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An open quantum system is a system coupled to an environment that can describe time-irreversible dynamics through
which the system evolves toward the thermal equilibrium state. We present a quantum mechanically rigorous theory in
order to help the analysis of spectra obtained from the advanced nuclear magnetic resonance (NMR) and muon spin
rotation, relaxation or resonance (μSR) techniques. Our approach is based on the numerically “Exact” hierarchical
equations of motion (HEOM) approach, which allows us to study the reduced system dynamics for non-perturbative and
non-Markovian system-bath interactions at finite temperature even under strong time-dependent perturbations. We
demonstrate the present theory to analyze μSR and low-field NMR spectra, as an extension of the Kubo–Toyabe theory
focusing on the effects of temperature and anisotropy of a local magnetic field on spectra, to help further the
development of these experimental means.

1. Introduction

For the analysis of NMR and ESR spectroscopies, the
quantum master equation or the Redfield theory has been
developed to describe the effects of the longitudinal and
transversal relaxations characterized by the time constants T1

and T2.1,2) Then, the stochastic theory has been employed to
describe the effects of the inhomogeneous dephasing
characterized by the time decay constant Ty

2 in the fast
modulation limit.3) Owing to the advent of experimental
techniques that include NMR and ESR, spin dynamics are
now investigated under extreme physical conditions, such as
quantum computing, where the quantum nature of an
environment plays an essential role.4,5) Thus, such existing
theories are insufficient to investigate the complex motion of
a spin system. This is also true for zero- to ultralow-field
NMR measurement6–9) and muon spin rotation, relaxation or
resonance (μSR) spectroscopy,10) because the excitation
energy of a spin is almost zero in such measurements and
quantum thermalization processes play an important role
even at very low temperatures.

μSR spectroscopy is a magnetic resonance technique that
utilizes a short-lived elementary particle, a muon (lifetime:
2:2 � 10�6 s). The muon is a charged spin particle whose
magnetic moment is three times larger than that of a proton.
Because of its large magnetic moment and short lifetime, it
can be implanted in matter to obtain extremely sensitive local
magnetic and electronic probes. μSR spectroscopy measures
the muon spin polarization recorded from the decay
anisotropy of the emitted positrons, as a function of the
arrival and decay times. While the experimental setup is
completely different from that of NMR spectroscopy, the
information obtained by μSR spectroscopy is analogous to
that by a low-field NMR measurement.

In 1966, Kubo and Toyabe developed the spin relaxation
theory for NMR in zero or weak external magnetic field
comparable to the local field from a stochastic approach.11)

Such a low-field measurement was then realized by μSR
spectroscopy, and since then, the Kubo–Toyabe theory has
been employed to analyze the long-time behavior of the μSR
spectrum to probe a local environment of materials.12–17)

Various materials that include itinerant helimagnets, super-

conductors, proteins and DNA have been studied by μSR
spectroscopy.18–25) While several theories for μSR spec-
troscopy have been developed,26–30) the Kubo–Toyabe theory
is commonly used for investigations of this kind, because
it is handy while describing the experimentally obtained
μSR signal reasonably well. This feature arises from the
assumption that the three-dimensional local random field
surrounding the muon is described by a stochastic noise,
��ðtÞ for � ¼ x; y; z, which undergoes the Gaussian–
Markovian process determined by the noise correlation
function, h��ðt þ t0Þ��ðt0Þi ¼ �2e��t, where Δ and ν are
the amplitude and inverse correlation time of the noise,
respectively. This allows us to employ the stochastic
Liouville equation (SLE) to describe the spin dynamics
of the muon. This equation can be solved analytically in
a continued fractional form; the static limit of the spin
relaxation function is now called the Kubo–Toyabe function.

Although the Kubo–Toyabe theory is convenient to use,
there are many limitations in applying it to the analysis
of experimental results. For example, this theory does not
account for a temperature effect, because the stochastic
theory is phenomenological and cannot describe the thermal
equilibrium state at finite temperature. It is also applicable
only to an isotropic environment without any external forces.
Several improvements have been made in the framework
of the stochastic theory,12–17,29,30) but applicability is still
limited. This is because the stochastic theory relies on the
Markovian assumption, whereas the local noise that we
investigate arises from the non-Markovian vibrational motion
of inter- and intra-atomic or molecular modes in a complex
material.

To eliminate the above-mentioned limitations, here, we
consider a system-bath model to treat the system dynamically
and use the numerically “exact” hierarchical equations of
motion (HEOM) approach to calculate spectra in a rigorous
manner.31–38) The HEOM are the equations of motion that
can describe the dynamics of a system for non-perturbative
and non-Markovian system-bath interactions at any temper-
ature. In the high temperature limit, the HEOM results for the
Drude bath spectral distribution agree with those from the
stochastic theory: The HEOM can be regarded as a general-
ization of the SLE. Most importantly, the HEOM have
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flexibility to take into account the effects of a realistic noise
that can be obtained from experimental means or molecular
dynamics simulations.

This paper is organized as follows. In Sect. 2, we present a
typical model system for the NMR and μSR spectroscopy
analyses. The HEOM and their characteristic features are
described. Numerical results and discussion are presented in
Sect. 3. Section 4 is devoted to our conclusions.

2. Theory

2.1 Spin-Boson model in three-dimensional space
We consider a spin system as a probe of a local magnetic

environment for μSR and NMR spectroscopies described by

ĤS ¼ � 1

2
ħ!0�̂z � 1

2
ħ�̂ � BðtÞ; ð1Þ

where �̂ � �0ðsin � cos��̂x; sin � sin��̂y; cos ��̂zÞ is the di-
pole operator with the amplitude �0 expressed as a function
of the solid angle, and �̂� (� ¼ x, y, and z) are Pauli matrices.
The frequency !0 is the Zeeman energy that arises from the
static longitudinal external field, which is set to zero in
the case of zero-field μSR and NMR spectroscopies. The
function BðtÞ is the time-dependent external field introduced
to describe various experimental schemes, which include spin
echo, COrrelation SpectroscopY (COSY), and Nuclear
Overhauser Effect SpectroscopY (NOESY) measurements
utilizing π and=or �=2 pulses.6) Using BðtÞ, we can explicitly
treat nonthermal vibrational motion that is, for example,
evaluated from molecular dynamics simulations.

The spin system is independently coupled to three heat
baths in the x, y, and z directions to describe an environment
in a three-dimensional space (see Fig. 1). We can regard
these baths as arising from a local magnetic field owing to the
surrounding atoms or molecules. The total Hamiltonian is
then given by

Ĥtot ¼ ĤS þ
X

�¼x;y;z
ðĤ�

I þ Ĥ�
BÞ; ð2Þ

where

Ĥ�
B ¼

X
j

ħ!�
j b̂�yj b̂�j þ

1

2

� �
; ð3Þ

and

Ĥ�
I ¼ ħV̂�

X
j

g�j ðb̂�yj þ b̂�j Þ; ð4Þ

and Ĥ�
B and Ĥ�

I are the Hamiltonian of the αth bath and the
Hamiltonian representing the interaction between the system
and the αth bath, respectively. The system part of the system-
bath interactions is defined as V̂� ¼ �̂�=2, and b̂�j ; b̂

�y
j , !�

j ,
and g�j are the annihilation operator, creation operator,
frequency, and system-bath coupling constant for the jth
mode of the αth bath, respectively. For conventional NMR
measurements, we consider the heat bath in the z direction
only, because the effects of the noise in the x and y directions
can be ignored owing to the large !0.

The αth heat bath can be characterized by the spectral
distribution function (SDF), defined by

J�ð!Þ ¼
X
j

ðg�j Þ2	ð! � !�
j Þ: ð5Þ

By adjusting the form of the SDF, the properties of the local
environment consisting of solid-state materials, solvates, and
protein molecules can be modeled. The SDF is estimated
from spectroscopic experiments39–41) or simulations.42–46) If
we reduce the bath degrees of freedom to obtain the reduced
density matrix 
̂SðtÞ ¼ trBf
̂S+BðtÞg, the baths produce the
noise on the system defined as �̂�ðtÞ �

P
j g

�
j x̂

�
j ðtÞ. Through

these noise terms, the bath thermalizes the system through
fluctuation and dissipation. For a harmonic bath, the effects
of thermal fluctuation are expressed as the symmetrized
correlation function defined by31,36)

1

2
hf�̂�ðtÞ; �̂�ð0ÞgiB

¼
Z

d!J�ð!Þ coth �ħ!
2

� �
cosð!tÞ; ð6Þ

whereas that of the relaxation function is expressed as the
anti-symmetrized correlation defined by

ih½�̂�ðtÞ; �̂�ð0Þ�iB ¼ i

Z
d!J�ð!Þ sinð!tÞ; ð7Þ

where h� � �iB represents the thermal average of the bath
degrees of freedom. The symmetrized and anti-symmetrized
correlation functions relate through the quantum fluctuation–
dissipation theorem. The relationship between the present
dynamical theory and the stochastic theory can be illustrated
using the classical Langevin equation that can be derived
from the system-bath model.36) In the Langevin approach, the
function �̂�ðtÞ corresponds to the Langevin random force
whose correlation function is defined by Eq. (6). The
damping kernel of the Langevin equation is then expressed
as Eq. (7), which relates with Eq. (6) through the classical
fluctuation–dissipation theorem. The stochastic theory thus
corresponds to the Langevin formalism without the damping
term, because the theory ignores the effects of dissipation.
Such a situation is only true when the bath temperature is
extremely high and the damping kernel becomes smaller than
the fluctuation term. Because the HEOM formalism treats
both fluctuation and dissipation, it can describe the
irreversible dynamics of the system accurately, whereas the
stochastic theory describes the dephasing motion only.

In principle, the HEOM can be constructed for any profile
of SDF for the noise correlation functions expressed in terms
of damped oscillators as exp½��a � i!a�, where �a and !a

characterize the relaxation and oscillation of the noise

bath z

bath y

bath x

Fig. 1. (Color online) Schematic depiction of three-dimensional spin-
Boson model for μSR spectroscopy.
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correlation for the αth bath, respectively: The HEOM have
been derived for the Drude,31–38) Brownian,47–49) Lorentz,50)

Ohmic,51) Drude–Lorentz,52) and their combinations.43,53)

Alternatively, we can derive the HEOM for an arbitrary
SDF using the Chebyshev-quadrature spectral decomposition
to study the sub-Ohmic SDF at zero temperature.54) The
HEOM for Brownian spectral distribution, which is important
to take into account local modes of an environment, are
presented in Appendix.

Here, to demonstrate the relationship between the HEOM
approach and the stochastic approach, we consider the Drude
SDF defined by31–38)

J�ð!Þ ¼ �
�

�2�!

�2� þ !2
; ð8Þ

where � represents the coupling strength between the system
and the αth bath. If necessary, we define � as a function of
solid angle to represent the rotationally invariant environ-
ment.55,56) The correlation functions are then analytically
evaluated as31,32)

1

2
hf�̂�ðtÞ; �̂�ð0ÞgiB ¼

X1
k¼0

c�ke
���k jtj; ð9Þ

and

ih½�̂�ðtÞ; �̂�ð0Þ�iB ¼ 2 �c�0 e
���

0
jtj; ð10Þ

where ��0 � ��, �c�0 ¼ ��
2
�=2, c

�
0 � ��

2
� cotð�ħ��=2Þ=2, and

��k � 2�k=�ħ,

c�k � �� 4�k�2�
ð�ħ��Þ2 � ð2�kÞ2 ð11Þ

for k > 0. Under the high-temperature condition of �ħ�� �
2, the symmetrized correlation function is expressed as
hf�̂�ðtÞ; �̂�ð0ÞgiB=2 ¼ ���e

���jtj=�ħ: The noise correlation
function in the stochastic theory agrees with the high
temperature limit of this fluctuation term. Thus, the results
from the stochastic theory that includes the Kubo–Toyabe
theory can be obtained from the HEOM approach for
J�ð!Þ ¼ �2

��ħ��!=ð!2 þ �2�Þ with the dissipation term
ignored.31)

2.2 HEOM approach
The HEOM are the equations of motion that allow us to

simulate the irreversible dynamics of the system through the
fluctuation and dissipation given by Eqs. (9) and (10) in non-
perturbative and non-Markovian manners at finite temper-
ature.31–38) In this formalism, the effects of higher-order non-
Markovian system-bath interactions are mapped into the
hierarchical elements of the reduced density matrix. This
formalism is valuable because it can be used to treat not only
strong system-bath coupling but also quantum coherence
(quantum entanglement) between the system and the bath,
which is essential for studying a system subject to a time-
dependent external force and nonlinear response functions.36)

Various analytical and numerical techniques have been
developed for the HEOM approaches that allow us to study
a complex system under quantum mechanically extreme
conditions. With the above described features, the HEOM,
which were developed to bridge between the Markovian
and perturbative quantum master equation theory and non-
Markovian and non-perturbative but phenomenological SLE

theory, exhibit wide applicability. The HEOM approach is
ideal for extending the applicability of the Kubo–Toyabe
low-field theory to various problems and physical conditions
in a rigorous manner, and has been applied to spin relaxation
problems.36,57–59) Here, we investigate the μSR problem
using the HEOM approach.

In the case of the three-dimensional spin-Boson model, the
HEOM is given by34–37)

@

@t

̂nðtÞ ¼ �iL̂
̂nðtÞ �

X
�¼x;y;z

XK�

k¼0
n�k�

�
k þ �̂�

" #

̂nðtÞ

�
X

�¼x;y;z

XK�

k¼0
�̂�
̂nþe�

k
ðtÞ �

X
�¼x;y;z

XK�

k¼0
n�k �̂

�
k 
̂n�e�k ðtÞ;

ð12Þ
where iL̂ � iĤ�

S=ħ and we introduce the set of hierarchy
elements n � fnx;ny;nzg with n� � fn�0 ; . . . ; n�K�

g for � ¼
x, y, and z, and the unit vector along the kth element in the α
direction expressed as �e�k that changes the index of the n�k
element as n�k � 1. Here, n�0 is the element for ��, whereas n�k
for k 	 1 are the elements for the Matsubara frequencies
��k , respectively, in the α direction. The αth bath-induced
relaxation operators are defined as �̂� � iV̂�

� , �̂
�
k � ic�k V̂

�
� ,

�̂�
0 � � �c�0 V̂



� þ ic�0V̂

�
� ; ð13Þ

and

�̂� � �
XK�

k¼1

c�k
��k

þ �
�ħ

� c�0
��

� �" #
V̂�
� V̂

�
� ; ð14Þ

where we have introduced the hyperoperator notation Ô� f̂ �
½Ô; f̂ � and Ô
 f̂ � fÔ; f̂g for any operator Ô and operand
operator f̂. The hierarchy of equations of motion introduced
above continues to infinity, which is not easy to solve
numerically. To truncate Eq. (12), we introduce the termi-
nator33,34,36)

@

@t

̂nðtÞ ’ �iL̂
̂nðtÞ �

X
�¼x;y;z

�̂�
̂nðtÞ; ð15Þ

which is valid for the integers n�0 ; . . . ; n
�
K�

satisfyingXK�

k¼0
n�k � !c

minð��; ��1Þ
: ð16Þ

In the high temperature case, the HEOM reduces to31,36)

@

@t

̂nðtÞ ¼ � iL̂ þ

X
�¼x;y;z

n�0��

 !

̂nðtÞ �

X
�¼x;y;z

�̂�
̂nþe�ðtÞ

�
X

�¼x;y;z
n�0�̂

�
0 
̂n�e�ðtÞ; ð17Þ

where c�0 in Eq. (13) is now approximated as c�0 ¼ ���=�ħ
and n reduces to n ¼ fnx0; ny0; nz0g with e� � e�0 . Through
numerical integration of the equations, we can calculate μSR
spectrum under any physical condition even under a time-
dependent external force. In the Markovian limit �� � !c,
the above equation further reduces to the master equation

@

@t

̂ðtÞ ¼ �iL̂
̂ðtÞ �

X
�¼x;y;z

�V̂
�
�

1

�ħ
V̂�
� � i

��
2
V̂

�

� �

̂ðtÞ:

ð18Þ
In the case of regular NMR described by finite !0, the
HEOM can describe the T1 and T2 relaxation processes from
the x and y baths, respectively, and the Ty

2 relaxation process
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from the z bath in the fast modulation limit without the
rotating wave approximation (RWA). While the above
equation is valid only in the high temperature case, the
HEOM presented in Eq. (12) is valid at any temperature
under non-Markovian conditions.

The SLE can also obtained from Eq. (17) by assuming
an extremely high temperature case by ignoring the term
i��V̂



�=2 and by rescaling �2

� ¼ ���=�ħ to obtain31,36)

@

@t

̂nðtÞ ¼ � iL̂ þ

X
�¼x;y;z

n�0��

 !

̂nðtÞ �

X
�¼x;y;z

i��V̂
�
� 
̂nþe�ðtÞ

�
X

�¼x;y;z
in�0��V̂

�
� 
̂n�e�ðtÞ: ð19Þ

Although the numerical cost of solving Eq. (19) is almost the
same as that of solving Eq. (17), we can solve the above
equation in the same manner as Eq. (17) using the truncation
scheme developed for the HEOM formalism.

3. Results and Discussion

We calculated the free induction decay signal of a spin
polarization defined by GzðtÞ ¼ Trf
̂ðtÞ � �̂zg. To reduce the
computational costs, we constructed the HEOM using the
Padé-based expression for c�k and ��k instead of using the
Matsubara-frequency-based expression.60–62) Numerical cal-
culations were carried out to integrate Eq. (17) using the
fourth-order low-storage Runge–Kutta (LSRK4) meth-
od,63,64) with a time step of 	t ¼ 0:01 � 10�2. We considered
the factorized initial state with the 100% polarized spin in the
þz direction, i.e., Gzð0Þ ¼ 1, to account for the condition of
the actual μSR measurement. By numerically integrating the
SLE presented in Eq. (19), we also calculated the stochastic
results to illustrate the roles of the dissipation and the low
temperature correction terms involved in the HEOM. We first
considered the case of the isotropic environment described by
�x ¼ �y ¼ �z ¼ � and x ¼ y ¼ z ¼ .

3.1 Temperature effects: Interplay between fluctuation and
dissipation

In Fig. 2, we show the temperature dependence of the μSR
spectrum for the fixed coupling strength  ¼ 0:1 for two
cases of the inverse noise correlation time (a) � ¼ 1 and (b)
� ¼ 10. We compare the HEOM (solid curves) and SLE
(dashed curves) results to study the role of the dissipation
term by setting �2

� ¼ ���=�ħ. In the intermediate modu-
lation case shown in Fig. 2(a), the HEOM and SLE results
are all similar, whereas in the fast modulation case shown in
Fig. 2(b), they are different in the low temperature cases. In
the HEOM formalism, the high temperature condition is
written as �ħ�=2 < 1. This implies that all the cases in
Fig. 2(a) and the case �ħ ¼ 0:2 in Fig. 2(b) are in the high
temperature regime, where the HEOM reduce to Eq. (17).
Because we adjusted the amplitude of the stochastic noise to
fit the HEOM results, the difference in the HEOM results
arises only from the dissipation term presented as the first
term in Eq. (13), which becomes negligible for a small �ħ� in
comparison with the second term. This indicates that, by
setting �2

� ¼ ���=�ħ, we may explain the temperature
dependence of the μSR spectrum within the framework of
the stochastic theory under such conditions. When the
temperature becomes very low, however, the signals
calculated from the HEOM decay rapidly in comparison

with those from the SLE. This difference is due to the time-
irreversible dynamics of the spin described by the interplay of
the fluctuation and dissipation, whereas the SLE includes
dephasing only described by the fluctuation. Because the
contribution of the dissipation term becomes large in the low
temperature regime, the HEOM results decay more rapidly.

3.2 Non-Markovian effects: Role of quantum thermal noise
Next, we investigate the effect of the noise correlation

(non-Markovian effects) in the weak coupling case under the
(a) intermediate temperature (�ħ ¼ 1:0) and (b) low temper-
ature (�ħ ¼ 2:0) conditions. Because the condition �ħ� � 0:5
is maintained, the HEOM and SLE results exhibit similar
Gaussian decay profiles for the slower modulation case as
predicted from the stochastic theory. Note that, when γ is
sufficiently small, both HEOM and SLE results exhibit a 1=3
tail that was predicted by the static limit of the Kubo–Toyabe
theory. The distinct feature of the HEOM results is observed
in the fast modulation cases (� ¼ 10) in Figs. 3(a) and 3(b):
The signals calculated from the HEOM decay more slowly
than those calculated from the SLE after exhibiting a fast
initial decay in the time period less than 1=�ħ  1:0 or 0.5.

While the fast decay is due to the population relaxation
arising from the dissipation, the slow decay is due to the
quantum dephasing arising from the quantum thermal noise.
As illustrated in Eqs. (9) and (10), two types of non-
Markovian noise are involved in the system dynamics: one
is of mechanical origin characterized by the fluctuation
(c�0e

���
0
t) and dissipation ( �c�0 e

���
0
t) with ��0 ¼ �, and the other

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14 16

G
z(t

)

(a) γ = 1.0

 = 2.0
 = 1.0
 = 0.2

t

t
0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14 16

 = 2.0
 = 1.0
 = 0.2

(b) γ = 10

G
z(t

)

Fig. 2. (Color online) μSR spectrum calculated using HEOM (solid
curves) and SLE (dashed curves) under (a) intermediate modulation
(� ¼ 1) and (b) fast modulation (� ¼ 10) conditions for weak coupling
case ( ¼ 0:1) with various inverse temperatures �ħ ¼ 2:0, 1.0, and 0.2.
Because the SLE theory does not account for the temperature effects, we
adjusted the amplitude of the stochastic modulation as �2

� ¼ ���=�ħ.
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is of quantum thermal origin characterized by the fluctuation
only (c�ke

���k t for k 	 1) with ��k ¼ 2�k=�ħ. When γ is much
larger than �1, the mechanical contribution with e��

�
0
t

vanishes after t > 1=�1, and the effects from the quantum
thermal noise take place. The quantum thermal fluctuation
exhibits a peculiar behavior in comparison with the me-
chanical fluctuation, because the amplitude of the noise
becomes negative for a large a γ [see Fig. 7(b) in Ref. 36].
Thus, the signal obtained from the HEOM decays more
slowely than that obtained from the SLE. Although the SLE
is also a non-Markovian theory, this quantum thermal
dephasing process can be described only from the numeri-
cally “exact” HEOM approach.

3.3 Non-perturbative system-bath interactions
We study the non-perturbative effects of the system-bath

coupling by changing η. As illustrated in Fig. 4(a), the
differences between the HEOM and SLE results increase with
coupling strength even in the intermediate modulation case.
This is because, while the amplitudes of the fluctuation and
dissipation are both proportional to the coupling strength, the
relaxation arising from the dissipation plays a greater role
than the dephasing arising from the fluctuation, owing to the
time-irreversible nature of the relaxation. As depicted in
Fig. 4(b), such differences become prominent in the faster
modulation case, as in the cases described in Sects. 3.1 and
3.2. The time period of the initial decay decreases with
increasing coupling strength, because the noise with cke

���k t

for a larger k can interact with the system several times in this
non-perturbative regime.

3.4 Anisotropic effects of environment
The HEOM formalism is ideal for studying a spin system

under realistic conditions, because it allows the treatment of
various anisotropic environments with any profile of noise
correlation functions characterized by

J�;�0 ð!Þ ¼
X
j

g�j g
�0
j 	ð! � !��0

j Þ ð20Þ

for any combination of �; �0 ¼ x; y; z. This is because the
HEOM formalism is based on the equations of motion
approach. Below, we investigate the anisotropy effects of
noise amplitudes and noise correlations. For this purpose, we
consider the extremely high temperature case (�ħ ¼ 2:5 �
10�3) with the weak system-bath coupling  ¼ 1:0 � 10�3.
Thus, the HEOM and SLE results become almost identical
for �2

� ¼ ���=�ħ.

3.4.1 Anisotropic noise amplitudes
We first study the effects of the anisotropic system-bath

coupling strength expressed as

x ¼ a; y ¼ b; z ¼ c; ð21Þ
where a, b, and c are the anisotropic constants. While the
analysis of anisotropic effects was limited in the static case
on the basis of the Kubo–Toyabe theory,16,17) there is no
technical limitation from the HEOM approach for such
problems, because we are only integrating the HEOM.

In Fig. 5 we present the signals for the (i) x anisotropic
(a ¼ 1, b ¼ 2, and c ¼ 1), (ii) z anisotropic (a ¼ 1, b ¼ 1,
and c ¼ 2), and (iii) isotropic (a ¼ 1, b ¼ 1, and c ¼ 1) cases
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Fig. 3. (Color online) μSR spectrum calculated using HEOM and SLE for
weak coupling case ( ¼ 0:1) under (a) intermediate temperature (�ħ ¼ 1:0)
and (b) low temperature (�ħ ¼ 2:0) conditions with various modulation rates
� ¼ 0:01, 0.1, 1, and 10. The solid and dashed curves represent the HEOM
and corresponding SLE results, respectively.
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Fig. 4. (Color online) μSR spectrum calculated for low temperature case
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for various γ values. The other parameters are fixed as
�ħ ¼ 2:5 � 10�3 and  ¼ 1:0 � 10�3. In Figs. 5(a)–5(c), the
signal decays more rapidly in the x anisotropic case than in
the isotropic case, whereas the signal decays more slowly in
the z anisotropic case than in the isotropic case. This is
because the �̂x operator causes the longitudinal (T1)
relaxation, whereas the �̂z operator causes not a relaxation
but a dephasing (Ty

2 ) for the z-polarized spin. When γ
increases, the spin distribution approaches the equilibrium
value owing to the relaxation. In the fast modulation case
shown in Fig. 5(d), the signal decays more rapidly than in the
case shown in Fig. 5(c), because the effective coupling
strength becomes larger for a large γ owing to the factor
�2�=ð�2� þ !2

cÞ, where !c is the characteristic frequency of the
system dynamics. The z anisotropic results become similar to
the isotropic case, because when the spin element in the z
direction becomes small, the effects of dephasing in the z
direction also become minimal.

3.4.2 Anisotropic noise correlation
Finally, we consider the case that some of the three-

dimensional baths are correlated. Such a model was
developed to analyze the noise correlation of different
vibrational modes by two-dimensional infrared spectrosco-
py.65,66) Here, we consider the (i) x–y correlated [V̂x{y ¼
ð�̂x þ �̂yÞ=2 and V̂z ¼ �̂z], and (ii) x–z correlated [V̂x{z ¼
ð�̂x þ �̂zÞ=2 and V̂y ¼ �̂y] cases for the bath Hamiltonian,
Eq. (4), with (i) � ¼ x{y, and z, and (ii) � ¼ x{z, and y.
These results are compared with (iii) the isotropic case � ¼ x,
y, and z.

In Fig. 6, μSR spectra are presented for various inverse
noise correlation times γ = (a) 0.1, (b) 0.3, (c) 1, and (d) 10.
The characteristic feature of the present results is illustrated
from the fluctuation term in Eq. (18) expressed as
ð�=�ħÞV̂�

� V̂
�
� . In the x–y correlation case, this term is

expressed as V̂�
x{yV̂

�
x{y ¼ ð�̂�2

x þ Ĉx{y þ �̂�2
y Þ=4, where

Ĉx{y ¼ ð�̂�
x �̂

�
y þ �̂�

y �̂
�
x Þ. In the slow modulation case shown

in Fig. 6(a), the movements of the spin in the x and the y
directions are not correlated, and the contribution from Ĉx{y

becomes small. Thus, the longitudinal (T1) relaxation
becomes weaker than that in the isotropic case. In the fast
modulation case shown in Fig. 6(d), however, the contribu-
tion from Ĉx{y becomes similar to that of �̂�2

x and �̂�2
y , and

thus we have V̂�
x{yV̂

�
x{y  V̂�

x V̂
�
x þ V̂�

y V̂
�
y , which leads to the

x–y result becoming similar to the isotropic one. In the x–z
correlation case, we have V̂�

x{zV̂
�
x{z < ðV̂�

x V̂
�
x þ V̂�

z V̂
�
z Þ under

the slow modulation condition, whereas the contribution
from the y direction does not change. Thus the x–z signal
shown in Fig. 6(a) decays more slowly than that in the
isotropic case, whereas it still decays more rapidly than the
x–y correlated signal. Under the fast modulation condition
shown in Fig. 6(d), the decay of the signal in the x–z
correlated case is slow, because, for the z-polarized spin, the
Ĉx{z contribution remains small even under the fast
modulation condition.

The above results indicate that the μSR spectrum is
sensitive to the anisotropic effects of the environment, which
should be detected experimentally in accordance with the
theoretical analysis.

4. Conclusions

As illustrated in this paper, the HEOM approach has
distinct features for the analysis of μSR and near-zero-field
NMR spectra. First, while the stochastic approach can treat
the high-temperature Markovian case only, the HEOM
approach can treat the realistic non-Markovian noise arising
from complex environments, such as nanomaterials, proteins,
and a spin lattice in different magnetic ordered phases. This is
because the HEOM are constructed on the basis of a fairly
complex system-bath Hamiltonian: It is also possible to
construct a simulation model on the basis of a molecular
dynamics simulation.42–46) Second, because the HEOM is a
dynamical theory, we can easily and clearly identify the roles
of the system-bath interaction, noise correlation time, and
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Fig. 5. (Color online) μSR spectrum calculated for (i) x anisotropic (red curves), (ii) z anisotropic (blue curves), and (iii) isotropic (dashed curves) cases for
(a) � ¼ 0:1, (b) 0.3, (c) 1.0, and (d) 10.
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heat-bath temperature. Third, because the HEOM approach is
the equations of motion approach, there is no difficulty in
taking into account the effects of a time-dependent external
field. This allows us to calculate multi-dimensional near zero-
field NMR signals for various pulse sequences. In addition,
we can include the effects of nonthermal local environmental
modes explicitly as the time-dependent external field,
whereas the other thermal effects are taken into account
using the hierarchical structure. For numerical integration, we
can employ a complex quantum system, such as a spin
chain57) or a spin lattice58,59) as the main system instead of a
simple spin system.

In conclusion, the present formalism provides a powerful
means of analyzing μSR and various NMR measurements
for the study of environmental effects. It is also possible to
use the HEOM theory to investigate other scattering and
spectroscopic measurements, which include neutron scatter-
ing, electron paramagnetic resonance (EPR), and Mössbauer
measurements.36) All of the possibilities mentioned above can
be carried out as future studies upon request.
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Appendix: HEOM for Brownian Spectral Distribution

By extending the hierarchy, we can derive HEOM for the
Brownian spectral distribution given by47,48)

J�ð!Þ ¼ �
�

�2�!
2
0�!

ð!2
0� � !2Þ2 þ �2�!

2
; ðA:1Þ

where !0� is the frequency of the local mode, �� is the
inverse correlation time of the noise, and � is the coupling
strength of the environment. Because the spectral density has
two poles in the upper half-plane, i��0 � ið��=2 � i��Þ and
i ���

0 � ið��=2 þ i��Þ, where �� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2

0� � �2�=4
p

, both the
symmetrized and anti-symmetrized correlation functions are
expressed as linear functions of e�ð��=2�i��Þt and e�ð��=2þi��Þt,
in addition to Matsubara frequency terms, as defined earlier.

Here and for all previously defined abbreviations throughout.
Thus, we can construct the HEOM by evaluating the time
derivative of the reduced density matrices as48,49)

@

@t

̂nðtÞ ¼ �iL̂
̂nðtÞ �

X
�¼x;y;z

n�0�
�
0 þ �n�0 ��

�
0 þ

XK�

k¼1
n�k�

�
k þ �̂�

" #

� 
̂nðtÞ
�
X

�¼x;y;z
½�̂�
̂nþe�ðtÞ þ n�0�̂

�
�
̂n�e�ðtÞ�

�
X

�¼x;y;z
½�̂�
̂nþ�e�ðtÞ þ �n�0�̂

�
þ
̂n��e�ðtÞ�

�
X

�¼x;y;z

XK�

k¼1
�̂�
̂nþe�

k
ðtÞ

�
X

�¼x;y;z

XK�

k¼1
n�k �̂

�
k 
̂n�e�k ðtÞ; ðA:2Þ

where �̂� ¼ iV̂�
� , �̂�� ¼ � �c��V̂


� þ ic��V̂�
� , �̂�

k ¼ ic�k V̂
�
� , and

�̂� ¼P1
k¼K�þ1 C

�
RV̂

�
� V̂�

� with �c�� ¼ �i�!2
0�=4��,

c�� ¼ � �!
2
0�

4��
coth

�ħ
2

i
��
2
� ��

� �� �
; ðA:3Þ

and

c�k ¼ � 2�!
2
0�

�ħ
���

�
k

ð!2
0� þ ��k

2Þ2 � �2��
�
k
2
: ðA:4Þ

The hierarchical elements n � fnx;ny;nzg are now defined
by n� � fn�0 ; �n�0 ; n�1 ; . . . ; n�K�

g, where n�0 and �n�0 are the
elements for ��0 and ���0 for � ¼ x, y, and z, respectively. The
unit vectors in the α direction, which change the indexes of
the n�0 and �n�0 elements as n�0 � 1 and �n�0 � 1, are expressed as
�e� and ��e�, respectively, whereas the other unit vectors e�k
are defined in the same manner as Eq. (12).

For the condition n�0 þ �n�0 þ
PK�

k¼1 n
�
k � !c=minð��=2;

��1Þ, this infinite hierarchy can be truncated by the terminator
as
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@

@t

̂nðtÞ ’ �iL̂
̂nðtÞ �

X
�¼x;y;z

½ið�n�0 þ �n�0Þ�� þ �̂�� 
̂nðtÞ:

ðA:5Þ
In the high temperature case, the above equations reduce to47)
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