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Abstract: We systematically derive the collision term for the axial kinetic theory, a

quantum kinetic theory delineating the coupled dynamics of the vector/axial charges and

spin transport carried by the massive spin-1/2 fermions traversing a medium. We em-

ploy the Wigner-function approach and propose a consistent power-counting scheme where

the axial-charge distribution function, a non-conserved quantity for massive particles, is

accounted as the first-order quantity in the ~ expansion, while the vector-charge distribu-

tion function the zeroth-order quantity. This specific power-counting scheme allows us to

organize a reduced ~ expansion for the collision term and to formally identity the spin-

diffusion effect and the spin-polarization effect at the same order. We confirm that the

obtained collisional axial kinetic theory smoothly reduces to the chiral kinetic theory in

the massless limit, serving as a consistency check. In the absence of electromagnetic fields,

we further present the simplified axial kinetic equations suitable for tracking dynamical

spin polarization of heavy and light fermions, respectively. As an application to the weakly

coupled quark-gluon plasma at high temperature, we compute the spin-diffusion term for

massive quarks within the leading-log approximation. The formal expression for the first-

order terms provides a path toward evaluation of the spin polarization effect in quantum

chromodynamics.
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1 Introduction

The observations of global polarization of Λ hyperons in heavy ion collisions (HIC) have

triggered intensive studies for the spin polarization of relativistic fermions [1, 2]. In particu-

lar, the experimental measurements have been motivated by theoretical proposals upon the

polarization led by non-head-on scattering of hard partons [3] and by the thermal vorticity

from the statistical model in equilibrium [4]. Although the simulations based on the mod-

ified Cooper-Frye formula for spin polarization [5, 6] have shown remarkable agreements

with global polarization of Λ [7, 8], more recent observations for local polarization caused

the new tension between experiments and theories [9, 10]. Further phenomenological stud-

ies have alluded to an essential role for non-equilibrium corrections [11, 12], where the spin

polarization is no longer just dictated by thermal vorticity and equilibrium distribution

functions for Λ. Also, the feed-down effects are analyzed in refs. [13, 14], which show only

minor corrections upon the local polarization. It is hence imperative to understand the

dynamics of the spin polarization for not only hadrons but also quarks (and even gluons)

in quark gluon plasmas (QGP). In general, the current studies in theory for the dynamical

spin polarization in heavy ion physics may be divided into two directions: one is to con-

struct the so-called hydrodynamics of spin as a macroscopic effective theory incorporating

spin as a hydrodynamic variable obeying angular momentum conservation [15–17]. Alter-

natively, non-equilibrium spin transport can be studied through quantum kinetic theory as

a microscopic theory having a direct connection to the underlying quantum field theory.

In fact, the construction for quantum kinetic theory of massless fermions, known as

chiral kinetic theory (CKT), was initiated by refs. [18, 19] from Berry connection and

by refs. [20, 21] from the Wigner-function approach based on quantum field theory with

the motivation to explore non-equilibrium transport in chiral matter beyond the renown

anomalous phenomena in equilibrium such as the chiral magnetic/vortical effects [22–24].

There have been also plenty of followup studies for extension and applications [25–43]. In

particluar, the issue for Lorentz covariance associated with the side-jump phenomenon was

addressed in refs. [26, 27] and further refined in ref. [30] from the Wigner-function aprroach

with systematic inclusion of background electromagnetic fields and collisions in CKT. The

side-jump effect is also shown to contribute to anti-symmetric part of the canonical energy

momentum tensor responsible for angular-momentum transfer between spin and orbital

angular momentum in chiral fluids [44] (see also ref. [45] for a related study), which further

manifests the origin of side jumps in connection to spin-orbit interaction. Overall, the CKT

can be regarded as a modified Boltzmann(Vlasov) equation involving quantum corrections

such as the chiral anomaly, magnetic-moment coupling, and spin-orbit interaction. More-

over, the CKT has also been recently applied to the study of the Λ polarization in heavy

ion collisions [46, 47].

However, in order to consistently investigate the spin transport of Λ or strange quarks

as the seed for Λ in QGP before hadronization, it is inevitable to consider the mass correc-

tions. Unlike massless fermions of which the spin orientation is enslaved to the momentum

direction, the spin is now a new dynamical degree of freedom coupled with the charge

transport for massive fermions. There have been recent studies on the construction of the
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“free-streaming” quantum kinetic theory, without the collisional effects, delineating the

entangled dynamics between the vector/axial charges and the spin polarization for massive

fermions [48–53]. In particular, the axial kinetic theory, derived from the Wigner-function

approach up to O(~) in ref. [51], successfully cover both the massless and massive cases,

which is made possible by maintaining the general spin frame vector allowed in the solution

of the constraint equations. The set of quantum kinetic theories consists of a scalar kinetic

equation (SKE) for the vector-charge and an axial-vector kinetic equation (AKE) for the

spin degrees of freedom.

The next key ingredient for describing the spin diffusion/polarization is the collisional

effects, which have not been incorporated in the above studies. On the other hand, in

ref. [54], the spin-diffusion term at O(~0) in collisions was computed in perturbative QCD

(see also refs. [55, 56] for other studies of collisions). Nonetheless, the inclusion of O(~1)
corrections to the collisional effects, which is responsible for generating the spin polariza-

tion, has never been achieved. Therefore, we investigate the field-theoretical framework

to systematically include the collisional effects to the axial kinetic theory. As will be ex-

plained in this paper, one will confront with tough technical problems. The full master

equations directly obtained from the Kadanoff-Byam equations are quite involved with the

quantum corrections up to O(~1). On the other hand, similar to the previous construction

for the free-streaming part [51], we also have to ensure the smooth connection between the

collisional AKE and the CKT in the massless limit. In spite of the potential importance

of finite-mass effects in the collisions terms for the spin rotations and kinematics, the basic

framework for the collisional effects has not been touched thus far. We, therefore, intend to

establish the collisional SKE and AKE for arbitrary mass within a plausible approximation

for physical systems of our interest.

In this paper, we propose a ~-counting scheme to circumvent the aforementioned dif-

ficulty and construct the quantum kinetic theory with collisions and background electro-

magnetic fields for spin transport of spin-1/2 fermions with arbitrary mass. Our power

counting entails that the axial-charge distribution function fA is at O(~1) as opposed to

the vector-charge distribution function fV at O(~0) in the ~ expansion applied in the

Wigner-function formalism. However, this power counting may be applicable in most of

physical systems such as HIC. The consequent quantum kinetic theory can be regarded

as an “effective” axial kinetic theory with collisions, for which the free-streaming part has

been established in ref. [51]. Once deriving the full master equations with the self-energy

terms in the Kadanoff-Baym equations, we apply our power-counting scheme and solve the

reduced master equations. At the end of the day, we obtain the quantum kinetic equations

with collisions for the spin polarization and axial-charge evolution. The collision term

therein can be decomposed into the classical part responsible for the spin diffusion and

the quantum part contributing to the spin polarization, which importantly stems from the

spin-orbit interaction through the entangled dynamics of vector-charge distributions.

Applications of our general framework are not limited to QCD although we emphasize

the motivation for the quark transport in QGP. As an example, we further evaluate the

classical part of collisions for the spin-diffusion dynamics in the weakly-coupled QGP with

specific forms of the self-energies from the hard thermal loop approxmation. Computation
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of the quantum corrections demand the so-far unknown self-energies with polarized gluons,

which needs to be further investigated in the future.

The paper is organized as follows: in section 2, we briefly review the Wigner-function

approach and derive the master equations led by Kadanoff-Baym equations with collisions.

Then, we introduce our power-counting scheme in ~. Based on this scheme, we find the

perturbative solutions for Wigner functions. In section 3, we then derive the SKE and

AKE in an effective axial kinetic theory with collisions and background electromagnetic

fields as a generic formalism for studying quantum transport of fermions. Moreover, we

highlight the simplified version suitable for the application to heavy-ion physics and make

more detailed discussions upon the collision terms. As a concrete example for applications,

in section 4, we further investigate the spin-diffusion term in weakly-coupled QGP by

utilizing our formalism. Finally, we make concluding remarks and outlook in section 5.

For completeness, we present critical steps in the derivations/computations in appendices.

2 Wigner-function approach with collisions

In this section, we first derive the “master equations” by applying the spinor decompo-

sition and the ~ expansion to the Kadanoff-Baym equation. Those master equations are

subsequently used to derive the quantum kinetic theories. We systematically include the

collisional effects that are necessary for describing the relaxation dynamics.

The derivation of quantum kinetic theories in this framework has been investigated

for massless fermions [30] and for massive fermions without collisions, that is, the “free-

streaming” case [51]. Below, we follow the basic flow of the derivation established in

those preceding studies and summarize the crucial intermediate steps below. One will find

that the master equations (2.12) with the collisional effects have quite involved structures

originating from the spinor structures of fermions. Those involved structures yield versatile

transport phenomena that need to be investigated with appropriate strategies for further

developments. Therefore, we propose an ~ counting scheme in section 2.2 that enables one

to cure the pathological complication of the collisional effects and to extract the entangled

dynamics between the vector charge and the spin polarization.

2.1 Full master equations

We shall start with the Wigner transformation applied to quantum expectation values of

correlation functions of fermionic fields,

S
<(>)
αβ (q,X) =

∫
d4Y e

iq·Y
~ S̃

<(>)
αβ (x, y), (2.1)

where X = (x + y)/2 and Y = x − y and we work in the Minkowski spacetime with the

mostly negative spacetime metric. Here, S̃<αβ(x, y) = 〈ψ̄β(y)U(y, x)ψα(x)〉 and S̃>αβ(x, y) =

〈ψα(x)U †(x, y)ψ̄β(y)〉 are lessor and greater propagators, respectively. To maintain the

gauge invariance, we also insert the gauge link, e.g., U(y, x) = exp
(
− i
∫ y
x dz

ρAρ(z)
)

for

QED with Aρ denoting the U(1) electromagnetic gauge field. Note that qµ thus represents

the kinetic momentum. Hereafter, we focus on S<(q,X) and suppress the indices of spinors.
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After the Wigner transformation, the lessor propagator obeys the Kadanoff-Baym equations

derived from the Schwinger-Dyson equation,

(/Π−m)S< + γµi
~
2
∇µS< =

i~
2

(
Σ< ? S> − Σ> ? S<

)
,

S<(/Π−m)− i~
2
∇µS<γµ = − i~

2

(
S> ? Σ< − S< ? Σ>

)
, (2.2)

where Σ<(>) represents the lessor (greater) self-energy. Since we only focus on the scattering

process, here we drop the real parts of the retarded and advanced self-energies and of

the retarded propagators. See ref. [30] for the same setup to derive the equations for

Weyl fermions. The symbol of ? represents the Moyal product incorporating higher-order

corrections in ~. The star product of two functions A(q,X) and B(q,X) are expanded as

A ? B = AB +
i~
2
{A,B}P.B. +O(~2), (2.3)

where we define the Poisson bracket as {A,B}P.B. ≡ (∂µqA)(∂µB)− (∂µA)(∂µqB). The sum

and difference of eq. (2.2) read

{(/Π−m), S<}+
i~
2

(
[γµ,∇µS<]− [Σ<, S>]? + [Σ>, S<]?

)
= 0,

[(/Π−m), S<] +
i~
2

(
{γµ,∇µS<} − {Σ<, S>}? + {Σ>, S<}?

)
= 0. (2.4)

Here, we introduced {F,G} ≡ FG+GF , [F,G] ≡ FG−GF , {F,G}? ≡ F ?G+G?F and

[F,G]? ≡ F ? G−G ? F , where F and G are arbitrary matrix-valued functions.

The notations and conventions in the above equations are as follows. First, the deriva-

tive operators are given as [57]

∇µ = ∂µ + j0(�)Fνµ∂
ν
q , Πµ = qµ +

~
2
j1(�)Fνµ∂

ν
q , � =

~
2
∂ρ∂

ρ
q . (2.5)

We will hereafter use ∂µ ≡ ∂/∂Xµ for convenience. Here j0(�), j1(�) are spherical Bessel

functions and ∂ρ in � only act on the field strength Fνµ when having spacetime-dependent

background fields. Making the ~ expansion, which corresponds to the gradient expansion

for ∂µ � qµ, one finds

∇µ = ∂µ + Fνµ∂
ν
q −

~2

24
(∂ρ∂λFνµ)∂ρq∂

λ
q ∂

ν
q +O(~4),

Πµ = qµ +
~2

12
(∂ρFνµ)∂ρq∂

ν
q +O(~4). (2.6)

By using the complete basis for the Clifford algebra [57, 58], we may decompose the

Wigner functions into

S< = S + iPγ5 + Vµγµ +Aµγ5γµ +
Sµν
2
σµν ,

S> = S̄ + iP̄γ5 + V̄µγµ + Āµγ5γµ +
S̄µν
2
σµν , (2.7)

– 4 –
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where σµν = i[γµ, γν ]/2 and γ5 = iγ0γ1γ2γ3. We shall then focus on Vµ and Aµ, which give

rise to the vector-charge and axial-charge currents through JµV = 4
∫
q V

µ and Jµ5 = 4
∫
qA

µ,

where
∫
q ≡

∫
d4q/(2π)4. In fact, from field theory, the axial-charge current can be regarded

as a spin current for fermions. One may also establish a direct connection between Aµ and

the momentum spectrum of spin polarization from the modified Cooper-Frye formula [5].

See e.g., refs. [6, 44] and appendix B for references. It is worthwhile to note that the

axial-charge currents engendered by magnetic fields and vorticity in equilibrium, known as

the chiral separation effect and axial vortical effect, could be thus pertinent to the spin

polarization particularly in the case with mass corrections [59–61]. See also refs. [62–65]

for axial-charge currents triggered by electric fields. Similarly, it is useful to carry out the

same spinor-basis decomposition for the self-energies,

Σ< = ΣS + iΣPγ
5 + ΣV µγ

µ + ΣAµγ
5γµ +

ΣTµν

2
σµν ,

Σ> = Σ̄S + iΣ̄Pγ
5 + Σ̄V µγ

µ + Σ̄Aµγ
5γµ +

Σ̄Tµν

2
σµν . (2.8)

From the Kadanoff-Baym equations and decomposition of the Wigner functions and of

the self-energies, one can derive the master equations leading to the derivation of axial

kinetic theory.

Now, inserting the spinor decompositions (2.7) and (2.8) into the Kadanoff-Baym equa-

tion (2.4), we find ten equations according to the orthogonal property of the spinor basis.

This calculation is tedious mostly due to the manipulation of the spinor structures. Nev-

ertheless, it is a straightforward substitution and further decomposition of the products

of the gamma matrices. For brevity, we provide the intermediate steps in appendix A.1

and here show the results that serve as a set of the master equations for the derivation of

quantum kinetic theories [same as eqs. (A.17) and (A.18)]:

mS = ΠµVµ−
~2

4

[
Σ̂SS−Σ̂PP+Σ̂V µVµ−Σ̂AµAµ+

1

2
̂ΣTµνSµν

]
P.B.

+O(~3), (2.9a)

mP =−~
2

(D̃µAµ−Σ̂AµVµ)−~2

4

[
Σ̂SP+Σ̂PS+

1

4
εµναβΣ̂µν

T Sαβ
]
P.B.

+O(~3), (2.9b)

2ΠαS−~D̃νSνα−2mVα−~(Σ̂PAα−Σ̂AαP−Σ̂TµαVµ)

=
~2

2

[
Σ̂SVα+Σ̂V αS+

1

2
εµνλα(Σ̂µ

ASνλ+Σ̂µν
T Aλ)

]
P.B.

+O(~3), (2.9c)

~D̃αP−εανρσΠσSνρ−2mAα−~(Σ̂PVα+Σ̂µ
ASµα− ̂ΣTµαAµ)

=
~2

2

[
Σ̂SAα+Σ̂AαS+

1

2
εµνλα(Σ̂µ

V Sνλ+Σ̂µν
T Vλ)

]
P.B.

+O(~3), (2.9d)

mSαβ+εαβρσΠρAσ− ~
2

(D̃[αVβ]− ̂ΣA[αAβ]+ ̂ΣTµ[αS
µ
β])

=−~2

4

[
Σ̂SSαβ+Σ̂TαβS−εµναβΣ̂µ

VAν+εµναβΣ̂µ
AVν−

1

2
εµναβ(Σ̂PSµν+Σ̂µν

T P)

]
P.B.

+O(~3),

(2.9e)
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and

D̃µVµ =−Σ̂SS+Σ̂PP+Σ̂AµAµ−
1

2
̂ΣTµνSµν+O(~3), (2.10a)

2ΠνAν =−~
(

Σ̂SP+Σ̂PS+
1

4
εµναβΣ̂µν

T Sαβ
)
−~2

2
[−Σ̂V αAα+Σ̂AαVα]P.B.+O(~3), (2.10b)

2ΠνSνα+~D̃αS+~
(
̂̄ΣSVα+

1

2
εµνλα(Σ̂µ

ASνλ+Σ̂µν
T Aλ)

)
=

~2

2
[Σ̂PAα+Σ̂µ

V Sµα−Σ̂AαP+Σ̂TαβVβ ]P.B.+O(~3), (2.10c)

2ΠαP+
~
2
εανρσ(D̃νSρσ+Σ̂νρ

T Vσ)−~(Σ̂SAα+Σ̂AαS)

= 1− ~2

2
[Σ̂PVα−Σ̂V αP+Σ̂µ

ASµα+ ̂ΣTαβAβ ]P.B.+O(~3), (2.10d)

Π[αVβ]+
~
2
εαβµν(D̃µAν−Σ̂µ

AVν)− ~
2

(Σ̂SSαβ+Σ̂TαβS)+
~
4
εµναβ(Σ̂PSµν+Σ̂µν

T P)

=
~2

4

[
Σ̂V [αVβ]− ̂ΣA[αAβ]+ ̂ΣTµ[αS

µ
β]

]
P.B.

+O(~3), (2.10e)

where εµνρσ is the totally antisymmetric tensor with ε0123 = −1. In the above, we in-

troduced a few shorthand notations. [AB]P.B. = {A(q,X), B(q,X)}P.B. is a shorthand

notation for the Poisson bracket. We use X̂Y = X̄Y − XȲ , where X and Y are the co-

efficients of the Clifford decomposition of the propagators and self-energies. We also use

D̃µM = ∇µM+ Σ̂V µM +O(~2).1

As has been known in light of the derivation of the free-streaming case without the col-

lision term [51], one can first reduce the number of variables to solve the above master equa-

tions. Namely, one can replace S, P and Sµν by Vµ and Aµ by the use of eqs. (2.9a), (2.9b)

and (2.9e). This procedure is explained in appendix A.2. Since Sµν is contracted with ΣTµν

and Σ̄Tµν on the right-hand side, one may not express Sµν as an explicit function of Vµ and

Aµ only. Nevertheless, assuming that the interaction is sufficiently weak, we may drop the

nonlinear terms in the self-energy. Maintaining the linear terms in the self-energies and

the explicit ~ dependence up to O(~1), S, P, and Sµν are expressed as [cf. eq. (A.19)]

Sαβ = − 1

m
εαβρσq

ρAσ +
~

2m

{
D[αVβ] − ̂ΣA[αAβ] +

qµ
m
εµρσ[α

̂ΣTβ]ρAσ
}
, (2.11a)

S =
qµ

m
Vµ, (2.11b)

P = − ~
2m

(DµAµ − Σ̂AµVµ), (2.11c)

where we define DµM = ∇µM + Σ̂V µM and the antisymmetrization T[µν] = Tµν − Tνµ.

After elimination of those variables, the other master equations up to the linear order in

1The original definition before the hbar expansion is given below eq. (A.16).

– 6 –

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp



J
H
E
P
0
7
(
2
0
2
0
)
0
7
0

the self-energies and O(~) read [same as eqs. (A.20) and (A.21)]

qµ(q ·V)−m2Vµ =
~
2

[
m(Σ̂PAµ+Σ̂µα

T Vα)−2
(
F̃µβAβ+

1

2
εµαβγqα∆βAγ

)
−εµαβγqαΣ̂V βAγ

]
,

(2.12a)

q2Aµ−qµq ·A−m2Aµ

=
1

2
~
[
m(Σ̂PVµ+Σ̂µα

T Aα)+εµαβγqαDβVγ−2εµαβγqαΣ̂AβAγ−
1

m
εµαβγε

βλρσqαqλΣ̂γ
TρAσ

]
,

(2.12b)

DµVµ = Σ̂AµAµ−
1

2m

[
2qµΣ̂SVµ−εµναβqαΣ̂µν

T Aβ+~ ̂ΣP (∇·A)+
~
2

̂Σµν
T ∇[µVν]

]
, (2.12c)

q ·A=− ~
2m
qµ(Σ̂PVµ+Σ̂µν

T Aν), (2.12d)

Dµ(q ·V)−qνD[µVν]
=−mΣ̂SVµ+q[µΣ̂Aα]Aα+

1

m
qνqαε

αβγ
[µ

̂ΣTν]βAγ

+
1

2
εµνρσ

{
mΣ̂νρ

T Aσ−~(∂νF ρβ)∂qβAσ+~ ̂Σν
A(∇ρVσ)

}
−~qν

2m
( ̂ΣTγ[ν∆γVµ]− ̂ΣTγ[ν∆µ]Vγ)

+
~qν

2

[
1

m
̂ΣTνµ(q ·V)−ενµρσΣ̂ρ

VAσ+ενµρσΣ̂ρ
AVσ−

1

m
̂ΣP (q[νAµ])

]
P.B.

+
~m
2

[
Σ̂PAµ−

ενµρσ
m

̂Σν
V (qρAσ)+Σ̂TµβVβ

]
P.B.

, (2.12e)

FµνAν−q ·DAµ+
~
4
εµνρσ[Dν ,Dρ]Vσ− ~

2m
qµ

[
̂ΣP (q ·V)+

1

2
̂Σρσ

T (q[ρAσ])
]
P.B.

=m
[
Σ̂SAµ−

1

2
εµνρσΣ̂νρ

T Vσ
]
+qαΣ̂AµVα−qµΣ̂AαVα+

~
2
εµνρσ∆ν

[
Σ̂ρ
AAσ−

1

m
qαε ρ

αβγ Σ̂σβ
T Aγ

]
−~m

2

[
Σ̂PVµ+

1

m
εµνρσ ̂Σν

A(qρAσ)+Σ̂TµνAν
]
P.B.

, (2.12f)

q[µVν]+ ~
2
εµναβ(DαAβ−Σ̂AαVβ) =− ~

2m

[
εµναβqαΣ̂SAβ−qαΣ̂µν

T Vα+q[µΣ̂PAν]
]
. (2.12g)

As opposed to the free-streaming case, the inclusion of the collision terms cause the

drastic complication in the master equations as seen in the above expressions. This hinders

finding the perturbative solution for the Wigner functions and deriving the consequent

quantum kinetic equations. In the subsequent sections, we tackle this problem that needs

to be addressed at both formal and practical levels before describing any kinds of the

relaxation dynamics. Our main proposal is an appropriate ~ counting scheme that greatly

simplifies the collision terms and may work in some applications such as the spin transport

in the quark-gluon plasma.

2.2 Setting the power-counting scheme

Thus far, we have not specified the orders of Vµ and Aµ in the ~ expansion. In general,

they could be both comparable and different in magnitudes. In most of practical situations

such as in heavy ion collisions, the axial-charge current is usually smaller than the vector-

charge current since the spin polarization is basically generated by quantum effects. This

observation motivates us to introduce the power counting:

Vµ ∼ O(~0) and Aµ ∼ O(~). (2.13)
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In light of eq. (2.11b) and eq. (2.11a), these assignments lead to the order counting:

S ∼ O(~0) and Sµν ∼ O(~). (2.14)

Also, in the free case, from eq. (2.11c), we find

P ∼ O(~2). (2.15)

Consequently, similar power counting will be applied to Σ<(>). From eq. (2.12c), it is clear

that the ordinary Boltzmann equation at O(~0) comprises only ΣS and ΣV µ in collisions

when Vµ ∼ O(~0) and Aµ ∼ O(~). This implies

ΣS ∼ O(~0) and Σµ
V ∼ O(~0), (2.16)

and the same counting applies to Σ̄S and Σ̄µ
V . Those self-energies are responsible for the

“classical” collision term. On the contrary, other components in Σ<(>) come from quantum

corrections. In light of eq. (2.12f), one finds that at most

Σµ
A ∼ O(~1) and Σµν

T ∼ O(~1). (2.17)

This is required to balance the orders of free-streaming and collision parts, and is also

consistent with eq. (2.11c).

Physically, the “classical” Boltzmann equation only incorporates the vector-charge con-

servation. In order to have nonzero Σµ
A or Σµν

T , either the scattered fermion or gluon should

carry nonzero chirality imbalance or spin (angular-momentum), which has to come from

quantum corrections at least at O(~) since our power counting has implied the suppression

of spin currents compared to the vector-charge currents. Albeit there exists no explicit

restriction for ΣP from generic master equations, it is expected that the presence of ΣP

has to be induced by nonzero pseudo-scalar condensate, which should be at O(~2) from

the consistency with the anomaly equation (mass correction upon the chiral anomaly).

Nonetheless, due to the lack of a rigorous proof for the order of ΣP from Kadanoff-Baym

equations, we will naively take ΣP ∼ O(~0) for completeness. We hence establish our

power counting in that we have

ΣS ∼ O(~0) and Σµ
V ∼ O(~0), (2.18)

while

Σµ
A ∼ O(~1), Σµν

T ∼ O(~1) and ΣP ∼ O(~0). (2.19)

All components certainly can also have higher-order corrections in ~ depending on the

details of collisions for different systems.
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2.3 Effective master equations and constrains

By implementing the power counting and the results shown in eq. (2.12), the master equa-

tions obtained from the Kadanoff-Baym equations at “the leading order O(~0)” now read

DµVµ = − 1

m
qµΣ̂SVµ, (2.20a)

q[µVν] = 0, (2.20b)

(q2 −m2)Vµ = 0, (2.20c)

q · A = − ~
2m

qµΣ̂PVµ, (2.20d)

(q2 −m2)Aµ =
~
2
εµαβγqαDβVγ , (2.20e)

q · DAµ − FµνAν +
~

2m
qµ[ ̂ΣP (q · V)]P.B. −

~m
2

[Σ̂PVµ]P.B.

=
~
4
εµνρσ[Dν ,Dρ]Vσ −m

(
Σ̂SAµ −

1

2
εµνρσΣ̂νρ

T Vσ
)
− qαΣ̂AµVα + qµΣ̂AαVα, (2.20f)

q · DVµ − FµνVν = −m̂̄ΣSVµ. (2.20g)

Note that we have to keep the O(~) terms linear to Vµ in eqs. (2.20e) and (2.20f) since

Aµ ∼ O(~). In addition, we consider weakly coupled systems and thus drop the O(Σ2)

terms. One can further implement

~
2m

qµ[ ̂ΣP (q · V)]P.B. −
~m
2

[Σ̂PVµ]P.B. =
~

2m
̂(∂µΣP )q · V (2.21)

to simplify eq. (2.20f).

From eqs. (2.20b) and (2.20c), one immediately obtains the leading-order solution for

the vector part,

Vµ = 2πδ(q2 −m2)qµfV , (2.22)

where fV (q,X) denotes the vector-charge distribution function. For completeness, we

should, in principle, multiply Vµ by the sign function for energy to include antiparticles.

For notational simplicity, we will mostly focus on just the positive-energy solution thor-

ough out the paper. For V̄ µ, we simply replace fV by f̄V = 1 − fV as the vector-charge

distribution function for an outgoing fermion. We may also easily show that eq. (2.20g)

is a redundant equation, which can be derived from eqs. (2.20a)–(2.20c). Plugging the

leading-order solution for Vµ into eq. (2.20a), one acquires the SKE as the usual Boltz-

mann equation

δ(q2 −m2)
(
q ·∆fV + qµΣ̂µ

V fV +mΣ̂SfV

)
+O(~) = 0. (2.23)

For the axial part Aµ, we have to solve eqs. (2.20d) and (2.20e) up to O(~). With the

leading-order solution (2.22) constrained above, one however finds that the collisional term

vanishes on the left-hand side of eq. (2.20e). This means that the collisional effects do

not modify the dispersion relation for Aµ at the leading order. Nevertheless, the same
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as the collisionless case [51], we are not able to uniquely determine the magnetization-

current term at the next-to-leading order from the master equations. In the absence of

a background field, one can determine the corresponding term by explicitly solving the

free Dirac equation [51]. In addition, we refer to the correspondence between the cases

with and without a background field in the massless limit, where the latter is given by

the former with the simple replacement of the partial derivative by the derivative operator

with a background field. Based on those observations, we could generalize the free-theory

form to the case with background fields and collisions.

Namely, we “postulate”2

Aµ = 2π

[
δ(q2−m2)

(
aµfA+~Sµνm(n)DνfV +

~
2m

qµCP [fV ]

)
+~F̃µνqνδ′(q2−m2)fV

]
,

(2.24)

where CP [fV ] = −Σ̂P fV and

Sµνm(n) =
εµναβqαnβ

2a · n
=

εµναβqαnβ
2(q · n+m)

, (2.25)

which is generalization of the Aµ found in ref. [51] with the replacement of ∆νfV by DνfV .

Here, aµ represents a spin four-vector satisfying q · a = q2 −m2 and fA denotes the axial-

charge distribution function.

At O(~), the dispersion relation is modified by, e.g., the magnetic-moment coupling

from the last term in eq. (2.24) with δ′(q2 −m2) = dδ(q2 −m2)/dq2. On the other hand,

the Sµνm(n) term corresponds to the so-called magnetization-current term led by spin-orbit

interaction, which depends on a frame vector nµ specifying the spin basis. The presence

of such a term implies the frame dependence of fV because of the frame invariance of

full Aµ. In the massless limit, aµ = qµ according to the spin enslavement specified by

the helicity. The expression in eq. (2.24) then agrees with the solution directly solved

from Kadanoff-Baym equations of Weyl fermions [30]. Furthermore, for the solution of

Āµ, we simply replace fA and fV in eq. (2.24) by f̄A and f̄V , respectively. Nonetheless,

unlike f̄V = 1 − fV , we have f̄A = −fA due to its origin from the expectation value of

the fermionic density operator in spinor space (see ref. [51] for a detailed definition of fA
in field theory). As a consequence of our power counting, eq. (2.24) corresponds to the

leading-order solution for Aµ starting at O(~). Albeit the power counting we apply, we

will still dub the terms with ~ prefactors as the “quantum corrections” at O(~) throughout

this paper for convenience. That is, in the rest part of the paper, ~ is simply a parameter

indicating the quantum origin of certain terms, while these terms are in the same order

of magnitudes as the classical terms without ~ prefactors. More precisely, one should

distinguish the difference between ~ terms and O(~) terms.

2Thanks to the power-counting scheme, the generalization of the magnetization-current term with colli-

sions here is rather natural since ΣµV and Σ̄µV are only vectors at O(~0) in self-energies, which can then be

coupled to Sµνm(n).
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3 Effective axial kinetic theory with collisions

In this section, we elaborate the collision terms for the effective axial kinetic theory arising

from our ~ counting scheme introduced in section 2.2. Assembling the ingredients obtained

in section 2.3, the general expression will be given in eq. (3.2) with the collision terms Ĉ(n)µ1

and ~Ĉ(n)µ2 . Here, we maintain the general frame vector nµ.

We provide a simpler form in eq. (3.9) by choosing a specific frame vector nµ = (1, 0)

and dropping the background electromagnetic field, which will be useful for applications.

A further alternative expression (3.12) enables us to take the massless limit and to confirm

the agreement to the (massless) chiral kinetic theory obtained in ref. [30]. In section 3.2,

we take another frame vector nµ = nµr (q) = qµ/m specifying the rest frame of a massive

fermion. Ĉ(nr)µ1,2 in eq. (3.14) adds collisional effects to the free-streaming part investigated

in refs. [49, 50], and leads to a useful expression of the effective axial kinetic theory (3.17).

Besides the explicit ~ dependences originating from those in the Kadanoff-Baym equa-

tion (2.2), there are implicit ~ dependences contained in the self-energies Σ. In section 3.3,

we therefore sort the ~ dependences in the actual order of our counting scheme, which

results in the form of Ĉµcl and ~Ĉ(n)µQ in eq. (3.18). Finally, in section 3.4, we discus the

physical meaning of the quantum corrections to the collision terms and the conditions

to make efficient applications of our effective axial kinetic theories. As noted in the end

of previous section, one should bear in mind that Ĉµcl and ~Ĉ(n)µQ have the same order of

magnitude and we hereafter use ~ as just a parameter indicating the quantum origin of

attached terms unless specified.

3.1 Axial kinetic equation with general frame vector and its massless limit

We now utilize eqs. (2.20f) and (2.24) to derive the effective AKE. Given that the collision-

less (free-streaming) part up to O(~) has been obtained in ref. [51], we only need to further

work out the collisional part. This can be carried out by inserting the solution (2.24) of

the constraint equations into eq. (2.20f). By the use of an identity

εµνρσ[Dν ,Dρ]Vσ = εµνρσ

(
[∆ν ,∆ρ]Vσ + 2(∆νΣ̂ρ

V )Vσ
)
, (3.1)

the AKE with the collisional effects and the general frame vector nµ = nµ(X) takes the form

�(n)Aµ = Ĉ(n)µ1 + ~Ĉ(n)µ2 . (3.2)

Here the free-streaming part is given by [51]

�(n)Aµ = δ(q2 −m2)
(
q ·∆(aµfA) + F νµaνfA

)
+ ~qµ

{
δ(q2 −m2)

[
(∂αS

αν
m(n))∆ν +

Sανm(n)Fαβn
β∆ν

q · n+m

+ Sρνm(n)(∂ρFβν)∂βq

]
− δ′(q2 −m2)

qαF̃αβn
β

q · n+m
q ·∆

}
fV

+ ~m

{
δ(q2 −m2)εµναβ

2(q · n+m)

[
m(∂αnβ)∆ν + (mnβ + qβ)

((
Fαρn

ρ − ∂α(q · n)
)

q · n+m
∆ν

− (∂νFρα)∂ρq

)]
+ δ′(q2 −m2)

(mnβ + qβ)F̃µβ

q · n+m
q ·∆

}
fV . (3.3)
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Taking ~ = 0, the equation above reproduces the so-called Bargmann-Michel-Telegdi

(BMT) equation as a classical kinetic equation for spin transport [66]. On the other hand,

the collision terms are

Ĉ(n)µ1 = δ(q2−m2)

[
−aµqνΣ̂ν

V fA−m
2Σ̂µ

AfV +qµqνΣ̂ν
AfV −m

(
aµΣ̂SfA−

1

2
εµνρσqνΣ̂TρσfV

)]
,

(3.4)

and

Ĉ(n)µ2 =
δ(q2 −m2)

2

[
εµνρσqν(∆ρΣ̂V σ)fV −m(∂µΣ̂P )fV − 2Σ̂V νfV

(
q ·∆Sµνm(n) − F

µ
λS

λν
m(n)

)
− 2Sµνm(n)

(
(q · ̂ΣV (∆νfV ) +m ̂ΣS(∆νfV ) + (q ·∆Σ̂V ν)fV

)
+

1

m
qµ(q ·∆Σ̂P )fV

]
− Sµνm(n)∆ν

(
δ(q2 −m2)q ·∆fV

)
− δ(q2 −m2)

(
∆νS

µν
m(n)

)
q ·∆fV

− F̃µνqνδ′(q2 −m2)(q · Σ̂V fV +mΣ̂SfV ). (3.5)

Note that Ĉ(n)µ1 implicitly contains the ~ terms from, e.g., Σµ
A and ΣTρσ, which hence

implicitly depends on the frame choice.

Implementing the leading-order SKE in eq. (2.23), the following term in Ĉ(n)µ2 can be

also written as

− Sµνm(n)∆ν

(
δ(q2 −m2)q ·∆fV

)
= −Sµνm(n)

[
δ(q2 −m2)∆ν + 2qλFλνδ

′(q2 −m2)

](
CV [fV ] +mCS [fV ]

)
, (3.6)

where CV [fV ] = q · ΣV f̄V − q · Σ̄V fV and CS [fV ] = ΣS f̄V − Σ̄SfV . Moreover, one may

rewrite

−
(
q · ̂ΣV (∆νfV ) +m ̂ΣS(∆νfV )

)
= ∆νCV [fV ] + qρ(∆νΣ̂V ρ)fV + F ρνΣ̂V ρfV +m(∆ν f̂V )ΣS . (3.7)

Then we may re-express Ĉ(n)µ2 as

Ĉ(n)µ2 =
δ(q2−m2)

2

{
εµνρσqν(∆ρΣ̂V σ)fV +2Sµνm(n)

[
m(∆νΣ̂S)fV +F ρνΣ̂V ρfV +qρ(∆νΣ̂V ρ)fV

−(q ·∆Σ̂V ν)fV

]
+2f̂V ΣV ν

(
q ·∆Sµνm(n)−F

µ
λS

λν
m(n)

)}
−
[(

2Sµνm(n)q
λFλν−F̃µνqν

)
δ′(q2−m2)+δ(q2−m2)

(
∆νS

µν
m(n)

)](
CV [fV ]+mCS [fV ]

)
+
δ(q2−m2)

2m

(
qµ(q ·∆Σ̂P )fV −m2(∂µΣ̂P )fV

)
. (3.8)

In fact, we can further decompose Ĉ(n)µ2 into the piece proportional to qµ, which survives in

the massless limit and reproduces the collision term in CKT, and another piece proportional
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to m, which stems from the purely finite-mass correction. This decomposition can be

used as a consistency check in the massless limit. Note that the procedure is simply to

rewrite Ĉ
(n)µ
2 in the form with a more apparent connection to the CKT despite some of the

computational complexity. A similar procedure and comparison are also performed for the

free-streaming AKE in ref. [51]. We hence present such a complicated yet straightforward

check in appendix C (see eq. (C.15)), while we will later show such an alternative expression

for Ĉ
(n)µ
2 in a simpler case suitable for the application in HIC.

Although Ĉ(n)µ1 + ~Ĉ(n)µ2 given by eq. (3.4) and eq. (3.8) serves as the generic collision

term in the presence of spacetime-dependent background electromagnetic fields and an

arbitrary spacetime-dependent frame vector nµ(X), we may drop unnecessary terms for

practical applications in HIC. First, it is more convenient to work with a constant frame

vector such that ∂µn
ν = 0. More precisely, we could simply take nµ = (1,0), which also

corresponds to the frame choice for the CKT presented in early works obtained from the

Berry phase [18, 19]. Note that the choice of a frame vector is analogous to the choice of a

gauge, which does not affect the physics in the end (see e.g. refs. [30, 51] for comprehensive

discussions). Second, the background electromagnetic fields and particularly the magnetic

field may only exist in HIC for a rather short period in the pre-equilibrium phase although

the finite electric conductivity of QGP may slightly mitigate the decrease of magnetic fields

in time [67, 68]. It is thus more practical to drop the contributions from electromagnetic

fields in the QGP phase. In such a case, the explicit form of Ĉ(n)µ1 remains unchanged. On

the other hand, not only ~Ĉ(n)µ2 but also the free-streaming part in the AKE become much

simpler. The AKE now is given by

δ(q2−m2)

{
q ·∂(aµfA)+aµqνΣ̂ν

V fA+m2Σ̂µ
AfV +qµqνΣ̂ν

AfV +m

(
aµΣ̂SfA+

1

2
εµνρσqνΣ̂TρσfV

)

− ~
2

[
εµνρσqν(∂ρΣ̂V σ)fV +2Sµνm(n)

(
m(∂νΣ̂S)fV +qρ(∂νΣ̂V ρ)fV −(q ·∂Σ̂V ν)fV

)]}
= 0, (3.9)

where we also took ΣP = Σ̄P = 0 as expected higher-order contributions. Note that the ~
terms shown above only come from ~Ĉ(n)µ2 .

By employing the Schouton identity

ηλµερναβ − ηλρ εµναβ − ηλν ερµαβ − ηλαερνµβ − ηλβερναµ = 0, (3.10)

one finds

Sµνm(n)q
α = qµSανm(n) + qνSµαm(n) +

εµνραqρ
2

− εµνρα

2(q · n+m)

(
mqρ + q2nρ

)
. (3.11)

Given the relation above, the AKE in eq. (3.9) can be alternatively written as

δ(q2−m2)

{
q ·∂(aµfA)+aµqνΣ̂ν

V fA+m2Σ̂µ
AfV +qµqνΣ̂ν

AfV +m

(
aµΣ̂SfA+

1

2
εµνρσqνΣ̂TρσfV

)

+~

[
qµSρνm(n)

̂(∂ρΣV ν)fV −m

(
Sµνm(n)(∂νΣ̂S)fV +

εµνρσ(qρ+mnρ)

2(q ·n+m)
(∂σΣ̂V ν)fV

)]}
= 0,

(3.12)
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where we rearrange the explicit ~ corrections in the collision term based on the decompo-

sition for the terms proportional to qµ and to m, respectively. One can now more easily

check that eq. (3.12) reduces to the CKT with a constant frame vector in the absence of

electromagnetic fields [30] in the massless limit by taking m = 0 and aµ = qµ. We shall

discuss later about the physical interpretations of the explicit ~ corrections in eq. (3.9) and

in eq. (3.12) as two mathematically equivalent expressions.

3.2 Rest-frame expression

Notably, when focusing on massive fermions with mass much greater than the gradient

scale, we can set the frame vector at their rest frame nµ = nµr (q) = qµ/m to simplify

both the Wigner functions and AKE. Such a frame choice is also applied in refs. [49, 50].

Nonetheless, this frame choice is rather different from the previous one when nµ(X) only

depends on spacetime coordinates. In such a case, the magnetization-current term in Aµ

vanishes and the Aµ reduces to

Aµ = 2π

[
δ(q2 −m2)aµfA + ~F̃µνqνδ′(q2 −m2)fV +

~δ(q2 −m2)

2m
qµCP [fV ]

]
. (3.13)

Accordingly, the AKE from eq. (2.20f) becomes

�(nr)Aµ = Ĉ(nr)µ1 + ~Ĉ(nr)µ2 , (3.14)

where Ĉ(nr)µ1 is the same as eq. (3.4) by taking nµ = nµr , while

�(nr)Aµ = δ(q2 −m2)

(
q ·∆(aµfA) + F νµaνfA −

1

2
~εµνρσqρ(∂σFβν)∂βq fV

)
+ ~F̃µνqνδ′(q2 −m2)q ·∆fV (3.15)

and

Ĉ(nr)µ2 =
δ(q2 −m2)

2

(
εµνρσqν(∆ρΣ̂V σ)fV +

1

m
qµ(q ·∆Σ̂P )fV −m(∂µΣ̂P )fV

)
− F̃µνqνδ′(q2 −m2)(q · Σ̂V fV +mΣ̂SfV ). (3.16)

Finally, when considering the application to a heavy quark traveling in QGP, the AKE in

the rest frame could be simplified as

δ(q2 −m2)

{
q · ∂(aµfA) + aµqνΣ̂ν

V fA +m2Σ̂µ
AfV + qµqνΣ̂ν

AfV

+m

(
aµΣ̂SfA +

1

2
εµνρσqνΣ̂TρσfV

)
− ~

2
εµνρσqν(∂ρΣ̂V σ)fV

}
= 0, (3.17)

by taking ΣP = Σ̄P = 0 and Fµν = 0.

In general, when involving also the ~ corrections in Vµ, such a frame choice is only

valid when m is much larger than the gradient and electromagnetic scales in the system.

The magnetization-current term in Vµ explicitly reveals the breakdown for the choice of a
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rest frame away from the aforementioned regime. Although we dot not explicitly include

the ~ term in Vµ based on our power counting, it is still essential to be aware of the valid

regime for the frame choice nµ = nµr . In heavy-ion phenomenology, one may assume the

validity is held, which could be “somewhat applicable” for the spin transport of strange

quarks in QGP. For up and down quarks or other applications, it is inevitable to maintain

the general frame vector nµ = nµ(X). Note that the quantum correction on collisions in

eq. (3.16) is also presented in eq. (3.5). We may regard other terms in eq. (3.5) as the

O(|q|/m) corrections on top of eq. (3.16), where q here denotes the spatial momentum.

3.3 ~ sorting with the present order counting

In order to explicitly disentangle the (classical) spin-diffusion and (quantum) spin-

polarization parts in collisions, we have to retrieve the ~ terms in ΣV ρ, ΣS , ΣAρ and

ΣTρσ. That is, we have to further make the decomposition Σ̄V ρ = Σ̄cl
V ρ + ~Σ̄

Q(n)
V ρ ,

Σ̄S = Σ̄cl
S + ~Σ̄

Q(n)
S , Σ̄Aρ = Σ̄cl

Aρ + ~Σ̄
Q(n)
Aρ and Σ̄Tρσ = Σ̄cl

Tρσ + ~Σ̄Q
Tρσ, where their ex-

plicit forms depend on the details of collisions in systems. Nonetheless, ~Σ̄
Q(n)
V ρ and ~Σ̄

Q(n)
S

are coupled to fA in Ĉ(n)µ1 , which actually contribute to O(~2) (in the order of magnitude)

corrections from our power counting. Consequently, we only have to retain the quantum

corrections from ~Σ̄
Q(n)
Aρ and ~Σ̄Q

Tρσ. One can then rewrite the collision term in the AKE as

Ĉ(n)µ1 + ~Ĉ(n)µ2 = Ĉµcl + ~Ĉ(n)µQ , (3.18)

where

Ĉµcl = δ(q2−m2)

[
qµqαΣ̂clα

A fV −m2Σ̂clµ
A fV −aµ(qαΣ̂clα

V fA+mΣ̂cl
SfA)+m

εµνρσ

2
qνΣ̂cl

TρσfV

]
(3.19)

and

~Ĉ(n)µQ = ~qµ
(
Ĉ(n)q2 + δ(q2 −m2)qν

̂
Σ
Q(n)ν
A fV

)
+ ~m

[
Ĉ(n)µm2 + δ(q2 −m2)

(
1

2
εµνρσqν

̂
Σ
Q(n)
Tρσ fV

−m ̂
Σ
Q(n)µ
A fV

)]
. (3.20)

Analogously, in the rest frame, it is found

~Ĉ(nr)µQ = ~Ĉ(nr)µ2 +~δ(q2−m2)

[
qµqα

̂
Σ
Q(nr)α
A fV −m2 ̂

Σ
Q(nr)µ
A fV +m

εµνρσ

2
qν

̂
Σ
Q(nr)
Tρσ fV

]
.

(3.21)

Note that the classical part Ĉµcl is explicitly frame independent. Now, all the ~ terms are

collected into ~Ĉ(n)µQ . Despite complication, one finds that Ĉµcl is proportional to aµfA;

such a term hence results in the diffusion of spin.3 On the contrary, Ĉ(n)µQ is instead

proportional to fV and f̄V . Even when initial spin (∼ aµfA) is zero, such a term can

3Here Σclα
A and Σcl

Tρσ are in principle proportional to the axial-charge part of the Wigner functions for

outgoing fermions. Therefore, the terms coupled to fV in Ĉµcl are also proportional to the spin four vector.

One may see an explicit example for application to QGP in the following section.
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lead to the spin polarization from the entangled vector-charge transport. Similarly, when

applying eqs. (3.9), (3.12), and (3.17), one should recall these extra ~ corrections from

~Σ̄
Q(n)
Aρ and ~Σ̄

Q(n)
Tρσ or from ~Σ̄

Q(nr)
Aρ ~Σ̄

Q(nr)
Tρσ .

3.4 Discussions for the collision terms

In this subsection, we would like to make a comparison between the AKE in different frame

choices and discuss about their physical interpretations. However, to avoid complications,

we focus on the simplified versions in eqs. (3.9), (3.12), and (3.17), which are the pri-

mary results in connection to the spin polarization of quarks in QGP. For preciseness, we

will hereafter dub the terms proportional to ~ in eqs. (3.9), (3.12), and (3.17) as explicit

quantum (~) corrections. In contrast, we refer the ~ corrections encoded in self-energies

discussed in section 3.3 as implicit quantum (~) corrections.

First of all, eqs. (3.9) and (3.12) as mathematically equivalent expressions both work for

an arbitrary mass of fermions. Nevertheless, the expression of eq. (3.9) could be more useful

in the large-mass regime. When comparing eq. (3.9) with eq. (3.17) as an effective AKE

with large-mass fermions, one finds they both incorporate the term ~
2ε
µνρσqν(∂ρΣ̂V σ)fV as

an explicit quantum correction in collisions. In the non-relativistic condition, such a term

further dominates over the rest of explicit ~ corrections coupled with Sµνm(n) in eq. (3.9).

When m → ∞, one finds qµ → nµm and accordingly Sµνm(n) → 0. It turns out that

eq. (3.9) and eq. (3.14) coincide in the heavy-quark (fermion) limit. Consequently, as

briefly mentioned in section 3.2, eq. (3.9) further incorporates the O(|q|/m) corrections on

top of eq. (3.17). It is thus more practical to utilize eq. (3.9) for exploring heavy-quark

transport with the inclusion of non-relativistic corrections. On the contrary, eq. (3.12) has

a more explicit connection to the CKT in the massless limit. The term ~qµSρνm(n)
̂(∂ρΣV ν)fV

in explicit ~ corrections of collisions therein matches the ~ correction in the collision term

of CKT up to a prefactor qµ. In fact, the prefactor qµ further manifests that such a term is

pertinent to the side-jump phenomena associated with the spin polarization enslaved by the

momentum and chirality, which forces aµ in the free-streaming part to align with qµ. On

the other hand, the rest of ~ terms proportional to m in eq. (3.12) stem from the finite-mass

effect suppressed by O(m/|q|) in the relativistic limit, which could modify the orientation

of spin characterized by the direction of aµ. Therefore, the expression in eq. (3.12) could be

more suitable for analyzing the axial-charge diffusion and spin polarization of light quarks

in QGP.

In addition, similar to the case for CKT in the massless limit, the quantum correc-

tions in the AKE now only come from collisions when choosing a constant frame vector

in the absence of electromagnetic fields. As already mentioned in section 3.3 for further

separation of the classical and quantum parts in the collision term, the classical part in

eqs. (3.9), (3.12), and (3.17) with the same expression will yield the spin diffusion. How-

ever, it is believe that the spin polarization in HIC is led by the local vorticity of QGP.

It is obvious to see the explicit ~ corrections in the collision term now originate from the

inhomogeneity of self-energies, from which the self-energies gradients could incorporate

such vortical corrections in collisions. Also, these terms manifest the spin-orbit interac-

tions through collisions, which entangle the dynamical evolution between aµfA and fV .
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Nevertheless, the implicit ~ corrections encoded in self-energies should also be taken into

account, where at least the ~ correction upon Wigner functions for outgoing quarks will

contribute to the vortical corrections as well.

In a recent study for the application of CKT on the chiral radiation transport theory

for neutrinos in core-collapse supernovae, it is shown the similar ~ corrections of CKT give

rise to the vorticity corrections associated with fluid helicity in the collision term for the

neutrino absorption process [43]. One may expect a similar scenario when considering a

strange quark probing the QGP near equilibrium yet with local vortical fields. Nonetheless,

unlike the weak interaction governed the Weinberg-Salam model, the details of collisions

in QGP are more sophisticated due to the interacting gluons. Even though the implicit

~ corrections encoded in self-energies from light quarks in equilibrium could be derived

from equilibrium Wigner functions shown in e.g. refs. [31, 51], how to include analogous

corrections led by vorticity from polarized gluons is currently unknown. For the future

application on the dynamical spin polarization of strange quarks traversing QGP, we will

have to work out the Wigner functions for polarized gluons up to O(~) with both classical

and quantum contributions at least in equilibrium as one of essential ingredients. Such a

development is beyond the scope of this work and left as the future research direction. It

is however worthwhile to note that even the classical part of the collision term in AKE is

an innovation. We will further apply such a theoretical framework to derive an explicit

expression of the spin diffusion term for massive quarks traversing weakly-coupled QGP in

the next section.

4 Example: spin diffusion of quarks in weakly coupled QGP

4.1 Scattering between massive fermions and a medium

We now apply the formalism established in the previous sections to investigate the collision

term for massive quarks traversing weakly-coupled QGP in relativistic heavy ion collisions.

For simplicity, we will just focus on the spin-diffusion term such as Ĉµcl in the AKE and leave

the ~Ĉ(n)µQ for future study. Recently, a related study for spin diffusion has been presented

in ref. [54] with a different approach. We will mostly follow the theoretical setup therein. In

the following, we call fermions quarks and gauge bosons gluons interchangeably, and include

the color-group factors. Here, the color degrees of freedom do not play crucial roles (like in

the color conductivity), and the same computation holds for QED with simple replacements

of the relevant degrees of freedom. Furthermore, we consider the massive quarks with quark

mass much greater than the scale of thermal mass in QGP and accordingly neglect the

Compton scattering with gluons as the subleading effects analogous to the study of heavy-

quark transport in heavy ion collisions (See e.g. ref. [69] and the same approximation in

ref. [54]). Note that the O(f2A) terms are not dropped a priori in the calculations, whereas

shall see that only the terms linear to fA remain in the final result, which thus agrees with

our power-counting scheme.

The gluon-exchange processes between a massive fermion and the medium constitutes

are written down as

Σ>(<)(q,X) = λc

∫
q′
γµS>(<)(q′, X)γνG>(<)

µν (q − q′, X), (4.1)
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where λc denotes an overall coefficient including the coupling and we drop O(~2) and

higher-order correction in our order counting. The gluon propagator G
>(<)
µν contains the

information of the spectral functions which depend on the scatterers. Here, we assume

a dilute population of the massive fermions in the medium and neglect the contributions

of the massive scatterers, and retain the massless-fermion and gluon scatterers. Having

assumed the weakly coupled system, we focus on the lowest-order contributions in the

coupling constant gc, i.e., the 2-to-2 scatterings between a massive quark and a massless

quark/gluon.

Inserting eq. (2.7), one can straightforwardly decompose the gamma structures in

eq. (4.1) as

χ>µνq′ ≡ γ
µS>(q′)γν

= S̄
(
ηµν−iσµν

)
−iP̄

(
ηµνγ5+

εµναβ

2
σαβ

)
+V̄ρ

(
ηµργν+ηρνγµ−ηµνγρ+iεµνρσγ5γσ

)
+Āρ

(
ηµνγ5γρ−ηρνγ5γµ−ηµργ5γν+iεµρνσγσ

)
+S̄αβ

(
ηµασβν+ηνασβµ+

ηµν

2
σαβ+iηµαηβν+

εµναβ

2
γ5
)
. (4.2)

Thus, contracted with the gluon propagator, we have

χ>µνq′ G>µν =
(
S̄G>µν + iS̄µνG>µν

)
+ iγ5

(
−P̄G>µµ − iS̄αβG>µν

εµναβ

2

)
+ γρ

(
V̄µ(G>(µρ) − V̄ρG

>µ
µ − iεµνσρĀσG>µν

)
+ γ5γρ

(
− ĀµG>(µρ) + ĀρG>µµ + iεµνσρV̄σG>µν

)
+

1

2
σρσ
(

2S̄µρG>(µσ) + S̄ρσG>µµ − 2iS̄G>ρσ − iP̄εµνρσG>µν
)
, (4.3)

where A(µBν) = AµBν + AνBµ. We consider gluon propagators G
<(>)
µν symmetric in the

Lorentz indices, and then find that the imaginary terms in the above vanish in the con-

tractions:

Σ>(q) = λc

∫
q′

[
S̄G>µµ − iP̄G>µµ γ5 + γρ

(
2V̄µG>µρ − V̄ρG>µµ

)
+ γ5γρ

(
− 2ĀµG>µρ + ĀρG>µµ

)
+
σρσ

2

(
2S̄µ[ρG

>µ
σ] + S̄ρσG>µµ

)]
, (4.4)

where A[µBν] = AµBν−AνBµ. In general, G
<(>)
µν possibly contains anti-symmetric compo-

nents led by scatterings with spin-polarized scatterers in the medium. For example, when

considering the scattering with massless quarks, such anti-symmetric components can arise

from the side-jump terms, whereas χ>µνq′ G>µν should still remain real. Such quantum cor-

rections from a polarized medium will not be considered in the present work.
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One can now read out the corresponding terms up to O(~) between eqs. (2.8)

and (4.4) as

Σ̄S = λc

∫
q′
S̄q′G>αα =

λc
m

∫
q′

(q′ · V̄q′)G>αα , (4.5a)

Σ̄P = λc

∫
q′

(−P̄q′)G>αα , (4.5b)

Σ̄V µ = λc

∫
q′
V̄αq′(2G>αµ −G

>β
β ηαµ), (4.5c)

Σ̄Aµ = λc

∫
q′
Āαq′(−2G>αµ +G>ββ ηαµ), (4.5d)

Σ̄Tµν = λc

∫
q′

(2S̄α[µG>αν] +G>αα S̄µν) =
λc
m

∫
q′

(2S̄α[µG
>α
ν] +G>αα S̄µν). (4.5e)

The rightmost sides are obtain by using eqs. (A.19a)–(A.19c) up to the linear orders in Σ’s

and ~. In the present case, we confirm that Σ̄P is at O(~2) as anticipated earlier.

Now, given explicit forms of G>µν , V̄µ, and Āµ, we can directly evaluate Σ>
µ from

eq. (4.5) and Σ<
µ in the same fashion. Inserting these expressions into the collision terms

in the SKE (2.23), we have

(q · Σ̄V +mΣ̄S) = λc

∫
q′

2πδ(q′2 −m2)
(

2q′µG>µνq
ν − p · q′G>µµ

)
f̄V q′ , (4.6)

where pµ = qµ − q′µ. The other term (q ·ΣV +mΣS) takes a similar form. In addition, by

making the decompositions Σ̄Aρ = Σ̄cl
Aρ+~Σ̄

Q(n)
Aρ and Σ̄Tρσ = Σ̄cl

Tρσ+~Σ̄Q
Tρσ, we identify the

classical and quantum parts. From the classical part in eq. (2.24), eqs. (4.5d) and (4.5e)

yield

Σ̄cl
Aρ = λc

∫
q′

2πδ(q′2 −m2)
(
aq′ρG

>µ
µ − 2aµq′G

>
µρ

)
f̄A(q′), (4.7)

Σ̄cl
Tρσ = −λc

m

∫
q′

2πδ(q′2 −m2)
(

2G>µ[σεµρ]αβ +G>µµ ερσαβ

)
q′αaβq′ f̄A(q′). (4.8)

Those terms are further investigated with a specific gluon propagator provided by the hard-

thermal loop approximation in the next section. The quantum parts are also identified

in the same way. However, computation of those quantum corrections with specific gluon

propagators are left as open issues. Note also that we have dropped possible antisymmetric

parts of the gluon propagator in eq. (4.4).

4.2 Weakly coupled QGP and hard-thermal-loop approximation

Although eqs. (4.5a)–(4.5e) work for even non-equilibrium media, we now focus on the spin

transport in equilibrium QGP as a concrete example. In such a case, we can make further

simplification for the self-energy in eq. (4.1). For simplicity, we will only evaluate the

spin-diffusion terms in the SKE and AKE, while the claculation for the spin-polarization

term in the AKE is more involved, which will be presented in the followup work. We

will implement the hard-thermal-loop (HTL) approximation, which allows us to derive the
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leading-logarithmic result in weakly coupled QCD as in the derivation shown in ref. [54]

from a distinct approach. Recall that pµ = (q − q′)µ and gc denotes the coupling constant

for strong interaction. We then apply the cut-gluon propagator in the Coulomb gauge and

the fluid-rest frame, which gives rise to

G<(>)
µν (q, q′) ≈ g<(>)

eqp

[
ρL(p)PCµν + ρT (p)P Tµν

]
(4.9)

with

PCµν ≡ uµuν , P Tµν ≡ −ΘµαΘνβ

(
ηαβ +

pαpβ

|p|2

)
= −

(
Θµν +

p⊥µp⊥ν
|p|2

)
, (4.10)

where g<eqp = g0p = 1/(eβp·u − 1), g>eqp = 1 + g0p and Θµν ≡ ηµν − uµuν . Here, uµ and

β = 1/T denote the fluid four velocity and the inverse of temperature in local equilibrium,

respectively. We have introduced notations:

V 0 ≡ V · u, V µ
⊥ ≡ V

µ − V 0uµ = ΘµνVν , (4.11a)

Vi ≡ V i
⊥, V̂i = V̂ i

⊥ ≡ V i/|V|, (4.11b)

for an arbitrary vector V µ. Then, we have V⊥ · k⊥ = −V · k and, especially, V 2
⊥ = −|V|2

when kµ = V µ.

In our setup, the HTL approximation is more precisely applied to gcT � |pµ| � T .

On the other hand, ρL/T (p) correspond to the HTL gluon spectral densities, which take

explicit forms as (e.g., see ref. [70])

ρL(p) ≈
πm2

Dp0
|p|5

, ρT (p) ≈
πm2

Dp0

2|p|5
(

1−
(
p0
|p|

)2) , (4.12)

where mD ∼ gcT corresponds to the Debye mass. The explicit form from the gluons in

SU(Nc) color group and the Nf -flavored massless quarks is given by

m2
D =

g2cT
2(2Nc +Nf )

6
, λc = g2cC2(F ) =

g2c (N
2
c − 1)

2Nc
. (4.13)

Moreover, one should keep in mind the relation

G>µν(p) = (1 + g−10p )G<µν(p) (4.14)

from detailed balance. In light of the theoretical frameworks constructed in the previous

section, we may now write down the SKE and AKE in the HTL approximation. It is

interesting that one can linearize the kinetic equations in terms of the distribution functions

by taking g−10p → 0 and G>µν(p) ≈ G<µν(p). However, in the practical calculation, we have to

at least approximate g0p ≈ T/p0 − 1/2 + p0/(12T ) +O
(
p30/T

3
)

to keep all relevant terms

contributing to the leading logarithmic order. In the following, we will append subindices

to fV/A and aµ for specifying their momentum dependence.

For the SKE in eq. (2.23), it is found

0 = δ(q2 −m2)

[
q · ∂fV q + λc

∫
p
Q1(q, p){(1 + g−10p )f̄V q′fV q − f̄V qfV q′}

]
, (4.15)
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where

Q1(q, p) = 2πδ(q′2 −m2)
(

2q′µG<µνq
ν − p · q′G<µµ

)
. (4.16)

By using f̄V q = 1− fV q, we may further rewrite eq. (4.15) into

0 = δ(q2 −m2)

[
q · ∂fV q + λc

∫
p

{
Q1(fV q − fV q−p) + Q̃1fV q(1− fV q′)

}]
, (4.17)

where Q̃1 = g−10p Q1. One can then further approximate fV q−fV q−p ≈ pµ∂qµfV q+O(|p|/|q|)
assuming the small-momentum transfer |p| � |q|.

Next, we can simplify the AKE with the same approximation. Inserting the rightmost

sides of eq. (4.5) into eq. (3.19), we obtain

δ(q2 −m2)[ q · ∂ãµq + F νµãνq − Ĉµcl ] = 0, (4.18a)

Ĉµcl = λc

∫
p

(
−Q1ã

µ
q − Q̃1(1− fV q−p)ãµq +Qµν2 ãq−pν + Q̃µν2 fV qãq−pν

)
, (4.18b)

where ãµq ≡ aµq fAq, Q̃µν2 = g−10p Q
µν
2 , and

Qµν2 = −2πδ(q′2 −m2)
[(
pµqν − ηµνq · p

)
G<ρρ − 2

(
pµG<νρ qρ − q · pG<νµ

)
+ 2
(
qνG<ρµq′ρ − ηµνq′σG<σρqρ

)]
. (4.19)

Here we also use f̄Aq = −fAq. One can similarly approximate ãq−pν ≈ ãqν−pβ∂qβ ãqν . Such

a diffusion term in collisions of the AKE has also been constructed in ref. [54] from a distinct

approach, in which different parameterization of the spin vector is applied. Nonetheless,

it may be more practical to adopt our parameterization for the spin vector, which has a

direct connection to the axial-charge current equivalent to the spin polarization through

the Wigner functions and the combination with the free-steaming part of the AKE. Note

also that eqs. (4.17) and (4.18) contain nonlinear terms in distribution functions. While

those nonlinear terms are not included in ref. [54], they are imperative to preserve the

quantum statistics for fermions. For example, as will be shown, fV q follows the Fermi-Dirac

distribution instead of just the Boltzmann distribution in equilibrium with the vanishing

collision term in the SKE. In addition, as shown in eq. (4.18), the nonlinear terms further

reveal the entangled dynamics between the vector/axial charges and spin diffusion.

4.3 SKE and AKE with diffusion effects in the leading-log approximation

We now explicitly compute the collision terms in axial kinetic theory with the HTL ap-

proximation. Notations have been introduced in eq. (4.11). The basic strategy is to collect

all the terms up to O(|p|−3) in the integrand. When combined with the integral measure,

they give rise to the leading logarithmic results in gc with the cut-offs provided by the

HTL resummation. Moreover, we will consider the onshell kinetic equations. We hence

take fV q = fV q(q, X) as just a function of q and X by using q0 = Eq =
√
|q|2 +m2

for fermions (here we neglect anti-fermions) in the Wigner functions. Similarly, we take

u · ãq = −q⊥ · ãq/q0 for ãqµ = ãqµ(q, X).
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4.3.1 Results

The computations for the diffusion terms in SKE and AKE are complicated yet straight-

forward. We hence present the details of computations for eqs. (4.15) and (4.18) in appen-

dices D and E, respectively. In the following, we just summarize the final results. Up to

the leading logarithmic order in gc, the SKE takes the form

0 = δ(q2−m2)

[
q ·∂−κLL

{
2(1−fV q)+S(1)q̂β⊥∂qβ⊥+S(2)q̂α⊥q̂

β
⊥∂qα⊥∂qβ⊥

+S(3)ηαβ∂qα⊥∂qβ⊥

}]
fV q,

(4.20)

where we denote the coefficient of the leading log result κLL ≡ [g2cC2(F )m2
D/(8π)] ln(1/gc)

and the Minkowski metric ηαβ . We also introduce the four “velocity” vµ = (v0,vi) ≡ qµ/m,

which has the normalization vµvµ = 1 under the delta function, and then the rapidity

ηq ≡ 2−1 ln[(Eq + |q|)/(Eq − |q|)] = 2−1 ln[(v0 + |v|)/(v0 − |v|)]. The coefficient in each

term is given as

S(1) =
mv20θ−1
|v|2

(1−2fV q), S(2) =
mTv20
2|v|3

(
|v|2ηq
v20

+
3θ1
v0

)
, S(3) =

mT

2

(
v30θ−3
|v|3

−3v0

)
,

(4.21)

where θn ≡ |v| − vn0 ηq. Note that eq. (4.20) agrees with the result in ref. [54] except for

additional nonlinear terms in fV q coming from Fermi-Dirac statistics.

Carrying out similar yet more sophisticated computations for eq. (4.18), we also derive

the AKE with the spin-diffusion term up to leading-logarithmic order. Combining with

the classical free-streaming part dictated by the BMT equation, the AKE reads

0 = δ(q2 −m2)

[
q · ∂ãµq −

κLLT

Eq

(
ãµq Q̀

(1)
cl + uµQ̀(2)

cl + q̂µ⊥Q̀
(3)
cl

+ Q̀(4)
cl q̂

ν
⊥∂q⊥µ ãqν + Q̀(5)

cl q̂
ν∂qν⊥ ã

µ
q + Q̀(6)

cl η
νρ∂qν⊥∂q

ρ
⊥
ãµq + Q̀(7)

cl q̂
ν
⊥q̂

ρ
⊥∂qν⊥∂q

ρ
⊥
ãµq

)]
, (4.22)

Q̀(1)
cl =

2m

T

[(
v0(1− 2fV q)−

T

m

)
− v30
|v|2

mθ−1 q̂
ρ
⊥∂qρ⊥

fV q

]
, (4.23a)

Q̀(2)
cl = m

v0
|v|3

(
(θ1 − |v|3)∂qν⊥ ã

ν
q + (3θ1 + |v|3)q̂ν⊥q̂

ρ
⊥∂qρ ãqν

)
+

m

v0|v|2T

(
v30(1− 2fV q)θ−1 −

2T

m
(θ−1 + 2|v|3)

)
q̂⊥ · ãq, (4.23b)

Q̀(3)
cl =

m

|v|2
(
v20θ−1 ∂qν⊥ ã

ν
q + (3θ1 + |v|3)q̂ν⊥q̂

ρ
⊥∂qρ ãqν

)
+

m

|v|T
θ−1

(
v0(1− 2fV q)−

2T

m

)
q̂⊥ · ãq, (4.23c)

Q̀(4)
cl = −2m|v|, (4.23d)

Q̀(5)
cl =

m2v30
|v|2T

θ−1(1− 2fV q), (4.23e)

Q̀(6)
cl = −m

2v20
2|v|3

(
3|v|3 − v20θ−3

)
, (4.23f)

Q̀(7)
cl =

m2v0
2|v|3

(
3v0θ1 + ηq|v|2

)
. (4.23g)
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4.3.2 Nonrelativistic limit

In the non-relativistic limit (m� T, |q|), we have v0 ∼ 1+|v|2/2 and θn ∼ −(3n+2)|v|3/6.

We immediately find that the SKE and AKE reduce to similar forms,

0 =
(
∂0+

qν⊥∂⊥ν
m

)
fV q+

2

3
κLL

[
Tηνρ∂qν⊥∂q

ρ
⊥
− 1

m

(
3(1−fV q)+(1−2fV q)q

ν
⊥∂qν⊥

)]
fV q,

(4.24a)

0 =
(
∂0+

qν⊥∂⊥ν
m

)
ãµq +

2

3
κLL

[
Tηνρ∂qν⊥∂q

ρ
⊥
ãµq +

1

m

{(
2(qν⊥∂qν⊥fV q)−3(1−2fV q)

)
ãµq

+2T (∂qν⊥ ã
ν
q )uµ−(1−2fV q)q

ν
⊥∂qν⊥ ã

µ
q

}]
, (4.24b)

where we further retain the terms up to O(1/m). It turns out that the orientation of

spin for heavy quarks is fixed yet the “spin” (axial-charge) density characterized by fAq
undergoes the diffusive process same as the vector-charge density led by fV q when m→∞.

Nonetheless, the modification upon the spin orientation by, e.g., the fluid velocity could

emerge at higher orders suppressed by the mass of heavy quarks. Note that the Compton

scattering, neglected in this work, also give rise to 1/m corrections, that, however, do not

come with the logarithm enhancement ∼ log(1/gc). Therefore, the above 1/m corrections

provide the consistent results within the leading-log approximation.

4.3.3 Consistency checks

In thermal equilibrium, the vector-charge distribution function takes the Fermi-Dirac form

fV q = 1/(e(Eq−µ)/T + 1) such that

∂
qβ⊥
fqV = fV q(1− fV q)

q⊥β
EqT

,

∂qα⊥∂qβ⊥
fqV = fV q(1− 3fV q + 2f2V q)

q⊥αq⊥β
E2
qT

2
+
fV q(1− fV q)

EqT

(
Θαβ +

q⊥αq⊥β
E2
q

)
, (4.25)

and hence

q̂β⊥∂qβ⊥
fqV = −fV q(1− fV q)

|q|
EqT

,

ηαβ∂qα⊥∂qβ⊥
fqV = −fV q(1− 3fV q + 2f2V q)

|q|2

E2
qT

2
+
fV q(1− fV q)

EqT

(
3− |q|

2

E2
q

)
,

q̂α⊥q̂
β
⊥∂qα⊥∂qβ⊥

fqV = fV q(1− 3fV q + 2f2V q)
|q|2

E2
qT

2
−
m2fV q(1− fV q)

E3
qT

. (4.26)

Using eqs. (4.25) and (4.26), one can explicitly show that the Fermi-Dirac distribution

satisfies the SKE in eq. (4.20).

As for the AKE, although each coefficient Q̀(i)
cl takes a complicated form, we can make

a cross check with the SKE in the massless limt. Generically, to consider the spin diffusion
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for massless or light quarks, it is inevitable to further incorporate the gluon Compton

scattering. Nevertheless, taking the massless limit here is just to scrutinize the consistency

of our results. In the massless limit, ãµq = qµfA and thus

∂
qβ⊥
ãµq = (Θµ

β−u
µq̂⊥β)fA+qµ∂

qβ⊥
fA, ∂

qβ⊥
ãβq = 3fA+qβ⊥∂qβ⊥

fA,

q̂β⊥∂qβ⊥
ãµq = (q̂µ⊥+uµ)fA+qµq̂β⊥∂qβ⊥

fA,

∂qα⊥∂qβ⊥
ãµq = (Θµ

β−u
µq̂⊥β)∂qα⊥fA+(Θµ

α−uµq̂⊥α)∂
qβ⊥
fA+qµ∂qα⊥∂qβ⊥

fA−
uµ

|q|
(
Θαβ+q̂⊥αq̂⊥β

)
fA,

∂q⊥β∂qβ⊥
ãµq = 2(∂q⊥µ−u

µq̂β⊥∂qβ⊥
)fA+qµ∂q⊥β∂qβ⊥

fA−
2uµ

|q|
fA, (4.27)

where ∂qα⊥ q̂⊥β =
(
Θαβ + q̂⊥αq̂⊥β

)
/|q|. One can show that eq. (4.22) then reduces to

0 = qµδ(q2)
[
q · ∂fAq − κLL

(
2fAq

(
1− 2fV q − qρ⊥∂qρfV q

)
+
(
1− 2fV q

)
qρ⊥∂qρfAq − |q|Tη

ρν∂qρ⊥
∂qν⊥fAq

) ]
. (4.28)

We may check the consistency with the SKE in the massless limit by dropping the nonlinear

terms since the fA contributions are ignored in the SKE based on our power counting,

which could cause discrepancies from the chirality-mixing terms. By further taking fV q =

(fRq + fLq)/2 and fAq = fRq − fLq, one finds that eq. (4.28) is consistent with the SKE in

eq. (4.20) in the massless limit. Both the linearized eqs. (4.28) and (4.20) result in

0 = δ(q2 −m2)

[
q · ∂ − κLL

(
2 + qβ⊥∂qβ⊥

− |q|Tηαβ∂qα⊥∂qβ⊥

)]
fR/Lq. (4.29)

Such a remarkable check should support the correctness of eq. (4.22). The check is also

performed in ref. [54].

5 Concluding remarks and outlook

In this paper, we have derived the effective axial kinetic theory with background fields and

collisions in the cases when the vector charge is more dominant than the axial charge (or

more precisely the spin current) as natural conditions in most of physical systems. It is

found that the AKE as a kinetic equation dictating the spin transport not only embraces

the spin-diffusion term but also quantum corrections responsible for spin polarization,

which reveals nontrivial entanglement of vector/axial-charge and spin transport through

collisions. Our SKE and AKT work for an arbitrary mass and they reproduce the CKT

in the massless limit. For the case of massive quarks, we have shown how our formalism

reproduces the spin-diffusion term up to the leading-logarithmic order in a weakly coupled

QGP and the leading of ~ expansion.

Here we further summarize the detailed achievements in a short list:

1. In our power counting, the leading-order SKE remains the same as a classical Boltz-

mann equation, whereas the AKE governing the dynamics of spin polarization char-

acterized by an axial-vector component Aµ in Wigner functions can be written as
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�(n)Aµ = Ĉµcl + ~Ĉ(n)µQ . Here �(n)Aµ denotes the free-streaming AKE, while Ĉµcl and

~Ĉ(n)µQ correspond to the “classical” and “quantum” parts of collisions. Such separa-

tion is explicitly shown in a generic spacetime-dependent frame and in the rest frame

for massive fermions as well.

2. It is found Ĉµcl and ~Ĉ(n)µQ are proportional to fA and fV , respectively. Consequently,

Ĉµcl serves as a spin-diffusion term, which vanishes when fA = 0. On the contrary, the

“quantum” correction ~Ĉ(n)µQ , which survives when fA = 0, is dubbed as the spin-

polarization term and responsible for polarizing spin via the intertwined dynamics of

vector-charge transport due to spin-orbit interaction.

3. Similar to the free-streaming case [51], for a generic spacetime-dependent frame,

~Ĉ(n)µQ can be separated into the term proportional to the four momentum and to

the mass, which establishes a smooth connection to the CKT with collisions [30, 31]

and manifests spin enslavement by chirality in the massless limit. Also, we present

the simplified versions of the AKE in eq. (3.9) [or eq. (3.17)] and eq. (3.12) suitable

for tracking the spin polarization of heavy and light quarks in QGP, respectively.

4. The spin diffusion term Ĉµcl for massive quarks in weakly-coupled QGP is obtained up

to the leading logarithmic order, which incorporates nonlinear terms in distribution

functions as a consequence of quantum statistics for fermions. It turns out that

even the spin diffusion is affected by entangled dynamics between fV and fA as

opposed to the previous study with only the linearized collision terms in distribution

functions [54].

Although we have explicitly evaluated the spin-diffusion term for massive quarks, which

are sufficiently heavy for dropping the gluon Compton scattering, the quantum correction

could be calculated in a similar fashion as the follow-up work. Moreover, when considering

the spin transport for light quarks, it is inevitable to further incorporate the Compton

scattering even for just spin diffusion. On the other hand, as already mentioned in the

context, in rotating QGP, it is expected that both light quarks and gluons are polarized,

which should be involved as quantum corrections in the self-energies. Recently, there have

been some relevant studies for the quantum corrections upon polarized photons [71, 72].

Albeit the validity of our formalism is held even in the presence of such corrections, it could

be challenging to systematically include the polarization of scattered gluons or even other

quarks and to obtain an analytic form of the collision term. Nevertheless, to understand the

dynamical evolution of the spin polarization for peculiarly strange quarks associated with

the local polarization of Λ hyperons, it will be essential to carry out the aforementioned

studies in the future.

On the other hand, our formalism is rather generic, which may have potential appli-

cations not only in heavy ion collisions but also other physical systems. For instance, it is

proposed in refs. [73–75] that the electron and neutrino transport with anomalous effects

led by chirality imbalance (axial charge) could influence the macroscopic hydrodynamic

evolution of matter in core collapse supernovae. However, the chirality imbalance of elec-
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trons produced by the electron capture process may be compensated by elastic electron

scattering with the effect of nonzero electron mass [76–78]. Our formalism could be applied

to track the axial-charge evolution in such a scenario. In such a case, eq. (3.12) will be

useful for capturing the small-electron-mass effect.
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A Derivation of the master equations

A.1 Spinor decomposition

Based on the spinor decomposition of the propagators (2.7) and the self-energies (2.8),

we perform the decomposition of the Kadanoff-Baym equations (2.4). One may use some

useful relations such as

γµγαγβ = ηµαγβ − ηµβγα + ηαβγµ − iεµαβλγ5γλ, γ5σµν =
i

2
εµνκσσ

κσ.

Here, εµνρσ is the totally antisymmetric tensor with ε0123 = −1. The Kadanoff-Baym equa-

tions (2.4) contain the commutators [γµ,∇µS<] and [(/Π−m), S<] and their counterparts

with the anticommutation relations. They can be decomposed with the following relations

[γµ, S<] = −2Aµγ5 + 2iSµαγα − 2iPγ5γα − 2iVνσµν , (A.1a)

{γµ, S<} = 2Vµ + 2Sγµ + εµνραSνργ5γα − ε
µ
ναβA

νσαβ . (A.1b)

Based on the decompositions above, we now have

i

2
[γµ,∇µS<] = −i∇µAµγ5 −∇νSνµγµ +∇µPγ5γµ +∇µVνσµν , (A.1c)

i

2
{γµ,∇µS<} = i∇µVµ + i∇µSγµ −

i

2
εµνρσ∇σSνργ5γµ −

i

2
εµνρσ∇ρAσσµν , (A.1d)

[(/Π−m), S<] = −2ΠνAνγ5 + 2iΠνSνµγµ − 2iΠµPγ5γµ − 2iΠµVνσµν , (A.1e)

{(/Π−m), S<} = 2(ΠµVµ −mS)− 2imPγ5 + 2(ΠµS −mVµ)γµ

− (εµνρσΠσSνρ + 2mAµ)γ5γµ − (mSµν + εµνρσΠρAσ)σµν . (A.1f)
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Assuming the following decomposition G(q,X) = K̂µGµ(q,X) and F (q,X) = Q̂µFµ(q,X)

with K̂µ and Q̂µ being arbitrary matrices, it is found

{G,F}? =
1

2
{K̂µ, Q̂ν}{Gµ(q,X), Fν(q,X)}? +

1

2
[K̂µ, Q̂ν ][Gµ(q,X), Fν(q,X)]?,[

G,F
]
?

=
1

2
[K̂µ, Q̂ν ]{Gµ(q,X), Fν(q,X)}? +

1

2
{K̂µ, Q̂ν}[Gµ(q,X), Fν(q,X)]?. (A.2)

Accordingly, the self-energy parts can be decomposed in the same and straightforward

way as

[Σ>, S<]? = i
(
{Σ̄V α,Aα}? − {Σ̄Aα,Vα}?

)
iγ5

+ i
(
{Σ̄P ,Aα}? + {Σ̄µ

V ,Sµα}? − {Σ̄Aα,P}? + {Σ̄Tαβ ,Vβ}?
)
γα

+ i
(
{Σ̄P ,Vα}? − {Σ̄V α,P}? + {Σ̄µ

A,Sµα}? + {Σ̄Tαβ ,Aβ}?
)
γ5γα

+ i
(
−{Σ̄V [α,Vβ]}? + {Σ̄A[α,Aβ]}? − {Σ̄Tµ[α,S

µ
β]}?

)σαβ
2

+ [Σ̄S ,S]? − [Σ̄P ,P]? + [Σ̄V µ,Vµ]? − [Σ̄Aµ,Aµ]? +
1

2
[Σ̄Tµν ,Sµν ]?

+

(
[Σ̄S ,P]? + [Σ̄P ,S]? +

1

4
εµναβ [Σ̄µν

T ,Sαβ ]?

)
iγ5

+

(
[Σ̄S ,Vα]? + [Σ̄V α,S]? +

1

2
εµνλα([Σ̄µ

A,S
νλ]? + [Σ̄µν

T ,Aλ]?)

)
γα

+

(
[Σ̄S ,Aα]? + [Σ̄Aα,S]? +

1

2
εµνλα([Σ̄µ

V ,S
νλ]? + [Σ̄µν

T ,Vλ]?)

)
γ5γα

+

(
[Σ̄S ,Sαβ ]? + [Σ̄Tαβ ,S]? + εµναβ(−[Σ̄µ

V ,A
ν ]? + [Σ̄µ

A,V
ν ]?)

− 1

2
εµναβ([Σ̄P ,Sµν ]? + [Σ̄µν

T ,P]?)

)
σαβ

2
,

(A.3)

and

{Σ>,S<}? = {Σ̄S ,S}?−{Σ̄P ,P}?+{Σ̄V µ,Vµ}?−{Σ̄Aµ,Aµ}?+
1

2
{Σ̄Tµν ,Sµν}?

+

(
{Σ̄S ,P}?+{Σ̄P ,S}?+

1

4
εµναβ{Σ̄µν

T ,Sαβ}?
)
iγ5

+

(
{Σ̄S ,Vα}?+{Σ̄V α,S}?+

1

2
εµνλα({Σ̄µ

A,S
νλ}?+{Σ̄µν

T ,Aλ}?)
)
γα

+

(
{Σ̄S ,Aα}?+{Σ̄Aα,S}?+

1

2
εµνλα({Σ̄µ

V ,S
νλ}?+{Σ̄µν

T ,Vλ}?)
)
γ5γα

+

(
{Σ̄S ,Sαβ}?+{Σ̄Tαβ ,S}?+εµναβ(−{Σ̄µ

V ,A
ν}?+{Σ̄µ

A,V
ν}?)

− 1

2
εµναβ({Σ̄P ,Sµν}?+{Σµν

T ,P}?)
)

1

2
σαβ

+i
(
[Σ̄V α,Aα]?−[Σ̄Aα,Vα]?

)
iγ5

+i
(
[Σ̄P ,Aα]?+[Σ̄µ

V ,Sµα]?−[Σ̄Aα,P]?+[Σ̄Tαβ ,Vβ ]?
)
γα

+i
(
[Σ̄P ,Vα]?+[Σ̄µ

A,Sµα]?−[Σ̄V α,P]?+[Σ̄Tαβ ,Aβ ]?
)
γ5γα

+i(−[Σ̄V [α,Vβ]]?+[Σ̄A[α,Aβ]]?−[Σ̄Tµ[α,S
µ
β]]?)

1

2
σαβ ,

(A.4)
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where we defined the antisymmetrization T[µν] = Tµν−Tνµ. Plugging those decompositions

back to the Kadanoff-Baym equations (2.4), we find

0 = {(/Π−m), S<}+
i~
2

(
[γµ,∇µS<]− [Σ<, S>]? + [Σ>, S<]?

)
(A.5)

= KS + K5iγ
5 + KV µγ

µ + K5µγ
µγ5 + KTµν

1

2
σµν ,

0 = [(/Π−m), S<] +
i~
2

(
{γµ,∇µS<} − {Σ<, S>}? + {Σ>, S<}?

)
(A.6)

= QS + Q5iγ
5 + QV µγ

µ + Q5µγ
µγ5 + QTµν

1

2
σµν ,

where

KS = 2ΠµVµ−2mS

+
i~
2

(
̂[ΣS ,S]?− ̂[ΣP ,P]?+ ̂[ΣV µ,Vµ]?− ̂[ΣAµ,Aµ]?+

1

2
̂[ΣTµν ,Sµν ]?

)
, (A.7)

K5 =−2mP−~D̃Aµ+
~
2

̂{ΣAµ,Vµ}?+
i~
2

(
̂[ΣS ,P]?+ ̂[ΣP ,S]?+

1

4
εµναβ

̂[Σµν
T ,Sαβ ]?

)
, (A.8)

KV α = 2ΠαS−2mVα−~D̃νSνα−
~
2

( ̂{ΣP ,Aα}?− ̂{ΣAα,P}?+ ̂{ΣTαµ,Vµ}?
)

+
i~
2

(
̂[ΣS ,Vα]?+ ̂[ΣV α,S]?+

1

2
εµνλα( ̂[Σµ

A,Sνλ]?+ ̂[Σµν
T ,Aλ]?)

)
, (A.9)

K5α =−εανρσΠσSνρ−2mAα+~D̃αP−
~
2

( ̂{ΣP ,Vα}?+ ̂{Σµ
A,Sµα}?+ ̂{ΣTαµ,Aµ}?

)
+
i~
2

(
̂[ΣS ,Aα]?+ ̂[ΣAα,S]?+

1

2
εµνλα( ̂[Σµ

V ,Sνλ]?+ ̂[Σµν
T ,Vλ]?)

)
, (A.10)

KTαβ =−2mSαβ−2εαβρσΠρAσ+~D̃[αVβ]−
~
2

( ̂{ΣA[α,Aβ]}?− ̂{ΣTµ[α,S
µ
β]}?

)
+
i~
2

( ̂[ΣS ,Sαβ ]?+ ̂[ΣTαβ ,S]?+εµναβ(− ̂[Σµ
V ,Aν ]?+ ̂[Σµ

A,Vν ]?)

− 1

2
εµναβ( ̂[ΣP ,Sµν ]?+ ̂[Σµν

T ,P]?)
)
, (A.11)

and

QS = i~D̃µVµ+
i~
2

(
̂{ΣS ,S}?− ̂{ΣP ,P}?− ̂{ΣAµ,Aµ}?+

1

2
̂{ΣTµν ,Sµν}?

)
, (A.12)

Q5 = 2iΠνAν+
i~
2

(
̂{ΣS ,P}?+ ̂{ΣP ,S}?+

1

4
εµναβ{ ̂Σµν

T ,Sαβ}?
)

− ~
2

( ̂[ΣV α,Aα]?− ̂[ΣAα,Vα]?
)
, (A.13)

QV α = 2iΠνSνα+i~D̃αS+
i~
2

(
̂{ΣS ,Vα}?+

1

2
εµνλα( ̂{Σµ

A,Sνλ}?+ ̂{Σµν
T ,Aλ}?)

)
− ~

2

( ̂[ΣP ,Aα]?+ ̂[Σµ
V ,Sµα]?− ̂[ΣAα,P]?+ ̂[ΣTαβ ,Vβ ]?

)
, (A.14)

Q5α =−2iΠαP−
i~
2
εανρσD̃νSρσ+

i~
2

(
̂{ΣS ,Aα}?+ ̂{ΣAα,S}?−

1

2
εανρσ ̂{Σνρ

T ,Vσ}?)
)

− ~
2

( ̂[ΣP ,Vα]?+ ̂[Σµ
A,Sµα]?− ̂[ΣV α,P]?+ ̂[ΣTαµ,Aµ]?

)
, (A.15)

QTαβ =−2iΠ[αVβ]−i~εαβµνD̃µAν+
i~
2

( ̂{ΣS ,Sαβ}?+ ̂{ΣTαβ ,S}?+εαβµν
̂{Σµ
A,Vν}?

− 1

2
εαβµν( ̂{ΣP ,Sµν}?+ ̂{Σµν

T ,P}?)
)
− ~

2
(− ̂[ΣV [α,Vβ]]?+ ̂[ΣA[α,Aβ]]?− ̂[ΣTµ[α,S

µ
β]]?).

(A.16)
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Here we introduce a shorthand notation X̂Y = X̄Y −XȲ , where X and Y are the coeffi-

cients of the Clifford decomposition of the propagators and self-energies, e.g., ̂{ΣV µ,Vν}? =

{Σ̄V µ,Vν}?−{ΣV µ, V̄ν}?. We also introduced D̃µM = ∇µM+ ̂{ΣV µ,M}?/2. KS = K5 =

KV α = K5α = QTαβ = QS = Q5 = QV α = Q5α = QTαβ = 0 give the set of full quantum

master equations. Explicitly, they read

mS = ΠµVµ−
~2

4

[
Σ̂SS−Σ̂PP+Σ̂V µVµ−Σ̂AµAµ+

1

2
̂ΣTµνSµν

]
P.B.

+O(~3), (A.17a)

mP =−~
2

(D̃µAµ−Σ̂AµVµ)−~2

4

[
Σ̂SP+Σ̂PS+

1

4
εµναβΣ̂µν

T Sαβ
]
P.B.

+O(~3), (A.17b)

2ΠαS−~D̃νSνα−2mVα−~(Σ̂PAα−Σ̂AαP−Σ̂TµαVµ)

=
~2

2

[
Σ̂SVα+Σ̂V αS+

1

2
εµνλα(Σ̂µ

ASνλ+Σ̂µν
T Aλ)

]
P.B.

+O(~3), (A.17c)

~D̃αP−εανρσΠσSνρ−2mAα−~(Σ̂PVα+Σ̂µ
ASµα− ̂ΣTµαAµ)

=
~2

2

[
Σ̂SAα+Σ̂AαS+

1

2
εµνλα(Σ̂µ

V Sνλ+Σ̂µν
T Vλ)

]
P.B.

+O(~3), (A.17d)

mSαβ+εαβρσΠρAσ− ~
2

(D̃[αVβ]− ̂ΣA[αAβ]+ ̂ΣTµ[αS
µ
β])

=−~2

4

[
Σ̂SSαβ+Σ̂TαβS−εµναβΣ̂µ

VAν+εµναβΣ̂µ
AVν−

1

2
εµναβ(Σ̂PSµν+Σ̂µν

T P)

]
P.B.

+O(~3),

(A.17e)

and

D̃µVµ = −Σ̂SS + Σ̂PP + Σ̂AµAµ −
1

2
̂ΣTµνSµν +O(~3), (A.18a)

2ΠνAν = −~
(

Σ̂SP + Σ̂PS +
1

4
εµναβΣ̂µν

T Sαβ
)
−~2

2
[−Σ̂V αAα + Σ̂AαVα]P.B. +O(~3),

(A.18b)

2ΠνSνα + ~D̃αS + ~
(
̂̄ΣSVα +

1

2
εµνλα(Σ̂µ

ASνλ + Σ̂µν
T Aλ)

)
=

~2

2
[Σ̂PAα + Σ̂µ

V Sµα − Σ̂AαP + Σ̂TαβVβ ]P.B. +O(~3), (A.18c)

2ΠαP +
~
2
εανρσ(D̃νSρσ + Σ̂νρ

T Vσ)− ~(Σ̂SAα + Σ̂AαS)

= 1− ~2

2
[Σ̂PVα − Σ̂V αP + Σ̂µ

ASµα + ̂ΣTαβAβ ]P.B. +O(~3), (A.18d)

Π[αVβ] +
~
2
εαβµν(D̃µAν − Σ̂µ

AVν)− ~
2

(Σ̂SSαβ + Σ̂TαβS) +
~
4
εµναβ(Σ̂PSµν + Σ̂µν

T P)

=
~2

4
[Σ̂V [αVβ]− ̂ΣA[αAβ]+ ̂ΣTµ[αS

µ
β]]P.B. +O(~3), (A.18e)

where [AB]P.B. = {A(q,X), B(q,X)}P.B. is a shorthand notation for the Poisson bracket.
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A.2 Eliminating S, P and Sµν
Equations (A.17a), (A.17b) and (A.17e) can be used to eliminate S, P, and Sµν from the

other master equations. Since Sµν is contracted with ΣTµν and Σ̄Tµν on the right-hand

side, one may not express Sµν as an explicit function of Vµ and Aµ only. However, assuming

that the interaction is sufficiently weak, we may drop the nonlinear terms in the self-energy.

Within this assumption, we may rewrite eqs. (A.17a), (A.17b) and (A.17e) as

Sαβ ≈−
1

m
εαβρσΠρAσ+

~
2m

{
D[αVβ]− ̂ΣA[αAβ]+

qµ
m
εµρσ[α

̂ΣTβ]ρAσ
}

+
~2

4m2

(
̂ΣTµ[α∇µVβ]− ̂ΣTµ[α∇β]Vµ

)
− ~2

4m

[
εαβµν
m

̂ΣS(qνAµ)+
1

m
̂ΣTαβ(q ·V)

−εµναβΣ̂µ
VAν+εµναβΣ̂µ

AVν−
1

m
̂ΣP (q[αAβ])

]
P.B.

+O(~3), (A.19a)

S =
Πµ

m
Vµ−

~2

4m

[
̂ΣS(q ·V)

m
+Σ̂V µVµ−Σ̂AµAµ−

1

2m
εµναβ ̂ΣTµν(qαAβ)

]
P.B.

+O(~3), (A.19b)

P =− ~
2m

(D̃µAµ−Σ̂AµVµ)− ~2

4m

[
̂ΣP (q ·V)

m
+

1

2m
̂Σµν

T (q[µAν])
]
P.B.

+O(~3). (A.19c)

Inserting eqs. (A.19b), (A.19c) and (A.19a) and maintaining the linear terms in the

self-energies and the explicit ~ dependence up to O(~) (or O(~2) for involving at least the

next-leading-order corrections), the master equations (A.17c) and (A.17d) up to O(~) are

reduced as

qµ(q ·V)−m2Vµ≈ ~
2

[
m(Σ̂PAµ+Σ̂µα

T Vα)−2
(
F̃µβAβ+

1

2
εµαβγqα∆βAγ

)
−εµαβγqαΣ̂V βAγ

]
,

q2Aµ−qµq ·A−m2Aµ (A.20a)

≈ 1

2
~
[
m(Σ̂PVµ+Σ̂µα

T Aα)+εµαβγqαDβVγ−2εµαβγqαΣ̂AβAγ−
1

m
εµαβγε

βλρσqαqλΣ̂γ
TρAσ

]
.

Similarly, the master equations (A.18a)–(A.18e) up to O(~) are reduced as

DµVµ≈ Σ̂AµAµ−
1

2m

[
2qµΣ̂SVµ−εµναβqαΣ̂µν

T Aβ+~ ̂ΣP (∇·A)+
~
2

̂Σµν
T ∇[µVν]

]
, (A.21a)

q ·A≈− ~
2m
qµ(Σ̂PVµ+Σ̂µν

T Aν), (A.21b)

Dµ(q ·V)−qνD[µVν]
≈−mΣ̂SVµ+q[µΣ̂Aα]Aα+

1

m
qνqαε

αβγ
[µ

̂ΣTν]βAγ

+
1

2
εµνρσ

{
mΣ̂νρ

T Aσ−~(∂νF ρβ)∂qβAσ+~ ̂Σν
A(∇ρVσ)

}
−~qν

2m
( ̂ΣTγ[ν∆γVµ]− ̂ΣTγ[ν∆µ]Vγ)

+
~qν

2

[
1

m
̂ΣTνµ(q ·V)−ενµρσΣ̂ρ

VAσ+ενµρσΣ̂ρ
AVσ−

1

m
̂ΣP (q[νAµ])

]
P.B.

+
~m
2

[
Σ̂PAµ−

ενµρσ
m

̂Σν
V (qρAσ)+Σ̂TµβVβ

]
P.B.

, (A.21c)

FµνAν−q ·DAµ+
~
4
εµνρσ[Dν ,Dρ]Vσ− ~

2m
qµ

[
̂ΣP (q ·V)+

1

2
̂Σρσ

T (q[ρAσ])
]
P.B.

(A.21d)

=m
[
Σ̂SAµ−

1

2
εµνρσΣ̂νρ

T Vσ
]
+qαΣ̂AµVα−qµΣ̂AαVα+

~
2
εµνρσ∆ν

[
Σ̂ρ
AAσ−

1

m
qαε ρ

αβγ Σ̂σβ
T Aγ

]
−~m

2

[
Σ̂PVµ+

1

m
εµνρσ ̂Σν

A(qρAσ)+Σ̂TµνAν
]
P.B.

,

q[µVν]+ ~
2
εµναβ(DαAβ−Σ̂AαVβ)≈− ~

2m

[
εµναβqαΣ̂SAβ−qαΣ̂µν

T Vα+q[µΣ̂PAν]
]
, (A.21e)
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where we defined DµM = ∇µM+ Σ̂V µM, and we used the following relation

2ενµρσ(ΠνΠρ)Aσ =
~2

6
ενµρσ

(
∂ρF βν + ∂βF ρν

)
∂qβAσ =

~2

2
ενµρσ(∂ρF βν)∂qβAσ. (A.22)

The master equations (A.20) and (A.21) are in general the full master equations with

collisional effects up to O(~1). In our power counting Vµ ∼ O(~0) and Aµ ∼ O(~1), these

equations reduce to eqs. (2.20a)–(2.20g).

B Angular-momentum decomposition for fermions and spin polarization

We briefly review the derivation of the gauge-invariant angular-momentum decomposition

for fermions proposed in ref. [79] as a covariant version of the Ji’s decomposition [80]. Such

a derivation is more explicitly shown in the review paper [81] (See also ref. [82]). Here

we just summarize the derivation therein. The starting point is the Belinfante angular

momentum for “on-shell” fermions,

Mµνρ
B =

xν

4
ψ̄
(
γµi
←→
D ρ + γρi

←→
D µ
)
ψ − (ν ↔ ρ), (B.1)

where ψ̄
←→
D µψ = ψ̄

(−→
Dµ−

←−
D†µ
)
ψ and Dµ = ∂µ+ ieAµ denotes the covariant derivative. One

may rewrite Mµνρ
B as

Mµνρ
B =

xν

2
ψ̄γµi

←→
D ρψ − xν

4
ψ̄
(
γµi
←→
D ρ − γρi

←→
D µ
)
ψ − (ν ↔ ρ). (B.2)

Next, one has to employ the relations,

σµνi
−→
/D = γν

−→
Dµ − γµ

−→
Dν−iεµναβγβγ5

−→
Dα,

i
←−
/Dσµν =

←−
Dµγν −

←−
Dνγµ−iεµναβγβγ5

←−
Dα, (B.3)

with σµν = i[γµ, γν ]/2 and the equations of motion i
−→
/Dψ = mψ and iψ̄

←−
/D = −mψ̄, to

obtain a useful identity,

ψ̄
(
γµi
←→
D ρ − γρi

←→
D µ
)
ψ = −ερµαβ∂α

(
ψ̄γβγ5ψ

)
. (B.4)

By using the identity, it is found

Mµνρ
B =

i

2
ψ̄γµ

(
xν
←→
D ρ − xρ

←→
D ν
)
ψ−1

2
εµνρβψ̄γβγ5ψ−

1

4
∂α

((
xνεµραβ − xρεµναβ

)
ψ̄γβγ5ψ

)
(B.5)

and thus yields the gauge-invariant angular-momentum decomposition by dropping the

surface term above,

Mµνρ
C =

i

2
ψ̄γµ

(
xν
←→
D ρ − xρ

←→
D ν
)
ψ − 1

2
εµνρβψ̄γβγ5ψ, (B.6)

where the first term above is regarded as the orbital angular momentum and the second

term proportional to an axial-charge current is responsible for spin. This gauge-invariant

decomposition introduced in ref. [79] is defined as the “canonical angular momentum” in

ref. [44] though it actually agrees with the usual canonical angular momentum obtained

from the Noether’s theorem only in the absence of gauge fields.
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C Decomposition of the collision term in AKE

The expression of eq. (3.8) can be equivalently written as

Ĉ(n)µ2 =
δ(q2−m2)

2

{
εµνρσqν

(
(∆ρΣ̄V σ)fV −(∆ρΣV σ)f̄V

)
+2Sµνm(n)

(
m
(
ΣS∆ν f̄V −Σ̄S∆νfV

)
−F ρν

(
ΣV ρf̄V −Σ̄V ρfV

)
−qρ

(
f̄V ∆νΣV ρ−fV ∆νΣ̄V ρ

)
+f̄V (q ·∆ΣV ν)−fV (q ·∆Σ̄V ν)

)
+2(ΣV ν f̄V −Σ̄V νfV )

(
q ·∆Sµνm(n)−F

µ
λS

λν
m(n)

)}
−mδ(q2−m2)Sµνm(n)∆νCS [fV ]

−2Sµνm(n)q
λFλνδ

′(q2−m2)
(
CV [fV ]+mCS [fV ]

)
−δ(q2−m2)

(
∆νS

µν
m(n)

)
×
(
CV [fV ]+mCS [fV ]

)
+F̃µνqνδ

′(q2−m2)
(
CV [fV ]+mCS [fV ]

)
+
δ(q2−m2)

2m

[
qµ
(
fV q ·∆Σ̄P−f̄V q ·∆ΣP

)
−m2

(
(∂µΣ̄P )fV −(∂µΣP )f̄V

)]
. (C.1)

By analogy with the collisionless case, we would like to decompose Ĉ(n)µ2 above into the

piece proportional to qµ, which survives in the massless limit and reproduces the collision

term in CKT, and another piece proportional to m, which stems from the purely finite-mass

correction.

The Schouton identity gives rise to

Sµνm(n)q
α = qµSανm(n) + qνSµαm(n) +

εµνραqρ
2

− εµνρα

2(q · n+m)

(
mqρ + q2nρ

)
. (C.2)

We thus find

2Sµνm(n)

(
f̄V (q ·∆ΣV ν)− fV (q ·∆Σ̄V ν)

)
= 2
[(
qµSρνm(n) + qνSµρm(n)

)(
f̄V ∆ρΣV ν − fV ∆ρΣ̄V ν

)]
− εµνρσqν

(
(∆ρΣ̄V σ)fV − (∆ρΣV σ)f̄V

)
− εµνρσ(mqρ + q2nρ)

(q · n+m)

(
f̄V ∆σΣV ν − fV ∆σΣ̄V ν

)
(C.3)

and Ĉ(n)µ2 becomes

Ĉ(n)µ2

=
δ(q2−m2)

2

{
2qµSρνm(n)

(
f̄V ∆ρΣV ν−fV ∆ρΣ̄V ν

)
+2Sµνm(n)

(
m
(
ΣS∆ν f̄V −Σ̄S∆νfV

)
−F ρν

(
ΣV ρf̄V −Σ̄V ρfV

))
− ε

µνρσm(qρ+mnρ)

(q ·n+m)

(
f̄V ∆σΣV ν−fV ∆σΣ̄V ν

)
+2(ΣV ν f̄V −Σ̄V νfV )

×
(
q ·∆Sµνm(n)−F

µ
λS

λν
m(n)

)}
−2Sµνm(n)q

λFλνδ
′(q2−m2)

(
CV [fV ]+mCS [fV ]

)
−δ(q2−m2)

×
[(

∆νS
µν
m(n)

)(
CV [fV ]+mCS [fV ]

)
+mSµνm(n)∆νCS [fV ]

]
+F̃µνqνδ

′(q2−m2)
(
CV [fV ]+mCS [fV ]

)
+
δ(q2−m2)

2m

[
qµ
(
fV q ·∆Σ̄P−f̄V q ·∆ΣP

)
−m2

(
(∂µΣ̄P )fV −(∂µΣP )f̄V

)]
. (C.4)
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Next, applying the Schouton identity again, it is found

δ(q2−m2)q ·∆Sµνm(n)

= δ(q2−m2)

[
qµ∆αS

αν
m(n)+q

ν∆αS
µα
m(n)+q

ρεµνασ∆α
qρnσ

2(q ·n+m)
+qσεµνρα∆α

qρnσ
2(q ·n+m)

]

= δ(q2−m2)

[
qµ∆αS

αν
m(n)+q

ν∆αS
µα
m(n)+m

2∆α
εµνασnσ

2(q ·n+m)
+
qρFραε

µνασnσ
2(q ·n+m)

+F̃µν

−m∆α
εµνραqρ

2(q ·n+m)
− ε

µνραFσαn
σqρ

2(q ·n+m)

]
(C.5)

and

− Sλνm(n)F
µ
λ = − qρnσ

2(q · n+m)

(
ελµρσF νλ + ελνµσF ρλ + ελνρµF σλ

)
, (C.6)

which lead to

δ(q2 −m2)
(
q ·∆Sµνm(n) − S

λν
m(n)F

µ
λ

)
= δ(q2 −m2)

[
qµ∆αS

αν
m(n) + F̃µν + qν∆αS

µα
m(n) −m∆α

εµνρα(qρ +mnρ)

2(q · n+m)
+ Sµρm(n)F

ν
ρ

+
qρFραε

µνασnσ
(q · n+m)

]
. (C.7)

We hence obtain

Ĉ(n)µ2

=
δ(q2−m2)

2

{
2qµSρνm(n)

(
f̄V ∆ρΣV ν−fV ∆ρΣ̄V ν

)
+2Sµνm(n)m

(
ΣS∆ν f̄V −Σ̄S∆νfV

)
− ε

µνρσm(qρ+mnρ)

(q ·n+m)

(
f̄V ∆σΣV ν−fV ∆σΣ̄V ν

)
+2
(
f̄V ΣV ν−fV Σ̄V ν

)[
qµ∆αS

αν
m(n)+F̃

µν

+
qρFραε

µνασnσ
(q ·n+m)

−m∆α
εµνρα(qρ+mnρ)

2(q ·n+m)

]}
−2Sµνm(n)q

λFλνδ
′(q2−m2)CV [fV ]+δ′(q2−m2)

×F̃µνqν
(
CV [fV ]+mCS [fV ]

)
−m

(
2Sµνm(n)q

λFλνδ
′(q2−m2)+δ(q2−m2)

(
(∆νS

µν
m(n))+Sµνm(n)∆ν

))
CS [fV ]

+
δ(q2−m2)

2m

[
qµ
(
fV q ·∆Σ̄P−f̄V q ·∆ΣP

)
−m2

(
(∂µΣ̄P )fV −(∂µΣP )f̄V

)]
. (C.8)

On the other hand, one finds

−2Sµνm(n)δ
′(q2−m2)qλFλν =−2δ′(q2−m2)

(
qµSρνm(n)+q

νSµρm(n)

)
Fρν−2F̃µρqρδ

′(q2−m2)

+
2δ′(q2−m2)F̃µρ

(q ·n+m)
m
(
qρ+mnρ

)
− 2δ(q2−m2)

q ·n+m
F̃µρnρ, (C.9)
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which yields

−2Sµνm(n)δ
′(q2 −m2)qλFλν = −δ′(q2 −m2)

(
qµSρνm(n)Fρν + F̃µρqρ −

m(qρ +mnρ)F̃
µρ

(q · n+m)

)

− δ(q2 −m2)

q · n+m
F̃µρnρ. (C.10)

In addition, one can show

qρFραε
µνασnσ

(q · n+m)
=

1

q · n+m

(
−qµF̃ νσnσ + F̃µσnσq

ν +mF̃µν
)
− F̃µν . (C.11)

Accordingly, Ĉ(n)2 takes the form

Ĉ(n)µ2 =
δ(q2−m2)

2

{
2qµSρνm(n)

(
f̄V ∆ρΣV ν−fV ∆ρΣ̄V ν

)
+2Sµνm(n)m

(
ΣS∆ν f̄V −Σ̄S∆νfV

)
− ε

µνρσm(qρ+mnρ)

(q ·n+m)

(
f̄V ∆σΣV ν−fV ∆σΣ̄V ν

)
+2
(
f̄V ΣV ν−fV Σ̄V ν

)[
qµ∆αS

αν
m(n)

− q
µF̃ νσnσ

(q ·n+m)
+

mF̃µν

(q ·n+m)
−m∆α

εµνρα(qρ+mnρ)

2(q ·n+m)

]}

+
δ(q2−m2)

2m

[
qµ
(
fV q ·∆Σ̄P−f̄V q ·∆ΣP

)
−m2

(
(∂µΣ̄P )fV −(∂µΣP )f̄V

)]
−δ′(q2−m2)

(
qµSρνm(n)Fρν−

m(qρ+mnρ)F̃
µρ

(q ·n+m)

)
CV [fV ]−m

((
2Sµνm(n)q

λFλν−F̃µνqν
)

×δ′(q2−m2)+δ(q2−m2)
(
∆νS

µν
m(n)

)
+δ(q2−m2)Sµνm(n)∆ν

)
CS [fV ], (C.12)

which can be further rearranged as

Ĉ(n)µ2

= qµ

{
δ(q2−m2)

[
Sρνm(n)

(
f̄V ∆ρΣV ν−fV ∆ρΣ̄V ν

)
+
(
f̄V ΣV ν−fV Σ̄V ν

)(
∂αS

αν
m(n)+

Sρνm(n)Fρσn
σ

q ·n+m

)

+
1

2m

(
fV q ·∆Σ̄P−f̄V q ·∆ΣP

)]
−δ′(q2−m2)Sρνm(n)FρνCV [fV ]

}

+m

{
δ(q2−m2)

[
Sµνm(n)

(
ΣS∆ν f̄V −Σ̄S∆νfV

)
−∆ν

(
Sµνm(n)CS [fV ]

)
− εµνρσ(qρ+mnρ)

2(q ·n+m)

×
(
f̄V ∆σΣV ν−fV ∆σΣ̄V ν

)
+
(
f̄V ΣV ν−fV Σ̄V ν

)( F̃µν

(q ·n+m)
−εµνρα∆α

(qρ+mnρ)

2(q ·n+m)

)

− 1

2

(
(∂µΣ̄P )fV −(∂µΣP )f̄V

)]

+δ′(q2−m2)

[
(qρ+mnρ)F̃

µρ

(q ·n+m)
CV [fV ]−(2Sµνm(n)q

λFλν−F̃µνqν)CS [fV ]

]}
, (C.13)
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where we utilize

∆αS
αν
m(n)−

F̃ νσnσ
(q · n+m)

= ∂αS
αν
m(n) +

Sρνm(n)Fρσn
σ

q · n+m
. (C.14)

We can now write Ĉ(n)µ2 in a more succinct form as

Ĉ(n)µ2 = qµĈ(n)q2 +mĈ(n)µm2 , (C.15)

where

Ĉ(n)q2 = δ(q2 −m2)

[
− Sρνm(n)

̂(∆ρΣV ν)fV − Σ̂V νfV

(
∂αS

αν
m(n) +

Sρνm(n)Fρσn
σ

q · n+m

)

+
1

2m
(q ·∆Σ̂P )fV

]
− δ′(q2 −m2)Sρνm(n)FρνCV [fV ], (C.16)

and

Ĉ(n)µm2 = δ(q2 −m2)

[(
∆νS

νµ
m(n)

)
CS [fV ]− Sνµm(n)(∆νΣ̂S)fV +

εµνρσ(qρ +mnρ)

2(q · n+m)
(∆σΣ̂V ν)fV

− 1

2
(∂µΣ̂P )fV −

εµναβΣ̂V νfV
2(q · n+m)

(
m∂αnβ − (qβ +mnβ)

(∂αq · n+ nρFρα)

q · n+m

)]

+ δ′(q2 −m2)

[
(qρ +mnρ)F̃

µρ

(q · n+m)
CV [fV ]− 2Sµνm(n)q

λFλνCS [fV ] + F̃µνqνCS [fV ]

]
.

(C.17)

Here, CV [fV ] ≡ −qµΣ̂µ
V fV and CS [fV ] ≡ −Σ̂SfV . It is clear to see that Ĉ(n)q2 reduces to the

O(~) correction in the collision term of the CKT found in refs. [30, 31] by taking m = 0
4. Combining with Ĉ(n)µ1 and collisionless part, one finds that the CKT with collisions is

smoothly reproduced by AKE in the massless limit when m = 0 and aµ = qµ.

D Derivation of the spin diffusion for SKE

From eqs. (4.9) and (4.16), we find

Q1(p) = 2πδ(q′2−m2)
(

2q′µG<µνq
ν−p·q′G<µµ

)
= 2πδ(q′2−m2)g0p

p0
T

(
2ρ̂T (|q|2(1−z2)−p0q0+|q||p|z)+ρ̂L(2q20−p0q0−|q||p|z)

)
,

(D.1)

where we defined ρ̂T/L ≡ ρT/LT/p0 and z ≡ q̂·p̂. We also used the transversality pµP
µν
T = 0

and the on-shell conditions m2 = q2 = p2 + q′2 + 2p · q′ and m2 = q′2 = p2 + q2− 2p · q that

lead to relations 2p · q = p2 = −2p · q′.
4In refs. [30, 31], ΣP and Σ̄P are set to zero. As argued previously, such terms are actually expected to

be at higher order and vanishing in the massless limit.

– 35 –

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp



J
H
E
P
0
7
(
2
0
2
0
)
0
7
0

The on-shell condition can be also arranged as

q′2 −m2 = p2 − 2q · p = (p0 − q0)2 + (2|q||p|z − p2 − q20) . (D.2)

Therefore, the delta function is nonzero when the momenta satisfy the conditions

p0 = q0 ±
√

p2 − 2|q||p|z + q20 ∼ q
0 ±

(
q0 − |q||p|z

q0
+

p2(q20 − q2z2)

2q30

)
, (D.3)

where the square root is expanded for a small momentum transfer |p|. We take the positive-

energy solution q′0 = q0−p0 > 0 for particles from the lower sign. Defining p̄ ≡ |q||p|z/q0−
p2(q20 − q2z2)/(2q30), we have5

δ(q′2 −m2) ∼ 1

2q0

(
1 +
|q||p|z
q20

+O(|p|2)
)
δ(p0 − p̄). (D.4)

Based on the dispersion relation above, we can approximate the spectral function as

ρ̂T (p)→
πTm2

D

2|p|5
IT (z)

(
1− |q||p|z

q20
+O(|p|2)

)
, (D.5)

where IT (z) ≡ [1 − (|q|z/q0)2]−1. Here, the presence of the delta function δ(p0 − p̄) is

assumed on the right-hand side of arrow. On the other hand, we have ρ̂L(p) = πTm2
D/|p|5.

Note that the difference between the distribution functions provides positive powers

in the small momentum transfer limit:

fV q − fV q−p ≈ pβ∂qβfV q −
pαpβ

2
∂qα∂qβfV q, (D.6)

where p0 ∼ O(|p|1). Therefore, we have found the momentum dependences

ρ̂L,T ∼ |p|−5, fV q − fV q−p ∼ |p|, d3p ∼ d|p||p|2. (D.7)

This order counting suggests that one should maintain the other factors up to O(|p|) to

get the leading-log result. Therefore, we expand the remaining factor as

δ(q′2 −m2)g0p
p0
T
≈ 1

2|q0|

[
1 +
|p||q|z
q20

(
1− q0

2T

)
+O(|p|2)

]
δ(p0 − p̄) , (D.8)

where we used g0p ≈ T/p0 − 1/2. Combining all pieces together, it is found∫
p
Q1(fV q − fV q−p) ≈

πTm2
D

2|q0|

∫
p

1

|p|5
(2π)δ

(
p0 −

p · q
q0

)
×

(
1− |p||q|z

2q0T

)[
2q20 + |q|2(1− z2)IT (z)

]
(fV q − fV q−p). (D.9)

5It turns out that the O(|p|2) term in the Delta function does not contribute to the leading logarithmic

order.
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In eq. (D.6), we apply the following decomposition of pβ⊥ in terms of the transverse

and longitudinal components with respect to qµ⊥:

pµ⊥ = q̂µ⊥|p|z + Θ̂µν
q pν , Θ̂αβ

q = Θαβ + q̂α⊥q̂
β
⊥, (D.10)

where qαΘ̂αβ
q = 0. Moreover, The distribution function fV q in general can be a function of

q0 before implementing the on-shell condition. It is in fact more convenient to keep the off-

shell form when Fµν 6= 0 due to the presence of δ′(q2−m2) term in the AKE. Nonetheless,

in the absence of background fields, it is more practical and convenient to write down the

on-shell kinetic equations. We hence take fV q = fV q(q, X) as just a function of q and X

by using q0 = Eq =
√
|q|2 +m2 for fermions (here we neglect anti-fermions) in the Wigner

functions. Accordingly, all the terms proportional to ∂q0fV q can be dropped.

Applying the replacement

pαpβ → p20u
αuβ + p0|p|z

(
uαq̂β⊥ + uβ q̂α⊥

)
+ |p|2

(
q̂α⊥q̂

β
⊥z

2 − Θ̂αβ
q

2

(
1− z2

))
(D.11)

for the integrand and carrying out the integration, eq. (D.9) results in

δ(q2−m2)

∫
p
Q1(fV q−fV q−p) (D.12)

≈−πm
2
Dδ(q

2−m2)

2q0

∫ T

mD

d|p|
(2π)2|p|

∫ 1

−1
dz

(
|q|2(1−z2)IT (z)

2
+q20

)[
|q|z2

q0
q̂β⊥+

(
q̂α⊥q̂

β
⊥z

2

− Θ̂αβ
q

2

(
1−z2

))
T∂qα

]
∂qβfV q

=−m
2
Dδ(q

2−m2)

8πq0
ln(1/gc)

[
q0

(
jT1 −

q20
|q|2 j

T
2 +jL1

)
qβ⊥∂qβ⊥

−T

(
JT0 −

4q20
|q|2 j

T
1 +

3q40
|q|4 j

T
2 +

q20
|q|2

×(jL0 −3jL1 )

)
qβ⊥q

α
⊥

2
∂qα⊥∂qβ⊥

−T

(
|q|2

(
JT0 −

2q20
|q|2 j

T
1 +

q40
|q|4 j

T
2

)
+q20(jL0 −jL1 )

)
ηαβ

2
∂qα⊥∂qβ⊥

]
fV q,

where we take uβ∂qβfV q = 0 and

jT0 ≡
∫ 1

−1
dz

1

2
(

1− |q|
2z2

q20

) =
q0
|q|
ηq, jT1 ≡

∫ 1

−1
dz

(
|q|z
q0

)2
2
(

1− |q|
2z2

q20

) =
q0
|q|
ηq − 1,

jT2 ≡
∫ 1

−1
dz

(
|q|z
q0

)4
2
(

1− |q|
2z2

q20

) =
q0
|q|
ηq −

|q|2

3q20
− 1, (D.13)

where ηq = 2−1 ln [(q0 + |q|)/(q0 − |q|)], and

jL0 ≡
∫ 1

−1
dz = 2, jL1 ≡

∫ 1

−1
z2dz =

2

3
. (D.14)
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By inputting explicit forms of j
L/T
i into (D.12), we eventually obtain

δ(q2−m2)

∫
p
Q1(fV q−fV q−p)

=−
m2
Dδ(q

2−m2)

8π
ln(1/gc)

[
E2
q

|q|2

(
1−m

2ηq
q0|q|

)
qβ⊥+

m2T

2|q|3

((
1−

3E2
q

|q|2

)
ηq+

3Eq
|q|

)
qα⊥q

β
⊥∂qα⊥

−EqT
2

((
3−

E2
q

|q|2

)
+

m4

Eq|q|3

)
ηαβ∂qα⊥

]
∂
qβ⊥
fV q, (D.15)

where we take q0 = Eq.

Subsequently, we should also calculate the Q̃1fV q term in eq. (4.17). While the same

counting (D.7) is applied to this case, there is not the order-one suppression from the

difference fV q − fV q−p. Nevertheless, a factor of g−10p provides the same order of suppres-

sion instead. Therefore, maintaining the linear terms from the other factors as in the

computation above, we find

δ(q2 −m2)

∫
p
Q̃1fV q

≈ −
πm2

Dδ(q
2 −m2)

2q0

∫ T

mD

d|p|
(2π)2|p|

∫ 1

−1
dz

(
|q|2IT (1− z2)

2
+ q20

)
1

q0

(
1− |q|

2z2

q20

)
fV q

= −
m2
Dδ(q

2 −m2)

8πq0
ln(1/gc)

[
q0
(
jL0 − jT1 + jT2

)
− |q|

2

q0

(
jL1 − jT0 + jT1

)]
fV q, (D.16)

which yields

δ(q2 −m2)

∫
p
Q̃1fV q(1− fV q−p)

≈ −
m2
Dδ(q

2 −m2)

4π
ln(1/gc)

(
fV q(1− fV q)−

q20
|q|2

(
1− ηqm

2

q0|q|

)
fV qq

β
⊥∂qβ⊥

fV q

)
. (D.17)

Accordingly, the SKE results in the form given in eq. (4.20).

E Derivation of the spin diffusion for AKE

To evaluate the collision term in AKE, we implement the same strategy as in the SKE.

E.1 Half of the terms: [Qµν
2 ãq′ν −Q1ã

µ
q ]

For convenience, we first apply the following decompositions to two of the four terms in

eq. (4.18):

Qµν2 ãq′ν −Q1ã
µ
q = 2πδ(q′2 −m2)

(
Qµcl(a) +Qµcl(b) +Qµcl(c)

)
, (E.1)

where

Qµcl(a) ≡ 2(q′ρG<ρνq
ν)(ãµq′ − ã

µ
q ) +G<ρρ (p · q′ãµq + p · qãµq′) = g0p

p0
T

(
Q̂Tµcl(a) + Q̂Lµcl(a)

)
, (E.2a)

Qµcl(b) ≡ −
(
G<ρρ pµ + 2q′ρG

<ρµ
)
q · ãq′ = g0p

p0
T

(
Q̂Tµcl(b) + Q̂Lµcl(b)

)
, (E.2b)

Qµcl(c) ≡ 2
(
pµG<νρ qρ − q · pG<νµ

)
ãq′ν = g0p

p0
T

(
Q̂Tµcl(c) + Q̂Lµcl(c)

)
. (E.2c)
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The remaining two terms will be addressed in section E.2. We utilized q′ · aq′ = (q′2 −
m2)fAq′ = 0 from the on-shell condition. On the rightmost side, the terms proportional

to the transverse and longitudinal spectral functions are denoted as Q̂Tµcl and Q̂Lµcl , respec-

tively. Note that, similar to fV q−p in the SKE, the expansion of ãµq−p give rise to the factors

of p for the small momentum transfer limit. Recalling the order counting in eq. (D.7), we

thus maintain the terms in Q̂T,Lµcl up to O(|p|2) in the following. For Qµcl(a), we have

Q̂Tµcl(a) = 2ρ̂T

[
|q|2(1− z2)(ãµq−p − ãµq )−

((
p0q0 − |p||q|z

)(
ãµq−p + ãµq

)
− (p20 − |p|2)ã

µ
q−p

)]
≈ 2ρ̂T

[(
2(|p||q|z − p0q0

)
+ p20 − |p|2

)
ãµq −

(
|q|2(1− z2)− q0p0 + |p||q|z

)
pβ∂qβ ã

µ
q

+ |q|2(1− z2)p
αpβ

2
∂qβ∂qα ã

µ
q +O(|p|3)

]
, (E.3a)

Q̂Lµcl(a) = ρ̂L

[
2(q20 − q0p0)(ã

µ
q−p − ãµq ) +

((
p0q0 − |p||q|z

)(
ãµq−p + ãµq

)
− (p20 − |p|2)ãµq

)]
≈ ρ̂L

[(
|p|2 − p20 − 2(|p||q|z − p0q0

))
ãµq −

(
2q20 − q0p0 − |p||q|z

)
pβ∂qβ ã

µ
q

+ q20p
αpβ∂qα∂qβ ã

µ
q +O(|p|3)

]
. (E.3b)

As for Qµcl(b), we have

Q̂Tµcl(b) = 2ρ̂T (pµ + qµ⊥ − |q|p̂
µ
⊥z)p · ãq−p

≈ 2ρ̂T

[
(pµ + qµ⊥ − |q|p̂

µ
⊥z)pν ãνq +

(
|q|p̂µ⊥z − q

µ
⊥
)
pνpρ∂qρ ãνq +O(|p|3)

]
,

Q̂Lµcl(b) = ρ̂L

(
2(p0 − q0)uµ − pµ

)
p · ãq−p

≈ ρ̂L
[
(p0u

µ − pµ⊥ − 2q0u
µ)pν ãqν + 2q0u

µpνpρ∂qρ ãqν +O(|p|3)
]
. (E.4a)

Here, we drop the terms proportional to q · aq = (q2 − m2)fAq based on the on-shell

condition. Finally, for Qµcl(c), we have

Q̂Tµcl(c) = 2ρ̂T

(
pµ
(
|q|zp̂ν⊥ − qν⊥

)
+ (q0p0 − |q||p|z)(Θµν + p̂µ⊥p̂

ν
⊥)
)
ãq−pν

≈ 2ρ̂T

(
(p0u

µ + pµ⊥)
(
|q|zp̂ν⊥ − qν⊥

)
+ (q0p0 − |q||p|z)(Θµν + p̂µ⊥p̂

ν
⊥)
)

×
(
ãqν − pβ∂qβ ãqν +O(|p|2)

)
, (E.5a)

Q̂Lµcl(c) = ρ̂L

(
2q0u

νpµ − 2(q0p0 − |q||p|z)uµuν
)
ãq−pν

≈ ρ̂L
(
2q0u

νpµ⊥ + 2|q||p|zuµuν
)(
ãqν − pβ∂qβ ãqν +O(|p|2)

)
. (E.5b)

In the following, we evaluate those terms one by one. As in the case of SKE, we first

retrieve the integrals for |p| that give rise to the logarithm in the following subsections.

The angle integrals, with respect to z, will be performed in section E.3 afterwards.
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E.1.1 Evaluating Qµ
cl(a)

Combining with eqs. (D.8) and (D.5), we find

δ(q2 −m2)

∫
p

2πδ((q − p)2 −m2)Qµcl(a)

≈
πTm2

Dδ(q
2 −m2)

2q0

∫ T

mD

d|p|
(2π)2|p|

∫ 1

−1
dz

[(
q0z

2

T
+
IT z

2(1− z2)|q|2

2q0T

)
qβ⊥∂qβ⊥

−
(
q20 +

IT |q|2(1− z2)
2

)(
(1− z2)ηαβ + (1− 3z2)q̂α⊥q̂

β
⊥

)∂qα⊥∂qβ⊥
2

]
ãµq , (E.6)

where we take uβ∂qβ ã
µ
q = 0 by imposing q0 = Eq =

√
|q|2 +m2 upon ãµq in advance and

utilize (
q̂α⊥q̂

β
⊥z

2 − Θ̂αβ
q

2

(
1− z2

))
= −Θαβ

2
(1− z2)− (1− 3z2)

2
q̂α⊥q̂

β
⊥. (E.7)

E.1.2 Evaluating Qµ
cl(b)

Next, we evaluate the term proportional to Qµcl(b):

δ(q2 −m2)

∫
p

2πδ((q − p)2 −m2)Qµcl(b) ≈
πTm2

Dδ(q
2 −m2)

2q0

∫
d3p

(2π)3
1

|p|5
(
K̃Tµcl(b) + K̃Lµcl(b)

)
,

(E.8)

where

K̃Tµcl(b) = IT

[
|p|(qµ⊥−p̂

µ
⊥|q|z)

( |q|
q0
uνz+p̂ν⊥

)
+
|p|2

2q30T

(
|q|2z2

(
uν((T−q0)qµ⊥+2q0Tu

µ)+p̂µ⊥p̂
ν
⊥q

2
0

)
+q20T

(
2p̂µ⊥p̂

ν
⊥q0−q

µ
⊥u

ν
)
+|q|q20z(3p̂µ⊥Tu

ν−p̂ν⊥q
µ
⊥+2p̂ν⊥Tu

µ)+|q|3p̂µ⊥u
νz3(q0−T )

)
−
(
qµ⊥−p̂

µ
⊥|q|z

)( |q|
q0
uνz+p̂ν⊥

)( |q|
q0
uρz+p̂ρ⊥

)
|p|2∂qρ+O(|p|3)

]
ãqν , (E.9a)

K̃Lµcl(b) =−2ãqνu
µ|p|(p̂ν⊥q0+|q|uνz)+

|p|2

q20T

(
uµ
(
uν
(
|q|2z2(q0−2T )+q20T

)
+p̂ν⊥|q|q0z(q0−T )

)
−p̂µ⊥q0T (|q|uνz+p̂ν⊥q0)

)
ãqν+2q0u

µ
( |q|
q0
uνz+p̂ν⊥

)( |q|
q0
uρz+p̂ρ⊥

)
|p|2∂qρ ãqν+O(|p|3).

(E.9b)

It is clear that O(|p|) terms in K̃T/Lµcl(b) can be dropped by symmetry of the integration. We

should further employ the useful decomposition and replacements in eqs. (D.10), (D.11),

and the following relation in the integral,

zpν⊥p
µ
⊥p

ρ
⊥ = z|p|3(q̂ν⊥z + p̂νT )(q̂µ⊥z + p̂µT )(q̂ρ⊥z + p̂ρT )

→ |p|3
(
z4q̂ν⊥q̂

µ
⊥q̂

ρ
⊥ −

z2(1− z2)
2

(
q̂ν⊥Θ̂µρ

q + q̂µ⊥Θ̂νρ
q + q̂ρ⊥Θ̂µν

q

))
, (E.10)
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where p̂µT = Θ̂µν
q p̂⊥ν and we drop terms with odd powers of z. Dropping the vanishing

terms by symmetry in eq. (E.8), we obtain

δ(q2 −m2)

∫
p

2πδ((q − p)2 −m2)Qµcl(b)

≈
πTm2

Dδ(q
2 −m2)

2q0

∫ T

mD

d|p|
(2π)2|p|

∫ 1

−1
dz
(
KTµcl(b) +KLµcl(b)

)
, (E.11)

where

KTµcl(b) = IT

{[
uµz2

(
qν⊥
q0

+
|q|2uν

q20

)
−

q̂µ⊥
4q30T

(
q20 q̂

ν
⊥

(
3|q|2z2(1−z2)+2q0T (1−3z2)

)
+2uν |q|

(
z2(1−z2)|q|2(q0−T )+q20T (1−3z2)

))
−Θµν

4
(1−z2)

(
2+
|q|2z2

q0T

)]
ãqν

+
1

2

[
qµ⊥(1−z2)

(
q̂ν⊥q̂

ρ
⊥(1−5z2)+(1−z2)Θρν−3

qρ⊥
q0
uνz2

)
−z2(1−z2)

(
Θµνqρ⊥+Θρµ

(
qν⊥+

|q|2

q0
uν
))]

∂qρ⊥
ãqν

}
(E.12)

and

KLµcl(b) =uµ

[
u·ãq

(
1+
|q|2z2(q0−2T )

q20T

)
+q̂⊥ ·ãq

|q|z2(q0−T )

q0T

]
+q̂µ⊥

[
q̂⊥ ·ãq

(1−3z2)

2
(E.13)

−u·ãq
|q|z2

q0

]
+Θµν ãν

(1−z2)
2

+uµ
(
2z2qρ⊥u

ν−q̂ρ⊥q̂
ν
⊥q0(1−3z2)−Θρνq0(1−z2)

)
∂qρ⊥

ãqν .

Since δ(q2 −m2)q · ãq = δ(q2 −m2)(Equ · ãq + q⊥ · ãq) = 0, we can use u · ãq = −q⊥ · ãq/q0
to further simplify KT/Lµ)cl(b) , which results in

KTµcl(b) = IT

{
q̂⊥ ·ãq

[
uµ
m2|q|z2

q30
−
q̂µ⊥
2

(
z2(1−z2)

(
1+

q0
2T

+
m4

q40

(
1− q0

T

))
+
m2

q20

(
1−5z2+2z4

+
q0
2T

z2(1−z2)
))]

−Θµν ãqν
2

(1−z2)
(

1+
|q|2z2

2q0T

)
+

1

2
(1−z2)

[
q̂µ⊥

(
|q|q̂ρ⊥q̂

ν
⊥(1−5z2)

+|q|Θρν(1−z2)− 3|q|2z2

q0
q̂ρ⊥u

ν

)
−|q|z2Θµν q̂ρ⊥−

(
|q|q̂ν⊥+

|q|2

q0
uν
)
z2Θρµ

]
∂qρ⊥

ãqν

}
,

(E.14)

and

KLµcl(b) =uµ

[
m2|q|z2

q20T
− |q|
q0

(
1− |q|

2z2

q20
+
m2z2

q20

)]
q̂⊥ ·ãq+q̂µ⊥

[
(1−z2)

2
−m

2z2

q20

]
q̂⊥ ·ãq

+Θµν ãν
(1−z2)

2
+uµ

(
2z2qρ⊥u

ν−q̂ρ⊥q̂
ν
⊥q0(1−3z2)−Θρνq0(1−z2)

)
∂qρ⊥

ãqν . (E.15)
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E.1.3 Evaluating Qµ
cl(c)

In the same way, we should cope with the other term

δ(q2 −m2)

∫
p

2πδ((q − p)2 −m2)Qµcl(c) ≈
πTm2

Dδ(q
2 −m2)

2q0

∫
d3p

(2π)3
1

|p|5
(
K̃Tµcl(c) + K̃Lµcl(c)

)
,

(E.16)

where

K̃Tµcl(c) = IT

[
−|p|(qν⊥−p̂ν⊥|q|z)

(
|q|
q0
uµz+p̂µ⊥

)
+
|p|2

2q30T

(
|q|q0z(qν⊥−p̂ν⊥|q|z)(p̂µ⊥q0+|q|uµz)

−T (q20−|q|2z2)(p̂
µ
⊥p̂

ν
⊥q0+p̂ν⊥|q|uµz+Θµνq0−qν⊥uµ)

)
+|p|2(qν⊥−p̂ν⊥|q|z)

(
|q|
q0
uµz+p̂µ⊥

)(
|q|
q0
uρz+p̂ρ⊥

)
∂qρ+O(|p|3)

]
ãqν , (E.17)

and

K̃Lµcl(c) = 2|p|(p̂µ⊥q0 + |q|uµz)u · ãq −
|p|2

q20T
|q|z

(
q0 − 2T

)(
p̂µ⊥q0 + |q|uµz

)
u · ãq

− 2|p|2
(
q0p̂

µ
⊥ + |q|zuµ

)( |q|
q0
uρz + p̂ρ⊥

)
∂qρu · ãq +O(|p|3). (E.18)

As above, the O(|p|) terms in K̃T/Lµcl(c) do not contribute to the integral. Now, by employing

eqs. (D.10), (D.11), and (E.10), we find

δ(q2−m2)

∫
p
2πδ((q−p)2−m2)Qµcl(c)≈

πTm2
Dδ(q

2−m2)

2q0

∫ T

mD

d|p|
(2π)2|p|

∫ 1

−1
dz
(
KTµcl(c)+K

Lµ
cl(c)

)
,

(E.19)

where

KTµcl(c) = IT

[
uµqν⊥
2q0

(1−z2)

(
1+
|q|2z2

q20T
(q0−T )

)
−Θµν

4

(
(1+z2)

(
1− |q|

2z2

q20

)
− |q|

2

q0T
z2(1−z2)

)

+
q̂µ⊥q̂

ν
⊥

4

(
(1−3z2)

(
1− |q|

2z2

q20

)
+

3|q|2

q0T
z2(1−z2)

)
+
uµ|q|z2(1−z2)

2q0

(
3q̂ρ⊥q

ν
⊥+|q|Θρν

)
∂qρ⊥

+
(1−z2)

2

(
z2Θµνqρ⊥+qµ⊥

(
(5z2−1)q̂ν⊥q̂

ρ
⊥+z2Θρν

)
−(1−z2)qν⊥Θρµ

)
∂qρ⊥

]
ãqν , (E.20a)

KLµcl(c) =−u·ãq
(q0−2T )|q|z2

q0T

(
|q|
q0
uµ+q̂µ⊥

)
+q0

(
q̂µ⊥q̂

ρ
⊥(1−3z2)+Θµρ(1−z2)

−2qρ⊥q
−1
0 uµz2

)
∂qρ⊥

(u·ãq). (E.20b)

E.2 Rest of the terms: [Qµν
2 fV qãq′ν −Q1(1− fV q′)ã

µ
q ]

As we have evaluated two of the four terms in eq. (4.18), the remaining two terms are

given as

C2 ≡ δ(q2 −m2)

∫
p
g−10p

[
Qµν2 fV qãq′ν −Q1(1− fV q′)ãµq

]
. (E.21)
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While Q1 has been given in the computation of the SKE, we now have the tensor part

Qµν2 ãq′ν = −2πδ(q′2 −m2)g0p

{
pµ
[
ρL

(
pν − 2q0u

ν
)

+ 2ρT

(
qν⊥ − |q|zp̂ν⊥ − pν

)]
ãq′ν

− ãµq′
[
ρL

(
q · p+ 2(q20 − q0p0)

)
+ 2ρT

(
|q|2(1− z2)− q · p

)]
+ 2uµρL

(
q · puν + (q0 − p0)pν

)
ãq′ν − 2ãµq′⊥q · pρT − 2qµ⊥p · ãq′ρT

− 2p̂µ⊥

(
q · pp̂ν⊥ − |q|zpν

)
ρT ãq′ν

}
. (E.22)

Combining the two terms, it is found

C2 ≈
πm2

Dδ(q
2 −m2)

2q0

∫
d3p

(2π)3
1

|p|5
(
K̃Tµcl(d) + K̃Lµcl(d)

)
, (E.23)

where the integrand is given as

K̃Tµcl(d) =−IT

[
|q|3|p|
q0T

z(1−z2)(1−2fV q)ã
µ
q +
|q|2|p|2

2q30T

(̃
aµq
(
z2−1

)(
q20
(
1−2z|q|p̂ρ⊥(∂qρfV q)−2fV q

)
+(2fV q−1)|q|2z2

)
+2fV qq0z

(
ãqν
(
p̂µ⊥q̂

ν
⊥q0+p̂µ⊥|q|u

νz2−p̂ν⊥(q̂µ⊥q0+|q|uµz2)

−q̂µ⊥|q|u
νz+q̂ν⊥|q|uµz

)
−|q|p̂ρ⊥(∂qρ ã

µ
q )q0

(
z2−1

)))]
+O(|p|3), (E.24a)

K̃Lµcl(d) =−

[
2|q||p|q0z

T
(1−2fV q)ã

µ
q +
|p|2

q20T

(̃
aµq

(
q30(2z|q|p̂ρ⊥(∂qρfV q)+2fV q−1)+(1−2fV q)|q|2q0z2

)
+2fV q|q|q20z

(
p̂ν⊥ãqνu

µ+q0p̂
ρ
⊥(∂qρ⊥

ãµq )−uν ãqν p̂µ⊥
))]

+O(|p|3). (E.24b)

Here, we utilize u · ãq = −q⊥ · ãq/q0 in computations as above. Carrying out the integration,

we obtain

C2 ≈
m2
DTδ(q

2 −m2)

8πEq
ln(1/gc)

(
ãµq Q̃

(1)
cl + uµQ̃(2)

cl + q̂µ⊥Q̃
(3)
cl + Q̃(4)

cl q̂
ν
⊥∂q⊥µ ãqν

+ Q̃(5)
cl q̂

ν∂qν⊥ ã
µ
q + Q̃(6)

cl η
νρ∂qν⊥∂q

ρ
⊥
ãµq + Q̃(7)

cl q̂
ν
⊥q̂

ρ
⊥∂qν⊥∂q

ρ
⊥
ãµq

)
, (E.25)

where

Q̃(1)
cl =

1

|q|q0T

[
|q|q20

{
(1− 2fV q)(j

L
0 − jT1 + jT2 )− 2|q|(q̂ν⊥∂qν⊥fV q)(j

L
1 + jT1 )

}
− (2fV q − 1)|q|3(jT0 − jL1 − jT1 ) + 2(q̂ν⊥∂qν⊥fV q)j

T
2 q

4
0

]
, (E.26a)

Q̃(2)
cl = −2

(
(jL1 + jT1 )|q|2 − jT2 q20

) fV q
|q|T

q̂⊥ · ãq, (E.26b)

Q̃(3)
cl = −2

(
(jL1 + jT1 )|q|2 − jT2 q20

)fV q
q0T

q̂⊥ · ãq, (E.26c)

Q̃(5)
cl = 2

(
q20
|q|
jT2 − |q|(jL1 + jT1 )

)
q0fV q
T

, (E.26d)

Q̃(4)
cl = Q̃(6)

cl = Q̃(7)
cl = 0. (E.26e)
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E.3 Assembling all the pieces

Combining eqs. (E.6), (E.11), and (E.20a) and carrying out the integration, we acquire

C1 ≡ δ(q2 −m2)

∫
p

(
Qµν2 ãq′ν −Q1ã

µ
q

)
≈
m2
DTδ(q

2 −m2)

8πEq
ln(1/gc)

(
ãµqQ

(1)
cl + uµQ(2)

cl + q̂µ⊥Q
(3)
cl +Q(4)

cl q̂
ν
⊥∂q⊥µ ãqν

+Q(5)
cl q̂

ν∂qν⊥ ã
µ
q +Q(6)

cl η
νρ∂qν⊥∂q

ρ
⊥
ãµq +Q(7)

cl q̂
ν
⊥q̂

ρ
⊥∂qν⊥∂q

ρ
⊥
ãµq

)
, (E.27)

where

Q(1)
cl =

1

2

(
jL1 +3jT1 −jL0 −3jT0 +

q20
|q|2 (jT1 −jT2 )

)
, (E.28a)

Q(2)
cl =−1

2

[
2q0(∂qν⊥ ã

ν
q )

(
jL0 −(jL1 +jT1 )+jT2

q20
|q|2

)
+2q0q̂

ν
⊥q̂

ρ
⊥(∂qρ⊥

ãqν)
(
jL0 −3(jL1 +jT1 )+3jT2

q20
|q|2
)

−q̂ν⊥ãqν
|q|
q0

(
jL1

(2q0−T )

T
−3jL0 −jT0 −2jT1

q0(m2−|q|2)

|q|2T +jT1
m2

|q|2
(2q0+3T )

T

+jT2
q20
|q|2

(T−2q0)

T

)]
, (E.28b)

Q(3)
cl =−1

2

[
2

|q|

((
q20j

T
1 −|q|2jT0

)
(∂qν⊥ ã

ν
q )+q̂ν⊥q̂

ρ
⊥(∂qρ⊥

ãqν)
(
jL0 |q|2+3jT2 q

2
0−3|q|2(jL1 +jT1 )

))

−q̂ν⊥ãqν

(
|q|2

q20
(jT0 −jL0 )−m2

q20
(jL0 +jT0 )+3

m2

q20
jL1 +jL1

|q|2

q20T
(2q0−3T )−2jT1

m4

q20 |q|2

+5jT1
m2

|q|2 +2jT1
|q|2

q20T
(q0−2T )+2jT2

m2q0
|q|2T −6jT2

m2

|q|2−2jT2
q30
|q|2T +3jT2

q20
|q|2

)]
, (E.28c)

Q(4)
cl = |q|

(
jL1 +jT1 −jL0 −jT0

)
+
q20
|q|
(
jT1 −jT2

)
, (E.28d)

Q(5)
cl =

q0
|q|T

((
jL1 +jT1

)
|q|2−jT2 q20

)
, (E.28e)

Q(6)
cl =−1

2

(
jT0 |q|2+

(
jL0 −jL1 −2jT1

)
q20+jT2

q40
|q|2

)
, (E.28f)

Q(7)
cl =−1

2

(
jT0 |q|2+

(
jL0 −3jL1 −4jT1

)
q20+3jT2

q40
|q|2

)
. (E.28g)

Note that we have implemented the following relations in computations,

Θµν ãqν = ãµq − (ãq · u)uµ = ãµq + uµ
|q|
Eq
q̂⊥ · ãq,

∂q⊥ρ(ãq · u) = −∂q⊥ρ
(
q⊥ · ãq
Eq

)
= − 1

Eq

(
Θρν ãqν +

|q|2

E2
q

q̂ρ⊥q̂⊥ · ãq + qν⊥∂q⊥ρ ãqν

)
,

Θµνqβ⊥∂qβ⊥
ãqν = qβ⊥∂qβ⊥

ãµq − uµq
β
⊥∂qβ⊥

(ãq · u) = qβ⊥∂qβ⊥
ãµq +

uµ

Eq

(
m2

E2
q

qβ⊥ + qα⊥q
β
⊥∂qα⊥

)
ãqβ .
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By inputting exact expressions of j
T/L
i from eqs. (D.13) and (D.14), it is found

Q(1)
cl = −2, (E.29a)

Q(2)
cl =

(
q20
|q|T

− 2|q|
q0

(
2 +

m2

|q|2
)
− ηqm

2

|q|2T
(q0 − 2T )

)
q̂⊥ · ãq (E.29b)

+

(
q0(m

2 − |q|2)
|q|2

− ηqm
2q20

|q|3

)
∂qν⊥ ã

ν
q +

(
q0(3m

2 + |q|2)
|q|2

− 3ηqm
2q20

|q|3

)
q̂ν⊥q̂

ρ
⊥∂qρ⊥

ãνq ,

Q(3)
cl =

(
q0
T
− 2− ηqm

2

|q|q0T
(q0 − 2T )

)
q̂⊥ · ãq +

(
q20
|q|
− ηqm

2q0
|q|2

)
∂qν⊥ ã

ν
q

+

(
(3m2 + |q|2)

|q|
− 3ηqm

2q0
|q|2

)
q̂ν⊥q̂

ρ
⊥∂qρ⊥

ãνq , (E.29c)

Q(4)
cl = −2|q|, (E.29d)

Q(5)
cl =

q30
|q|T

(
1− ηqm

2

q0|q|

)
, (E.29e)

Q(6)
cl = −q

2
0

2

(
3− q20
|q|2

+
ηqm

4

q0|q|3

)
, (E.29f)

Q(7)
cl =

m2q0
2|q|3

(
3|q|q0 + ηq(|q|2 − 3q20)

)
, (E.29g)

and

Q̃(1)
cl =

2q0
|q|T

[
|q|(1− 2fV q) + (q̂ν⊥∂qν⊥fV q)

(
m2q0
|q|

ηq − q20
)]

, (E.30a)

Q̃(2)
cl = 2

(m2q0
|q|

ηq − q20
) fV q
|q|T

q̂⊥ · ãq, (E.30b)

Q̃(3)
cl = 2

(m2q0
|q|

ηq − q20
)fV q
q0T

q̂⊥ · ãq, (E.30c)

Q̃(5)
cl = 2

(
m2q0
|q|

ηq − q20

)
q0fV q
|q|T

, (E.30d)

Q̃(4)
cl = Q̃(6)

cl = Q̃(7)
cl = 0. (E.30e)

Finally, the sum of all the pieces C1 + C2 from eqs. (E.25) and (E.27) provide the

collision term of the AKE:

λ−1c δ(q2 −m2)Ĉµcl ≈
m2
Dδ(q

2 −m2)T

8πEq
ln(1/gc)

(
ãµq Q̀

(1)
cl + uµQ̀(2)

cl + q̂µ⊥Q̀
(3)
cl + Q̀(4)

cl q̂
ν
⊥∂q⊥µ ãqν

+ Q̀(5)
cl q̂

ν∂qν⊥ ã
µ
q + Q̀(6)

cl η
νρ∂qν⊥∂q

ρ
⊥
ãµq + Q̀(7)

cl q̂
ν
⊥q̂

ρ
⊥∂qν⊥∂q

ρ
⊥
ãµq

)
. (E.31)

The coefficients Q̀(i)
cl ≡ Q̃

(i)
cl +Q(i)

cl (i = 1, . . . , 7) are shown in eqs. (4.23a)–(4.23g).
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