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Abstract

The aim of this study was to determine the effect of time of day on performance, pacing, and hormonal and metabolic
responses during a 1000-m cycling time-trial. Nine male, recreational cyclists visited the laboratory four times. During the 1st

visit the participants performed an incremental test and during the 2nd visit they performed a 1000-m cycling familiarization
trial. On the 3rd and 4th visits, the participants performed a 1000-m TT at either 8 am or 6 pm, in randomized, repeated-
measures, crossover design. The time to complete the time trial was lower in the evening than in the morning (88.268.7
versus 94.7610.9 s, respectively, p,0.05), but there was no significant different in pacing. However, oxygen uptake and
aerobic mechanical power output at 600 and 1000 m tended to be higher in the evening (p,0.07 and 0.09, respectively).
There was also a main effect of time of day for insulin, cortisol, and total and free testosterone concentration, which were all
higher in the morning (+60%, +26%, +31% and +22%, respectively, p,0.05). The growth hormone, was twofold higher in
the evening (p,0.05). The plasma glucose was ,11% lower in the morning (p,0.05). Glucagon, norepinephrine,
epinephrine and lactate were similar for the morning and evening trials (p.0.05), but the norepinephrine response to the
exercise was increased in the morning (+46%, p,0.05), and it was accompanied by a 5-fold increase in the response of
glucose. Muscle recruitment, as measured by electromyography, was similar between morning and evening trials (p.0.05).
Our findings suggest that performance was improved in the evening, and it was accompanied by an improved hormonal
and metabolic milieu.
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Introduction

Performance during a short-distance time trial (TT), such as a

1000-m cycling TT, may be optimized when an ‘‘all-out’’ pacing is

used [1,2]. Recently, Hettinga et al. [3] have demonstrated that

the difference between the fastest and the slowest performance

times for four 1500-m cycling TT (a few seconds longer than a

1000-m cycling TT) was related to a higher aerobic peak power,

and a higher and earlier anaerobic peak power during the fastest

trial. These authors suggested that athletes paced themselves

according to their optimal physiological condition at that moment

(fastest and slowest), indicating that athletes may be able to

effectively adjust their pacing profile based on their ‘‘status of the

day’’ [3]. It is interesting to observe that there is some evidence

that the contribution of the aerobic and anaerobic systems is

increased in the evening compared with in the morning [4,5],

suggesting that the time of day may be a potential factor

influencing both energy system distribution and pacing, although

there are no studies that have directly tested this relationship. The

effect of time of day on pacing may be more notable during a

short-distance cycling TT, in which pacing may be determined by

the interplay between aerobic and anaerobic responses to the

exercise.

To date, studies investigating the influence of time of day on

performance have concentrated on intermittent, Wingate or

constant-load exercise [4–9], but pacing has not been formally

reported. Giacomoni et al. [7] analyzed the effect of the time of

day (morning 8–10 am and evening 5–7 pm) on performance

during an all-out, intermittent exercise (10 maximal 6-s sprints

interspersed with 30 s of recovery) and observed a higher crank

peak torque in the earlier sprints during the evening, but the

overall mechanical work was not altered, suggesting that the

earlier peak torque in the evening does not affect overall

performance [9]. Corroborating these findings, Hill et al. [4]

showed a higher total work performed during a constant-power

cycle ergometer test (5.0 W?kg21 for women and 6.0 W?kg21 for

men) in the afternoon compared with the morning, and that this

greater work was associated with a larger anaerobic and aerobic

contribution. The underlying mechanism explaining the greater

energy expenditure and consequently improved performance in
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the evening is not fully understood, but a slightly increased core

temperature in the evening could increase nerve conduction

velocity and vasodilatation, which in turn would increase muscular

supply and substrate elimination, thereby improving glycogenol-

ysis and glycolysis [6]. While these results would support that

performance during a short-distance cycling TT might be

increased in the evening, due to an increase in the aerobic and/

or anaerobic energy expenditure, to the best of our knowledge no

study has measured the effect of time of day on performance and

associated pacing alterations during a TT.

There is also limited research connecting circadian variations in

hormone levels with pacing [10]. It has been demonstrated that

epinephrine and norepinephrine have an ,12-h circadian rhythm

with two large peaks at 7:00–10:30 am and 8:00–10:00 pm, but

with the largest exercise-induced increase in epinephrine ocurring

at ,8:30 am [11]. Cortisol and testosterone also peak at ,8:00

am, but do not seem to respond to exercise [12]. On the other

hand, growth hormone (GH) seems to be slightly reduced in the

morning, but its response to exercise is not altered [13]. In

addition, the effect of circadian rhythm on insulin and glucagon,

two hormones that are strongly linked with metabolic milieu and

could influence performance during different times of day, is

unknown. Given that performance during a short-distance cycling

TT is dependent on the ability of athletes to produce and maintain

a high level of power output throughout the test [14], the

coordinate action of these hormones might be associated with an

improved or impaired performance. For example, epinephrine

and norepinephrine prepare the body for an immediate action

increasing several physiological markers (e.g. heart rate, blood

pressure, metabolic rate, and glycogenolysis and glycolysis), while

cortisol increases general physiological stress and, together with

glucagon and GH, increases blood glucose. Elevated testosterone

concentration may be involved with an increased neuromuscular

efficiency and force output [15]. Thus, an improved performance

at a given time of day might be associated with hormonal and

metabolic at rest and/or during the exercise. However, while

circadian rhythms for some hormones have been relatively well

characterized [11–13], their integrated responses and association

with TT performance have not been clarified.

The present study therefore aimed to investigate performance,

pacing, energy system and muscle recruitment distributions, and

hormonal responses, during a 1000-m cycling TT performed in

the morning (8:00 am) or in the evening (6:00 pm). The 1000-m

cycling time trial was chosen as it is energetically supported by

both the aerobic and anaerobic energy systems [1,2], and

performance is influenced by pacing strategy [2,3]. We hypoth-

esized that performance would be improved in the evening, and

that this would be associated with an altered hormonal and

metabolic milieu at rest and/or during the exercise, and a greater

aerobic and anaerobic contribution.

Materials and Methods

Participants
Nine recreational cyclists [Mean 6 standard deviation (SD): age

3167.3 years, height 17567.8 cm, body mass 73.5611.6 kg,

body fat 11.664.7%, peak oxygen uptake (V
:

O2peak) 4967

ml?kg21?min21, peak power output (PPO) 253652 W] partici-

pated in this study. The participants had been training more than

3 times weekly (approximately 60 km [3–4 hours] per session)

during the 4 years preceding the study, and all had good

competition experience (,14 competitions per year). The

participants were classified as intermediate (n = 5) or moderate

(n = 4) morning types using the chronotype questionnaire of Horne

and Östberg [16]. The participants gave their written informed

consent after receiving an explanation about the purpose of the

study, experimental procedures and possible risks. This investiga-

tion was approved by the Ethics and Research Committee of the

Federal University of Alagoas.

Experimental design
Each participant visited the laboratory four times on different

days. During the 1st visit, participants completed an anthropo-

metric assessment (body mass, height and body fat percentage

calculated from skinfolds of the chest, abdomen and thigh, Jackson

and Pollock [17]), and an incremental test to determine their

V
:

O2peak and PPO. At the 2nd visit (after ,48 h), the participants

performed a familiarization of the 1000-m cycling TT. The 1st and

2nd visits were performed between 10 am and 2 pm to prevent

adaptation to a particular experimental time. During the 3rd and

4th visits (,96 h after the 2nd visit and separated by 7 days for

recovery), the participants performed a 1000-m cycling TT either

in the morning or in the evening (8:00 am and 6:00 pm,

respectively) in a randomized, repeated-measures, crossover

design. The participants were asked to refrain from vigorous

physical activity, caffeinated substances or alcohol 24 h before

each test [10,18]. The temperature and relative humidity during

the trials were maintained constant and were similar between the

times of day (Morning: 22.961.3uC and 36.365.9% and Evening:

23.860.9uC and 31.464.3%, respectively, p.0.05). The partic-

ipants were instructed to record all foods (type, amount and time)

consumed in the 48 hours before the familiarization test and to

replicate this during the 48 h prior to the two experimental trials.

Incremental test
The incremental test was performed on a cycle ergometer

(Ergo Fit 167, Ergo-FitGmbH & Co., Pirmasens, Germany),

and consisted of a 5-min warm-up at 100 W, followed by

increments of 30 W every 3 min until voluntary exhaustion or

when the participants were not able to maintain their pedal

frequency between 80–90 revolutions per minute (rpm). The

ventilation (V
:

E), V
:

O2 and carbon dioxide production (V
:

CO2)

Figure 1. Experimental Protocol. BS: blood sample; MVC: maximal voluntary contraction; EMG: electromyographic activity; V
:

O2: oxygen uptake;
RER: respiratory exchange ratio; HR: heart rate; PPO: power output; Paer: aerobic mechanical power output; Pan: anaerobic mechanical power output.
doi:10.1371/journal.pone.0109954.g001
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were measured breath-by-breath throughout the test using a gas

analyzer (Quark b2, Cosmed, Italy). The volume of expired air

was measured by a bidirectional flow sensor, calibrated before

starting the test with a syringe containing 3 liters of air

(Cosmed, Italy). The fraction of expired O2 was analyzed with a

zirconium sensor and end tidal CO2 by infrared absorption.

Both sensors were calibrated automatically before starting the

test with a cylinder containing known concentrations of O2

(16%) and CO2 (5%). The HRmax and V
:

O2peak were taken

as the highest value reached in the last stage and as the mean

value obtained during the last 30 s of the test, respectively. The

PPO was determined as the highest PO attained during the

incremental test. When the participants could not maintain the

power output during the entire stage (,3 minutes), the PPO

was calculated using fractional time supported in the last stage

multiplied by the increment rate (i.e. 30 W) [19].

Familiarization trial
The familiarization session for the 1000-m TT was performed

on a previously validated cycle simulator [20] and calibrated in

accordance with the manufacturer’s recommendations (cycle

ergotrainer, Tacx T1680 Flow, Netherlands). The seat was

adjusted vertically and horizontally for each cyclist before the

TT, and cycling shoes were used to secure the feet to the pedals.

The seat position was recorded and replicated during the

subsequent experimental sessions.

Experimental 1000-m cycling time trials
In the morning, the participants performed the 1000-m cycling

TT after an 8-h overnight fast. In the evening, the participants

performed the trial after a 6-h fasting period. These procedures

have been recommended by Souissi et al. [5] to avoid any

influence of pre-exercise diet on exercise-induced physiological

response. The participants were recommended to maintain the

same dietary patterns 48 hours before each test using their food

records. Compliance with the directions relating to diet and water

consumption was checked by food records before each experi-

mental test.

The experimental procedures are illustrated in Figure 1. Before

each test, the participants were instructed to remain quiet for at

least 15 minutes. The forearm was then cleaned with hydrated

ethyl alcohol, and an intravenous catheter (IV Catheter Pen-like

Model, 20 Gauge) coupled to an extender (Equipo multipath with

2-Way Clamp) was inserted. The 1st blood sample (1.5 ml) was

drained and discarded, and 20 ml of blood was then collected

(baseline). After each blood sample collection, 1 ml of sterile

sodium chloride (NaCl 0.9%) was injected to prevent clotting and

the obstruction of blood through the stent.

Following the resting blood collection, in order to normalize the

electromyographic activity (EMG) data during the cycling TT,

three 5-s, two-legged maximum voluntary contractions (MVC) of

the knee extensors (trunk-thigh angle at 90 and knee at 60u from

full leg extension 0u), separated by a 60-s interval, were performed.

A standardized knee extensor warm up, consisting of four 5-s

contractions at intensities corresponding 50, 60, 70 and 80% of the

maximum subjective force (30-s rest periods between the

repetitions), was performed immediately before the MVC. The

participants were verbally encouraged during the MVC to achieve

their maximal force. Force was recorded using a load cell (EMG

System of Brazil, São José dos Campos, Brazil). Electromyo-

graphic activity signals from the vastus lateralis (VL) of the right

leg were recorded via bipolar Ag-AgCl surface electrode at an

interelectrode distance of 20 mm. The VL was chosen because it

has been reported as the most appropriate to monitor EMG

activity in the lower limb during a cycling TT [3]. The reference

electrode was placed over the anterior surface of the tibia. The skin

preparation, placement and location of the electrodes were in

accordance with the recommendations of SENIAM [21]. To

prevent movement artifact, the electrodes’ wires were taped to the

skin using adhesive tape (Micropore 3 M, São Paulo, Brazil). Raw

EMG signal was recorded during 5 seconds, with a sample rate of

2000 Hz, for each MVC (model 410c EMG System of Brazil Ltda,

São José dos Campos, Brazil). During the MVC and TT, raw

EMG signals were full-wave rectified and filtered with second-

order, Butterworth, band-pass filters with cut-off frequencies set at

10 and 400 Hz to remove external interference noise and

movement artifacts. Integrated EMG (iEMG) obtained every

200 m during the TT was normalized by dividing by the iEMG

calculated at the point coinciding with peak torque of the highest

MVC. The procedures were performed using MATLAB software.

After completion of the MVC procedures, the participants were

transferred to the cycle ergotrainer. The participants remained at

rest for 5 minutes before performing a 5-min warm-up at 100 W

followed by a 5-min recovery (Figure 1). Thereafter, the partic-

ipants were instructed to perform a 1000-m TT in the shortest

possible time. The gear ratio was standardized at the beginning of

each TT (53616), but participants were free to change the gear

and pedal frequency as desired immediately after the TT had

started. The participants were instructed to remain seated

throughout test. Feedback of the distance covered was provided

Table 1. Mean and SD for performance time, power output (PO), aerobic power (Paer), anaerobic power (Pan), integrated
electromyography (iEMG), oxygen uptake (V

:
O2) and heart rate (HR) during a 1000-m cycling TT performed in the morning or in

the evening (n = 9).

Variables MORNING EVENING Effect size (gp
2)

Time (s) 94.7610.9 88.268.7* 0.63

PO (W) 349.2693.9 388.56104.4 0.37

Paer (W) 162.2624.4 167.3630.6 0.48

Pan (W) 187.0692.9 221.2695.2 0.34

iEMG (%MVC) 83.8627.2 84.0634.0 0.01

V
:

O2 (L.min21) 2.9160.25 2.9760.37 0.34

HR (bpm) 146629 154614 0.32

* Significantly lower than morning (p,0.05).
doi:10.1371/journal.pone.0109954.t001
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every 200 m. Power output and distance were recorded at a

frequency of 1 Hz (Tacx Trainer software 3.0, Wassenaar,

Netherlands). The V
:

O2, respiratory exchange ratio (RER), HR,

EMG (5-s recordings), and aerobic and anaerobic mechanical

power output (Paer and Pan, respectively) were also determined

and statistically analyzed every 200-m. The Pan and Paer were

calculated from the RER, V
:

O2, and the efficiency estimated

during the warm up, in accordance with Hettinga et al. [3].

Additional blood samples (20 mL venous blood) were collected

immediately and 60 minutes after the TT (Post-TT and 609-TT,

respectively). Blood samples were transferred into tubes with

EDTA (10 ml) or without non-EDTA (10 ml) and were immedi-

ately centrifuged at 3000 revolutions per minute (RPM) at 4uC for

10 minutes to separate plasma or serum, and stored at 280uC
until subsequent analysis. The following hormones and metabo-

lites were measured in the plasma: Glucagon (Radioimmunoassay,

Kit Merck Millipore Standard, GER), and lactate and glucose

(Spectrophotometry, kit Biotecnica, Varginha, Brazil). Plasma

norepinephrine and epinephrine concentrations were measured by

HPLC using the ion-pair reverse phase chromatography coupled

with electrochemical detection (0.5 V), as described previously

[22]. The following hormones were measured in the serum:

cortisol (chemiluminescence, Kit Roche Standard, GER), growth

hormone (GH) (chemiluminescence, kit Siemens Standard, GER),

insulin (electrochemiluminescence, Kit Roche Standard, GER),

total and free testosterone (electrochemiluminescence, Kit Siemens

Standard, GER).

Statistical analysis
The sample size required was estimated from the equation

n = 8e2/d2 [23], where n, e, and d denote predicted sample size,

coefficient of variation, and the magnitude of the treatment effect,

respectively. Coefficient of variation to a similar time-trial was

assumed to be 0.9% [24]. Detection of a very conservative 1%

difference as statistically significant would require at least 6

participants. Considering possible dropouts during the study, the

sample was inflated by 50%, resulting in a final sample size of 9

participants. Data distribution was analysed using the Shapiro-

Wilk test. Insulin, growth hormone, cortisol, total and free

testosterone, epinephrine, nor epinephrine, and glucose were

Figure 2. Mean and SD for oxygen uptake (A), integrated electromyography (B), heart rate (C), power output (D), aerobic power
contribution (E), anaerobic power contribution (F) for each 200-m interval during the 1000-m cycling TT performed in the morning or in
the evening. a Significantly different than the 200-m value for the same time of day; b Significantly different than the 400-m value for the same time
of day; V

:
O2 and HR increased exponentially with distance for times of day (p,0.05), but there was a tendency for Paer values at 600 and 800 m, and

V
:

O2 at 600 and 1000 m, to be higher in the evening than in the morning (p,0.10).
doi:10.1371/journal.pone.0109954.g002
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transformed into natural log values as they did not satisfy the

assumptions of normality. A two-way analysis of variance

(ANOVA), with repeated measures (period 6 time), followed by

Bonferroni adjustment, was used to compare the physiological,

metabolic and hormonal response during the trials. When

violations to the assumptions of sphericity were observed, the

degrees of freedom were corrected using Greenhouse-Geisser

corrections. The student test t was used to compare the time to

complete the task between morning and afternoon and to access

any possible test order effect (test 1 versus test 2). Confidence

intervals (95% CI) and effect sizes for the t and F ratio, expressed

as partial eta-squared (gp
2), were also calculated when appropriate

to evaluate the magnitude of differences. A gp
2 of 0.1, 0.3 and 0.5

were considered as small, moderate and large effects, respectively

[9]. Data are reported as means and standard deviation (M 6 SD).

Statistical significance was set at p#0.05, while a trend was noted

when p,0.10 (1). All analyses were performed using SPSS (17.0)

software.

Results

Performance, energy systems contributions and
physiological response to the 1000-m cycling TT

The mean values for performance time, PO, Paer, Pan, iEMG,

V
:

O2 and HR during the 1000-m cycling TT in the morning and

evening are displayed in Table 1. The time to complete the TT

was shorter in the evening than in the morning (t (8) = 2.331,

p = 0.048, gp
2 = 0.63, 95% CI = 0.7 to 12.8 s). The mean values

for PO, Paer, Pan, iEMG, V
:

O2 and HR were not different

between evening and morning, although a moderate effect size

was found for all parameters (except iEMG) with higher values

observed in the evening (Table 1).

The PO, Paer, Pan, iEMG, V
:

O2 and HR response to the 1000-

m cycling TT in the morning and the evening are displayed in

figure 2. There was no main effect for time of day or interaction

for all of these variables (all p.0.10), but there was a tendency for

Paer and V
:

O2 values at the 600- and 800-m sections to be higher

in the evening than in the morning (p = 0.07 and 0.06,

respectively). There was a main effect of distance for Paer, Pan,

iEMG, V
:

O2, and HR (all p,0.01), but not for PO (p.0.10).

Hormones, glucose and lactate
The hormone, glucose and lactate response to the 1000-m

cycling TT in the morning and evening are displayed in Table 2.

There was no significant main effect for time of day or interaction

for glucagon, norepinephrine or epinephrine (all p.0.10). There

was a significant main effect of time for these hormones (all p,

0.001), with values immediately after the TT being higher than

baseline and 609 post-TT for both trials, but without a significant

difference between the 609 post-TT and baseline (p.0.10).

Insulin, cortisol, and total and free testosterone were higher in

the morning than in the evening (p = 0.05, 0.05, 0.03 and 0.01,

respectively), while GH was higher in the evening than in the

morning (p = 0.02). In addition, the GH values 609 post-TT were

significantly lower in the morning than in the evening (p = 0.023),

while total testosterone values at the same time point were higher

in the morning than in the evening (p = 0.005). Baseline GH values

were lower than immediately post-TT (p,0.05) for both morning

and evening trials, but without a significant difference between

post-TT and 609 post-TT (p.0.10). Total testosterone immedi-

ately after the TT was higher than the 609 post-TT (p,0.05) in

both trials, but without a significant difference between post-TT

and baseline or between 609 post-TT and baseline (p.0.10).

Similar results were obtained for free testosterone, except that

values post-TT were also higher than baseline for both trials

(Table 2).

The plasma glucose was lower in the morning than in the

evening (p = 0.04). However, there was no significant effect of time

or an interaction effect (p.0.10). The plasma lactate increased

with the exercise but returned to baseline values after 60 min of

recovery for both conditions (no time of day or interaction effect,

all p.0.10).

The normalized norepinephrine response to the exercise (post-

TT less baseline) was significantly higher in the morning than in

the evening (Figure 3A). The normalized glucose response to the

exercise tended also to be higher in the morning than in the

evening (Figure 3B). There was no difference between the

morning and evening response, or the recovery from the exercise,

for any other variable.

Table 2. Mean and SD for hormones, glucose and lactate concentrations at baseline, immediately (Post-TT), and sixty minutes
after (609 Post-TT) a 1000-m cycling TT performed in the morning or in the evening (n = 9).

Baseline Post-TT 609 Post-TT

Hormones Morning Evening Morning Evening Morning Evening

Glucagon (pg.mL21) 2.4560.71 2.6260.69 11.3865.20a 9.3964.15a 3.2561.49b 3.6561.32b

Insulin (IU.mL21) (Log)* 1.5960.96 1.3160.71 1.7461.21 1.1061.29 1.3860.61 1.2060.94

GH (ng.mL21) (Log)** 0.6560.71 0.8460.90 1.3260.91a 1.7761.17a 0.8560.63V 1.6861.03

Cortisol (ug.dL21) (Log)* 2.4960.33 2.0760.87 2.6260.43a,V 2.2660.81 2.5260.52V 2.0560.68b

Total TE (ng.dL21) (Log)* 6.5960.89 6.4160.26 6.2160.26 6.1060.18 6.2560.21b,V 5.9260.27b

Free TE (ng.dL21) (Log)* 2.1660.23 1.9260.18 2.2360.26a 2.0360.12a 2.1060.20b,V 1.7460.17bV

Norepinephrine (pg.mL21) (Log) 5.2360.47 5.5860.39 6.9360.56a 6.6660.66a 5.7460.51b 5.8460.67b

Epinephrine (pg.mL21) (Log) 4.0460.59 4.2960.81 4.9860.63a 4.8960.50a 4.3660.51b 4.3160.73b

Glucose (mmol.L21) (Log)** 1.5060.22 1.7160.13 1.6360.17 1.7360.16 1.5060.13 1.6860.23

Lactate (mmol.L21) 2.4560.71 2.6260.69 11.3865.20a 9.3964.16a 3.2561.49b 3.6561.32b

*,** Main effect for time of day (*Morning significantly higher than evening; ** Morning significantly lower than evening). a Significantly higher than baseline.
b Significantly lower than post-TT. V Significantly different than evening at the same time point. GH: growth hormone; TE: testosterone.
doi:10.1371/journal.pone.0109954.t002
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Test order effect
There was no test order effects for any of the variables

investigated (all p.0.10).

Discussion

The main purpose of this study was to determine the effect of

time of day on performance, pacing, energy system contribution,

and metabolic and hormonal responses during a 1000-m cycling

TT. The main findings of the present study were: 1) a better

performance (shorter TT times) in the evening than in the

morning, which was not accompanied by a significant alteration in

the aerobic or anaerobic contribution; 2) Insulin, cortisol, and free

and total testosterone were lower in the evening, while GH and

plasma glucose concentration were higher in the evening.

Figure 3. Mean and SD for norepinephrine (A) and glucose (B) response to the exercise (post-TT less baseline). * Significantly higher in
the morning than in the evening. { Tendency to be higher in the morning than in the evening (p,0.10).
doi:10.1371/journal.pone.0109954.g003

Time of Day and Exercise Performance
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However, the norepinephrine and glucose responses to the

exercise were higher in the morning.

In the present study, the time for amateur, recreational cyclists

to complete the 1000-m cycling TT was ,6.5 s (,6.9%) quicker

in the evening than in the morning. This represented a large effect

size (gp
2 = 0.63), suggesting that time of day can affect perfor-

mance during a short-distance TT. This improved performance in

the evening is in agreement with previous reports of better

performance in the evening during a 30-s Wingate test [5], a 60-s

all-out test [14], a repeated-sprint test [9], and a high-intensity

(95% VO2max), constant-load exercise [6]. We had hypothesized

that this improvement on performance in the evening might be

associated with parallel changes in pacing and energy system

distribution. Although visually the power output appears to be

maintained at a higher value over the last 400 m in the evening

when compared to morning (figure 2), these alterations failed to

reach statistical significance. In addition, no apparent differences

between the morning and evening Pan and Paer profiles during

the trial were identified. Instead, there were moderate effect sizes

for the mean Pan and Paer, with higher values observed in the

evening (table 1). These increased mean Pan and Paer in the

evening accompanied a moderate effect size for mean PO and a

large effect size to time performance in favor of evening (table 1).

Together, these results suggest that improvement in performance

in the evening trial was not caused either by alteration in a unique

energy system (i.e. aerobic or anaerobic), or by a rise in the aerobic

or anaerobic energy supply at a given time point of the trial.

Instead, performance in the evening seemed to be improved due a

concomitant and maintained increase in aerobic and anaerobic

contributions throughout the trial. These results are in agreement

with other studies showing that an enhanced performance in the

evening is accompanied by a slightly increase in both the aerobic

and anaerobic contribution [4,7].

In parallel with a different performance between the morning

and evening, we also observed hormonal and metabolic differences

between the times of day. Insulin was increased and GH was

reduced in the morning. Plasma glucose was also reduced in the

morning. On the other hand, cortisol levels were increased in the

morning. Cortisol levels peak in the morning and decrease linearly

throughout the day with the lowest value being reached at ,8:30

pm [25]. This elevated cortisol in the morning is indicative of an

increased physiological stress, and it would be expected to elevate

plasma glucose [26]. However, as insulin reduces plasma glucose

levels [27], any effect of cortisol on plasma glucose may have been

off-set. In addition, the circadian profile of GH produces a peak

concentration in the night during the first two hours of sleep, but is

reduced in the morning [28]. A reduced GH concentration in the

morning may have contributed to the reduced plasma glucose

concentration [28,29,30]. We hypothesise therefore that elevated

insulin, as well as reduced GH concentrations in the morning, may

not create an optimal metabolic milieu to meet the best

performance It is also interesting to note that the norepinephrine

response to exercise was amplified in the morning compared to the

evening, and this was accompanied by a tendency for a greater

plasma glucose response to the exercise. This higher norepineph-

rine response to the exercise in the morning may have occurred to

counterbalance the reduced plasma glucose concentration. Nor-

epinephrine can increase plasma glucose by either its direct effect

on hepatic glucogenolysis [31,32] or indirectly by increased

mobilization of free fatty acids [33].

We also found that free and total testosterone levels were higher

in the morning than in the evening, and both increased with

exercise at both times of day. It has been documented that

testosterone presents a biorhythmic effect with the highest values

in the morning (08:00 am) and the lowest in the evening (08:00

pm), but that the acute response to exercise is similar at different

times of the day [12,34]. Little attention has been given to the

metabolic effects of testosterone and its relation with fatigue.

Positive correlations between the basal level of testosterone and

sprinting and explosive power performances have been found [35].

Elevated testosterone concentration may be involved with an

increased neuromuscular efficiency [35] and enhanced Ca2+

handling mechanism in the fast-twitch muscle fibers [15].

Therefore, while an elevated testosterone in the morning could

partially compensate the negative metabolic milieu, perhaps via

signaling process into the cells, further studies investigating the

acute molecular effect of testosterone and it relationship with

biorhythms are necessaries to confirm this hypothesis.

It is important to acknowledge that we recruited recreational

cyclists and these results should not be extrapolated to other

groups such as highly-trained athletes or sedentary/clinical

populations. Further studies should be performed investigating if

the effects found in the present study are reproducible in these

populations. It is also important to underline that competitions do

not always occur in the evening. However, training can be

performed in both the morning and evening. It is necessary to

recognize that training may have to be performed under

unfavorable conditions, but as close as possible to the competition

environment and conditions (e.g. if the competition is in the

morning). Corroborating with this last statement, Edwards et al.

[36] observed that performance was better when the previous

training was performed in the early morning (07:00 AM) than in

the noon (12:00 AM). These results suggest that exercise

performance may be acutely altered by the habitual timing of

training, and underline the necessity to understand the effects of

exercise and training at different time of days.

In conclusion, performance was impaired in the morning

compared with the evening, but it was not associated with a clear

alteration in pacing, an aerobic and anaerobic energy supply

distribuition. Morning exercise was performed in a less favorable

metabolic milieu (i.e. elevated insulin and cortisol, and reduced

plasma glucose levels), combined with an exacerbated norepi-

nephrine and plasma glucose response to the exercise.
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