3 - 2006;Q4; ^j 2000;Q1 - 2006;Q4; ^d 1990;Q1 - 2006;Q1 - 200;Q1 - 2006;Q1 - 2006;Q1 - 200;Q1 - 200;Q1 - 200;Q1 - 200;Q1 - 200;Q1 - 200;Q1 - 20

Table 2 (Pail A). NET EAFURT MUDELS – CATEGURY 30" (AUD & UT Y	Table 2 (Part A): NE	Г EXPORT М	10DELS – C	CATEGORY 30	* (AUD & (OTY)
--	-----------	-------------	------------	------------	-------------	------------	------

			AUSTR	ALIA - CH	INA		
AUD	DEPENDENT	VARIABLE: A	LnX/M)				
	Coefficient	t-ratio		Diag	nostic Results		Note:
Constant	3.092	0.917	R ²	0.107	LMT F(2,19)	0.716	
LnGDP	0.119	0.329	Adj. R ²	0.106	LMT F(Prob.)	0.502	
Δ(LnEXR)	-8.877	-0.890	F(5,21)	0.5***	BPGT F(5,21)	1.434	
Δ(LnMS)	-8.004	-0.802	F(Prob.)	0.072	BPGT F(Prob.)	0.253	-Incorrect sign for GDP;
Δ(LnIR)	-1.037	-1.052***	DW	2.277	RESET F(1,20)	0.364	IR.
LnSVR	0.590	1.007***	AIC	2.090	RESET F(Prob.)	0.553	
			SC	2.378	JBT $\chi^2(2)$	0.256	
			LL	-22.22	JBT χ ² (Prob.)	0.880	
QTY	DEPENDENT	VARIABLE: LI	nX/M				
	Coefficient	t-ratio		Diag	nostic Results		Note:
Constant	8.980	1.525***	R ²	0.294	LMT F(2,19)	1.302	
Δ(LnGDP)	-0.447	-0.707	Adj. R ²	0.126	LMT F(Prob.)	0.295	
Δ(LnEXR)	-46.873	-2.691**	F(5,21)	1.8***	BPGT F(5,21)	1.489	
Δ(LnMS)	-44.979	-2.581**	F(Prob.)	0.067	BPGT F(Prob.)	0.236	
Δ(LnIR)	2.354	1.368***	DW	1.362	RESET F(1,20)	0.513	
LnSVR	1.792	1.752***	AIC	3.205	RESET F(Prob.)	0.482	
			SC	3.492	JBT χ^2 (2)	0.151	
			LL	-37.261	JBT χ ² (Prob.)	0.927	
			AUSTRA	ALIA - FRA	NCE		
AUD	DEPENDENT	VARIABLE: LI	nX/M				
	Coefficient	t-ratio		Diag	nostic Results		Note:
Constant	3.351	0.510	\mathbf{R}^2	0.555	LMT F(2,57)	1.090	
Δ(LnGDP)	1.056	0.940	Adj. R ²	0.510	LMT F(Prob.)	0.343	
Δ(LnEXR)	-0.768	-0.271	F(6,59)	12.28*	BPGT F(5,60)	0.679	-Residuals are not
LnMS	2.155	0.930	F(Prob.)	0.000	BPGT F(Prob.)	0.641	normally distributed.
Δ(LnIR)	0.219	0.123	DW	1.835	RESET F(1,58)	0.749	-Incorrect sign for GDP;
LnSVR	-0.010	-0.612	AIC	2.668	RESET F(Prob.)	0.391	MS; SVR.
AR(1)	0.726	8.387*	SC	2.900	JBT $\chi^2(2)$	19.272*	
			LL	-81.040	JBT χ ² (Prob.)	0.000	
QTY	DEPENDENT	VARIABLE: LI	nX/M				
	Coefficient	t-ratio		Diag	nostic Results		Note:
Constant	7.104	1.129***	\mathbf{R}^2	0.356	LMT F(2,57)	2.148	
Δ(LnGDP)	16.080	4.611*	Adj. R ²	0.291	LMT F(Prob.)	0.126	
Δ(LnEXR)	-3.779	-0.466	F(6,59)	5.447*	BPGT F(5,60)	0.269	-Model is mis-specified.
LnMS	3.683	1.663***	F(Prob.)	0.000	BPGT F(Prob.)	0.929	-Incorrect sign for GDP;
Δ(LnIR)	4.772	0.998	DW	2.137	RESET F(1,58)	7.238*	MS; SVR.
LnSVR	-0.051	-1.199***	AIC	4.521	RESET F(Prob.)	0.009	
AR(1)	0.334	2.775*	SC	4.753	JBT χ^2 (2)	2.673	
			11	142.2	$IBT \approx 2 (Prob)$	0.263	

* Pharmaceutical Products

*DW – Durbin-Watson Statistics; AIS – Akaike Info Criterion; SC – Schwartz Criterion; LL – Log Likelihood; LMT – Lagrange Multiplier (Breusch-Godfrey) Test for Serial Correlation; BPGT – Breusch-Pagan-Godfrey Test for Heteroskedasticity; RESET – Ramsey RESET Test for Model Specification; JBT – Jarques-Bera Test for normality of the residuals; * significant at the 1%, ** significance at 5%, ***significance at 10%*

			AUSTRA	LIA - GERM	MANY		
AUD	DEPENDENT	VARIABLE: A	LnX/M)				
neb	Coefficient	t-ratio		Dias	znostic Results		Note:
Constant	0.181	0.236	R ²	0.176	LMT F(2.57)	2.349	
Δ(LnGDP)	-1.952	-1.359***	Adj. R ²	0.093	LMT F(Prob.)	0.105	
Δ(LnEXR)	-2.339	-1.121***	F(6,59)	2.1***	BPGT F(5,60)	0.911	
LnMS	-0.047	-0.171	F(Prob.)	0.066	BPGT F(Prob.)	0.480	
Δ(LnIR)	0.484	0.452	DW	2.177	RESET F(1,58)	0.776	
Δ(LnSVR)	0.004	0.479	AIC	1.950	RESET F(Prob.)	0.382	
AR(1)	-0.359	-2.863*	SC	2.182	JBT χ^2 (2)	0.246	
			LL	-57.36	JBT χ ² (Prob.)	0.884	
QTY	DEPENDENT	VARIABLE: Li	nX/M				
	Coefficient	t-ratio		Diaș	gnostic Results		Note:
Constant	16.455	3.004*	R ²	0.288	LMT F(2,57)	2.91***	
Δ(LnGDP)	3.490	0.842	Adj. R ²	0.215	LMT F(Prob.)	0.063	-Residuals are serially
Δ(LnEXR)	-3.052	-0.334	F(6,59)	3.973*	BPGT F(5,60)	4.104*	correlated.
LnMS	5.971	3.050*	F(Prob.)	0.002	BPGT F(Prob.)	0.003	-Residuals are
Δ(LnIR)	0.502	0.092	DW	2.086	RESET F(1,58)	0.070	Heteroscedastic.
Δ(LnSVR)	-0.064	-1.693***	AIC	4.699	RESET F(Prob.)	0.793	 Incorrect sign for GDP;
AR(1)	0.227	1.806***	SC	4.931	JBT χ^2 (2)	0.235	MS; SVR.
			LL	-148.18	JBT χ ² (Prob.)	0.889	
		1	AUSTRALIA	- UNITED I	KINGDOM		
AUD	DEPENDENT	VARIABLE: Li	nX/M				
	Coefficient	t-ratio		Diag	gnostic Results		Note:
Constant	-1.573	-16.986*	\mathbf{R}^2	0.455	LMT F(1,58)	0.014	
Δ(LnGDP)	0.392	0.875	Adj. R ²	0.400	LMT F(Prob.)	0.905	
A(LnEXR)	0.651	0.407	F(6,59)	8.213*	BPGT F(5,60)	1.094	
Δ(LnMS)	1.014	0.626	F(Prob.)	0.000	BPGT F(Prob.)	0.373	-Incorrect sign for GDP;
Δ(LnIR)	-0.161	-0.324	DW	1.908	RESET F(1,58)	1.551	EXR; MS; IR; SVR.
LnSVR	-0.001	-0.184	AIC	0.187	RESET F(Prob.)	0.218	
AR(1)	0.651	6.569*	SC	0.420	JBT χ^2 (2)	2.139	
			LL	0.820	JBT χ ² (Prob.)	0.343	
QTY	DEPENDENT	VARIABLE: Li	nX/M				
	Coefficient	t-ratio		Diag	gnostic Results		Note:
Constant	2.676	3.899*	R ²	0.303	LMT F(1,58)	5.409**	
Δ(LnGDP)	1.728	0.320	Adj. R ²	0.232	LMT F(Prob.)	0.024	
Δ(LnEXR)	21.934	1.169***	F(6,59)	4.281*	BPGT F(5,60)	0.934	-Residuals are serially
Δ(LnMS)	32.546	1.714***	F(Prob.)	0.001	BPGT F(Prob.)	0.466	correlated.
Δ(LnIR)	-8.476	-1.499***	DW	2.176	RESET F(1,58)	4.057**	-Model is mis-specified.
LnSVR	-0.100	-2.030**	AIC	4.946	RESET F(Prob.)	0.049	FXR· MS· IR· SVR
AR(1)	0.467	4.021*	SC	5.178	JBT χ^2 (2)	1.351	
			LL	-156.22	JBT χ ² (Prob.)	0.509	
			AUSTRALIA	A - UNITED	STATES		
AUD	DEPENDENT	VARIABLE: LI	nX/M				
	Coefficient	t-ratio		Diag	gnostic Results		Note:
Constant	-1.505	-8.414*	\mathbf{R}^2	0.501	LMT F(2,53)	4.164**	
Δ(LnGDP)	2.068	2.307**	Adj. R ²	0.447	LMT F(Prob.)	0.021	Danishan la service de la
Δ(LnEXR)	2.718	0.722	F(6,55)	9.220*	BPGT F(5,56)	0.416	-Residuals are serially
Δ(LnMS)	0.014	0.004	F(Prob.)	0.000	BPGT F(Prob.)	0.836	-Model is mis-specified
Δ(LnIR)	0.126	0.120	DW	2.390	RESET F(1,54)	4.997**	-Incorrect sign for GDP
LnSVR	0.012	1.388***	AIC	1.447	RESET F(Prob.)	0.030	EXR: MS.
AR(1)	0.635	6.135*	SC	1.687	JBT $\chi^2(2)$	2.127	
			LL	-37.84	JBT χ ² (Prob.)	0.345	
QTY	DEPENDENT	VARIABLE: A	LnX/M)				
	Coefficient	t-ratio		Diaș	gnostic Results		Note:
Constant	0.010	0.126	R ²	0.262	LMT F(2,55)	2.311	
Δ(LnGDP)	-4.138	-2.440*	Adj. R ²	0.198	LMT F(Prob.)	0.109	
Δ(LnEXR)	-12.105	-2.009**	F(5,57)	4.053*	BPGT F(5,57)	0.578	
Δ(LnMS)	-4.125	-0.731	F(Prob.)	0.003	BPGT F(Prob.)	0.716	
Δ(LnIR)	0.951	0.742	DW	2.409	RESET F(1,56)	0.175	
Δ(LnSVR)	0.017	1.730***	AIC	1.952	RESET F(Prob.)	0.678	
			SC	2.156	JBT $\chi^2(2)$	0.850	
			LL	-55.48	$IBT \approx 2$ (Prob.)	0.654	

Table 2 (Continued - Part B): NET EXPORT MODELS - CATEGORY 30* (AUD & QTY)

* Pharmaceutical Products

DW – Durbin-Watson Statistics; AIS – Akaike Info Criterion; SC – Schwartz Criterion; LL – Log Likelihood; LMT – Lagrange Multiplier (Breusch-Godfrey) Test for Serial Correlation; BPGT – Breusch-Pagan-Godfrey Test for Heteroskedasticity; RESET – Ramsey RESET Test for Model Specification; JBT – Jarques-Bera Test for normality of the residuals; * significant at the 1%, ** significance at 5%, ***significance at 10% As shown in Table 2, all 10 NX models in Category 30 are significant. Additionally, in most of the estimated models, the variable SVR is significant, while the variables GDP, EXR, MS and IR are mostly not significant.

The variables GDP and EXR are significant in 4 out of the 10 models, the variables MS and IR are significant in 3 out of the 10 models and the SVR is significant in 7 out of the 10 models. The correct coefficient signs for all the GDP, EXR, MS, IR and SVR are found in 3 out of the 10 models (1 based on AUD and 2 based on QTY), while for these 3 models, the coefficients range for the GDP, EXR, MS, IR and SVR is between (-0.447 and -4.138), (-2.339 and -46.873), (-0.047 and -44.979), (0.484 and 2.354) and (0.004 and 1.792) respectively. Finally, the overall Adj. R-Square for all 10 models in this category ranges between 9.3 and 51 per cent respectively.

In overall, out of the 10 estimated models in this category, 3 models (the NX with Germany based on AUD; the NX with China and The United States of America based on QTY) have the correct signs and have satisfactory passed all diagnostic tests. The NX model with China shows that a 1 per cent growth rate in the GDP, EXR and MS will decrease the NX by 0.447, 46.873 and 44.979 per cent respectively; a 1 per cent growth rate in the IR will increase the NX by 2.354 per cent, on average, while a 1 per cent increase in the SVR will increase the NX by 1.792 per cent. The NX model with the United States of America shows that a 1 per cent growth rate in the GDP, EXR and MS will decrease the NX growth rate by 4.138, 12.105 and 4.125 per cent respectively, while 1 per cent growth rate in the IR and SVR will increase the NX growth rate on average by 0.951 and 0.017 per cent respectively. The NX model with Germany shows that a 1 per cent growth rate in the GDP and EXR will decrease the NX growth rate by 1.952 and 2.339 per cent respectively; a 1 per cent increase in MS will decrease the NX growth rate by 0.047 per cent, while a 1 per cent growth rate in the IR and SVR will increase the NX growth rate on average by 0.484 and 0.004 per cent respectively. For all of these 3 models, the variables GDP, EXR and MS are mostly elastic, while the variable IR and MS are mostly inelastic. Finally, the Adj. R-Square for China, the United States of America and Germany is 12.6, 19.8 and 9.3 per cent respectively.

			AUSTR	ALIA - CH	INA		
AUD	DEPENDENT	VARIABLE: A	LnX/M)				
	Coefficient	t-ratio		Diag	gnostic Results		Note:
Constant	-0.716	-0.736	R ²	0.470	LMT F(2,17)	0.469	
LnGDP	-0.030	-0.247	Adj. R ²	0.303	LMT F(Prob.)	0.634	
Δ(LnEXR)	-2.671	-0.737	F(6,19)	2.81**	BPGT F(5,20)	0.584	
Δ(LnMS)	-3.570	-1.013***	F(Prob.)	0.039	BPGT F(Prob.)	0.712	
Δ(LnIR)	0.296	1.052***	DW	2.219	RESET F(1,18)	0.143	
LnSVR	0.120	0.741	AIC	-0.064	RESET F(Prob.)	0.710	
AR(1)	-0.553	-3.132*	SC	0.275	JBT χ^2 (2)	1.880	
			LL	7.828	JBT χ ² (Prob.)	0.391	
QTY	DEPENDENT	VARIABLE: Δ(LnX/M)				
	Coefficient	t-ratio		Diag	gnostic Results		Note:
Constant	-1.860	-0.559	R ²	0.404	LMT F(2,17)	0.482	
LnGDP	-0.017	-0.040	Adj. R ²	0.216	LMT F(Prob.)	0.626	
Δ(LnEXR)	-6.353	-0.536	F(6,19)	2.2***	BPGT F(5,20)	0.947	
Δ(LnMS)	-8.905	-0.757	F(Prob.)	0.095	BPGT F(Prob.)	0.473	
Δ(LnIR)	0.192	0.193	DW	1.639	RESET F(1,18)	0.407	
LnSVR	0.368	0.661	AIC	2.487	RESET F(Prob.)	0.532	
AR(1)	-0.634	-3.185*	SC	2.825	JBT $\chi^2(2)$	0.197	
			LL	-25.326	JBT χ ² (Prob.)	0.906	

Table 3 (Part A): NET EXPORT	IODELS – CATEGORY 84	* (AUD &	QTY)
------------------------------	----------------------	----------	------

*Nuclear Reactors, Boilers, Machinery and Mechanical Appliances; Parts Thereof

DW – Durbin-Watson Statistics; AIS – Akaike Info Criterion; SC – Schwartz Criterion; LL – Log Likelihood; LMT – Lagrange Multiplier (Breusch-Godfrey) Test for Serial Correlation; BPGT – Breusch-Pagan-Godfrey Test for Heteroskedasticity; RESET – Ramsey RESET Test for Model Specification; JBT – Jarques-Bera Test for normality of the residuals; * significant at the 1%, ** significance at 5%, ***significance at 10%

AABFJ | Volume 8, no. 5, 2014

			AUSTR	ALIA - FRA	NCE		
AUD	DEPENDENT	VARIABLE: L	nX/M				
	Coefficient	t-ratio	T .	Dias	znostic Results		Note:
Constant	-2.820	-2.095**	R ²	0.187	LMT F(2,57)	2.54***	
Δ(LnGDP)	2.630	3.371*	Adj. R ²	0.104	LMT F(Prob.)	0.088	-Residuals are serially
Δ(LnEXR)	-2.417	-1.351***	F(6,59)	2.26**	BPGT F(5,60)	0.485	correlated.
LnMS	-0.263	-0.556	F(Prob.)	0.050	BPGT F(Prob.)	0.786	-Model is mis-specified.
Δ(LnIR)	-0.228	-0.216	DW	2.151	RESET F(1,58)	5.987**	normally distributed
LnSVR	-0.002	-0.182	AIC	1.497	RESET F(Prob.)	0.018	-Incorrect sign for GDP:
AR(1)	0.312	2.479**	SC	1.729	$JBT \chi^2(2)$	18.570*	IR; SVR.
			LL	-42.399	JBT χ² (Prob.)	0.000	
QTY	DEPENDENT	VARIABLE: L	nX/M				
	Coefficient	t-ratio		Dia	gnostic Results		Note:
Constant	-3.798	-0.797	R ²	0.279	LMT F(2,57)	1.884	
Δ(LnGDP)	-0.240	-0.135	Adj. R ²	0.205	LMT F(Prob.)	0.161	
A(LnEXR)	-0.015	-0.003	F(6,59)	3.797*	BPGT F(5,60)	1.195	
	0.151	0.090	F(Prob.)	0.003	BPGT F(Prob.)	0.323	-Model is mis-specified.
A(LnIR)	0.611	0.230	DW	2.211	RESET F(1,58)	3.606**	-Incorrect sign for MS.
	0.049	2.105**	AIC	2.591	RESET F(Prob.)	0.063	
AR(1)	0.490	4.527*	<u>sc</u>	103 52	$\frac{JBT}{\chi} \frac{\chi^2}{(\text{Prob})}$	0.187	
			AUSTRA	-103.32	JBI χ (Prod.)	0.187	
AUD	DEDENDENT	VADIADI E. A		LIA - GERI	VIANY		
AUD	DEPENDENT	VARIABLE: A	(LAA/WI)	D'			N1.4
Constant	0 166	0.428	D ²	0.135	I MT E(2.57)	4 360**	Note:
A(LnCDP)	0.100	0.428	Adi R ²	0.133	LMTF(2,57)	4.309	-Residuals are serially
A(LIGDI)	0.435	0.029	F(6 59)	1 535	BPGT F(5.60)	2.28	correlated. Model is mis specified
LnMS	0.064	0.462	F(0,5)	0.183	BPGT F(Prob.)	0.158	-Residuals are not
A(LnIR)	-0.536	-0.993	DW	2.229	BESET F(1.58)	2.86***	normally distributed.
Δ(LnSVR)	0.005	1.103***	AIC	0.546	RESET F(Prob.)	0.097	-Incorrect sign for GDP;
AR(1)	-0.325	-2.546**	SC	0.778	JBT $\gamma^2(2)$	10.672*	EXR; MS; IR.
			LL	-11.020	JBT χ ² (Prob.)	0.005	-Model is not significant.
QTY	DEPENDENT	VARIABLE: L	nX/M				
	Coefficient	t-ratio		Dia	gnostic Results		Note:
Constant	-1.383	-0.437	R ²	0.323	LMT F(2,57)	3.595**	
A(LnGDP)	2.145	1.695***	Adj. R ²	0.254	LMT F(Prob.)	0.034	-Residuals are serially
Δ(LnEXR)	-4.486	-1.478***	F(6,59)	4.694*	BPGT F(5,60)	0.862	correlated.
LnMS	0.987	0.874	F(Prob.)	0.001	BPGT F(Prob.)	0.512	-Model is mis-specified.
Δ(LnIR)	0.502	0.267	DW	2.277	RESET F(1,58)	4.670**	 Incorrect sign for GDP;
Δ(LnSVR)	-0.013	-1.083***	AIC	2.645	RESET F(Prob.)	0.035	MS; SVR.
AR(1)	0.501	4.209*	SC	2.878	$JBT \chi^2(2)$	2.145	
			LL	-80.300	JBT χ² (Prob.)	0.342	
	_		AUSTRA	LIA - MAL	AYSIA		
AUD	DEPENDENT	VARIABLE: A	(LnX/M)				
<i>C i i</i>	Coefficient	t-ratio	D ²	Diag	gnostic Results	1.040	Note:
Constant	-0.046	-1.427***	\mathbf{R}^2	0.163	LMT F(2,61)	1.343	
A(LINGDP)	0.250	0.363	Adj. R ²	0.123	LMT F(Prod.)	0.269	
<u>A(LNEAR)</u> Bosiduals (1)	0.442	0.457	F(3,03) F(Brob)	4.10**	BPG1 F(3,03) BPCT F(Brob)	0.703	Incorrect sign for CDP
Residuals (-1)	-0.237	-3.473	F(FIOD.)	2.241	DESET E(1.62)	0.534	-Incontect sign for GDF,
				0.150	RESET F(1,02)	0.070	LAR.
	-		SC	0.150	$IBT \gamma^{2}(2)$	0.055	
			LL	-1.029	JBT γ^2 (Prob.)	0.973	
ОТҮ	DEPENDENT	VARIABLE: L	nX/M		n n n		
-	Coefficient	t-ratio	T	Dia	znostic Results		Note:
Constant	-2.821	-29.364*	R ²	0.064	LMT F(2.60	0.348	
Δ(LnGDP)	-0.344	-0.252	Adj. R ²	0.019	LMT F(Prob.)	0.708	
Δ(LnEXR)	-0.365	-0.168	F(3,62)	1.416	BPGT F(2,63)	1.039	
AR(1)	0.256	2.015**	F(Prob.)	0.247	BPGT F(Prob.)	0.360	Model is not -iifi
			DW	1.870	RESET F(1,61)	1.517	-wodel is not significant.
			AIC	1.773	RESET F(Prob.)	0.223	
			SC	1.906	JBT χ^2 (2)	1.480	
			LL	-54.506	JBT χ ² (Prob.)	0.477	

Table 3 (Continued - Part B): NET EXPORT MODELS - CATEGORY 84* (AUD & QTY)

*Nuclear Reactors, Boilers, Machinery and Mechanical Appliances; Parts Thereof DW – Durbin-Watson Statistics; AIS – Akaike Info Criterion; SC – Schwartz Criterion; LL – Log Likelihood; LMT – Lagrange Multiplier (Breusch-Godfrey) Test for Serial Correlation; BPGT – Breusch-Pagan-Godfrey Test for Heteroskedasticity; RESET – Ramsey RESET Test for Model Specification; JBT – Jarques-Bera Test for normality of the residuals; * significant at the 1%, ** significance at 5%, ***significance at 10%

			AUSTRA	LIA - SINGA	APORE		
AUD	DEPENDENT	VARIABLE: LI	nX/M				
	Coefficient	t-ratio		Dia	gnostic Results		Note:
Constant	-0.627	-8.606*	R ²	0.298	LMT F(2,53)	0.381	
Δ(LnGDP)	0.430	0.823	Adj. R ²	0.222	LMT F(Prob.)	0.685	D. I. I.
Δ(LnEXR)	0.583	0.523	F(6,55)	3.896*	BPGT F(5,56)	3.726*	-Residuals are
Δ(LnMS)	-0.371	-0.403	F(Prob.)	0.003	BPGT F(Prob.)	0.006	-Model is mis-specified
Δ(LnIR)	2.778	3.582*	DW	2.121	RESET F(2,53)	5.394*	-Incorrect sign for GDP
LnSVR	0.000	0.069	AIC	0.459	RESET F(Prob.)	0.007	EXR.
AR(1)	0.479	4.143*	SC	0.700	$JBT \chi^2(2)$	0.073	
			LL	-7.244	JBT χ² (Prob.)	0.964	
QTY	DEPENDENT	VARIABLE: A	LnX/M)				
<i>C i i i</i>	Coefficient	t-ratio	D ²	Dia	gnostic Results	0.070	Note:
Constant	-0.162	-1.186***		0.395	$\frac{\text{LMTF}(2,54)}{\text{LMTF}(2,54)}$	0.273	
$\Delta(LnGDP)$	2.404	0.706	Adj. K	6.091*	LMT F(Prob.)	0.705	-Residuals are
A(LIIEAK)	2.404	0.399	F(0,50) F(Brob)	0.081*	BPG1 F(0,50) BPCT F(Brob)	5.775*	Heteroscedastic.
$\Delta(LIIMS)$	0.337	0.508	DW	1.025	DESET E(1.55)	5.138	-Residuals are not
L nSVD	-0.044	-2.638*		2 878	RESET F(1,55)	0.116	-Incorrect sign for GDP
Residuals (-1)	-0.044	-4.020*	SC	3 116	IBT $\chi^{2}(2)$	4 689*	EXR: MS: SVR.
Residuais (-1)	-0.475	-4.020		-83.65	$JBT \chi^2$ (Prob.)	0.000	,,
			AUSTRA	LIA - THAI	LAND	0.000	
AUD	DEPENDENT	VARIARLE	LnX/M)				
neb	Coefficient	t_ratio		Dia	mostic Results		Note:
Constant	-0.016	-0 377	\mathbf{R}^2	0.505	LMT F(2.46)	0.426	nou:
A(LnGDP)	-1.393	-1.503***	Adi, R ²	0.443	LMT F(Prob.)	0.656	
A(LnEXR)	-2.868	-1.449***	F(6,48)	8.156*	BPGT F(6.48)	1.210	
Δ(LnMS)	-0.017	-0.009	F(Prob.)	0.000	BPGT F(Prob.)	0.317	
Δ(LnIR)	0.601	1.064***	DW	2.081	RESET F(1,47)	0.002	
Δ(LnSVR)	0.148	1.415***	AIC	0.611	RESET F(Prob.)	0.963	
Residuals (-1)	-0.663	-4.651*	SC	0.866	JBT χ^2 (2)	0.031	
			LL	-9.793	JBT χ ² (Prob.)	0.985	
QTY	DEPENDENT	VARIABLE: Li	LL nX/M	-9.793	JBT χ ² (Prob.)	0.985	
QTY	DEPENDENT Coefficient	VARIABLE: Li t-ratio	LL nX/M	-9.793 Dia	JBT χ ² (Prob.) gnostic Results	0.985	Note:
QTY Constant	DEPENDENT Coefficient -3.478	VARIABLE: Li t-ratio -12.451*	LL nX/M R ²	-9.793 Dia 0.177	JBT χ ² (Prob.) gnostic Results LMT F(2,45)	0.985	Note:
QTY Constant A(LnGDP)	DEPENDENT Coefficient -3.478 -0.034	VARIABLE: Li t-ratio -12.451* -0.019	LL nX/M R ² Adj. R ²	-9.793 Dia 0.177 0.072	JBT χ ² (Prob.) gnostic Results LMT F(2,45) LMT F(Prob.)	0.985 1.478 0.239	Note:
QTY Constant A(LnGDP) A(LnEXR)	DEPENDENT Coefficient -3.478 -0.034 -2.170	VARIABLE: Li t-ratio -12.451* -0.019 -0.397	LL nX/M R ² Adj. R ² F(6,47)	-9.793 Dia 0.177 0.072 1.687	JBT χ ² (Prob.) gnostic Results LMT F(2,45) LMT F(Prob.) BPGT F(5,48)	0.985 1.478 0.239 1.499 0.200	Note:
QTY Constant Δ (LnGDP) Δ (LnEXR) Δ (LnMS)	DEPENDENT Coefficient -3.478 -0.034 -2.170 -2.727 -0.512	VARIABLE: Li t-ratio -12.451* -0.019 -0.397 -0.526	LL nX/M R ² Adj. R ² F(6,47) F(Prob.)	-9.793 Dia; 0.177 0.072 1.687 0.145	JBT χ ² (Prob.) gnostic Results LMT F(2,45) LMT F(Prob.) BPGT F(5,48) BPGT F(Prob.)	0.985 1.478 0.239 1.499 0.208	Note: -Residuals are not normally distributed.
QTY Constant $\Delta(LnGDP)$ $\Delta(LnEXR)$ $\Delta(LnMS)$ $\Delta(LnIR)$ $\Delta(LnIR)$	DEPENDENT Coefficient -3.478 -0.034 -2.170 -2.727 0.542 -0.475	VARIABLE: Li t-ratio -12.451* -0.019 -0.397 -0.526 0.341	LL nX/M R ² Adj. R ² F(6,47) F(Prob.) DW	-9.793 Dia; 0.177 0.072 1.687 0.145 2.160	JBT χ ² (Prob.) mostic Results LMT F(2,45) LMT F(Prob.) BPGT F(5,48) BPGT F(Prob.) RESET F(1,46 DESET F(2,46)	0.985 1.478 0.239 1.499 0.208 4.680 0.026	Note: -Residuals are not normally distributed. -Incorrect sign for SVR. Model is not similificant
QTY Constant Δ(LnGDP) Δ(LnEXR) Δ(LnIR) LnSVR ΔD(1)	DEPENDENT Coefficient -3.478 -0.034 -2.170 -2.727 0.542 -0.475 0.200	VARIABLE: Li t-ratio -12.451* -0.019 -0.397 -0.526 0.341 -1.647*** 2.9577*	LL nX/M R ² Adj. R ² F(6,47) F(Prob.) DW AIC	-9.793 Dia 0.177 0.072 1.687 0.145 2.160 2.690 2.048	JBT χ ² (Prob.) gnostic Results LMT F(2,45) LMT F(Prob.) BPGT F(5,48) BPGT F(Prob.) RESET F(1,46 RESET F(Prob.) INT μ ² (2)	0.985 1.478 0.239 1.499 0.208 4.680 0.036 59.650*	Note: -Residuals are not normally distributed. -Incorrect sign for SVR. -Model is not significant.
QTY Constant Δ(LnGDP) Δ(LnEXR) Δ(LnIR) LnSVR AR(1)	DEPENDENT Coefficient -3.478 -0.034 -2.170 -2.727 0.542 -0.475 0.390	VARIABLE: Li t-ratio -12.451* -0.019 -0.397 -0.526 0.341 -1.647*** 2.877*	LL nX/M R ² Adj. R ² F(6,47) F(Prob.) DW AIC SC	-9.793 Dia; 0.177 0.072 1.687 0.145 2.160 2.690 2.948 65.62	JBT χ ² (Prob.) gnostic Results LMT F(2,45) LMT F(Prob.) BPGT F(5,48) BPGT F(Prob.) RESET F(1,46 RESET F(Prob.) JBT χ ² (2) IBT χ ² (2) DET χ ² (Prob.)	0.985 1.478 0.239 1.499 0.208 4.680 0.036 58.650*	Note: -Residuals are not normally distributed. -Incorrect sign for SVR. -Model is not significant.
QTY Constant $\Delta(LnGDP)$ $\Delta(LnEXR)$ $\Delta(LnIR)$ $\Delta(LnIR)$ LnSVR AR(1)	DEPENDENT Coefficient -3.478 -0.034 -2.170 -2.727 0.542 -0.475 0.390	VARIABLE: L1 t-ratio -12.451* -0.019 -0.397 -0.526 0.341 -1.647*** 2.877*	LL nX/M R ² Adj, R ² F(6,47) F(Prob.) DW AIC SC LL AUSTPALIA	-9.793 Dia; 0.177 0.072 1.687 0.145 2.160 2.690 2.948 -65.62	JBT χ ² (Prob.) gnostic Results LMT F(2,45) LMT F(Prob.) BPGT F(5,48) BPGT F(Prob.) RESET F(1,46 RESET F(Prob.) JBT χ ² (2) JBT χ ² (Prob.) (NCDOM	0.985 1.478 0.239 1.499 0.208 4.680 0.036 58.650* 0.000	Note: -Residuals are not normally distributed. -Incorrect sign for SVR. -Model is not significant.
QTY Constant $\Delta(LnGDP)$ $\Delta(LnEXR)$ $\Delta(LnIR)$ $\Delta(LnIR)$ LnSVR AR(1)	DEPENDENT Coefficient -3.478 -0.034 -2.170 -2.727 0.542 -0.475 0.390	VARIABLE: L1 t-ratio -12.451* -0.019 -0.397 -0.526 0.341 -1.647*** 2.877* VARIARI F: L1	LL nX/M R ² F(6,47) F(0,47) F(0,47) F(0,70) F(0,70) DW AIC SC LL LL AUSTRALIA NY/M	-9.793 Dia 0.177 0.072 1.687 0.145 2.160 2.690 2.948 -65.62 - UNITED 1	JBT χ² (Prob.) gnostic Results LMT F(2,45) LMT F(Prob.) BPGT F(5,48) BPGT F(1,46 RESET F(1,46 RESET F(2,22) JBT χ² (2) JBT χ² (2) KINGDOM	0.985 1.478 0.239 1.499 0.208 4.680 0.036 58.650* 0.000	Note: -Residuals are not normally distributed. -Incorrect sign for SVR. -Model is not significant.
QTY Constant $\Delta(LnGDP)$ $\Delta(LnEXR)$ $\Delta(LnIR)$ LnSVR AR(1) AUD	DEPENDENT Coefficient -3.478 -0.034 -2.170 -2.727 0.542 -0.475 0.390 DEPENDENT Coefficient	VARIABLE: L1 t-ratio -12.451* -0.019 -0.397 -0.526 0.341 -1.647*** 2.877* VARIABLE: L1 t-ratio	LL nX/M R ² Adj. R ² F(6,47) F(Prob.) DW AIC SC LL AUSTRALIA NX/M	-9.793 Dia 0.177 0.072 1.687 0.145 2.160 2.690 2.948 -65.62 - UNITED 1	JBT χ² (Prob.) gnostic Results LMT F(2,45) LMT F(Prob.) BPGT F(5,48) BPGT F(1,46) RESET F(1,46) JBT χ² (2) JBT χ² (2) JBT χ² (2) KINGDOM	0.985 1.478 0.239 1.499 0.208 4.680 0.036 58.650* 0.000	Note: -Residuals are not normally distributed. -Incorrect sign for SVR. -Model is not significant. Note:
QTY Constant $\Delta(LnGDP)$ $\Delta(LnEXR)$ $\Delta(LnIR)$ LnSVR AR(1) Constant	DEPENDENT Coefficient -3.478 -0.034 -2.170 -2.727 0.542 -0.475 0.390 DEPENDENT Coefficient -0.937	VARIABLE: L1 t-ratio -12.451* -0.019 -0.397 -0.526 0.341 -1.647*** 2.877* VARIABLE: L1 t-ratio -23.220*	LL nX/M R ² F(6,47) F(Prob.) DW AIC SC LL AUSTRALIA aV/M R ²	-9.793 Dia; 0.177 0.072 1.687 0.145 2.160 2.690 2.948 -65.62 - UNITED I Dia; 0.222	JBT χ ² (Prob.) gnostic Results LMT F(2,45) LMT F(Prob.) BPGT F(5,48) BPGT F(Prob.) RESET F(1,46 RESET F(1,46 RESET F(0,16) JBT χ ² (2) JBT χ ² (2) JBT χ ² (2) KINGDOM gnostic Results LMT F(2,57)	0.985 1.478 0.239 1.499 0.208 4.680 0.036 58.650* 0.000 0.147	Note: -Residuals are not normally distributed. -Incorrect sign for SVR. -Model is not significant. Note:
QTY Constant $\Delta(LnGDP)$ $\Delta(LnEXR)$ $\Delta(LnIR)$ LnSVR AR(1) AUD Constant $\Delta(LnGDP)$	DEPENDENT Coefficient -3.478 -0.034 -2.170 -2.727 0.542 -0.475 0.390 DEPENDENT Coefficient -0.937 -1.069	VARIABLE: L1 t-ratio -12.451* -0.019 -0.397 -0.526 0.341 -1.647*** 2.877* VARIABLE: L1 t-ratio -23.220* -2.690*	LL nX/M R ² Adj, R ² F(6,47) F(Prob.) DW AIC SC LL AUSTRALIA nX/M R ² Adj, R ²	-9.793 Dia ; 0.177 0.072 1.687 0.145 2.160 2.690 2.948 -65.62 - UNITED I Dia ; 0.222 0.143	JBT χ² (Prob.) gnostic Results LMT F(2,45) LMT F(Prob.) BPGT F(5,48) BPGT F(1,46) RESET F(1,46) JBT χ² (2) JBT χ² (2) JBT χ² (Prob.) KINGDOM gnostic Results LMT F(2,57) LMT F(Prob.)	0.985 1.478 0.239 1.499 0.208 4.680 0.036 58.650* 0.000 0.147 0.864	Note: -Residuals are not normally distributed. -Incorrect sign for SVR. -Model is not significant. Note:
QTY Constant $\Delta(LnGDP)$ $\Delta(LnEXR)$ $\Delta(LnIR)$ LnSVR A(L1IR) AR(1) AUD Constant $\Delta(LnGDP)$ $\Delta(LnEXR)$	DEPENDENT Coefficient -3.478 -0.034 -2.170 -2.727 0.542 -0.475 0.390 DEPENDENT Coefficient -0.937 -1.069 -1.098	VARIABLE: L1 t-ratio -12.451* -0.019 -0.397 -0.526 0.341 -1.647*** 2.877* VARIABLE: L1 t-ratio -23.220* -2.690* -0.816	LL nX/M R ² Adj. R ² F(6,47) F(Prob.) DW AIC SC LL AUSTRALIA nX/M R ² Adj. R ² F(6,59)	-9.793 Dia; 0.177 0.072 1.687 0.145 2.160 2.690 2.948 -65.62 - UNITED 1 0.222 0.143 2.80**	JBT χ ² (Prob.) INT F(2,45) LMT F(2,45) BPGT F(5,48) BPGT F(7rob.) RESET F(1,46 RESET F(Prob.) JBT χ ² (2) JBT χ ² (2) JBT χ ² (2) LMT F(2,57) LMT F(2,57) LMT F(2,50)	0.985 1.478 0.239 1.499 0.208 4.680 0.036 58.650* 0.000 0.000 0.147 0.864 0.248	Note: -Residuals are not normally distributed. -Incorrect sign for SVR. -Model is not significant. Note:
QTY Constant $\Delta(LnGDP)$ $\Delta(LnEXR)$ $\Delta(LnIR)$ LnSVR AR(1) Constant $\Delta(LnGDP)$ $\Delta(LnEXR)$ $\Delta(LnMS)$	DEPENDENT Coefficient -3.478 -0.034 -2.170 -2.727 0.542 -0.475 0.390 DEPENDENT Coefficient -0.937 -1.069 -1.711	VARIABLE: L1 t-ratio -12.451* -0.019 -0.397 -0.526 0.341 -1.647*** 2.877* VARIABLE: L1 t-ratio -23.220* -2.690* -0.816 -1.259***	LL nX/M R ² Adj. R ² F(6,47) F(Frob.) DW AIC SC LL AUSTRALIA nX/M R ² Adj. R ² F((6,59) F(Prob.)	-9.793 Dia; 0.177 0.072 1.687 0.145 2.160 2.690 2.948 -65.62 - UNITED I Dia; 0.222 0.143 2.80** 0.018	JBT χ ² (Prob.) gnostic Results LMT F(2,45) LMT F(Prob.) BPGT F(5,48) BPGT F(Prob.) RESET F(1,46 RESET F(Prob.) JBT χ ² (2) JBT χ ² (2) JBT χ ² (Prob.) KINGDOM gnostic Results LMT F(2,57) LMT F(Prob.) BPGT F(5,60) BPGT F(Prob.)	0.985 1.478 0.239 1.499 0.208 4.680 0.036 58.650* 0.000 0.147 0.864 0.248 0.239	Note: -Residuals are not normally distributed. -Incorrect sign for SVR. -Model is not significant. Note:
QTY Constant $\Delta(LnGDP)$ $\Delta(LnEXR)$ $\Delta(LnIR)$ LnSVR AR(1) Constant $\Delta(LnGDP)$ $\Delta(LnEXR)$ $\Delta(LnIR)$	DEPENDENT Coefficient -3.478 -0.034 -2.170 -2.727 0.542 -0.475 0.390 DEPENDENT Coefficient -0.937 -1.069 -1.711 0.151	VARIABLE: L1 t-ratio -12.451* -0.019 -0.397 -0.526 0.341 -1.647*** 2.877* VARIABLE: L1 t-ratio -23.220* -2.690* -0.816 -1.259*** 0.385	LL nX/M R ² F(6,47) F(Prob.) F(Prob.) DW AIC SC LL AUSTRALIA nX/M R ² Adj. R ² F(6,59) F(Prob.) DW	-9.793 Dia; 0.177 0.072 1.687 0.145 2.160 2.690 2.948 -65.62 - UNITED 1 0.222 0.143 2.80** 0.018 1.961	JBT χ^2 (Prob.) gnostic Results LMT F(2,45) LMT F(Prob.) BPGT F(5,48) BPGT F(7rob.) RESET F(1,46 RESET F(1,46 RESET F(Prob.) JBT χ^2 (2) JBT χ^2 (2) JBT χ^2 (2) MINGDOM gnostic Results LMT F(2,57) LMT F(Prob.) BPGT F(5,60) BPGT F(5,60).	0.985 1.478 0.239 1.499 0.208 4.680 0.036 58.650* 0.000 0.147 0.864 0.248 0.939 0.373	Note: -Residuals are not normally distributed. -Incorrect sign for SVR. -Model is not significant. Note:
QTY Constant Δ(LnGDP) Δ(LnEXR) Δ(LnIR) LnSVR AR(1) Constant Δ(LnGDP) Δ(LnEXR) Δ(LnEXR) Δ(LnEXR) Δ(LnEXR) Δ(LnIRS) Δ(LnIR) LnSVR	DEPENDENT Coefficient -3.478 -0.034 -2.170 -2.727 0.542 -0.475 0.390 DEPENDENT Coefficient -0.937 -1.069 -1.711 0.151 0.003	VARIABLE: L1 t-ratio -12.451* -0.019 -0.397 -0.526 0.341 -1.647*** 2.877* VARIABLE: L1 t-ratio -23.220* -2.690* -0.816 -1.259*** 0.385 0.819	LL nX/M R ² F(6,47) F(Prob.) DW AIC SC LL AUSTRALIA nX/M R ² F(6,59) F(Prob.) DW AIC	-9.793 Dia; 0.177 0.072 1.687 0.145 2.160 2.690 2.948 -65.62 - UNITED I Dia; 0.222 0.143 2.80** 0.018 1.961 -0.409	JBT χ^2 (Prob.) mostic Results LMT F(2,45) LMT F(Prob.) BPGT F(5,48) BPGT F(Prob.) RESET F(1,46 RESET F(Prob.) JBT χ^2 (2) JBT χ^2 (2) JBT χ^2 (2) KINGDOM mostic Results LMT F(2,57) LMT F(Prob.) BPGT F(5,60) BPGT F(5,60) RESET F(1,58) RESET F(1,58)	0.985 1.478 0.239 1.499 0.208 4.680 0.036 58.650* 0.000 0.147 0.864 0.248 0.939 0.373 0.544	Note: -Residuals are not normally distributed. -Incorrect sign for SVR. -Model is not significant. Note:
QTY Constant Δ(LnGDP) Δ(LnEXR) Δ(LnNS) Δ(LnIR) LnSVR AR(1) Constant Δ(LnGDP) Δ(LnGDP) Δ(LnEXR) Δ(LnMS) Δ(LnIRS) Δ(LnIR) LnSVR AR(1)	DEPENDENT Coefficient -3.478 -0.034 -2.170 -2.727 0.542 -0.475 0.390 DEPENDENT Coefficient -0.937 -1.069 -1.098 -1.711 0.151 0.003 0.357	VARIABLE: L1 t-ratio -12.451* -0.019 -0.397 -0.526 0.341 -1.647*** 2.877* VARIABLE: L1 t-ratio -23.220* -2.690* -0.816 -1.259*** 0.385 0.819 3.196*	LL x/M R ² Adj. R ² F(6,47) F(Prob.) DW AIC SC LL AUSTRALIA X/M R ² Adj. R ² F(6,59) F(Prob.) DW AIC SC	-9.793 Dia ; 0.177 0.072 1.687 0.145 2.160 2.690 2.948 -65.62 - UNITED 1 Dia ; 0.222 0.143 2.80** 0.018 1.961 -0.409 -0.177	JBT χ² (Prob.) gnostic Results LMT F(2,45) LMT F(Prob.) BPGT F(5,48) BPGT F(5,48) BPGT F(7rob.) JBT χ² (2) BPGT F(2,57) LMT F(2,57) LMT F(7rob.) BPGT F(5,60) BPGT F(7rob.) RESET F(1,58) RESET F(1,00.) JBT χ² (2)	0.985 1.478 0.239 1.499 0.208 4.680 0.036 58.650* 0.000 0.147 0.864 0.248 0.939 0.373 0.5544 2.681	Note: -Residuals are not normally distributed. -Incorrect sign for SVR. -Model is not significant. Note:
QTY Constant Δ(LnGDP) Δ(LnEXR) Δ(LnIR) LnSVR AR(1) Constant Δ(LnGDP) Δ(LnGDP) Δ(LnGDP) Δ(LnCSR) Δ(LnRSR) Δ(LnIR) LnSVR Δ(LnIR) LnSVR ΔR(1)	DEPENDENT Coefficient -3.478 -0.034 -2.170 -2.727 0.542 -0.475 0.390 DEPENDENT Coefficient -0.937 -1.069 -1.098 -1.711 0.151 0.003 0.357	VARIABLE: L1 t-ratio -12.451* -0.019 -0.397 -0.526 0.341 -1.647*** 2.877* VARIABLE: L1 t-ratio -23.220* -2.690* -0.816 -1.259*** 0.385 0.819 3.196*	LL x/M R ² F(6,47) F(Prob.) DW AIC SC LL AUSTRALIA x/M R ² Adj. R ² F(6,59) F(Prob.) DW AIC SC LL LL	-9.793 Dia ; 0.177 0.072 1.687 0.145 2.160 2.690 2.948 -65.62 - UNITED 1 Dia ; 0.222 0.143 2.80** 0.018 1.961 1.961 -0.409 -0.177 20.513	JBT χ² (Prob.) gnostic Results LMT F(2,45) LMT F(Prob.) BPGT F(5,48) BPGT F(5,48) BPGT F(7rob.) JBT χ² (2) JBT ζ² (2) BPGT F(5,60) BPGT F(7rob.) RESET F(1,58) RESET F(1768) JBT χ² (2) JBT χ² (2) JBT χ² (2)	0.985 1.478 0.239 1.499 0.208 4.680 0.036 58.650* 0.000 0.147 0.864 0.248 0.939 0.373 0.544 2.681 0.262	Note: -Residuals are not normally distributed. -Incorrect sign for SVR. -Model is not significant. Note:
QTY Constant Δ(LnGDP) Δ(LnEXR) Δ(LnNS) Δ(LnIR) LnSVR AR(1) Constant Δ(LnGDP) Δ(LnGDP) Δ(LnGDP) Δ(LnGDP) Δ(LnRSR) Δ(LnIR) LnSVR ΔR(1) QTY	DEPENDENT Coefficient -3.478 -0.034 -2.170 -2.727 0.542 -0.475 0.390 DEPENDENT Oefficient -0.937 -1.069 -1.098 -1.711 0.151 0.003 0.357	VARIABLE: L1 -12.451* -0.019 -0.397 -0.526 0.341 -1.647*** 2.877* VARIABLE: L1 t-ratio -23.220* -2.690* -0.816 -1.259*** 0.385 0.819 3.196* VARIABLE: L1	LL x/M R ² Adj. R ² F(6,47) F(Prob.) DW AIC SC LL AUSTRALIA x/M R ² Adj. R ² F(6,59) F(Prob.) DW AIC SC LL M/M	-9.793 Dia ; 0.177 0.072 1.687 0.145 2.160 2.690 2.948 -65.62 - UNITED 1 Dia ; 0.222 0.143 2.80** 0.018 1.961 -0.409 -0.177 20.513	JBT χ² (Prob.) gnostic Results LMT F(2,45) LMT F(Prob.) BPGT F(5,48) BPGT F(7rob.) RESET F(1,46 RESET F(1,76) JBT χ² (2) JBT χ² (2,2) JBT χ² (2,2) JBT χ² (Prob.) Reset F(1,76) BPGT F(2,57) LMT F(2,57) LMT F(2,57) LMT F(Prob.) BPGT F(5,60) BPGT F(5,60) BPGT F(Frob.) JBT χ² (2) JBT χ² (2) JBT χ² (2) JBT χ² (2)	0.985 1.478 0.239 1.499 0.208 4.680 0.036 58.650* 0.000 0.147 0.864 0.248 0.939 0.373 0.544 2.681 0.262	Note: -Residuals are not normally distributed. -Incorrect sign for SVR. -Model is not significant. Note:
QTY Constant Δ(LnGDP) Δ(LnEXR) Δ(LnIR) LnSVR AR(1) Constant Δ(LnGDP) Δ(LnIR) LnSVR AR(1) QTY	DEPENDENT Coefficient -3.478 -0.034 -2.170 -2.727 0.542 -0.475 0.390 DEPENDENT Coefficient -0.937 -1.069 -1.098 -1.711 0.151 0.003 0.357 DEPENDENT Coefficient	VARIABLE: L1 t-ratio -12.451* -0.019 -0.397 -0.526 0.341 -1.647*** 2.877* VARIABLE: L1 t-ratio -23.220* -2.690* -0.816 -1.259*** 0.385 0.819 3.196* VARIABLE: L1 t-ratio	LL nX/M R ² Adj. R ² F(6,47) F(Frob.) DW AIC SC LL AUSTRALIA nX/M R ² Adj. R ² F(6,59) F(Prob.) DW AIC SC LL DW	-9.793 Dia; 0.177 0.072 1.687 0.145 2.160 2.690 2.948 -65.62 - UNITED I Dia; 0.222 0.143 2.80** 1.961 -0.409 -0.177 20.513 Dia;	JBT χ^2 (Prob.) prostic Results LMT F(2,45) LMT F(Prob.) BPGT F(5,48) BPGT F(Prob.) RESET F(1,46 RESET F(Prob.) JBT χ^2 (2) JBT χ^2 (2) LMT F(2,57) LMT F(2,57) LMT F(2,57) LMT F(Prob.) BPGT F(5,60) BPGT F(5,60) BPGT F(Prob.) RESET F(Prob.) JBT χ^2 (2) JBT χ^2 (2) JBT χ^2 (2) JBT χ^2 (Prob.) genostic Results	0.985 1.478 0.239 1.499 0.208 4.680 0.036 58.650* 0.000 0.147 0.864 0.248 0.939 0.373 0.544 2.681 0.262	Note: -Residuals are not normally distributed. -Incorrect sign for SVR. -Model is not significant. Note: Note:
QTY Constant $\Delta(LnGDP)$ $\Delta(LnEXR)$ $\Delta(LnIR)$ LnSVR AR(1) Constant $\Delta(LnGDP)$ $\Delta(LnEXR)$ $\Delta(LnIR)$ LnSVR A(LnIR) LnSVR A(LnIR) $\Delta(LnIR)$ LnSVR A(LnIR) $\Delta(LnIR)$ $\Delta($	DEPENDENT Coefficient -3.478 -0.034 -2.170 -2.727 0.542 -0.475 0.390 DEPENDENT Coefficient -0.937 -1.069 -1.098 -1.711 0.151 0.003 0.357 DEPENDENT Coefficient -2.329	VARIABLE: L1 t-ratio -12.451* -0.019 -0.397 -0.526 0.341 -1.647*** 2.877* VARIABLE: L1 t-ratio -23.220* -2.690* -0.816 -1.259*** 0.885 0.819 3.196* VARIABLE: L1 t-ratio -14.652*	LL nX/M R ² Adj. R ² F(6,47) F(Prob.) DW AIC SC LL AUSTRALIA nX/M R ² Adj. R ² F(6,59) F(Prob.) DW AIC SC LL N/M R ² Adj. R ² F(6,59) F(Prob.) DW AIC SC LL N/M R ² Adj. R ² R ² Adj. R ² Adj. R ² R ² Adj. R ² Adj. R ² R ² Adj. R ² Adj. R ² Adj. R ² Adj. R ² R ² Adj. R ² Adj. Adj. Adj. Adj. Adj. Adj. Adj. Adj.	-9.793 Dia; 0.177 0.072 1.687 0.145 2.160 2.690 2.948 -65.62 - UNITED 1 Dia; 0.222 0.143 2.80** 0.018 1.961 -0.409 -0.177 20.513 Dia; 0.500	JBT χ^2 (Prob.) gnostic Results LMT F(2,45) LMT F(Prob.) BPGT F(5,48) BPGT F(7rob.) RESET F(1,46 RESET F(1,46 RESET F(Prob.) JBT χ^2 (2) JBT χ^2 (2) JBT χ^2 (2) Construction (Construction) BPGT F(5,60) BPGT F(5,50) CON (5,50) CON (5,5	0.985 1.478 0.239 1.499 0.208 4.680 0.036 58.650* 0.000 0.147 0.864 0.248 0.939 0.373 0.544 2.681 0.262 0.892	Note: -Residuals are not normally distributedIncorrect sign for SVRModel is not significant. Note: Note:
QTY Constant Δ(LnGDP) Δ(LnEXR) Δ(LnIR) LnSVR AR(1) Constant Δ(LnIR) LnSVR AR(1) Constant Δ(LnEXR) Δ(LnEXR) Δ(LnIR) LnSVR Δ(LnIR) Constant Δ(LnIR) Constant QTY Constant Δ(LnGDP)	DEPENDENT Coefficient -3.478 -0.034 -2.170 -2.727 0.542 -0.475 0.390 DEPENDENT Coefficient -0.937 -1.069 -1.701 0.151 0.003 0.357 DEPENDENT Coefficient -2.329 -2.806	VARIABLE: L1 t-ratio -12.451* -0.019 -0.397 -0.526 0.341 -1.647*** 2.877* VARIABLE: L1 t-ratio -23.220* -2.690* -0.816 -1.259*** 0.385 0.819 3.196* VARIABLE: L1 t-ratio -14.652* -2.903*	LL nX/M R ² Adj. R ² F(6,47) F(Prob.) DW AIC SC LL AUSTRALIA nX/M R ² F(6,59) F(Prob.) DW AIC SC LL nX/M R ² R ² Adj. R ² R ² R ² AIC SC LL N/M	-9.793 Dia; 0.177 0.072 1.687 0.145 2.160 2.690 2.948 -65.62 - UNITED I Dia; 0.222 0.143 2.80** 0.018 1.961 -0.409 -0.177 20.513 Dia; 0.500 0.449	JBT χ^2 (Prob.) gnostic Results LMT F(2,45) LMT F(Prob.) BPGT F(5,48) BPGT F(Prob.) RESET F(1,46 RESET F(Prob.) JBT χ^2 (2) JBT χ^2 (2) JBT χ^2 (2) COMBER ST (2,57) LMT F(2,57) LMT F(Prob.) BPGT F(5,60) BPGT F(5,60) BPGT F(5,60) BPGT F(5,60) BPGT F(5,60) BPGT F(2,57) LMT F(2,57) JBT χ^2 (2) JBT \chi^2 (2) JBT χ^2 (0.985 1.478 0.239 1.499 0.208 4.680 0.036 58.650* 0.000 0.147 0.864 0.248 0.939 0.373 0.544 2.681 0.262 0.892 0.416	Note: -Residuals are not normally distributedIncorrect sign for SVRModel is not significant. Note: Note:
QTY Constant Δ(LnGDP) Δ(LnEXR) Δ(LnIR) LnSVR AR(1) Constant Δ(LnIR) LnSVR AR(1) Constant Δ(LnGDP) Δ(LnEXR) Δ(LnIR) LnSVR AR(1) Constant Δ(LnIR) LnSVR AR(1) QTY Constant Δ(LnGDP) Δ(LnEXR)	DEPENDENT Coefficient -3.478 -0.034 -2.170 -2.727 0.542 -0.475 0.390 DEPENDENT Coefficient -0.937 -1.069 -1.098 -1.711 0.151 0.003 0.357 DEPENDENT Coefficient -2.329 -2.806 -3.482	VARIABLE: L1 t-ratio -12.451* -0.019 -0.397 -0.526 0.341 -1.647*** 2.877* VARIABLE: L1 t-ratio -23.220* -2.690* -0.816 -1.259*** 0.819 3.196* VARIABLE: L1 t-ratio -14.652* -2.903* -1.020***	LL nX/M R ² Adj. R ² F(6,47) F(Prob.) DW AIC SC LL AUSTRALIA nX/M R ² Adj. R ² F(6,59) F(Prob.) DW AIC SC LL N/M R ² F(6,59) F(Frob.) DW AIC SC LL Adj. R ² F(6,59) F(6,59)	-9.793 Dia; 0.177 0.072 1.687 0.145 2.160 2.690 2.948 -65.62 - UNITED I Dia; 0.222 0.143 2.80** 0.018 1.961 -0.409 -0.177 20.513 Dia; 0.500 0.449 9.816*	JBT χ^2 (Prob.) gnostic Results LMT F(2,45) LMT F(Prob.) BPGT F(5,48) BPGT F(5,48) BPGT F(7rob.) RESET F(1,46 RESET F(1,76 RESET F(270b.) JBT χ^2 (2) JBT χ^2 (2) JBT χ^2 (2) BPGT F(5,60) BPGT F(5,60) BPGT F(5,60) BBT χ^2 (2) JBT χ^2 (2) BRGT F(2,57) LMT F(2,57) LMT F(2,60)	0.985 1.478 0.239 1.499 0.208 4.680 0.036 58.650* 0.000 0.147 0.864 0.248 0.939 0.373 0.544 2.681 0.262 0.892 0.416 0.874	Note: -Residuals are not normally distributed. -Incorrect sign for SVR. -Model is not significant. Note: Note:
QTY Constant Δ(LnGDP) Δ(LnEXR) Δ(LnNS) Δ(LnIR) LnSVR AR(1) Constant Δ(LnIR) LnSVR AR(1) QUD Constant Δ(LnGDP) Δ(LnIR) LnSVR AR(1) QTY Constant Δ(LnGDP) Δ(LnEXR) Δ(LnGDP) Δ(LnEXR) Δ(LnAS) Δ(LnAS)	DEPENDENT Coefficient -3.478 -0.034 -2.170 -2.727 0.542 -0.475 0.390 DEPENDENT Coefficient -0.937 -1.069 -1.098 -1.711 0.151 0.003 0.357 DEPENDENT Coefficient -2.329 -2.806 -3.482 -1.372	VARIABLE: L1 t-ratio -12.451* -0.019 -0.397 -0.526 0.341 -1.647*** 2.877* VARIABLE: L1 t-ratio -23.220* -2.690* -0.816 -1.259*** 0.819 3.196* VARIABLE: L1 t-ratio -14.652* -2.903* -1.020*** -0.398 -0.398	LL X/M R ² F(6,47) F(Prob.) DW AIC SC LL AUSTRALIA X/M R ² F(6,59) F(Prob.) DW AIC SC LL Adj. R ² F(6,59) F(Prob.) DW R ² AIC SC LL AIC SC F(Frob.) DW Adj. R ² F(6,59) F(Prob.) F(Frob.) DW AIC SC LL AIC SC F(Frob.) DW Adj. R ² F(6,59) F(Prob.) F(Prob.) DW AIC AIC SC LL AJC SC F(Frob.) DW Adj. R ² F(6,59) F(Prob.) DW AIC SC LL AIC SC F(Frob.) DW Adj. R ² F(6,59) F(Prob.) DW AIC SC F(Prob.) DW AIC AIC SC F(Frob.) DW Adj. R ² F(6,59) F(Prob.) DW AIC SC F(Prob.) DW AIC AIC SC F(Prob.) DW Adj. R ² F(6,59) F(Prob.) DW AIC SC F(Prob.) DW AIC SC F(Prob.) DW AIC SC F(Prob.) DW AIC SC F(Prob.) DW AIC SC F(Prob.) DW AIC SC LL AIC SC F(Prob.) F(Pro	-9.793 Dia; 0.177 0.072 1.687 0.145 2.160 2.690 2.948 -65.62 - UNITED 1 Dia; 0.222 0.143 2.80** 0.018 1.961 1.961 0.409 -0.409 -0.177 20.513 Dia; 0.500 0.449 9.816* 0.000 0.449	JBT χ ² (Prob.) gnostic Results LMT F(2,45) LMT F(Prob.) BPGT F(5,48) BPGT F(5,48) BPGT F(7rob.) RESET F(1,46 RESET F(1,46 RESET F(2,20) JBT χ ² (2) JBT χ ² (2) JBT χ ² (2) JBT χ ² (2,57) LMT F(2,57) LMT F(7,60) BPGT F(7rob.) RESET F(1,58) RESET F(1,58) RESET F(2,20) JBT χ ² (2) JBT χ ² (2,57) LMT F(2,57) LMT F(Prob.) BPGT F(5,60) BPGT F(5,60) BPGT F(5,60) BPGT F(5,60) BPGT F(Prob.) BPGT F(Prob.) BPGT F(Prob.) BPGT F(Prob.)	0.985 1.478 0.239 1.499 0.208 4.680 0.036 58.650* 0.000 0.147 0.864 0.248 0.939 0.373 0.544 2.681 0.262 0.892 0.416 0.874 0.504 0.504	Note: -Residuals are not normally distributed. -Incorrect sign for SVR. -Model is not significant. Note: Note:
QTY Constant Δ(LnGDP) Δ(LnTXR) Δ(LnIR) LnSVR AR(1) Constant Δ(LnIR) LnSVR AR(1) Constant Δ(LnGDP) Δ(LnEXR) Δ(LnIR) LnSVR Δ(LnIR) QTY Constant Δ(LnGDP) Δ(LnGDP) Δ(LnGDP) Δ(LnGDP) Δ(LnGDP) Δ(LnIR) Δ(LnIR) Δ(LnIR)	DEPENDENT Coefficient -3.478 -0.034 -2.170 -2.727 0.542 -0.475 0.390 DEPENDENT Coefficient -0.937 -1.069 -1.098 -1.711 0.151 0.003 0.357 DEPENDENT Coefficient -2.329 -2.806 -3.482 -1.372 2.381	VARIABLE: L1 t-ratio -12.451* -0.019 -0.397 -0.526 0.341 -1.647*** 2.877* VARIABLE: L1 t-ratio -23.220* -2.690* -0.816 -1.259*** 0.385 0.819 3.196* VARIABLE: L1 t-ratio -14.652* -2.903* -1.020*** -0.398 2.272** -0.398 2.272**	LL nX/M R ² Adj. R ² F(6,47) F(Frob.) DW AIC SC LL AUSTRALIA nX/M R ² Adj. R ² F(6,59) F(Prob.) DW AIC SC LL NX/M R ² Adj. R ² F(6,59) F(Prob.) DW	-9.793 Dia; 0.177 0.072 1.687 0.145 2.160 2.690 2.948 -65.62 -UNITED 1 0.222 0.143 2.80** 1.961 -0.409 -0.177 20.513 Dia; 0.500 0.449 9.816* 0.000 2.092 2.092	JBT χ^2 (Prob.) mostic Results LMT F(2,45) LMT F(Prob.) BPGT F(5,48) BPGT F(Prob.) RESET F(1,46 RESET F(Prob.) JBT χ^2 (2) JBT χ^2 (2) JBT χ^2 (Prob.) KINGDOM mostic Results LMT F(2,57) LMT F(Prob.) BPGT F(5,60) BPGT F(Frob.) RESET F(1,58) RESET F(1,58) LMT F(2,57) LMT F(Prob.) BPGT F(5,60) BPGT F(1,58) RESET F(1,58)	0.985 1.478 0.239 1.499 0.208 4.680 0.036 58.650* 0.000 0.147 0.864 0.248 0.939 0.373 0.544 2.681 0.262 0.892 0.416 0.874 0.504 0.504 0.504 0.504	Note: -Residuals are not normally distributedIncorrect sign for SVRModel is not significant. Note: Note:
QTY Constant Δ(LnGDP) Δ(LnEXR) Δ(LnIR) LnSVR AR(1) Constant Δ(LnIR) LnSVR AR(1) Constant Δ(LnIR) LnSVR Δ(LnIR) LnSVR Δ(LnIR) Constant Δ(LnMS) Δ(LnIR) Constant Δ(LnGDP) Δ(LnEXR) Δ(LnBXR) Δ(LnIR) LnSVR Δ(LnIR) Δ(LnSXR) Δ(LnIR) LnSVR	DEPENDENT Coefficient -3.478 -0.034 -2.170 -2.727 0.542 -0.475 0.390 DEPENDENT Coefficient -0.937 -1.069 -1.098 -1.711 0.151 0.003 0.357 DEPENDENT Coefficient -2.329 -2.806 -3.482 -1.372 2.381 0.022	VARIABLE: L1 t-ratio -12.451* -0.019 -0.397 -0.526 0.341 -1.647*** 2.877* VARIABLE: L1 t-ratio -23.220* -2.690* -0.816 -1.259*** 0.385 0.819 3.196* VARIABLE: L1 t-ratio -14.652* -2.903* -1.020*** -0.398 2.272** 2.264** 4.900*	LL nX/M R ² F(6,47) F(Prob.) DW AIC SC LL AUSTRALIA nX/M R ² Adj. R ² F(6,59) F(Prob.) DW AIC SC LL NX/M R ² Adj. R ² F(6,59) F(Frob.) DW AIC SC LL NX/M R ² Adj. R ² F(6,59) F(Frob.) DW AIC SC LL NX/M SC LL SC LL SC LL SC LL SC LL SC LL SC LL SC SC LL SC SC SC SC SC SC SC SC SC SC	-9.793 Dia; 0.177 0.072 1.687 0.145 2.160 2.690 2.948 -65.62 - UNITED 1 Dia; 0.222 0.143 2.80** 0.222 0.143 2.80** 0.018 1.961 -0.409 -0.177 20.513 Dia; 0.500 0.449 9.816* 0.000 2.092 1.631 1.924	JBT χ^2 (Prob.) model is a second structure of the	0.985 1.478 0.239 1.499 0.208 4.680 0.036 58.650* 0.000 0.147 0.864 0.248 0.939 0.373 0.544 2.681 0.2681 0.262 0.892 0.416 0.874 0.505 0.504 0.507 0.504 0.507 0.504 0.507 0.504 0.507 0.504 0.507 0.504 0.507	Note: -Residuals are not normally distributedIncorrect sign for SVRModel is not significant. Note: Note:
QTY Constant Δ(LnGDP) Δ(LnEXR) Δ(LnIR) LnSVR AR(1) Constant Δ(LnIR) LnSVR AR(1) AUD Constant Δ(LnIR) LnSVR Δ(LnRXR) Δ(LnIR) LnSVR AR(1) QTY Constant Δ(LnGDP) Δ(LnRXR) Δ(LnRXR) Δ(LnRXR) Δ(LnRXR) Δ(LnRXR) Δ(LnRXR) Δ(LnRXR) Δ(LnRXR) Δ(LnRX) Δ(LnRX) Δ(LnRX) Δ(LnRX) Δ(LnRX) Δ(LnTR) LnSVR AR(1)	DEPENDENT Coefficient -3.478 -0.034 -2.170 -2.727 0.542 -0.475 0.390 DEPENDENT Coefficient -0.937 -1.069 -1.098 -1.711 0.151 0.003 0.357 DEPENDENT Coefficient -2.329 -2.806 -3.482 -1.372 2.381 0.022 0.575	VARIABLE: L1 t-ratio -12.451* -0.019 -0.397 -0.526 0.341 -1.647*** 2.877* VARIABLE: L1 t-ratio -23.220* -2.690* -0.816 -1.259*** 0.385 0.819 3.196* VARIABLE: L1 t-ratio -14.652* -2.903* -1.020*** -0.398 2.272** 2.264** 4.800*	LL nX/M R ² F(6,47) F(Prob.) DW AIC SC LL AUSTRALIA nX/M R ² Adj. R ² F(6,59) F(Prob.) DW AIC SC LL nX/M R ² Adj. R ² F(6,59) F(Prob.) DW AIC SC LL N/M N/M N/M N/M N/M N/M N/M N/M	-9.793 Dia; 0.177 0.072 1.687 0.145 2.160 2.690 2.948 -65.62 - UNITED 1 Dia; 0.222 0.143 2.80** 0.018 1.961 -0.409 -0.177 20.513 Dia; 0.500 0.449 9.816* 0.000 2.992 1.631 1.864	JBT χ^2 (Prob.) model is a second state of the second state is a second state of the second state of t	0.985 1.478 0.239 1.499 0.208 4.680 0.036 58.650* 0.000 0.147 0.864 0.248 0.939 0.373 0.544 2.681 0.262 0.892 0.416 0.874 0.262 0.892 0.416 0.874 0.504 0.404 0.527 1.690 0.430	Note: -Residuals are not normally distributedIncorrect sign for SVRModel is not significant. Note: Note:

Table 3	(Continued - Part C	: NET EXPORT MODELS -	CATEGORY 84* (AUD & QTY	7)
---------	---------------------	-----------------------	----------------	-----------	----

*Nuclear Reactors, Boilers, Machinery and Mechanical Appliances; Parts Thereof DW – Durbin-Watson Statistics; AIS – Akaike Info Criterion; SC – Schwartz Criterion; LL – Log Likelihood; LMT – Lagrange Multiplier (Breusch-Godfrey) Test for Serial Correlation; BPGT – Breusch-Pagan-Godfrey Test for Heteroskedasticity; RESET – Ramsey RESET Test for Model Specification; JBT – Jarques-Bera Test for normality of the residuals; * significant at the 1%, ** significance at 5%, ***significance at 10%

			AUSTRALIA	A - UNITED	STATES		
AUD	DEPENDENT	VARIABLE: A	LnX/M)				
	Coefficient	t-ratio		Diag	Note:		
Constant	0.009	0.774	\mathbf{R}^2	0.441	LMT F(2,54)	1.033	
Δ(LnGDP)	0.436	1.727***	Adj. R ²	0.381	LMT F(Prob.)	0.363	
Δ(LnEXR)	3.158	3.571*	F(6,56)	7.367*	BPGT F(6,56)	0.726	
Δ(LnMS)	1.643	1.991***	F(Prob.)	0.000	BPGT F(Prob.)	0.631	-Incorrect sign for GDP;
Δ(LnIR)	0.004	0.019	DW	1.900	RESET F(1,55)	0.326	EXR; MS; SVR.
Δ(LnSVR)	-0.002	-1.597***	AIC	-1.881	RESET F(Prob.)	0.570	
Residuals (-1)	-0.596	-5.489*	SC	-1.643	JBT χ^2 (2)	0.732	
			LL	66.240	JBT χ ² (Prob.)	0.693	
QTY	DEPENDENT	VARIABLE: LI	nX/M				
	Coefficient	t-ratio		Diaș	gnostic Results		Note:
Constant	-3.135	-31.113*	R ²	0.348	LMT F(2,53)	2.49***	
Δ(LnGDP)	2.774	4.125*	Adj. R ²	0.277	LMT F(Prob.)	0.093	
Δ(LnEXR)	-0.849	-0.301	F(6,55)	4.897*	BPGT F(5,56)	0.383	-Residuals are serially
Δ(LnMS)	-2.126	-0.783	F(Prob.)	0.000	BPGT F(Prob.)	0.859	correlated.
Δ(LnIR)	-0.465	-0.619	DW	2.107	RESET F(1,54)	6.945**	-Model is hits-specified.
LnSVR	-0.002	-0.406	AIC	0.737	RESET F(Prob.)	0.011	-Incontect sign for ODL, IR· SVR
AR(1)	0.517	4.315*	SC	0.978	JBT $\chi^2(2)$	3.643	in, Svit.
			LL	-15.861	JBT χ^2 (Prob.)	0.162	

Table 3 (Continued - Part D): NET EXPORT MODELS	5 – CATEGORY 84* (AUD & Q	TY)
---	---------------------------	-----

*Nuclear Reactors, Boilers, Machinery and Mechanical Appliances; Parts Thereof

DW – Durbin-Watson Statistics; AIS – Akaike Info Criterion; SC – Schwartz Criterion; LL – Log Likelihood; LMT – Lagrange Multiplier (Breusch-Godfrey) Test for Serial Correlation; BPGT – Breusch-Pagan-Godfrey Test for Heteroskedasticity; RESET – Ramsey RESET Test for Model Specification; JBT – Jarques-Bera Test for normality of the residuals; * significant at the 1%, ** significance at 5%, ***significance at 10%

As shown in Table 3, out of the 16 NX models in Category 84, 13 models are significant and 3 NX models are not significant. The NX models which are not significant are the NX model with Germany based on AUD and Malaysia and Thailand based on QTY values. Furthermore, for most of the models, the majority of the variables are not significant. The variables GDP, EXR, MS, IR are significant in 7, 5, 3 and 4 out of the 16 models respectively, while the variable SVR is significant in 8 out of the 16 models. The correct coefficient signs for all the GDP, EXR, MS, IR and SVR are found in 6 out of the 16 models (3 based on AUD and 3 based on QTY), while for these 6 models, the coefficients range for the GDP, EXR, MS, IR and SVR is between (-0.017 and -2.806), (-0.365 and -6.353), (-0.017 and -8.905), (0.151 and 2.381) and (0.003 and 0.368) respectively. Finally, overall, the Adj. R-Square or all 16 models in this category ranges between 1.9 and 44.9 per cent respectively.

Overall, out of the 16 estimated models in this category, 5 models (the NX with China, Thailand and the United Kingdom based on AUD; the NX with China and the United Kingdom based on QTY) have the correct signs and have satisfactory passed all diagnostic tests. The NX model with China based on AUD shows that a 1 per cent increase in the GDP will decrease the NX growth rate by 0.03 per cent, a 1 per cent growth rate in the EXR and MS will decrease the NX growth rate by 2.671 and 3.57 per cent respectively, a 1 per cent growth rate in the IR will increase the NX growth rate by 0.296 per cent, on average, while 1 per cent increase in SVR will increase the NX growth rate by 0.12 per cent. The NX model with Thailand shows that a 1 per cent growth rate in the GDP, EXR and MS will decrease the NX growth rate by 1.393, 2.868 and 0.017 per cent respectively, while 1 per cent growth rate in the IR and SVR will increase the NX growth rate by 0.601 and 0.148 per cent respectively in average. The NX model with the United Kingdom based on AUD shows that a 1 per cent growth rate in the GDP, EXR and MS will decrease the NX by 1.069, 1.098 and 1.711 per cent respectively, a 1 per cent growth rate in IR will increase the NX by 0.151 per cent, on average, while a 1 per cent increase in the SVR will increase the NX by 0.003 per cent. The NX model with China based on QTY shows that a 1 per cent increase in the GDP will decrease the NX growth rate by 0.017 per cent, a 1 per cent growth rate in the EXR and MS

will decrease the NX growth rate by 6.353 and 8.905 per cent respectively, a 1 per cent growth rate in the IR will increase the NX growth rate by 0.192 per cent, on average, while 1 per cent increase in SVR will increase the NX growth rate by 0.368 per cent. The NX model with the United Kingdom based on QTY shows that a 1 per cent growth rate in the GDP, EXR and MS will decrease the NX by 2.806, 3.482 and 1.372 per cent respectively, a 1 per cent growth rate in IR will increase the NX by 2.381 per cent, on average, while a 1 per cent increase in the SVR will increase the NX by 0.022 per cent. For all of these 5 models, the variables GDP, EXR and MS are mostly elastic, while the variable IR and SVR are mostly inelastic. Finally, the Adj. R-Square for China, Thailand and the United Kingdom based on AUD values is 30.3, 44.3 and 14.3 per cent respectively and for China and the United Kingdom based on QTY, the values are 21.6 and 44.9 per cent respectively.

			AUSTE	RALIA - CH	INA		
AUD	DEPENDENT	VARIABLE: A	(LnX/M)				
	Coefficient	t-ratio		Diag	nostic Results		Note:
Constant	-3.977	-2.427**	\mathbf{R}^2	0.434	LMT F(2,19)	0.740	
LnGDP	-0.240	-1.366***	Adj. R ²	0.299	LMT F(Prob.)	0.490	
Δ(LnEXR)	-1.442	-0.297	F(5,21)	3.22**	BPGT F(5,21)	0.689	
Δ(LnMS)	-4.025	-0.830	F(Prob.)	0.026	BPGT F(Prob.)	0.637	
Δ(LnIR)	0.873	-1.822***	DW	2.115	RESET F(1,20)	0.273	
LnSVR	0.704	-2.472**	AIC	0.647	RESET F(Prob.)	0.607	
			SC	0.935	JBT $\chi^2(2)$	3.912	
			LL	-2.738	JBT χ ² (Prob.)	0.141	
QTY	DEPENDENT	VARIABLE: A	(LnX/M)				
	Coefficient	t-ratio		Diag	nostic Results		Note:
Constant	7.125	1.519***	\mathbb{R}^2	0.264	LMT F(2,19)	1.839	
LnGDP	0.041	0.081	Adj. R ²	0.089	LMT F(Prob.)	0.186	
Δ(LnEXR)	-9.296	-0.670	F(5,21)	1.5***	BPGT F(5,21)	0.356	
Δ(LnMS)	-13.617	-0.981	F(Prob.)	0.093	BPGT F(Prob.)	0.873	-Incorrect sign for GDP;
A(LnIR)	-0.537	-0.392	DW	1.637	RESET F(1,20)	1.928	IR.
LnSVR	1.438	1.766***	AIC	2.750	RESET F(Prob.)	0.180	
			SC	3.038	JBT χ^2 (2)	0.227	
			LL	-31.120	JBT χ ² (Prob.)	0.893	
			AUSTR	ALIA - FRA	NCE		
AUD	DEPENDENT	VARIABLE: L	nX/M				
	Coefficient	t-ratio		Diag	nostic Results		Note:
Constant	-3.929	-2.575**	\mathbf{R}^2	0.215	LMT F(2,57)	2.343	
Δ(LnGDP)	0.858	1.224***	Adj. R ²	0.136	LMT F(Prob.)	0.105	
Δ(LnEXR)	0.550	0.327	F(6,59)	2.70**	BPGT F(5,60)	2.30	-Model is mis-specified.
LnMS	-0.390	-0.725	F(Prob.)	0.022	BPGT F(Prob.)	0.116	-Residuals are not
Δ(LnIR)	0.054	0.053	DW	2.205	RESET F(1,58)	7.050**	Informatic sign for CDP
LnSVR	-0.010	-1.173***	AIC	1.414	RESET F(Prob.)	0.010	-Incontect sign for GDF, EXR: SVR
AR(1)	0.421	3.523*	SC	1.646	JBT $\chi^2(2)$	6.566**	EXR, 5 VR.
			LL	-39.649	JBT χ ² (Prob.)	0.038	
QTY	DEPENDENT	VARIABLE: L	nX/M				
	Coefficient	t-ratio		Diag	nostic Results		Note:
Constant	-2.170	-0.826	\mathbb{R}^2	0.164	LMT F(2,57)	0.141	
Δ(LnGDP)	0.173	0.102	Adj. R ²	0.079	LMT F(Prob.)	0.868	
Δ(LnEXR)	4.327	1.143	F(6,59)	1.9***	BPGT F(5,60)	0.576	
LnMS	1.153	1.251	F(Prob.)	0.090	BPGT F(Prob.)	0.718	-Incorrect sign for GDP;
Δ(LnIR)	-4.045	-1.817***	DW	1.997	RESET F(1 58)	0.374	EXR; MS; IR.
					RESET 1 (1,50)		
LnSVR	0.009	0.464	AIC	2.980	RESET F(Prob.)	0.544	
LnSVR AR(1)	0.009	0.464 2.026**	AIC SC	2.980 3.212	$\frac{\text{RESET F(Prob.)}}{\text{JBT }\chi^2(2)}$	0.544 3.814	

*Electrical Machinery and Equipment and Parts Thereof; Sound Recorders and Producers, Television Image and Sound Recorders and Reproducers, and Parts and Accessories of Such Articles

DW – Durbin-Watson Statistics; AIS – Akaike Info Criterion; SC – Schwartz Criterion; LL – Log Likelihood; LMT – Lagrange Multiplier (Breusch-Godfrey) Test for Serial Correlation; BPGT – Breusch-Pagan-Godfrey Test for Heteroskedasticity; RESET – Ramsey RESET Test for Model Specification; JBT – Jarques-Bera Test for normality of the residuals; * significant at the 1%, ** significance at 5%, ***significance at 10%

			AUSTDA	LIA CEDI	JANV					
AUD	DEDENDENT	VADIADIE. A	AUSIKA	LIA - GENI	VIALV I					
AUD	DEPENDENT	VARIABLE: A	AKIABLE: Δ(LnX/M)							
G () (Coefficient	t-ratio	D ²		nostic Results	0.071	Note:			
Constant	0.455	0.946	K	0.046	LMTF(2,59)	0.271				
A(LnGDP)	0.009	0.016	Adj. K ⁻	0.043	LMT F(Prob.)	0.764	-Residuals are not			
A(LNEAK)	-0.566	-0.501	F(5,61)	0.451	$\frac{BPGTF(5,61)}{BPGTF(0,-1)}$	0.630	normally distributed.			
	0.152	0.883	F(Prob.)	0.811	BPG1 F(Prob.)	0.678	-Incorrect sign for GDP;			
A(Lnik)	-0.426	-0.681	DW	2.116	RESET F(1,00)	0.137	MS; IR; SVR.			
Δ(LnSVR)	-0.001	-0.115	AIC	0.558	RESET F(Prob.)	0.713	-Model is not significant.			
			SC .	0.755	$JBT\chi^{-}(2)$	5.//***				
				-12.080	JBI Z (Prod.)	0.056				
QTY	DEPENDENT	VARIABLE: A	LnX/M)							
	Coefficient	t-ratio	-1	Diag	nostic Results		Note:			
Constant	-0.512	-0.547	R ²	0.256	LMT F(2,57)	1.253				
A(LnGDP)	3.580	2.217**	Adj. R ²	0.181	LMT F(Prob.)	0.293				
Δ(LnEXR)	-1.172	-0.475	F(6,59)	3.392*	BPGT F(5,60)	0.648	-Residuals are not			
LnMS	-0.200	-0.596	F(Prob.)	0.006	BPGT F(Prob.)	0.664	normally distributed.			
Δ(LnIR)	-1.985	-1.541***	DW	1.852	RESET F(1,58)	1.449	-Incorrect sign for GDP;			
Δ(LnSVR)	-0.022	-2.025**	AIC	2.256	RESET F(Prob.)	0.234	IR; SVR.			
AR(1)	-0.300	-2.494**	SC	2.488	$JBT \chi^2(2)$	234.62*				
			LL	-67.443	JBT χ ² (Prob.)	0.000				
			AUSTRA	LIA - MALA	AYSIA					
AUD	DEPENDENT	VARIABLE: A	LnX/M)							
	Coefficient	t-ratio		Diag	gnostic Results		Note:			
Constant	-0.019	-0.584	R ²	0.029	LMT F(2,62)	0.397				
Δ(LnGDP)	0.845	1.218	Adj. R ²	0.002	LMT F(Prob.)	0.674				
A(LnEXR)	1.372	1.334	F(2,64)	0.950	BPGT F(2,64)	0.203				
``´´			F(Prob.)	0.392	BPGT F(Prob.)	0.817	-Incorrect sign for GDP;			
			DW	2.085	RESET F(1,63	0.101	EXR. Madal is not simificant			
			AIC	0.190	RESET F(Prob.)	0.752	-Model is not significant.			
			SC	0.289	JBT $\gamma^2(2)$	0.364				
			LL	-3.367	JBT χ^2 (Prob.)	0.834				
ОТҮ	DEPENDENT	VARIABLE: L	nX/M							
	Coefficient	t-ratio		Diag	postic Results		Note:			
Constant	-4.023	-6.460*	R ²	0.728	LMT F(2.60	0.737				
A(LnGDP)	2.648	1.318***	Adi, R ²	0.715	LMT F(Prob.)	0.483				
A(LnEXR)	3.937	1.130***	F(3.62)	55.34*	BPGT F(2.63)	4.419**	 Residuals are 			
AR(1)	0.771	12.892*	F(Prob.)	0.000	BPGT F(Prob.)	0.016	Heteroscedastic.			
(1)			DW	2.114	RESET F(2.60)	9.665*	-Model is mis-specified.			
			AIC	3.114	RESET F(Prob.)	0.000	-Incorrect sign for GDP;			
			SC	3.246	JBT $\gamma^2(2)$	0.611	EXR.			
			LL	-98.751	JBT χ^2 (Prob.)	0.737				
			AUSTRAI	JA - SINGA	PORE					
AUD	DEPENDENT	VARIARLE	LnX/M)							
neb	Coofficient	t ratio		Dier	mostic Docults		Noto:			
Constant	-0.017	-0.623	\mathbf{P}^2	0.119	I MT F(2 54)	0.906	Note.			
A(LnCDP)	0.332	0.671	Adi R ²	0.025	LMT F(2,34)	0.100				
A(LnGDI)	0.332	0.366	F(6.56)	1 266	BPGT F(6 56)	0.410	Model is mis specified			
	-0.368	-0.506	F(Prob)	0.288	BPGT F(Prob.)	0.959	-Incorrect sign for GDP:			
A(LnIR)	-0 144	-0 271	DW	2 224	RESET F(1 55)	0.430	EXR IR			
A(LnSVR)	0.002	0.623		-0.089	RESET F(1,55)	0.430	-Model is not significant			
Residuals (-1)	-0.188	-2 396**	SC	0.149	$IBT \gamma^{2}(2)$	2 430				
Residuais (-1)	-0.100	-2.570		9 799	$IBT \chi^2$ (Prob.)	0.295				
					221 A (1100.)	5.275				
ΟΤΥ	DEPENDENT	VARIARI E. A.	InX/M							
QTY	DEPENDENT	VARIABLE: A	LnX/M)	D ?	mostia Doorle		No4			
QTY Constant	DEPENDENT Coefficient	VARIABLE: A	LnX/M)	Diag	nostic Results	1 000	Note:			
QTY Constant	DEPENDENT Coefficient 0.011	VARIABLE: Δ t-ratio 0.119 1.125***	LnX/M) R ²	Diag 0.366	nostic Results LMT F(2,54)	1.889	Note:			
QTY Constant A(LnGDP)	DEPENDENT Coefficient 0.011 -1.811 4.062	VARIABLE: A t-ratio 0.119 -1.125*** 1.705**	LnX/M) R ² Adj. R ² E((.5.())	Diag 0.366 0.298	LMT F(2,54) LMT F(Prob.)	1.889 0.161	Note:			
QTY Constant A(LnGDP) A(LnEXR)	DEPENDENT Coefficient 0.011 -1.811 -4.963 2.854	VARIABLE: Δ(t-ratio 0.119 -1.125*** -1.705** 1.282***	LnX/M) R ² Adj. R ² F(6,56) F(Brach)	Diag 0.366 0.298 5.376*	nostic Results LMT F(2,54) LMT F(Prob.) BPGT F(6,56)	1.889 0.161 0.801	Note:			
QTY Constant A(LnGDP) A(LnEXR) A(LnMS)	DEPENDENT Coefficient 0.011 -1.811 -4.963 -2.854 1.249	VARIABLE: A t-ratio 0.119 -1.125*** -1.705** -1.282*** 0.722	LnX/M) R ² Adj. R ² F(6,56) F(Prob.) DW	Diag 0.366 0.298 5.376* 0.000	nostic Results LMT F(2,54) LMT F(Prob.) BPGT F(6,56) BPGT F(Prob.) DESET E(4.57)	1.889 0.161 0.801 0.574	Note:			
QTY Constant Δ(LnGDP) Δ(LnEXR) Δ(LnIR) Δ(LnIR) Δ(LnIR)	DEPENDENT Coefficient 0.011 -1.811 -4.963 -2.854 1.248 0.000	VARIABLE: A t-ratio 0.119 -1.125*** -1.705** -1.282*** 0.723 0.712	LnX/M) R ² Adj. R ² F(6,56) F(Prob.) DW	Diag 0.366 0.298 5.376* 0.000 2.229	nostic Results LMT F(2,54) BPGT F(6,56) BPGT F(6,56) RESET F(1,55) DESET F(2,55)	1.889 0.161 0.801 0.574 1.292	Note:			
QTY Constant Δ(LnGDP) Δ(LnEXR) Δ(LnNS) Δ(LnIR) Δ(LnSVR) D = 1 = 1 = 1 = 1	DEPENDENT Coefficient 0.011 -1.811 -4.963 -2.854 1.248 0.009 0.655	VARIABLE: A t-ratio 0.119 -1.125*** -1.705** -1.282*** 0.723 0.718 4.025*	LnX/M) R ² Adj. R ² F(6,56) F(Prob.) DW AIC	Diag 0.366 0.298 5.376* 0.000 2.229 2.260 2.400	nostic Results LMT F(2,54) LMT F(Prob.) BPGT F(6,56) BPGT F(Prob.) RESET F(Prob.) RESET F(Prob.) URT 2 (2)	1.889 0.161 0.801 0.574 1.292 0.261	Note:			

Table 4 (Continued - Part B): NET EXPORT MODELS - CATEGORY 85* (AUD & QTY)

 LL
 -04.200
 JB1 \chi² (Irob.)
 0.294

 *Electrical Machinery and Equipment and Parts Thereof; Sound Recorders and Producers, Television Image and Sound Recorders and Reproducers, and Parts and Accessories of Such Articles

 DW – Durbin-Watson Statistics; AIS – Akaike Info Criterion; SC – Schwartz Criterion; LL – Log Likelihood; LMT – Lagrange Multiplier (Breusch-Godfrey)

 Test for Serial Correlation; BPGT – Breusch-Pagan-Godfrey Test for Heteroskedasticity; RESET – Ramsey RESET Test for Model Specification; JBT – Jarques-Bera Test for normality of the residuals; * significant at the 1%, ** significance at 5%, ***significance at 10%

			AUSTRA	LIA - THAI	LAND		
AUD	DEPENDENT	VARIABLE: L	nX/M				
	Coefficient	t-ratio		Diag	gnostic Results		Note:
Constant	-1.735	-3.033*	R ²	0.744	LMT F(3,44)	2.115	
Δ(LnGDP)	-1.096	-1.380***	Adj. R ²	0.711	LMT F(Prob.)	0.112	
Δ(LnEXR)	3.137	1.207***	F(6,47)	22.72*	BPGT F(5,48)	1.686	Model is mis specified
Δ(LnMS)	4.052	1.633***	F(Prob.)	0.000	BPGT F(Prob.)	0.156	-Model is fills-specified.
Δ(LnIR)	-1.058	-1.302***	DW	2.551	RESET F(2,45	5.698*	MS: IR: SVR
LnSVR	-0.108	-0.734	AIC	1.568	RESET F(Prob.)	0.006	1110, 111, 0 + 111
AR(1)	0.868	11.244*	SC	1.825	$JBT \chi^2(2)$	3.248	
			LL	-35.324	JBT χ² (Prob.)	0.197	
QTY	DEPENDENT	VARIABLE: L	nX/M				
	Coefficient	t-ratio	D ²	Diag	nostic Results	0.000	Note:
Constant	-2.759	-10.486*	\mathbf{R}^2	0.305	LMT F(2,45)	0.339	
A(LnGDP)	-2.784	-1.659***	Adj. R ²	0.216	LMT F(Prob.)	0.714	
A(LEAK)	-3.398	-0.676	F(0,47)	5.454*	BPG1 F(5,48)	0.328	-Residuals are not
A(LnMS)	2 106	0.155	F(Prob.)	1.027	BPG1 F(Prob.) DESET E(1.46	0.894	Incorract sign for MS:
A(LIIIK)	-3.196	-2.1/3***		2.540	RESET F(1,40	0.845	-Inconfect sign for Mis, IR: SVR
	-0.111	2 060*	SC	2.340	$\frac{\text{RESE1} F(F100.)}{\text{IBT} \approx^2 (2)}$	10.462*	in, 5 vit.
AK(I)	0.408	2.909		-61 573	$\frac{JBT}{\chi}^{2}$ (Prob.)	0.005	
			AUSTRALIA	UNITED I		0.005	
AUD	DEPENDENT	VADIARI F. A	I nY/M)	- UNITED I			
AUD	Coefficient	t retio		Die	mostic Posults		Noto:
Constant	0.010	0.326	\mathbf{P}^2	0 346	I MT F(2 58)	0 354	INOTE:
A(LnGDP)	0.803	1 264***	Adi, R ²	0.281	LMT F(Prob.)	0.354	
A(LnEXR)	1.484	0.798	F(6.60)	5.295*	BPGT F(6.60)	0.446	-Residuals are not
Δ(LnMS)	1.466	0.778	F(Prob.)	0.000	BPGT F(Prob.)	0.845	normally distributed.
A(LnIR)	0.466	0.949	DW	1.903	RESET F(1.59)	0.013	-Incorrect sign for GDP;
Δ(LnSVR)	0.003	0.835	AIC	0.072	RESET F(Prob.)	0.909	EXR; MS.
Residuals (-1)	-0.569	-5.117*	SC	0.302	JBT $\chi^2(2)$	8.330**	
			LL	4.588	JBT χ ² (Prob.)	0.016	
QTY	DEPENDENT	VARIABLE: A	(LnX/M)				
	Coefficient	t-ratio		Diag	gnostic Results		Note:
Constant	0.021	0.257	\mathbf{R}^2	0.359	LMT F(2,58)	0.600	
Δ(LnGDP)	4.824	2.763*	Adj. R ²	0.295	LMT F(Prob.)	0.552	
Δ(LnEXR)	-3.340	-0.665	F(6,60)	5.608*	BPGT F(6,60)	0.551	-Residuals are not
Δ(LnMS)	-5.372	-1.054	F(Prob.)	0.000	BPGT F(Prob.)	0.768	normally distributed.
Δ(LnIR)	0.465	0.338	DW	2.117	RESET F(1,59)	0.763	-Incorrect sign for GDP.
A(LnSVR)	0.012	1.114***	AIC	2.070	RESET F(Prob.)	0.386	ũ
Residuals (-1)	-0.586	-5.074*	SC .	2.300	$\frac{JBT \chi^2}{2}$	22.386*	
			LL	-62.348	JBI χ ⁻ (Prob.)	0.000	
A LID	DEDENDENT		USTRALIA	- UNITED	SIATES		
AUD	DEPENDENT	VARIABLE: A	LnX/M)	D'			Nutur
Constant	Coefficient	t-ratio	\mathbf{D}^2	0.207	I MT E(2.54)	1 720	Note:
A(L pCDP)	0.010	2.077*	\mathbf{K}	0.397	LMIT $F(2,54)$ LMT $F(Prob)$	0.180	
A(LIIGDF)	0.252	0.138	Auj. K F(6 56)	6.153*	BPCT F(6 56)	0.189	
A(LnMS)	-1.468	-0.860	F(0, 30) F(Prob)	0.000	BPGT F(0,50)	0.684	-Model is mis-specified.
A(LnIR)	-0.229	-0.575	DW	2.145	BESET F(1.55)	3.14***	-Incorrect sign for GDP;
A(LnSVR)	-0.002	-0.557	AIC	-0.431	RESET F(Prob.)	0.082	EXR; IR; SVR.
Residuals (-1)	-0.567	-4.843*	SC	-0.193	$JBT \gamma^2(2)$	1.495	
			LL	20.580	JBT χ ² (Prob.)	0.474	
QTY	DEPENDENT	VARIABLE: L	nX/M		• • • •		
	Coefficient	t-ratio		Dia	gnostic Results		Note:
Constant	-3.958	-7.086*	R ²	0.676	LMT F(2,53)	4.157**	
Δ(LnGDP)	-1.915	-1.542***	Adj. R ²	0.640	LMT F(Prob.)	0.021	Daviduala and P
Δ(LnEXR)	0.491	0.093	F(6,55)	19.09*	BPGT F(5,56)	0.552	-residuals are serially
Δ(LnMS)	1.773	0.344	F(Prob.)	0.000	BPGT F(Prob.)	0.736	-Model is mis-specified
Δ(LnIR)	-2.124	-1.417***	DW	2.503	RESET F(1,54)	8.934*	-Incorrect sign for EXR:
LnSVR	0.000	0 100		1 200	DECETED 1	0.004	
	0.002	0.138	AIC	2.308	RESET F(Prob.)	0.004	MS; IR.
AR(1)	0.002	0.138 11.306*	AIC SC	2.548	$\frac{\text{RESE1 F(Prob.)}}{\text{JBT }\chi^2(2)}$	5.785	MS; IR.

Γable 4 (Continued - Part C	: NET EXPORT MODELS –	CATEGORY 85* (AUD & Q	PTY)
-----------------------------	-----------------------	----------------	---------	------

*Electrical Machinery and Equipment and Parts Thereof; Sound Recorders and Producers, Television Image and Sound Recorders and Reproducers, and Parts and Accessories of Such Articles

DW - Durbin-Watson Statistics; AIS - Akaike Info Criterion; SC - Schwartz Criterion; LL - Log Likelihood; LMT - Lagrange Multiplier (Breusch-Godfrey)Test for Serial Correlation; BPGT - Breusch-Pagan-Godfrey Test for Heteroskedasticity; RESET - Ramsey RESET Test for Model Specification; JBT -Jarques-Bera Test for normality of the residuals; * significant at the 1%, ** significance at 5%, ***significance at 10%

As shown in Table 4, out of the 16 NX models in Category 85, 13 models are significant and 3 NX models with Germany, Malaysia and Singapore all based on AUD, are not significant. Furthermore, in most of the models, the variable GDP is significant, while the variables EXR, MS, IR and SVR are not significant.

The variables EXR, MS, IR and SVR are significant in 3, 2, 6 and 5 out of the 16 models respectively, while the variable GDP is significant in 11 out of the 16 models. The correct coefficient signs for all the GDP, EXR, MS, IR and SVR are found in 2 out of the 16 models (1 based on AUD and 1 based on QTY), while for these 2 models, the coefficient range for the GDP, EXR, MS, IR and SVR is between (-0.240 and -1.811), (-1.442 and -4.963), (-2.854 and -4.025), (0.873 and 1.248) and (0.009 and 0.704) respectively. Finally, the Adj. R-Square in overall for all 16 models in this category ranges between 0.2 and 71.5 per cent.

Overall, out of the 16 estimated models in this category, only 2 models (the NX with China based on AUD; the NX with Singapore based on QTY) have the correct signs and have satisfactory passed all diagnostic tests. The NX model with China based on AUD shows that a 1 per cent increase in the GDP will decrease the NX growth rate by 0.240 per cent, a 1 per cent growth rate in the EXR and MS will decrease the NX growth rate by 1.442 and 4.025 per cent respectively, a 1 per cent growth rate in the IR will increase the NX growth rate by 0.873 per cent, on average, while a 1 per cent increase in SVR will increase the NX growth rate by 0.704 per cent. The NX model with Singapore shows that a 1 per cent growth rate in the GDP, EXR and MS will decrease the NX growth rate by 1.811, 4.963 and 2.854 per cent respectively, on average, while a 1 per cent growth rate in the IR and SVR will increase the NX growth rate by 1.248 and 0.009 per cent respectively. In these 2 models, the variables EXR and MS are elastic; the variables GDP and IR are mixed, while the variables SVR is inelastic. Finally, the Adj. R-Square for China based on AUD values is 29.9 per cent and for Singapore based on QTY, the value is 29.8 per cent.

AUSTRALIA - CHINA										
AUD DEPENDENT VARIABLE: Δ(LnX/M)										
	Coefficient	Note:								
Constant	-2.508	-0.566	\mathbb{R}^2	0.224	LMT F(2,19)	0.294				
LnGDP	0.085	0.179	Adj. R ²	0.039	LMT F(Prob.)	0.748	D. 1. I			
Δ(LnEXR)	6.277	0.478	F(5,21)	1.210	BPGT F(5,21)	2.57***	-Residuals are			
Δ(LnMS)	10.684	0.814	F(Prob.)	0.339	BPGT F(Prob.)	0.058	Incorrect sign for CDP:			
Δ(LnIR)	2.425	1.871***	DW	1.947	RESET F(1,20)	0.000	EXD: MS			
LnSVR	0.552	0.716	AIC	2.638	RESET F(Prob.)	0.992	-Model is not significant			
			SC	2.926	JBT χ^2 (2)	1.857	Woder is not significant.			
			LL	-29.609	JBT χ ² (Prob.)	0.395				
QTY	DEPENDENT	VARIABLE: A	LnX/M)							
	Coefficient	t-ratio		Diag	nostic Results		Note:			
Constant	-35.649	-3.198*	R ²	0.565	LMT F(2,17)	2.096				
LnGDP	-2.264	-1.613***	Adj. R ²	0.428	LMT F(Prob.)	0.154				
Δ(LnEXR)	-3.837	-0.098	F(6,19)	4.120*	BPGT F(5,20)	0.486				
Δ(LnMS)	-2.105	-0.054	F(Prob.)	0.008	BPGT F(Prob.)	0.783				
Δ(LnIR)	8.250	2.560**	DW	2.024	RESET F(1,18)	0.676				
LnSVR	6.292	3.377*	AIC	4.965	RESET F(Prob.)	0.422				
AR(1)	-0.701	-4.135*	SC	5.303	JBT $\chi^2(2)$	1.336				
			LL	-57.542	JBT χ^2 (Prob.)	0.513				

Table 5 (Part A): NET EXPORT MODELS – CATEGORY 87* (AUD & QTY)

*Vehicles Other Than Railway or Tramway Rolling-Stock, and Parts and Accessories Thereof

DW – Durbin-Watson Statistics; AIS – Akaike Info Criterion; SC – Schwartz Criterion; LL – Log Likelihood; LMT – Lagrange Multiplier (Breusch-Godfrey) Test for Serial Correlation; BPGT – Breusch-Pagan-Godfrey Test for Heteroskedasticity; RESET – Ramsey RESET Test for Model Specification; JBT – Jarques-Bera Test for normality of the residuals; * significant at the 1%, ** significance at 5%, ***significance at 10%

			AUSTR.	ALIA - FRA	NCE		
AUD	DEPENDENT	VARIABLE: LI	nX/M				
	Coefficient	t-ratio		Diag	gnostic Results		Note:
Constant	2.295	0.310	\mathbf{R}^2	0.787	LMT F(2,33)	1.970	
Δ(LnGDP)	0.787	0.940	Adj. R ²	0.748	LMT F(Prob.)	0.157	
A(LnEXR)	-1.047	-0.422	F(6,34)	20.27*	BPGT F(5,35)	1.691	M. 111
LnMS	1.284	0.506	F(Prob.)	0.000	BPGT F(Prob.)	0.163	-Model is mis-specified.
Δ(LnIR)	4.738	3.472*	DW	2.257	RESET F(2,31)	5.065**	-Incontect sign for GDF,
LnSVR	0.545	2.552**	AIC	1.700	RESET F(Prob.)	0.013	WI3.
AR(1)	0.847	10.285*	SC	1.995	JBT χ^2 (2)	1.563	
			LL	-26.997	JBT χ ² (Prob.)	0.458	
QTY	DEPENDENT	VARIABLE: LI	nX/M				
	Coefficient	t-ratio		Diag	gnostic Results		Note:
Constant	27.182	1.924***	R ²	0.155	LMT F(2,33)	1.250	
Δ(LnGDP)	3.978	0.802	Adj. R ²	0.034	LMT F(Prob.)	0.300	
Δ(LnEXR)	0.523	0.048	F(6,34)	1.283	BPGT F(5,35)	1.950	In comment sing for CDD
LnMS	-11.769	-2.184**	F(Prob.)	0.293	BPGT F(Prob.)	0.111	-Incorrect sign for GDP;
Δ(LnIR)	4.933	0.938	DW	2.130	RESET F(1,34)	0.507	-Model is not significant
LnSVR	0.880	0.815	AIC	4.434	RESET F(Prob.)	0.481	-woder is not significant.
			SC	4.685	JBT χ^2 (2)	2.371	
			LL	-84.898	JBT χ^2 (Prob.)	0.306	
			AUSTRA	LIA - GERM	MANY		
AUD	DEPENDENT	VARIABLE: LI	nX/M				
	Coefficient	t-ratio		Diag	znostic Results		Note:
Constant	-6.012	-1.180***	\mathbf{R}^2	0.626	LMT F(2,57)	2.246	
Δ(LnGDP)	-0.873	-1.342***	Adj. R ²	0.588	LMT F(Prob.)	0.115	
A(LnEXR)	-0.552	-0.347	F(6,59)	16.47*	BPGT F(5,60)	0.968	
LnMS	-0.812	-0.453	F(Prob.)	0.000	BPGT F(Prob.)	0.445	-Residuals are not
Δ(LnIR)	1.078	1.068***	DW	2.147	RESET F(1,58)	1.622	normally distributed.
Δ(LnSVR)	0.002	0.236	AIC	1.597	RESET F(Prob.)	0.208	•
AR(1)	0.809	10.454*	SC	1.829	JBT $\gamma^2(2)$	18.010*	
			LL	-45.703	JBT χ ² (Prob.)	0.000	
QTY	DEPENDENT	VARIABLE: LI	nX/M				
	Coefficient	t-ratio		Diag	gnostic Results		Note:
Constant	-10.718	-1.032***	\mathbf{R}^2	0.466	LMT F(2,57)	0.489	
Δ(LnGDP)	-1.358	-0.561	Adj. R ²	0.411	LMT F(Prob.)	0.616	
Δ(LnEXR)	-11.403	-1.897***	F(6,59)	8.568*	BPGT F(5,60)	1.046	
LnMS	-2.361	-0.640	F(Prob.)	0.000	BPGT F(Prob.)	0.399	
Δ(LnIR)	1.050	0.279	DW	1.839	RESET F(1,58)	1.762	
Δ(LnSVR)	0.002	0.096	AIC	4.118	RESET F(Prob.)	0.190	
AR(1)	0.667	6.757*	SC	4.350	JBT χ^2 (2)	0.538	
			LL	-128.88	JBT χ^2 (Prob.)	0.764	
			AUSTRA	LIA - MALA	AYSIA		
AUD	DEPENDENT	VARIABLE: A	(LnX/M)				
	Coefficient	t-ratio		Diag	gnostic Results		Note:
Constant	-0.026	-0.349	\mathbf{R}^2	0.237	LMT F(2,61)	1.598	
Δ(LnGDP)	0.810	0.512	Adj. R ²	0.201	LMT F(Prob.)	0.211	
A(LnEXR)	1.618	0.688	F(3,63)	6.540*	BPGT F(3,63)	0.479	
Residuals (-1)	-0.441	-4.322*	F(Prob.)	0.001	BPGT F(Prob.)	0.698	-Incorrect sign for GDP;
			DW	1.723	RESET F(1,62)	2.224	EXR.
			AIC	1.854	RESET F(Prob.)	0.141	
			SC	1.986	JBT χ^2 (2)	4.272	
			LL	-58.123	JBT χ ² (Prob.)	0.118	
QTY	DEPENDENT	VARIABLE: LI	nX/M				
	Coefficient	t-ratio		Diag	gnostic Results		Note:
Constant	-1.287	-3.096*	\mathbf{R}^2	0.253	LMT F(2,60)	0.640	
Δ(LnGDP)	-2.664	-0.813	Adj. R ²	0.217	LMT F(Prob.)	0.531	
Δ(LnEXR)	-2.516	-0.448	F(3,62)	7.018*	BPGT F(2,63)	1.871	
AR(1)	0.526	4.639*	F(Prob.)	0.000	BPGT F(Prob.)	0.162	
			DW	2.109	RESET F(1,61)	2.87***	-Model is mis-specified.
			AIC	3.823	RESET F(Prob.)	0.096	
			SC	3.955	JBT χ^2 (2)	0.901	
			11	- 122.151	$IBT \chi^2$ (Prob.)	0.637	

Table 5 (Continued - Part B): NET EXPORT MODELS - CATEGORY 87* (AUD & QTY)

*Vehicles Other Than Railway or Tramway Rolling-Stock, and Parts and Accessories Thereof DW – Durbin-Watson Statistics; AIS – Akaike Info Criterion; SC – Schwartz Criterion; LL – Log Likelihood; LMT – Lagrange Multiplier (Breusch-Godfrey) Test for Serial Correlation; BPGT – Breusch-Pagan-Godfrey Test for Heteroskedasticity; RESET – Ramsey RESET Test for Model Specification; JBT – Jarques-Bera Test for normality of the residuals; * significant at the 1%, ** significance at 5%, ***significance at 10%

AABFJ | Volume 8, no. 5, 2014

			AUSTRA	LIA - SINGA	PORE		
AUD	DEPENDENT	VARIABLE: A	(LnX/M)				
	Coefficient	t-ratio		Dia	Note:		
Constant	-0.031	-0.669	\mathbf{R}^2	0.463	LMT F(2,52)	2.330	
Δ(LnGDP)	-0.038	-0.032	Adj. R ²	0.394	LMT F(Prob.)	0.107	Pasiduals are not
Δ(LnEXR)	-2.329	-1.209***	F(7,54)	6.656*	BPGT F(6,55)	0.243	normally distributed
Δ(LnMS)	-1.817	-1.349***	F(Prob.)	0.000	BPGT F(Prob.)	0.960	-Incorrect sign for IR
Δ(LnIR)	-1.713	-1.543***	DW	2.139	RESET F(1,53)	0.631	SVR.
Δ(LnSVR)	-0.002	-0.223	AIC	1.486	RESET F(Prob.)	0.430	~
Residuals (-1)	-0.554	-4.356*	SC	1.760	$JBT \chi^2(2)$	59.248*	
AR(1)	-0.332	-2.017**	LL	-38.058	JBT χ² (Prob.)	0.000	
QTY	DEPENDENT	VARIABLE: L	nX/M				
	Coefficient	t-ratio		Dia	nostic Results	1	Note:
Constant	2.873	3.835*	R ²	0.614	LMT F(2,53)	1.064	
Δ(LnGDP)	-2.073	-1.068***	Adj. R ²	0.572	LMT F(Prob.)	0.352	
A(LnEXR)	-5.232	-1.208***	F(6,55)	14.61*	BPGT F(5,56)	0.682	-Model is mis-specified.
A(LnMS)	-0.740	-0.210	F(Prob.)	0.000	BPGT F(Prob.)	0.639	-Incorrect sign for IR;
A(LnIR)	-2.794	-0.908	DW	2.273	RESET F(2,53)	2.77***	SVK.
	-0.033	-1.262***	AIC	3.405	RESET F(Prob.)	0.072	
AK(1)	0.784	8.656*	SC II	3.040	$\frac{JBT}{\chi^2} (2)$	1.014	
				-98.308	JBI 2 (Prob.)	0.440	
			AUSTRA	LIA - THAI	LAND		
AUD	DEPENDENT	VARIABLE: A	LnX/M)				
G () (Coefficient	t-ratio	D ²	Diag	nostic Results	1.014	Note:
Constant	-0.053	-0.536	\mathbf{R}^{-}	0.176	$\frac{\text{LMTF}(2,46)}{\text{LMTF}(2,46)}$	1.914	
A(LnGDP)	-1.555	-0.752	Adj. R ⁻	0.073	LMT F(Prob.)	0.159	
A(LnEAK)	2.206	0.550	F(0,48) F(Brob)	0.120	BPG1 F(0,48)	0.512	-Incorrect sign for EXR;
A(LnNIS)	-2.290	-0.311	F(Prob.)	1 891	DESET E(1.47)	0.796	IR; SVR.
A(Lnik)	-1.811	-1.550***		2.264	RESET F(1,47)	0.890	-Model is not significant.
Bosiduals (1)	-0.171	_1 779***	SC	2.204	$IBT \sim 2(2)$	2 404	
Residuais (-1)	-0.171	-1.779	sc	2.517	JDI ((4)	2.404	
			LL	-55 247	$IBT \gamma^2 (Prob)$	0.301	
ΟΤΥ	DEPENDENT	VARIARLE: L	LL nX/M	-55.247	JBT χ ² (Prob.)	0.301	
QTY	DEPENDENT Coefficient	VARIABLE: L	LL nX/M	-55.247 Dia	JBT χ^2 (Prob.)	0.301	Note:
QTY Constant	DEPENDENT Coefficient -1 609	VARIABLE: L t-ratio	LL nX/M R ²	-55.247 Diag	JBT χ^2 (Prob.) gnostic Results	0.301	Note:
QTY Constant A(LnGDP)	DEPENDENT Coefficient -1.609 0.360	VARIABLE: L t-ratio -1.205*** 0.186	LL nX/M R ² Adi, R ²	-55.247 Diag 0.764 0.734	JBT χ ² (Prob.) mostic Results LMT F(2,45) LMT F(Prob.)	0.301 1.559 0.222	Note:
QTY Constant Δ (LnGDP) Δ (LnEXR)	DEPENDENT Coefficient -1.609 0.360 -4.354	VARIABLE: L t-ratio -1.205*** 0.186 -0.688	LL nX/M R ² Adj. R ² F(6,47)	-55.247 Diag 0.764 0.734 25.42*	JBT χ^2 (Prob.) nostic Results LMT F(2,45) LMT F(Prob.) BPGT F(5,48)	0.301 1.559 0.222 0.283	Note:
QTY Constant Δ (LnGDP) Δ (LnEXR) Δ (LnMS)	DEPENDENT Coefficient -1.609 0.360 -4.354 -5.852	VARIABLE: L t-ratio -1.205*** 0.186 -0.688 -0.969	LL nX/M R ² Adj. R ² F(6,47) F(Prob.)	-55.247 Diag 0.764 0.734 25.42* 0.000	JBT χ^2 (Prob.) mostic Results LMT F(2,45) LMT F(Prob.) BPGT F(5,48) BPGT F(Prob.)	0.301 1.559 0.222 0.283 0.920	Note:
QTY Constant $\Delta(LnGDP)$ $\Delta(LnEXR)$ $\Delta(LnMS)$ $\Delta(LnIR)$	DEPENDENT Coefficient -1.609 0.360 -4.354 -5.852 -1.611	VARIABLE: L t-ratio -1.205*** 0.186 -0.688 -0.969 -0.814	LL nX/M R ² Adj. R ² F(6,47) F(Prob.) DW	-55.247 Diag 0.764 0.734 25.42* 0.000 2.305	JBT χ ² (Prob.) mostic Results LMT F(2,45) LMT F(Prob.) BPGT F(5,48) BPGT F(1,46)	0.301 1.559 0.222 0.283 0.920 2.732	Note: -Incorrect sign for GDP; IR; SVR.
QTY Constant $\Delta(LnGDP)$ $\Delta(LnEXR)$ $\Delta(LnIR)$ LnSVR	DEPENDENT Coefficient -1.609 0.360 -4.354 -5.852 -1.611 -0.765	VARIABLE: L t-ratio -1.205*** 0.186 -0.688 -0.969 -0.814 -2.135**	LL nX/M R ² Adj. R ² F(6,47) F(Prob.) DW AIC	-55.247 Diag 0.764 0.734 25.42* 0.000 2.305 3.343	JBT χ ² (Prob.) postic Results LMT F(2,45) LMT F(Prob.) BPGT F(5,48) BPGT F(1,46 RESET F(1,46	0.301 1.559 0.222 0.283 0.920 2.732 0.105	Note: -Incorrect sign for GDP; IR; SVR.
QTY Constant Δ(LnGDP) Δ(LnEXR) Δ(LnIR) LnSVR AR(1)	DEPENDENT Coefficient -1.609 0.360 -4.354 -5.852 -1.611 -0.765 0.863	VARIABLE: L t-ratio -1.205*** 0.186 -0.688 -0.969 -0.814 -2.135** 10.423*	LL nX/M R ² Adj. R ² F(6,47) F(Prob.) DW AIC SC	-55.247 Diag 0.764 0.734 25.42* 0.000 2.305 3.343 3.601	JBT χ ² (Prob.) nostic Results LMT F(2,45) LMT F(Prob.) BPGT F(5,48) BPGT F(5,48) BPGT F(1,46 RESET F(1,46 RESET F(Prob.) JBT χ ² (2)	0.301 1.559 0.222 0.283 0.920 2.732 0.105 0.237	Note: -Incorrect sign for GDP; IR; SVR.
QTY Constant $\Delta(LnGDP)$ $\Delta(LnEXR)$ $\Delta(LnIR)$ $\Delta(LnIR)$ LnSVR AR(1)	DEPENDENT Coefficient -1.609 0.360 -4.354 -5.852 -1.611 -0.765 0.863	VARIABLE: L t-ratio -1.205*** 0.186 -0.688 -0.969 -0.814 -2.135** 10.423*	LL nX/M R ² Adj. R ² F(6,47) F(Prob.) DW AIC SC LL	-55.247 Diag 0.764 0.734 25.42* 0.000 2.305 3.343 3.601 -83.269	JBT χ² (Prob.) nostic Results LMT F(2,45) LMT F(Prob.) BPGT F(5,48) BPGT F(Prob.) RESET F(1,46 RESET F(Prob.) JBT χ² (2) JBT χ² (Prob.)	0.301 1.559 0.222 0.283 0.920 2.732 0.105 0.237 0.888	Note: -Incorrect sign for GDP; IR; SVR.
QTY Constant Δ(LnGDP) Δ(LnEXR) Δ(LnMS) Δ(LnIR) LnSVR AR(1)	DEPENDENT Coefficient -1.609 0.360 -4.354 -5.852 -1.611 -0.765 0.863	VARIABLE: L t-ratio -1.205*** 0.186 -0.688 -0.969 -0.814 -2.135** 10.423*	LL nX/M R ² Adj, R ² F(6,47) F(Prob.) DW AIC SC LL AUSTRALIA	-55.247 Diag 0.764 0.734 25.42* 0.000 2.305 3.343 3.601 -83.269 - UNITED	JBT χ² (Prob.) nostic Results LMT F(2,45) LMT F(Prob.) BPGT F(5,48) BPGT F(1,46) RESET F(1,46) RESET F(Prob.) JBT χ² (2) JBT χ² (Prob.) CINGDOM	0.301 1.559 0.222 0.283 0.920 2.732 0.105 0.237 0.888	Note: -Incorrect sign for GDP; IR; SVR.
QTY Constant Δ(LnGDP) Δ(LnEXR) Δ(LnIR) LnSVR AR(1) AUD	DEPENDENT Coefficient -1.609 0.360 -4.354 -5.852 -1.611 -0.765 0.863 DEPENDENT	VARIABLE: L t-ratio -1.205*** 0.186 -0.688 -0.969 -0.814 -2.135** 10.423* VARIABLE: L	LL nX/M R ² Adj, R ² F(6,47) F(Prob.) DW AIC SC LL LL AUSTRALIA nX/M	-55.247 Diag 0.764 0.734 25.42* 0.000 2.305 3.343 3.601 -83.269 - UNITED I	JBT χ² (Prob.) gnostic Results LMT F(2,45) LMT F(Prob.) BPGT F(5,48) BPGT F(Prob.) RESET F(1,46 RESET F(Prob.) JBT χ² (2) JBT χ² (Prob.) (INGDOM	0.301 1.559 0.222 0.283 0.920 2.732 0.105 0.237 0.888	Note: -Incorrect sign for GDP; IR; SVR.
QTY Constant $\Delta(LnGDP)$ $\Delta(LnEXR)$ $\Delta(LnIR)$ $\Delta(LnIR)$ LnSVR AR(1) AUD	DEPENDENT Coefficient -1.609 0.360 -4.354 -5.852 -1.611 -0.765 0.863 DEPENDENT Coefficient	VARIABLE: L t-ratio -1.205*** 0.186 -0.688 -0.969 -0.814 -2.135** 10.423* VARIABLE: L t-ratio	LL nX/M R ² Adj. R ² F(6,47) F(Prob.) DW AIC SC LL LL AUSTRALIA nX/M	-55.247 Diag 0.764 0.734 25.42* 0.000 2.305 3.343 3.601 -83.269 - UNITED I	JBT χ² (Prob.) anostic Results LMT F(2,45) LMT F(Prob.) BPGT F(5,48) BPGT F(7rob.) RESET F(1,46 RESET F(Prob.) JBT χ² (2) JBT χ² (Prob.) KINGDOM	0.301 1.559 0.222 0.283 0.920 2.732 0.105 0.237 0.888	Note: -Incorrect sign for GDP; IR; SVR. Note:
QTY Constant $\Delta(LnGDP)$ $\Delta(LnEXR)$ $\Delta(LnNS)$ $\Delta(LnIR)$ LnSVR AR(1) AUD Constant	DEPENDENT Coefficient -1.609 0.360 -4.354 -5.852 -1.611 -0.765 0.863 DEPENDENT Coefficient -2.463	VARIABLE: L t-ratio -1.205*** 0.186 -0.688 -0.969 -0.814 -2.135** 10.423* VARIABLE: L t-ratio -13.987*	LL nX/M R ² Adj. R ² F(6,47) F(Prob.) DW AIC SC LL AUSTRALIA nX/M R ²	-55.247 Dia; 0.764 0.734 25.42* 0.000 2.305 3.343 3.601 -83.269 - UNITED I Dia; 0.553	JBT χ² (Prob.) anostic Results LMT F(2,45) LMT F(Prob.) BPGT F(5,48) BPGT F(Prob.) RESET F(1,46 RESET F(Prob.) JBT χ² (2)	0.301 1.559 0.222 0.283 0.920 2.732 0.105 0.237 0.888 3.972**	Note: -Incorrect sign for GDP; IR; SVR. Note:
QTY Constant Δ(LnGDP) Δ(LnEXR) Δ(LnIR) LnSVR AR(1) Constant Δ(LnGDP)	DEPENDENT Coefficient -1.609 0.360 -4.354 -5.852 -1.611 -0.765 0.863 DEPENDENT Coefficient -2.463 -0.982	VARIABLE: L t-ratio -1.205*** 0.186 -0.688 -0.969 -0.814 -2.135** 10.423* VARIABLE: L t-ratio -13.987* -1.415***	LL nX/M R ² F(6,47) F(Prob.) DW AIC SC LL AUSTRALIA NX/M R ² Adj. R ²	-55.247 Dia; 0.764 0.734 25.42* 0.000 2.305 3.343 3.601 -83.269 - UNITED I Dia; 0.553 0.508	JBT χ² (Prob.) gnostic Results LMT F(2,45) LMT F(Prob.) BPGT F(5,48) BPGT F(Prob.) RESET F(1,46 RESET F(Prob.) JBT χ² (2) LMT F(2,57) LMT F(Prob.)	0.301 1.559 0.222 0.283 0.920 2.732 0.105 0.237 0.888 3.972** 0.024	Note: -Incorrect sign for GDP; IR; SVR. Note: -Residuals are serially
QTY Constant $\Delta(LnGDP)$ $\Delta(LnEXR)$ $\Delta(LnIR)$ LnSVR AR(1) AUD Constant $\Delta(LnGDP)$ $\Delta(LnEXR)$	DEPENDENT Coefficient -1.609 0.360 -4.354 -5.852 -1.611 -0.765 0.863 DEPENDENT Coefficient -2.463 -0.982 -0.321	VARIABLE: L t-ratio -1.205*** 0.186 -0.688 -0.969 -0.814 -2.135** 10.423* VARIABLE: L t-ratio -13.987* -1.415*** -0.129	LL nX/M R ² Adj, R ² F(6,47) F(Prob.) DW AIC SC LL AUSTRALIA nX/M R ² Adj, R ² F(6,59)	-55.247 Dia; 0.764 0.734 25.42* 0.000 2.305 3.343 3.601 -83.269 - UNITED 1 Dia; 0.553 0.553 0.508 12.18*	JBT χ² (Prob.) gnostic Results LMT F (2,45) LMT F (Prob.) BPGT F (5,48) BPGT F (Prob.) RESET F (Prob.) JBT χ² (2) JBT χ² (Prob.) BPGT F (7,50) BPGT F (5,60)	0.301 1.559 0.222 0.283 0.920 2.732 0.105 0.237 0.888 3.972** 0.024 1.199	Note: -Incorrect sign for GDP; IR; SVR. Note: -Residuals are serially correlated.
QTY Constant $\Delta(LnGDP)$ $\Delta(LnEXR)$ $\Delta(LnIR)$ LnSVR AR(1) AUD Constant $\Delta(LnGDP)$ $\Delta(LnEXR)$ $\Delta(LnMS)$	DEPENDENT Coefficient -1.609 0.360 -4.354 -5.852 -1.611 -0.765 0.863 DEPENDENT Coefficient -2.463 -0.982 -0.321 -0.971	VARIABLE: L t-ratio -1.205*** 0.186 -0.688 -0.969 -0.814 -2.135** 10.423* VARIABLE: L t-ratio -1.3.987* -1.415*** -0.129 -0.385	LL nX/M R ² Adj, R ² F(6,47) F(Prob.) DW AIC SC LL AUSTRALIA nX/M R ² Adj, R ² F(6,59) F(Prob.)	-55.247 Diag 0.764 0.734 25.42* 0.000 2.305 3.343 3.601 -83.269 - UNITED 1 Diag 0.553 0.558 0.558 12.18* 0.000	JBT χ² (Prob.) nostic Results LMT F (2,45) LMT F (Prob.) BPGT F (5,48) BPGT F (Frob.) RESET F (Prob.) JBT χ² (2) JBT χ² (2) JBT χ² (Prob.) CINGDOM Rostic Results LMT F (2,57) LMT F (Prob.) BPGT F (5,60) BPGT F (Prob.)	0.301 1.559 0.222 0.283 0.920 2.732 0.105 0.237 0.288 3.972** 0.024 1.199 0.321	Note: -Incorrect sign for GDP; IR; SVR. Note: -Residuals are serially correlated. -Model is mis-specified.
QTY Constant $\Delta(LnGDP)$ $\Delta(LnEXR)$ $\Delta(LnIR)$ LnSVR AR(1) Constant $\Delta(LnGDP)$ $\Delta(LnEXR)$ $\Delta(LnMS)$ $\Delta(LnIR)$	DEPENDENT Coefficient -1.609 0.360 -4.354 -5.852 -1.611 -0.765 0.863 DEPENDENT Coefficient -2.463 -0.982 -0.321 -0.971 0.313	VARIABLE: L t-ratio -1.205*** 0.186 -0.688 -0.969 -0.814 -2.135** 10.423* VARIABLE: L t-ratio -13.987* -1.415*** -0.129 -0.385 0.399	LL nX/M R ² Adj, R ² F(6,47) F(Prob.) DW AIC SC LL AUSTRALIA nX/M R ² Adj, R ² F(6,59) F(Prob.) DW	-55.247 Diag 0.764 0.734 25.42* 0.000 2.305 3.343 3.601 -83.269 - UNITED I Diag 0.553 0.553 0.508 12.18* 0.000 2.400	JBT χ² (Prob.) gnostic Results LMT F(2,45) LMT F(Prob.) BPGT F(5,48) BPGT F(1,46 RESET F(1,46 RESET F(Prob.) JBT χ² (2) JBT ζ² (3) INGDOM coostic Results LMT F(2,57) LMT F(Prob.) BPGT F(5,60) BPGT F(Prob.) RESET F(Prob.) RESET F(1,58)	0.301 1.559 0.222 0.283 0.920 2.732 0.105 0.237 0.888 3.972** 0.024 1.199 0.321 10.496*	Note: -Incorrect sign for GDP; IR; SVR. Note: -Residuals are serially correlated. -Model is mis-specified. -Residuals are not
QTY Constant Δ(LnGDP) Δ(LnEXR) Δ(LnIR) LnSVR AR(1) Constant Δ(LnGDP) Δ(LnEXR) Δ(LnRN) LnSVR	DEPENDENT Coefficient -1.609 0.360 -4.354 -5.852 -1.611 -0.765 0.863 DEPENDENT Coefficient -2.463 -0.982 -0.321 -0.971 0.313 0.016	VARIABLE: L t-ratio -1.205*** 0.186 -0.688 -0.969 -0.814 -2.135** 10.423* VARIABLE: L t-ratio -13.987* -1.415*** -0.129 -0.385 0.399 2.258**	LL nX/M R ² Adj. R ² F(6,47) F(Prob.) DW AIC SC LL SC LL AUSTRALIA nX/M R ² F(6,59) F(Prob.) DW AIC	-55.247 Dia; 0.764 0.734 25.42* 0.000 2.305 3.343 3.601 -83.269 - UNITED I Dia; 0.553 0.508 12.18* 0.000 2.400 1.130	JBT χ² (Prob.) nostic Results LMT F(2,45) LMT F(Prob.) BPGT F(5,48) BPGT F(Prob.) RESET F(1,46 RESET F(Prob.) JBT χ² (2) JBT ζ² (2) BGT F(Prob.) RESET F(1,58) RESET F(1,58) RESET F(Prob.)	0.301 1.559 0.222 0.283 0.920 2.732 0.105 0.237 0.888 3.972** 0.024 1.199 0.321 10.496* 0.002	Note: -Incorrect sign for GDP; IR; SVR. Note: -Residuals are serially correlated. -Model is mis-specified. -Residuals are not normally distributed.
QTY Constant Δ(LnGDP) Δ(LnEXR) Δ(LnIR) LnSVR AR(1) Constant Δ(LnGDP) Δ(LnGDP) Δ(LnEXR) Δ(LnGDP) Δ(LnEXR) Δ(LnNS) Δ(LnNS) Δ(LnNR) LnSVR	DEPENDENT Coefficient -1.609 0.360 -4.354 -5.852 -1.611 -0.765 0.863 DEPENDENT Coefficient -2.463 -0.982 -0.321 -0.971 0.313 0.016 0.710	VARIABLE: L t-ratio -1.205*** 0.186 -0.688 -0.969 -0.814 -2.135** 10.423* VARIABLE: L t-ratio -13.987* -1.415*** -0.129 -0.385 0.399 2.258** 7.620*	LL nX/M R ² F(6,47) F(Prob.) DW AIC SC LL AUSTRALIA NX/M R ² F(6,59) F(Prob.) DW AIC SC	-55.247 Dia; 0.764 0.734 25.42* 0.000 2.305 3.343 3.601 -83.269 - UNITED I Dia; 0.553 0.508 12.18* 0.000 2.400 1.130 1.362	JBT χ² (Prob.) gnostic Results LMT F(2,45) LMT F(Prob.) BPGT F(5,48) BPGT F(Prob.) RESET F(1,46 RESET F(Prob.) JBT χ² (2) JBT ζ² (2) BCT F(Prob.) RESET F(1,58) RESET F(1,58) RESET F(Prob.) JBT χ² (2)	0.301 1.559 0.222 0.283 0.920 2.732 0.105 0.237 0.888 3.972** 0.024 1.199 0.321 10.496* 0.002 6.666**	Note: -Incorrect sign for GDP; IR; SVR. Note: -Residuals are serially correlated. -Model is mis-specified. -Residuals are not normally distributed.
QTY Constant Δ(LnGDP) Δ(LnEXR) Δ(LnNS) Δ(LnNS) Δ(LnIR) LnSVR AR(1) Constant Δ(LnGDP) Δ(LnGDP) Δ(LnEXR) Δ(LnIRS) Δ(LnIR) LnSVR AR(1)	DEPENDENT Coefficient -1.609 0.360 -4.354 -5.852 -1.611 -0.765 0.863 DEPENDENT Coefficient -2.463 -0.982 -0.321 -0.971 0.313 0.016	VARIABLE: L t-ratio -1.205*** 0.186 -0.688 -0.969 -0.814 -2.135** 10.423* VARIABLE: L t-ratio -13.987* -1.415*** -0.129 -0.385 0.399 2.258** 7.620*	LL nX/M R ² Adj, R ² F(6,47) F(Prob.) DW AIC SC LL AUSTRALIA nX/M R ² Adj, R ² F(6,59) F(Prob.) DW AIC SC LL	-55.247 Dia; 0.764 0.734 25.42* 0.000 2.305 3.343 3.601 -83.269 - UNITED I Dia; 0.553 0.508 12.18* 0.000 2.400 0.1.130 1.362 -30.291	JBT χ² (Prob.) gnostic Results LMT F(2,45) LMT F(Prob.) BPGT F(5,48) BPGT F(Prob.) RESET F(Prob.) JBT χ² (2) JBT χ² (Prob.) Reset F(Prob.) BPGT F(5,60) BPGT F(7,56) BPGT F(1,58) RESET F(Prob.) JBT χ² (2)	0.301 1.559 0.222 0.283 0.920 2.732 0.105 0.237 0.888 3.972** 0.024 1.199 0.321 10.496* 0.002 6.666** 0.036	Note: -Incorrect sign for GDP; IR; SVR. Note: -Residuals are serially correlated. -Model is mis-specified. -Residuals are not normally distributed.
QTY Constant Δ(LnGDP) Δ(LnEXR) Δ(LnIR) LnSVR AR(1) Constant Δ(LnGDP) Δ(LnGDP) Δ(LnGDP) Δ(LnGDP) Δ(LnRSR) Δ(LnIR) LnSVR Δ(LnIR) QTY	DEPENDENT Coefficient -1.609 0.360 -4.354 -5.852 -1.611 -0.765 0.863 - DEPENDENT Coefficient -2.463 -0.982 -0.321 -0.971 0.313 0.016 0.710	VARIABLE: L t-ratio -1.205*** 0.186 -0.688 -0.969 -0.814 -2.135** 10.423* VARIABLE: L t-ratio -13.987* -1.415*** -0.129 -0.385 0.399 2.258** 7.620* VARIABLE: L	LL nX/M R ² Adj. R ² F(6,47) F(Prob.) DW AIC SC LL AUSTRALIA nX/M R ² Adj. R ² F(6,59) F(Prob.) DW AIC SC LL SC LL N/M	-55.247 Dia; 0.764 0.734 25.42* 0.000 2.305 3.343 3.601 -83.269 - UNITED 1 Dia; 0.553 0.553 0.558 12.18* 0.000 2.400 1.130 1.362 -30.291	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	0.301 1.559 0.222 0.283 0.920 2.732 0.105 0.237 0.888 3.972** 0.024 1.199 0.321 10.496* 0.002 6.666** 0.036	Note: -Incorrect sign for GDP; IR; SVR. Note: -Residuals are serially correlated. -Model is mis-specified. -Residuals are not normally distributed.
QTY Constant $\Delta(LnGDP)$ $\Delta(LnEXR)$ $\Delta(LnIR)$ LnSVR AR(1) Constant $\Delta(LnIR)$ $\Delta(LnGDP)$ $\Delta(LnEXR)$ $\Delta(LnMS)$ $\Delta(LnIR)$ LnSVR AR(1) — — — — — — — — — — — — —	DEPENDENT Coefficient -1.609 0.360 -4.354 -5.852 -1.611 -0.765 0.863 Operation Coefficient -2.463 -0.982 -0.321 -0.971 0.313 0.016 0.710 DEPENDENT	VARIABLE: L t-ratio -1.205*** 0.186 -0.688 -0.969 -0.814 -2.135** 10.423* VARIABLE: L t-ratio -13.987* -1.415*** -0.129 -0.385 0.399 2.258** 7.620* VARIABLE: L t-ratio	LL nX/M R ² Adj, R ² F(6,47) F(Prob.) DW AIC SC LL AUSTRALIA nX/M R ² Adj, R ² F(6,59) F(Prob.) DW AIC SC LL DW AIC	-55.247 Diag 0.764 0.734 25.42* 0.000 2.305 3.343 3.601 -83.269 - UNITED I Diag 0.553 0.508 12.18* 0.000 2.400 1.130 2.400 1.362 -30.291 Diag	JBT χ² (Prob.) nostic Results LMT F (2,45) LMT F (Prob.) BPGT F (5,48) BPGT F (Frob.) RESET F (Prob.) JBT χ² (2) JBT χ² (Prob.) CINGDOM Rostic Results LMT F (2,57) LMT F (Prob.) BPGT F (5,60) BPGT F (5,56) BPGT F (5,58) RESET F (1,58) RESET F (Prob.) JBT χ² (2) JBT χ² (2) JBT χ² (Prob.)	0.301 1.559 0.222 0.283 0.920 2.732 0.105 0.237 0.888 3.972** 0.024 1.199 0.321 10.496* 0.002 6.666** 0.036	Note: -Incorrect sign for GDP; IR; SVR. Note: -Residuals are serially correlated. -Model is mis-specified. -Residuals are not normally distributed. Note:
QTY Constant $\Delta(LnGDP)$ $\Delta(LnEXR)$ $\Delta(LnIR)$ LnSVR AR(1) Constant $\Delta(LnIR)$ $\Delta(LnEXR)$ $\Delta(LnIR)$ $\Delta(LnIR)$ LnSVR AR(1) Constant $\Delta(LnIR)$ $\Delta($	DEPENDENT Coefficient -1.609 0.360 -4.354 -5.852 -1.611 -0.765 0.863 DEPENDENT Coefficient -2.463 -0.982 -0.321 -0.313 0.016 0.710 DEPENDENT Coefficient -3.170	VARIABLE: L t-ratio -1.205*** 0.186 -0.688 -0.969 -0.814 -2.135** 10.423* VARIABLE: L t-ratio -13.987* -1.415*** -0.129 -0.385 0.399 2.258** 7.620* VARIABLE: L t-ratio -4.058*	LL nX/M R ² Adj. R ² F(6,47) F(Prob.) DW AIC SC LL AUSTRALIA nX/M R ² Adj. R ² F(6,59) F(Prob.) DW AIC SC LL NX/M R ²	-55.247 Dia; 0.764 0.734 25.42* 0.000 2.305 3.343 3.601 -83.269 - UNITED I Dia; 0.553 0.508 12.18* 0.000 2.400 1.130 1.362 -30.291 Dia; 0.596	JBT χ^2 (Prob.) gnostic Results LMT F(2,45) LMT F(Prob.) BPGT F(5,48) BPGT F(5,48) BPGT F(Prob.) RESET F(1,46 RESET F(Prob.) JBT χ^2 (2) JBT χ^2 (Prob.) CINGDOM mostic Results LMT F(2,57) LMT F(Prob.) BPGT F(5,60) BPGT F(5,60) BPGT F(5,60) BPGT F(1,58) RESET F(1,58) RESET F(1,58) RESET F(Prob.) JBT χ^2 (2)	0.301 1.559 0.222 0.283 0.920 2.732 0.105 0.237 0.237 0.888 3.972** 0.024 1.199 0.321 10.496* 0.002 6.666** 0.036 3.787**	Note: -Incorrect sign for GDP; IR; SVR. -Residuals are serially correlated. -Model is mis-specified. -Residuals are not normally distributed. Note:
QTY Constant $\Delta(LnGDP)$ $\Delta(LnEXR)$ $\Delta(LnIR)$ LnSVR AR(1) Constant $\Delta(LnGDP)$ $\Delta(LnIR)$ LnSVR $\Delta(LnIR)$ LnSVR $\Delta(LnIR)$ $\Delta(LnIR)$ LnSVR $\Delta(LnIR)$ $\Delta(LnGDP)$ $\Delta(LnGDP)$ $\Delta(LnGDP)$ $\Delta(LnGDP)$ $\Delta(LnGDP)$	DEPENDENT Coefficient -1.609 0.360 -4.354 -5.852 -1.611 -0.765 0.863 DEPENDENT Coefficient -2.463 -0.982 -0.321 -0.971 0.313 0.016 0.710 DEPENDENT Coefficient -3.170 1.586 12.520	VARIABLE: L t-ratio -1.205*** 0.186 -0.688 -0.969 -0.814 -2.135** 10.423* VARIABLE: L t-ratio -13.987* -1.415*** -0.129 -0.385 0.399 2.258** 7.620* VARIABLE: L t-ratio -4.058* 0.650 1.405**	LL nX/M R ² Adj. R ² F(6,47) F(Prob.) DW AIC SC LL AUSTRALIA nX/M R ² F(6,59) F(Prob.) DW AIC SC LL DW AIC SC LL L R ² F(6,59) F(Prob.) DW AIC SC LL DW AIC SC LL DC C SC LL DC C SC C C LL C C C C C C C C C C C C C	-55.247 Dia; 0.764 0.734 25.42* 0.000 2.305 3.343 3.601 -83.269 - UNITED I Dia; 0.553 0.508 12.18* 0.000 2.400 1.130 1.362 -30.291 Dia; 0.555 0.556 0.555	JBT χ^2 (Prob.) nostic Results LMT F(2,45) LMT F(Prob.) BPGT F(Prob.) RESET F(1,46 RESET F(Prob.) JBT χ^2 (2) JBT χ^2 (2) JBT χ^2 (2) JBT χ^2 (Prob.) cmostic Results LMT F(2,57) LMT F(Prob.) BPGT F(5,60) BPGT F(Frob.) RESET F(1,58) RESET F(1,58) RESET F(1,58) RESET F(Prob.) JBT χ^2 (Prob.) JBT χ^2 (Prob.) JBT χ^2 (Prob.) DBT χ^2 (Prob.) DBT χ^2 (Prob.)	0.301 1.559 0.222 0.283 0.920 2.732 0.105 0.237 0.888 3.972** 0.024 1.199 0.321 10.496* 0.002 6.666** 0.003 3.787** 0.029 0.105 0.237 0.321 0.036 0.321 0.036 0.321 0.036 0.321 0.036 0.036 0.321 0.036 0.321 0.036 0.036 0.321 0.036 0.321 0.036 0.036 0.036 0.036 0.321 0.036 0.025 0	Note: -Incorrect sign for GDP; IR; SVR. Note: -Residuals are serially correlated. -Model is mis-specified. -Residuals are not normally distributed. Note: -Residuals are serially
QTY Constant Δ(LnGDP) Δ(LnEXR) Δ(LnNS) Δ(LnIR) LnSVR AR(1) Constant Δ(LnGDP) Δ(LnEXR) Δ(LnEXR) Δ(LnEXR) Δ(LnIR) LnSVR Δ(LnIR) LnSVR Δ(LnIR) LnSVR Δ(LnIR) LnSVR Δ(LnGDP) Δ(LnEXR)	DEPENDENT Coefficient -1.609 0.360 -4.354 -5.852 -1.611 -0.765 0.863 DEPENDENT Coefficient -2.463 -0.982 -0.321 -0.971 0.313 0.016 0.710 DEPENDENT Coefficient -3.170 1.586 -12.349 -7.27	VARIABLE: L t-ratio -1.205*** 0.186 -0.688 -0.969 -0.814 -2.135** 10.423* VARIABLE: L t-ratio -13.987* -1.415*** -0.129 -0.385 0.399 2.258** 7.620* VARIABLE: L t-ratio -4.058* 0.650 -1.402***	LL nX/M R ² Adj, R ² F(6,47) F(Prob.) DW AIC SC LL AUSTRALIA aUSTRALIA NX/M R ² F(6,59) F(Prob.) DW AIC SC LL NZ R R Adj, R ² F(6,59) F(Prob.) DW AIC SC LL R AIC SC LL DW AIC SC LL DW AIC SC F(6,59) F(6,59) F(6,59) R ² F(6,59) F(6,59) R ² Adj, R ² F(6,59) R ² F(6,59) C LL DW AIC SC SC LL DW AIC SC SC LL DW AIC SC SC LL DW AIC SC SC LL DW AIC SC SC LL DW AIC SC SC LL DW AIC SC SC LL DA SC SC LL AIC SC SC LL AIC SC SC LL AIC SC SC SC SC SC SC SC SC SC SC SC SC SC	-55.247 Dia; 0.764 0.734 25.42* 0.000 2.305 3.343 3.601 -83.269 - UNITED I Dia; 0.553 0.508 12.18* 0.000 2.400 1.130 1.362 -30.291 Dia; 0.555 14.51*	JBT χ² (Prob.) gnostic Results LMT F(2,45) LMT F(Prob.) BPGT F(5,48) BPGT F(Prob.) RESET F(1,46 RESET F(1,46) JBT χ² (2) BPGT F(5,60) BPGT F(5,60) BBT χ² (2) JBT ζ JBT ζ BPGT F(5,60) DPGT F(5,60) DPGT F(5,60)	0.301 1.559 0.222 0.283 0.920 2.732 0.105 0.237 0.888 3.972** 0.024 1.199 0.321 10.496* 0.002 6.666** 0.036 3.787** 0.029 0.418 0.021	Note: -Incorrect sign for GDP; IR; SVR. Note: -Residuals are serially correlated. -Model is mis-specified. -Model is mis-specified. -Residuals are not normally distributed. Note: -Residuals are serially correlated.
QTY Constant Δ(LnGDP) Δ(LnEXR) Δ(LnIR) LnSVR AR(1) Constant Δ(LnGDP) Δ(LnGDP) Δ(LnGDP) Δ(LnGDP) Δ(LnEXR) Δ(LnIR) LnSVR AR(1) Constant Δ(LnIR) LnSVR AR(1) QTY Constant Δ(LnGDP) Δ(LnEXR) Δ(LnMS) Δ(LnMS)	DEPENDENT Coefficient -1.609 0.360 -4.354 -5.852 -1.611 -0.765 0.863 DEPENDENT Coefficient -2.463 -0.982 -0.321 -0.971 0.313 0.016 0.710 DEPENDENT Coefficient -3.170 1.586 -12.349 7.167 2.661	VARIABLE: L t-ratio -1.205*** 0.186 -0.688 -0.969 -0.814 -2.135** 10.423* VARIABLE: L t-ratio -13.987* -1.415*** -0.129 -0.385 0.399 2.258** 7.620* VARIABLE: L t-ratio -4.058* 0.650 -1.402*** 0.804 1.202***	LL nX/M R ² Adj, R ² F(6,47) F(Prob.) DW AIC SC LL AUSTRALIA nX/M R ² Adj, R ² F(6,59) F(Prob.) DW AIC SC LL NX/M R ² Adj, R ² F(6,59) F(Prob.) DW AIC SC LL NX/M	-55.247 Dia; 0.764 0.734 25.42* 0.000 2.305 3.343 3.601 -83.269 - UNITED I Dia; 0.553 0.508 12.18* 0.000 2.400 1.130 1.362 -30.291 Dia; 0.555 14.51* 0.000	JBT χ² (Prob.) gnostic Results LMT F(2,45) LMT F(Prob.) BPGT F(5,48) BPGT F(Prob.) RESET F(Prob.) JBT χ² (2) BPGT F(2,57) LMT F(Prob.) BPGT F(1,58) RESET F(1,58) RESET F(Prob.) JBT χ² (2) JBT χ² (Prob.) BPGT F(Prob.) BPGT F(5,60) BPGT F(7,60) BPGT F(2,57)	0.301 1.559 0.222 0.283 0.920 2.732 0.105 0.237 0.888 3.972** 0.024 1.199 0.321 10.496* 0.002 6.666** 0.036 3.787** 0.029 0.418 0.834 0.155	Note: -Incorrect sign for GDP; IR; SVR. Note: -Residuals are serially correlated. -Model is mis-specified. -Residuals are not normally distributed. Note: -Residuals are serially correlated. -Incorrect sign for GDP;
QTY Constant $\Delta(LnGDP)$ $\Delta(LnEXR)$ $\Delta(LnIR)$ LnSVR AR(1) Constant $\Delta(LnIR)$ $\Delta(LnIR)$ $\Delta(LnEXR)$ $\Delta(LnMS)$ $\Delta(LnIR)$ LnSVR AR(1) Constant $\Delta(LnGDP)$ $\Delta(LnEXR)$ $\Delta(LnGDP)$ $\Delta(LnEXR)$ $\Delta(LnIR)$ $\Delta(LnIR)$ $\Delta(LnIR)$ $\Delta(LnIR)$ $\Delta(LnIR)$ $\Delta(LnIR)$	DEPENDENT Coefficient -1.609 0.360 -4.354 -5.852 -1.611 -0.765 0.863 -0 -0.863 -0.982 -0.982 -0.313 0.016 0.710 DEPENDENT Coefficient -3.170 DEPENDENT -1.586 -12.349 7.167 -3.625 0.009	VARIABLE: L t-ratio -1.205*** 0.186 -0.688 -0.969 -0.814 -2.135** 10.423* VARIABLE: L t-ratio -13.987* -1.415*** -0.129 -0.385 0.399 2.258** 7.620* VARIABLE: L t-ratio -4.058* 0.650 -1.402*** 0.804 -1.303***	LL nX/M R ² Adj. R ² F(6,47) F(Prob.) DW AIC SC LL AUSTRALIA nX/M R ² Adj. R ² F(6,59) F(Prob.) DW AIC SC LL NX/M R ² Adj. R ² F(6,59) F(Prob.) DW AIC SC LL LL nX/M	-55.247 Dia; 0.764 0.734 25.42* 0.000 2.305 3.343 3.601 -83.269 - UNITED 1 Dia; 0.553 0.508 12.18* 0.000 2.400 1.130 1.362 -30.291 Dia; 0.555 14.51* 0.000 2.482 2.707	JBT χ^2 (Prob.) gnostic Results LMT F (2,45) LMT F (Prob.) BPGT F(5,48) BPGT F(Prob.) RESET F(Prob.) JBT χ^2 (2) JBT χ^2 (2) JBT χ^2 (Prob.) ROBERT F(Prob.) RESET F(Prob.) BPGT F(5,60) BPGT F(7rob.) RESET F(Prob.) BFGT F(5,60) BPGT F(7rob.) RESET F(Prob.) JBT χ^2 (Prob.) BTT χ^2 (2) JBT χ^2 (2) JBT χ^2 (Prob.) BTT χ^2 (Prob.) BFGT F(5,60) BPGT F(5,60) </td <td>0.301 1.559 0.222 0.283 0.920 2.732 0.105 0.237 0.888 3.972** 0.024 1.199 0.321 10.496* 0.002 6.666** 0.0036 3.787** 0.029 0.418 0.834 0.150 0.700</td> <td>Note: -Incorrect sign for GDP; IR; SVR. Note: -Residuals are serially correlated. -Model is mis-specified. -Residuals are not normally distributed. Note: -Residuals are serially correlated. -Residuals are serially correlated. -Residuals are serially correlated. Note:</td>	0.301 1.559 0.222 0.283 0.920 2.732 0.105 0.237 0.888 3.972** 0.024 1.199 0.321 10.496* 0.002 6.666** 0.0036 3.787** 0.029 0.418 0.834 0.150 0.700	Note: -Incorrect sign for GDP; IR; SVR. Note: -Residuals are serially correlated. -Model is mis-specified. -Residuals are not normally distributed. Note: -Residuals are serially correlated. -Residuals are serially correlated. -Residuals are serially correlated. Note:
QTY Constant Δ(LnGDP) Δ(LnEXR) Δ(LnIR) LnSVR Δ(LnIR) Constant Δ(LnGDP) Δ(LnEXR) Δ(LnBXR) Δ(LnBXR) Δ(LnBXR) Δ(LnIR) LnSVR Δ(LnRS) Δ(LnBS) Δ(LnBS) Δ(LnBS) Δ(LnBS) Δ(LnBXR) Δ(LnMS) Δ(LnBXR) Δ(LnMS) Δ(LnS) Δ(LnBS) Δ(LnBS) Δ(LnS) Δ(LnS) Δ(LnS) Δ(LnS)	DEPENDENT Coefficient -1.609 0.360 -4.354 -5.852 -1.611 -0.765 0.863 DEPENDENT Coefficient -2.463 -0.982 -0.321 -0.313 0.016 0.710 DEPENDENT Coefficient -3.170 1.586 -12.349 7.167 -3.625 0.008	VARIABLE: L t-ratio -1.205*** 0.186 -0.688 -0.969 -0.814 -2.135** 10.423* VARIABLE: L t-ratio -13.987* -1.415*** -0.129 -0.385 0.399 2.258** 7.620* VARIABLE: L t-ratio -4.058* 0.650 -1.402*** 0.804 -1.303*** 0.330 8.031*	LL nX/M R ² Adj, R ² F(6,47) F(Prob.) DW AIC SC LL AUSTRALIA nX/M R ² Adj, R ² F(6,59) F(Prob.) DW AIC SC LL nX/M R ² Adj, R ² F(6,59) F(Prob.) DW AIC SC LL NX/M	-55.247 Dia; 0.764 0.734 25.42* 0.000 2.305 3.343 3.601 -83.269 - UNITED I Dia; 0.553 0.508 12.18* 0.000 2.400 1.130 1.362 -30.291 Dia; 0.556 0.555 14.51* 0.000 2.482 3.707 2.020	JBT χ^2 (Prob.) nostic Results LMT F (2,45) LMT F (Prob.) BPGT F (5,48) BPGT F (5,48) BPGT F (Prob.) RESET F (1,46 RESET F (Prob.) JBT χ^2 (2) JBT χ^2 (Prob.) INGDOM nostic Results LMT F (2,57) LMT F (Prob.) BPGT F (5,60) BPGT F (5,50) RESET F (1,58) RESET F (Prob.) JBT χ^2 (Prob.) JBT χ^2 (2) JBT χ^2 (2) JBT χ^2 (2) BGT F (5,60) BPGT F (5,60) BPGT F (Frob.) BBGT F (5,60) BPGT F (7,60) BPGT F (7,60) BPGT F (1,58) RESET F (Prob.) BEGT F (2,57) LMT F (2,57) LMT F (2,57) LMT F (2,57) LMT F (2,57) RESET F	0.301 1.559 0.222 0.283 0.920 2.732 0.105 0.237 0.888 3.972** 0.024 1.199 0.321 10.496* 0.002 6.666** 0.036 3.787** 0.029 0.418 0.834 0.150 0.700 0.404	Note: -Incorrect sign for GDP; IR; SVR. -Residuals are serially correlated. -Residuals are not normally distributed. Note: -Residuals are serially correlated. -Residuals are serially correlated. -Incorrect sign for GDP; MS; IR

Table 5 (Continued - Part C): NET EXPORT MODELS - CATEGORY 87* (AUD & QTY)

 LL
 -115.7
 JBT 2* (Prob.)
 0.817

 *Vehicles Other Than Railway or Tramway Rolling-Stock, and Parts and Accessories Thereof
 0.817

 DW – Durbin-Watson Statistics; AIS – Akaike Info Criterion; SC – Schwartz Criterion; LL – Log Likelihood; LMT – Lagrange Multiplier (Breusch-Godfrey)

 Test for Serial Correlation; BPGT – Breusch-Pagan-Godfrey Test for Heteroskedasticity; RESET – Ramsey RESET Test for Model Specification; JBT – Jarques-Bera Test for normality of the residuals; * significant at the 1%, ** significance at 5%, ***significance at 10%

AUSTRALIA - UNITED STATES										
AUD DEPENDENT VARIABLE: LnX/M										
	Coefficient	Note:								
Constant	-0.858	-4.239*	R ²	0.633	LMT F(2,53)	0.148				
Δ(LnGDP)	-2.784	-4.065*	Adj. R ²	0.593	LMT F(Prob.)	0.863				
Δ(LnEXR)	-0.947	-0.326	F(6,55)	15.84*	BPGT F(5,56)	0.966				
Δ(LnMS)	-3.556	-1.252***	F(Prob.)	0.000	BPGT F(Prob.)	0.446	Model is mis specified			
Δ(LnIR)	1.093	1.339***	DW	1.932	RESET F(1,54)	5.446**	-woder is mis-specified.			
LnSVR	0.013	1.852**	AIC	1.032	RESET F(Prob.)	0.023				
AR(1)	0.749	8.365*	SC	1.272	JBT χ^2 (2)	0.514				
			LL	-24.995	JBT χ ² (Prob.)	0.773				
QTY	DEPENDENT	VARIABLE: LI	nX/M							
	Coefficient	t-ratio		Diag	gnostic Results		Note:			
Constant	0.079	0.234	R ²	0.482	LMT F(2,53)	2.81***				
Δ(LnGDP)	1.014	0.742	Adj. R ²	0.425	LMT F(Prob.)	0.069	-Residuals are serially			
Δ(LnEXR)	3.220	0.557	F(6,55)	8.517*	BPGT F(5,56)	1.566	correlated.			
Δ(LnMS)	0.310	0.055	F(Prob.)	0.000	BPGT F(Prob.)	0.185	-Residuals are not			
Δ(LnIR)	-0.713	-0.444	DW	2.009	RESET F(1,54)	1.223	Incorrect sign for CDP:			
LnSVR	-0.005	-0.397	AIC	2.353	RESET F(Prob.)	0.274	FXR·MS·IR·SVR			
AR(1)	0.703	7.268*	SC	2.593	JBT χ^2 (2)	6.819**	Lan, mo, m, ovn.			
			LL	-65.952	JBT χ^2 (Prob.)	0.033				

Table 5 (Continued - Part D): NET EXPORT MODELS - CATEGORY 87* (AUD & QTY)

Vehicles Other Than Railway or Tramway Rolling-Stock, and Parts and Accessories Thereof DW – Durbin-Watson Statistics; AIS – Akaike Info Criterion; SC – Schwartz Criterion; LL – Log Likelihood; LMT – Lagrange Multiplier (Breusch-Godfrey) Test for Serial Correlation; BPGT – Breusch-Pagan-Godfrey Test for Heteroskedasticity; RESET – Ramsey RESET Test for Model Specification; JBT – Jarques-Bera Test for normality of the residuals; * significant at the 1%, ** significance at 5%, ***significance at 10%

As indicated in Table 5, out of the 16 NX models in Category 87, 13 models are significant and 3 NX models with China and Thailand based on AUD; and France based on QTY, are not significant, while in most of the models, the majority of the variables are not significant.

The variables GDP, EXR, MS, and SVR are significant in 5, 4, 3 and 3 out of the 16 models respectively, while the variable IR is significant in 8 out of the 16 models. The correct coefficient signs for all the GDP, EXR, MS, IR and SVR are found in 6 out of the 16 models (3 based on AUD and 3 based on QTY), while for these 6 models, the coefficient range for the GDP, EXR, MS, IR and SVR is between (-0.873 and -2.784), (-0.321 and -11.403), (-0.812 and -3.556), (0.313 and 8.250) and (0.002 and 6.292) respectively. Finally, the Adj. R-Square in overall for all 16 models in this category ranges between 3.4 and 74.8 per cent respectively.

In overall, out of the 16 estimated models in this category, only 2 models (the NX with China and Germany both based on OTY) have the correct signs and have satisfactory passed all diagnostic tests. The NX model with China shows that a 1 per cent increase in the GDP will decrease the NX growth rate by 2.264 per cent, a 1 per cent growth rate in the EXR and MS will decrease the NX growth rate by 3.837 and 2.105 per cent respectively, a 1 per cent growth rate in the IR will increase the NX growth rate by 8.25 per cent, on average, while a 1 per cent increase in SVR will increase the NX growth rate by 6.292 per cent. The NX model with Germany shows that a 1 per cent growth rate in the GDP and EXR will decrease the NX by 1.358 and 11.403 per cent respectively, a 1 per cent increase in the MS will decrease the NX by 2.361 per cent, on average, while a 1 per cent growth rate in the IR and SVR will increase the NX by 1.05 and 0.002 per cent respectively The variables GDP, EXR, MS and IR in these 2 models are all elastic and the variables SVR is mixed. Finally, the Adj. R-Square for China and Germany in these 2 models is 42.8 and 41.1 respectively.

VI. Empirical Summary and Policy Implications

Overall, 49 out of the 58 models are significant, while the remaining 9 models³⁵ are not significant. The correct coefficient signs for all the variables GDP, EXR, MS, IR and SVR are found in 17 out of the 58 models (8 based on AUD and 9 based on QTY). Furthermore, for these 17 models, the coefficient range for the GDP, EXR, MS, IR and SVR is between (-0.017 and -4.138), (-0.321 and -46.873), (-0.017 and -44.979), (0.151 and 8.250) and (0.002 and 6.292) respectively. Finally, the Adj. R-Square in overall for all of the 58 models ranges between 0.2 and 74.8 per cent.

Overall, out of the 58 estimated models, 12 models (the NX with Germany for Category 30 - based on AUD values; China and the United States of America for Category 30 - based on QTY values; China, Thailand and the United Kingdom for Category 84 - based on AUD values; China and The United Kingdom for Category 84 - based on QTY values; China for Category 85 - based on AUD values; Singapore for Category 85 - based on QTY values; China and Germany for Category 87 - based on QTY values) have the correct signs and have satisfactory passed all diagnostic tests. Furthermore, for these 12 models, the coefficients range for the variables GDP, EXR, MS, IR and SVR are between (-0.017 and -4.138), (-1.098 and -46.873), (-0.017 and -44.979), (0.151 and 8.250) and (0.002 and 6.292) respectively. Additionally, the variables GDP, EXR, MS, IR and SVR in these 12 models are also significant finally, the Adj. R-Square for these 12 models ranges between 9.3 and 44.9 per cent respectively.

Almost all NX models estimated are significant, and the estimated models produced similar results based on both AUD and QTY values. Further, overall results suggest that the relative GDP, EXR and the relative MS are elastic variables, which show that relative changes in income, EXR and the MS are very responsive to the level of the NX (trade balance) in these selected TD categories. The most responsive (elastic) variables to the level of the NX is the EXR, followed by relative income, MS and IR. The elasticity for the relative IR is mixed, while the relative SVR is the least responsive variable, as it is mostly inelastic.

On the other hand, the most significant variables in the determination of the NX for all TD categories are a relative SVR; followed by a relative IR, MS and income, while the EXR variable proved to be the least significant. However, the significance and the responsiveness of the individual variables to the NX levels differ when estimated coefficients are observed on a category-by-category basis.

For Category 30, the most significant variables in the determination of the NX level is the relative SVR, followed by the relative income and the EXR, while the variables relative MS and IR are the least significant. In addition, relative MS and the EXR are the most responsive (elastic) variables to the NX levels in this category, followed by the relative income, interest and the SVR.

For Category 84, the most significant variables in the determination of the NX level is the relative SVR, followed by relative income, EXR and the IR, while the variable relative MS is the least significant. In addition, the EXR is the most responsive (elastic) variable to the NX level in this category, followed by the relative MS, income, IR and the SVR.

For Category 85, the most significant variables in the determination of the NX level is the relative income, followed by the relative IR, the SVR and the EXR, while the variable relative MS is the least significant. In addition, the EXR is the most responsive (elastic)

³⁵ Germany for the Category 30 - based on AUD, Malaysia and Thailand for the Category 30 - based on QTY, Germany, Malaysia and Singapore for the Category 85 - based on AUD, China and Thailand for the Category 87 - based on AUD and France for the Category 87 - based on QTY.

variable to the NX levels in this category, followed by the relative MS, income, interest and the SVR.

For Category 87, the most significant variables in the determination of the NX level is the relative IR, followed by the relative savings, the income rates and the EXR, while the variable relative MS is the least significant. In addition, the relative IR and the EXR are the most responsive (elastic) variables to the NX levels in this category, followed by the relative income, MS and the SVR.

In summary, the overall results in the estimated NX models that did not satisfactory pass all diagnostic tests should be viewed with caution; as these NX models require further improvements. These improvements include and are not limited to further corrections, adjustments and/or even considerable modification of most of the models in order to obtain more reliable models which will in turn, make it possible to get a clearer understanding of the determinants of the NX with the selected TD countries in the selected TD categories. Despite, these limitations the estimated NX models which did not satisfactory pass all diagnostic tests are revealing valuable information that can be utilized by trade policy makers and various parties involved in international trade in these selected TD categories.

Finally, by observing only 12 models (5 based on AUD and 7 based on QTY values) that have the correct a-priory signs and have satisfactory passed all diagnostic tests, the main findings are rather different to the remaining 46 models. The most significant variables in the determination of the NX for all TD categories in these 12 models is a relative income and the EXR; followed by a relative MS and IR, while the relative SVR variable proved to be the least significant. Additionally, the most responsive (elastic) variables to the level of the NX in these 12 models is the EXR, followed by a relative MS, income and IR, while the relative SVR is the least responsive variable.

The most important findings of this study for the models which have satisfactorily passed all diagnostic tests that relationship between the NX (trade balance) and the GDP, EXR and MS is positive, while the relationship between the NX and the IR and SVR is negative. This finding for the independent variables GDP, EXR and MS is consistent with earlier studies conducted by Kyereme (2002) and Duasa (2007) and also with the theoretical expectations. However, the independent variable EXR in this study found to be the second most significant variable (after the GDP, which found to be the most significant variable) in determining the NX in these TD categories, while the studies by Kyereme (2002) and Duasa (2007) found a rather weak or non-existent relationship between the NX and the EXR. This inconsistent finding could be due to numerous reasons; one of the reasons could be that unlike the existing studies which analyse aggregated X and M volumes, this study analyses the specific TD categories. This suggests that the relationship between the NX and the EXR is important in determination of the NX volumes and hence supports for the 'elasticity approach' or as 'imperfect substitute' model when the NX models are estimated. Furthermore, this finding also suggests that the relationship between the NX and the EXR is likely to require further research before definite conclusions are being made. Finally, another important finding in this study is that, the SVR is the least significant and the least responsive variable to the NX levels in these selected TD categories.

Overall the major findings in this study suggests that changes in the relative income and the EXR can have a significant effect on the trade volume in the selected TD categories, while the relative SVR does not have significant effect on the NX levels in these categories.

VII. Conclusions

Overall, the NX models in this study is examined from absorption, elasticity and a monetary perspective, in order to divulge the determinants of the trade balance between Australia and the selected TD countries in the selected TD categories.

The three major differences between this study and the existing ones that estimate the NX models could be summarised as follows: Firstly, unlike the existing NX models in the literature which uses the dependent variable of the overall aggregated X, and M volumes, the dependent variable in this study refers to the specific TD categories. This approach reveals that the specific information as to which variable(s) are significant in the determination of the X and M levels on a category-by-category basis. Secondly, unlike existing studies which only estimate the NX on monetary values, this study estimates the NX based on both the monetary and QTY values for each selected TD category. This allows for a comparison of the disparities (comparative analysis) and an evaluation of the corresponding results from 2 different perspectives. Thirdly, unlike existing NX models, this study incorporates the SVR as an additional independent variable. According to IS-LM framework, the inclusion of such as variable is justifiable. This approach to the best of our knowledge, has not been used in any previous studies, which at the same time, is one of the significant contributions of this study.

Overall, 49 out of 58 NX models are significant, while 12 out of 58 models (5 based on AUD and 7 based on QTY) have the correct signs and have satisfactory passed all diagnostic tests. The most significant explanatory variables in the determination of the NX in these models are the relative income and the EXR; closely followed by relative MS and IR, while the relative SVR variable is the least significant. Furthermore, in respect to the most responsiveness to the NX levels, the most responsive variable in these models is the EXR, followed by relative MS, income and IR, while the relative SVR is the least responsive variable.

In summary, the overall findings suggest that, most of the estimated NX models require further improvements. These improvements include and are not limited to further corrections, adjustments and/or even considerable modification of most of the models, in order to obtain more reliable models. This in turn will make it possible to get an overall understanding of the determinants of the NX with all selected TD countries and in all selected TD categories.

Despite these shortcomings, the overall results in this study provide valuable information that can be utilized for trade policy makers when assessing the growing TD deficit in these categories between Australia and the selected TD countries and relevant industries involved in the international trade in these categories. The findings in this study ascertain what the macroeconomic variables and the extent to which these are influencing the NX levels in the selected categories. Findings in this study suggest that macroeconomic variables such as money supply, interest rates and savings rates are having an insignificant effect in the determination of the NX levels in the selected categories. This highlights that domestic monetary policy cannot influence the NX levels in the selected TD categories in Australia. Hence, fiscal policy is more powerful in influencing the NX levels in Australia. It is advisable that governments pay particular attention to the effectiveness of fiscal policy in influencing the NX levels in Australia.

References

- Australian of **Statistics** (2008),*`5206.0* ABS, Bureau Australian National Accounts: National Income, Expenditure and Product', [Table: 3. Expenditure on Gross Domestic Product (GDP), Current Prices] - Australia, Viewed November 12. 2008, http://0-< www.ausstats.abs.gov.au.library.vu.edu.au/ausstats/ABS@Archive.nsf/0/078A703268C20 F3FCA2574B80015BEE1/\$File/5206003_expenditure_current_price.xls>.
- ABS, Australian Bureau of Statistics (2008a), '5206.0 Australian National Accounts: National Income, Expenditure and Product', [Table: 1, Key National Accounts Aggregates, Net Saving: Current Prices] - Australia, Viewed April 14, 2009, < http://0www.ausstats.abs.gov.au.library.vu.edu.au/ausstats/abs@archive.nsf/0/5C69FBA53B16F E85CA25756E00112AE2/\$File/5206001_key_aggregates.xls >.
- Alexander, S. S. (1959), 'Effects of a Devaluation: A Simplified Synthesis of Elasticities and Absorption Approaches, *American Economic Review*, vol. 49, pp. 21-42.
- Arize, A. C. (1987), 'The Supply and Demand for Imports and Exports in a Simultaneous Model', *Applied Economics*, vol. 19, no. 9, pp. 1,233-1,247.
- Baharumshah, A. Z. (2001), 'The Effect of Exchange Rate on Bilateral Trade Balance: New Evidence from Malaysia and Thailand', *Asian Economic Journal*, vol. 15, no. 3, pp. 291-312. <u>http://dx.doi.org/10.1111/1467-8381.00135</u>
- Bahmani-Oskooee, Mohsen & Brooks, T. J. (1999), 'Bilateral J-curve between US and her Trading Partners', Weltwirtschaftliches Arch, vol. 135, pp. 156-165. <u>http://dx.doi.org/10.1007/BF02708163</u>
- Bahmani-Oskooee, Mohsen & Wang, Yomgqing (2007), 'The J-Curve at the Industry Level: Evidence from Trade between the US and Australia', *Australian Economic Papers*, vol. 46, no. 4, pp. 315-328. http://dx.doi.org/10.1111/j.1467-8454.2007.00322.x
- Bahmani-Oskooee, Mohsen (1985), 'Devaluation and the J-curve: Some Evidence from LDCs', *The Review of Economics and Statistics*, vol. 68, no. 3, pp. 500-504. http://dx.doi.org/10.2307/1925980
- Bahmani-Oskooee, Mohsen (1991), 'Is There a Long-run Relationship between the Trade Balance and the Real Effective Exchange Rate of LDCs?', *Economic Letters*, vol. 36, no. 4, pp. 403-407. <u>http://dx.doi.org/10.1016/0165-1765(91)90206-Z</u>
- Bahmani-Oskooee, Mohsen (1992), 'Title: What Are the Long-Run Determinants of the U.S. Trade Balance?', *Journal of Post Keynesian Economics*, vol. 15, no. 1, pp. 85-97.
- Bahmani-Oskooee, Mohsen (2001), 'Nominal and Real Effective Exchange Rates of Middle Eastern Countries and their Trade Performance', *Applied Economics*, vol. 33, pp. 103-111. <u>http://dx.doi.org/10.1080/00036840122490</u>
- Balassa, Bela (1967), 'Trade Creation and Trade Diversion in the European Common Market', *The Economic Journal*, vol. 77, no. 305, pp. 1-21. http://dx.doi.org/10.2307/2229344
- Belessiotis, Tassos & Giuseppe, Carone (1997), 'A Dynamic Analysis of France's External Trade', *European Economy Economic Papers*, (European Commission DG ECFIN), vol. 122, year, 1997, pp. 1-70.

BOE, Bank of England (2009a), 'Average Sterling Interbank Lending Rate, 3 month, mean (Quarter)', [Table: IUQAAMIJ, LIBID/LIBOR, Percentage per annum], Viewed April 16, 2009,

<http://www.bankofengland.co.uk/mfsd/iadb/fromshowcolumns.asp?Travel=NIxSCxSUx &FromSeries=1&ToSeries=50&DAT=ALL&VFD=N&CSVF=TT&C=E31&C=E3S&C= E3V&Filter=N&excel97.x=14&excel97.y=15>.

BOE, Bank of England 2009b, 'Amounts Outstanding of Private Sector Total Holdings of National Savings (Quarter)', [Table: LPQVSUL, Pound Sterling mill.], Viewed April 16, 2009,

<http://www.bankofengland.co.uk/mfsd/iadb/fromshowcolumns.asp?Travel=NIxSCxSUx &FromSeries=1&ToSeries=50&DAT=ALL&VFD=N&CSVF=TT&C=615&C=UW&C= UY&C=WO&C=1NR&C=5UK&C=C6E&Filter=N&excel97.x=9&excel97.y=14>.

- BOF, Bank of France (2008a), '*Monetary Aggregate M3 (Monthly*)', [Serie's code: MI.M.U2.N.V.M30.X.1.U2.2300.Z01.M.E.B.X., EUR mill.], Viewed November 2, 2008, < http://www.banque-france.fr/gb/stat_conjoncture/series/statmon/telnomot/mi.m.u2.n.v.m30.x.1.u2.2300.z01.m .e.b.x.txt >.
- BOF, Bank of France (2008b), '*Passbook Saving Account (Stock) (Monthly*)', [Serie's code: MI.M.FR.N.V.L23.D.1.U6.2300.Z01.M.E.B., EUR mill.], Viewed November 2, 2008, http://www.banque-france.fr/gb/stat_conjoncture/series/statmon/telnomot/mi.m.fr.n.v.l23.d.1.u6.2300.z01.m.e. b.x.txt>.
- BOT, Bank of Thailand (2007a), '*Financial Companies-Minimum Loan Rates (Monthly)*', [Table: 29, Percentage per annum], Viewed August 20, 2007, <http://www.bot.or.th/BOTHomepage/databank/EconData/EconFinance/Download/Tab29 .xls >.
- BOT, Bank of Thailand (2007b), 'Households Savings Mobilized by Financial Institutions (Quarterly)', [Table: 26, Deposits Government Savings Bank, Baht mill.], Viewed August 20, 2007, <http://www.bot.or.th/BOTHomepage/databank/EconData/EconFinance/Download/Tab26 .xls>.
- BOT, Bank of Thailand (2008a), '*Rates of Exchange of Commercial Banks in Bangkok Metropolis*', [Table: 89, Percentage per annum], Viewed April 20, 2008, < http://www.bot.or.th/English/Statistics/Pages/index1.aspx >.
- BOT, Bank of Thailand (2008b), '*Financial Survey (M3) 1/revised series*' (*Monthly*)', [Table: 01, Baht mill.], Viewed April 20, 2008, < http://www.bot.or.th/BOTHomepage/databank/EconData/EconFinance/Download/Tab01. xls >.
- Boyd, Derick; Caporale, Gugielmo Maria Caporale & Smith, Ron (2001), 'Real Exchange Rate Effects on the Balance of Trade: Cointegration and the Marshall-Lerner Condition', *International Journal of Finance and Economics*, vol. 6, no. 3, pp. 187-200. <u>http://dx.doi.org/10.1002/ijfe.157</u>
- Carone, G. (1996), 'Modelling the U.S. Demand for Imports Through Cointegration and Error Correction', *Journal of Policy Modelling*, vol. 18, no. 1, pp. 1-48. <u>http://dx.doi.org/10.1016/0161-8938(95)00058-5</u>

- Chinn, D. Menzie (2004), 'Incomes, Exchange Rates and the US Trade Deficit, Once Again', *International Finance*, vol. 7, no. 3, pp. 451-469. <u>http://dx.doi.org/10.1111/j.1367-0271.2004.00145.x</u>
- Deutsche Bundesbank (2009), '*Monetary* Aggregate M3 (Monthly)', [Serie's code: TUE303, EUR mill.], Viewed April 14, 2009, < http://www.bundesbank.de/statistik/statistik_zeitreihenliste.en.php?pdf=bankenstatistik/S1 01ATIB01013.PDF&open=ewu >.
- Dickey, David A. & Fuller, Wayne A. (1979), 'Distribution of the Estimators for Autoregressive Time Series with a Unit Root', *Journal of the American Statistical Association*, vol. 74, pp. 427-431.
- Dornbusch, Rudiger (1975), 'Exchange Rates and Fiscal Policy in a Popular Model of International Trade', *American Economic Review*, vol. 65, no. 5, pp. 859-871.
- Dornbusch, Rudiger; Bodman, P.; Crosby, M.; Fisher, S & Startz, R. (2002), *Macroeconomics*', 1st Edition, McGraw-Hill - Australia, NSW, Australia.
- DOSM, Department of Statistics Malaysia (2009), 'Gross Domestic Product by Expenditure at Current Market Prices (Quarterly)', [Ringgit mill.], Received from Wan Abdul Rahim Van Ahmad on April 13, 2009, < http://www.statistics.gov.my/>.
- Duasa, Jarita (2007), 'Determinants of Malaysian Trade Balance: An ARDL Bound Testing Approach', *Global Economic Review*, vol. 36, no. 1, pp. 89-102. <u>http://dx.doi.org/10.1080/12265080701217405</u>
- Frenkel, J. A.; Gylfason, T. & Helliwell, J. F. (1969), 'A Synthesis of Monetary and Keynesian Approaches to Short-Run Balance of Payment Theory', *Economic Journal*, vol. 90, no. 359, pp. 582-592. <u>http://dx.doi.org/10.2307/2231928</u>
- Goldstein, M. & Khan, M. S. (1978), 'The Supply and Demand for Exports: A Simultaneous Approach', *Review of Economics and Statistics*, vol. 60, no. 2, pp. 275-286. <u>http://dx.doi.org/10.2307/1924981</u>
- Goldstein, M. & Khan, M. S. (1985), 'Income and Price Effect in Foreign Trade', *Handbook* of International Economics, vol. 2, ch. 20, pp. 1,042-1,099.
- Granger, Clive W. J. & Newbold, P. (1974), 'Spurious Regression in Econometrics', *Journal* of Econometrics, vol. 2, no. 2, pp. 111-120. <u>http://dx.doi.org/10.1016/0304-4076(74)90034-7</u>
- Greenwood, Jeremy (1984), 'Non-traded Goods, the Trade Balance and the Balance of Payments', *Canadian Journal of Economics*, vol. 17, no. 4, pp. 806-823. http://dx.doi.org/10.2307/135075
- Griswold, T. D. (2007), 'The U.S. Trade Deficit: A Sign of Good Times', Center for Trade Policy Studies, Testimony of Associate Director Daniel T. Griswold before the House Committee on International Relations Subcommittee on International Economic Policy and Trade, July 22, 1998, viewed March 30, 2007, <http://www.freetrade.org/pubs/speeches/ct-dg081999.html>.
- Gujarati, Damodar N. (2003), 'Basic Econometrics', 4th edition, International Edition, McGraw-Hill/ Irwin, New York.
- Hahn, F. H. (1959), 'The Balance of Payment in a Monetary Economy', *Review of Economic Studies*, vol. 26, no. 2, pp. 110-125. <u>http://dx.doi.org/10.2307/2296169</u>

- Harberger, A. C. (1950), 'Currency Depreciation, Income and the Balance of Trade', *Journal of Political Economy*, vol. 58, no. 1, pp. 47-60. <u>http://dx.doi.org/10.1086/256897</u>
- Havrila, I. (2004), 'Patterns and Determinants of Australia's International Trade in Textiles and Clothing', PhD Thesis, Victoria University Melbourne, Australia.
- Himarios, D. (1989), 'Do Devaluation Improve the Trade Balance? The Evidence Revisited', *Economic Enquiry*, vol. 27, no. 1, pp. 143-168. <u>http://dx.doi.org/10.1111/j.1465-7295.1989.tb01169.x</u>
- Johnson, G. Harry (1976), 'Elasticity, Absorption, Keynesian Multiplier, Keynesian Policy, and Monetary Approaches to Devaluation Theory: A Simple Geometric Exposition', *American Economic Review*, vol. 66, no. 3, pp. 448-452.
- Khan, M. S. & Ross, K. Z. (1975), 'Cyclical and Secular Income Elasticities of the Demand for Import', *Review of Economics and Statistics*, vol. 57, no. 3, pp. 357-361. <u>http://dx.doi.org/10.2307/1923923</u>
- Khan, M. S. & Ross, K. Z. (1977), 'The Functional Form of the Aggregate Import Demand Equation', *Journal of International Economics*, vol. 7, no. 2, pp. 149-160. <u>http://dx.doi.org/10.1016/0022-1996(77)90028-9</u>
- Koshal, R. K.; Shukla, V. S. & Koirala, G. P. (1992), 'Demand and Supply of Indian Exports: A Simultaneous Equation Approach', *Journal of Asian Economics*, vol. 3, no. 1, pp. 73-83. http://dx.doi.org/10.1016/1049-0078(92)90005-J
- Kyereme, S. (2002), 'Determinants of United States' Trade Balance with Australia', *Applied Economics*, vol. 34, no. 10, pp. 1,241-1,250.
- Labys, Walter C. & Cohen, Bruce C. (2006) 'Trends Versus Cycles in Global Wine Export Shares', Australian Journal of Agricultural and Resource Economics, vol. 50, no. 4, pp. 527-537. <u>http://dx.doi.org/10.1111/j.1467-8489.2006.00344.x</u>
- Lau, E.; Lim, K. P. & Lee, H. A. (2004), 'Modelling the Current Account: Empirical Evidence from ASEAN-5 Economies', *Labuan Bulletin of International Business and Finance*, vol. 2, no. 1, pp. 83-104.
- Lawrence, Z. Robert (1990), 'U.S. Current Account Adjustment: An Appraisal', Brookings Papers on Economic Activity, vol. 2, pp. 343-82. <u>http://dx.doi.org/10.2307/2534509</u>
- Liew, K. S.; Lim, K. P. & Hussain, H. (2003), 'Exchange Rates and Trade Balance Relationship: The Experience of ASEAN Countries', *EconWPA*, International Trade, no. 0307003.
- Mahdavi, Saeid & Sohrabian, A. (1993), 'The Exchange Value of the Dollar and the US Trade Balance: An Empirical Investigation Based on Cointegration and Granger Causality Tests', *Quarterly Review of Economics and Finance*, vol. 33, no. 4, pp. 343-358. <u>http://dx.doi.org/10.1016/1062-9769(93)90003-3</u>
- Martín, Carmela & Velázquez, Francisco J. (2002), 'Determinants of Net Trade Flows in the OECD: New Evidence with Special Emphasis on the Former Communist Members', *Review of International Economics*, vol. 10, no. 1, pp. 129-139. <u>http://dx.doi.org/10.1111/1467-9396.00322</u>
- MAS, Monetary Authority of Singapore (2008a), '*Money Supply M3 (Monthly)*', [Table: I1, Singaporean Dollar mill.], Viewed August 18, 2008, < https://secure.mas.gov.sg/msb/msbView.cfm>.

MAS, Monetary Authority of Singapore (2008b), '*Prime Lending Rate (Monthly*)', [Percent per annum], Viewed August 18, 2008, < https://secure.sgs.gov.sg/apps/msbs/interestRatesOfBanksAndFinanceCompaniesDisplay.j sp?tableName=interestRatesOfBanksAndFinanceCompaniesForm.jsp&startYear=1983&st artMonth=00&endYear=2007&endMonth=11&frequency=M&displayType=Table&colu mns=01&columns=02&columns=03&columns=04&columns=05&columns=06&columns=07&columns=08&columns=10&columns=11>.

MAS, Monetary Authority of Singapore (2008c), 'Savings Deposits (Monthly)', [Singaporean Dollars mill.], Viewed August 18, 2008, https://secure.mas.gov.sg/msb/msbView.cfm.

McColl, G. D. & Nicol, J. R. (1980), 'An Analysis of Australian Exports to its Major Trading Partners: Mid-1960s to Late 1970s', *The Economic Record*, vol. 56, no. 153, pp. 145-157. <u>http://dx.doi.org/10.1111/j.1475-4932.1980.tb01662.x</u>

Meade, J. E. (1951), 'The Balance of Payments', Oxford: Oxford University Press.

Mulgan, Aurelia George (2008), 'Where Japan's Foreign Policy Meets Agricultural Trade Policy: The Australia-Japan Free Trade Agreement', *Japanese Studies*, vol. 28, no. 1, pp. 31-44. <u>http://dx.doi.org/10.1080/10371390801939088</u>

Mundell, R. A. (1971), 'Monetary Theory', Pacific Palisades: Goodyear.

- NESDB, Thailand National Economic and Social Development Board (2008), 'Quarterly Gross Domestic Product by Expenditure at Current Market Prices', [Table 85: Current Prices 2008, Baht mill.], Viewed April 11, 2008, < http://www.nesdb.go.th/Default.aspx?tabid=95 >.
- OECD, Organization for Economic Cooperation Development and (2008a), 'Gross Product GDP, Total Current Prices, '08', *Domestic* 2008, Viewed August 14. < http://0-oecdstats.ingenta.com.library.vu.edu.au/OECD/TableViewer/download.aspx >.
- OECD, Organization for Economic Cooperation and Development (2008b), 'Monetary Aggregates M3; Lending Rates; Savings Rates', Viewed August 14, 2008, < http://0-oecd-stats.ingenta.com.library.vu.edu.au/OECD/TableViewer/download.aspx >.
- Onafowora, Olugbenga (2003), 'Exchange Rate and Trade Balance in East Asia: Is There a J-curve?, *Economic Bulletin*, vol. 5, no. 18, pp. 1-13.

Phillips, P. C. B. & Perron, P. (1988), 'Testing for a Unit Root in Time Series Regression', *Biometrika*, vol. 75, no. 2, pp. 335-346. <u>http://dx.doi.org/10.1093/biomet/75.2.335</u>

- Phillips, P. C. B. (1986), 'Understanding Spurious Regression in Econometrics', Journal of Econometrics, vol. 33, no. 3, pp. 311-340. <u>http://dx.doi.org/10.1016/0304-4076(86)90001-1</u>
- Polak, J. J. (1957), 'Monetary Analysis on Income Formation and Payments Problem', *IMF Staff Papers*, vol. 6, no. 1, pp. 1-50. <u>http://dx.doi.org/10.2307/3866128</u>
- Prais, S. J. (1961), 'Some Mathematical Notes on the Quantity Theory of Money in a Small Open economy', *IMF Staff Papers*, vol. 2, pp. 212-226. <u>http://dx.doi.org/10.2307/3866151</u>
- Rahman, M.; Mustafa, M. & Burckel, D. V. (1997), 'Dynamics of the Yen-Dollar Real Exchange Rates and the US-Japan Real Trade Balance', *Applied Economics*, vol. 29, pp. 661-664. <u>http://dx.doi.org/10.1080/000368497326868</u>

- RBA, Reserve Bank of Australia (2009a), 'Alphabetical Index of Statistics (Monthly)', [Table: F11 – Exchange Rates (Foreign per AUD)], Viewed April 12, 2009, http://www.rba.gov.au/Statistics/Bulletin/F11hist.xls.
- RBA, Reserve Bank of Australia (2009b), '*Media Release, Trade –Weighted Index*', [Weights in the Trade-Weighted Index Percent], Viewed April 12, 2009, < http://www.rba.gov.au/MediaReleases/2008/mr_08_19.html>.
- RBA, Reserve Bank of Australia (2009c), '*Monetary Aggregates M3*', [Table: D03HIST, Series DMAM3N, AUD, bill.], Viewed April 14, 2009, < http://www.rba.gov.au/Statistics/Bulletin/D03hist.xls >.
- RBA, Reserve Bank of Australia (2009d), '*Indicator Lending Rates Housing Loans, Standard Variable*', [Table: F05HIST, Series FILRHLBVS, Percentage per annum], Viewed April 14, 2009, < http://www.rba.gov.au/Statistics/Bulletin/F05hist.xls >.
- Salas, J. (1982), Estimation of the Structure and Elasticities of Mexican Imports in the Period 1961-1979', *Journal of Development Economics*, vol. 10, no. 3, pp. 297-311. http://dx.doi.org/10.1016/0304-3878(82)90032-3
- Silvapulle, P. & Phillips, P. (1985), 'Australian Import Demand Analysis', in Lim, D (ed.), *ASEAN – Australia Trade in Manufacturers*, Longman Cheshire, Melbourne, pp. 108-131.
- Singapore Department of Statistics (2009), 'Gross Domestic Product GDP, Total Current Prices', [Singaporean Dollars mill.], Viewed April, 2009, http://www.singstat.gov.sg/stats/themes/economy/hist/gdp.html.
- Swift, Robyn (2005), 'The Changing External Exposure of Australian Industry', *The Australian Economic Review*, vol. 38, no. 3, pp. 253-264. <u>http://dx.doi.org/10.1111/j.1467-8462.2005.00372.x</u>
- Tang, Tuck Cheong (2008), 'Determinants of Malaysian Trade Balance: An ARDL Bound Testing Approach – A Commentary', *Global Economic Review*, vol. 37, no. 1, pp. 125-133. <u>http://dx.doi.org/10.1080/12265080801912152</u>
- The People's Bank of China (2009), '*Savings Deposits (Monthly)*', [URL Files: _2000-S4e _2006S06, 100s Yuan mill.], Viewed April 15, 2009, < http://www.pbc.gov.cn/english/diaochatongji/tongjishuju/gofile.asp?file=____.htm>.
- U.S. Board of Governors of the Federal Reserve System (2008a), 'Bank Prime Loan Rate (Monthly)', [Series ID: MPPRIME, Percentage per annum], Viewed September 20, 2008, http://research.stlouisfed.org/fred2/series/MPRIME/downloaddata?cid=117>.
- U.S. Board of Governors of the Federal Reserve System (2008b), 'Savings Deposit Total (Monthly)', [Series ID: SAVINGSL, USD bill.], Viewed September 20, 2008, http://research.stlouisfed.org/fred2/series/SAVINGSL/downloaddata?cid=29>.
- Warr, P. G. & Wollmer, F. (1996), 'The Demand for LDC Export of Primary Commodities: The Case of the Philippines', *Australian Journal of Agricultural*
- Xu, Zhenhui (2008), 'China's Exchange Rate Policy and Its Trade Balance with the US', *Review of Development Economics*, vol. 12, no. 4, pp. 714-727.