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ABSTRACT: We systematically derive the collision term for the axial kinetic theory, a
quantum kinetic theory delineating the coupled dynamics of the vector/axial charges and
spin transport carried by the massive spin-1/2 fermions traversing a medium. We em-
ploy the Wigner-function approach and propose a consistent power-counting scheme where
the axial-charge distribution function, a non-conserved quantity for massive particles, is
accounted as the first-order quantity in the h expansion, while the vector-charge distribu-
tion function the zeroth-order quantity. This specific power-counting scheme allows us to
organize a reduced h expansion for the collision term and to formally identity the spin-
diffusion effect and the spin-polarization effect at the same order. We confirm that the
obtained collisional axial kinetic theory smoothly reduces to the chiral kinetic theory in
the massless limit, serving as a consistency check. In the absence of electromagnetic fields,
we further present the simplified axial kinetic equations suitable for tracking dynamical
spin polarization of heavy and light fermions, respectively. As an application to the weakly
coupled quark-gluon plasma at high temperature, we compute the spin-diffusion term for
massive quarks within the leading-log approximation. The formal expression for the first-
order terms provides a path toward evaluation of the spin polarization effect in quantum
chromodynamics.
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1 Introduction

The observations of global polarization of A hyperons in heavy ion collisions (HIC) have
triggered intensive studies for the spin polarization of relativistic fermions [1, 2]. In particu-
lar, the experimental measurements have been motivated by theoretical proposals upon the
polarization led by non-head-on scattering of hard partons [3] and by the thermal vorticity
from the statistical model in equilibrium [4]. Although the simulations based on the mod-
ified Cooper-Frye formula for spin polarization [5, 6] have shown remarkable agreements
with global polarization of A [7, 8], more recent observations for local polarization caused
the new tension between experiments and theories [9, 10]. Further phenomenological stud-
ies have alluded to an essential role for non-equilibrium corrections [11, 12], where the spin
polarization is no longer just dictated by thermal vorticity and equilibrium distribution
functions for A. Also, the feed-down effects are analyzed in refs. [13, 14], which show only
minor corrections upon the local polarization. It is hence imperative to understand the
dynamics of the spin polarization for not only hadrons but also quarks (and even gluons)
in quark gluon plasmas (QGP). In general, the current studies in theory for the dynamical
spin polarization in heavy ion physics may be divided into two directions: one is to con-
struct the so-called hydrodynamics of spin as a macroscopic effective theory incorporating
spin as a hydrodynamic variable obeying angular momentum conservation [15-17]. Alter-
natively, non-equilibrium spin transport can be studied through quantum kinetic theory as
a microscopic theory having a direct connection to the underlying quantum field theory.

In fact, the construction for quantum kinetic theory of massless fermions, known as
chiral kinetic theory (CKT), was initiated by refs. [18, 19] from Berry connection and
by refs. [20, 21] from the Wigner-function approach based on quantum field theory with
the motivation to explore non-equilibrium transport in chiral matter beyond the renown
anomalous phenomena in equilibrium such as the chiral magnetic/vortical effects [22-24].
There have been also plenty of followup studies for extension and applications [25—43]. In
particluar, the issue for Lorentz covariance associated with the side-jump phenomenon was
addressed in refs. [26, 27] and further refined in ref. [30] from the Wigner-function aprroach
with systematic inclusion of background electromagnetic fields and collisions in CKT. The
side-jump effect is also shown to contribute to anti-symmetric part of the canonical energy
momentum tensor responsible for angular-momentum transfer between spin and orbital
angular momentum in chiral fluids [44] (see also ref. [45] for a related study), which further
manifests the origin of side jumps in connection to spin-orbit interaction. Overall, the CKT
can be regarded as a modified Boltzmann(Vlasov) equation involving quantum corrections
such as the chiral anomaly, magnetic-moment coupling, and spin-orbit interaction. More-
over, the CKT has also been recently applied to the study of the A polarization in heavy
ion collisions [46, 47].

However, in order to consistently investigate the spin transport of A or strange quarks
as the seed for A in QGP before hadronization, it is inevitable to consider the mass correc-
tions. Unlike massless fermions of which the spin orientation is enslaved to the momentum
direction, the spin is now a new dynamical degree of freedom coupled with the charge
transport for massive fermions. There have been recent studies on the construction of the
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“free-streaming” quantum kinetic theory, without the collisional effects, delineating the
entangled dynamics between the vector/axial charges and the spin polarization for massive
fermions [48-53]. In particular, the axial kinetic theory, derived from the Wigner-function
approach up to O(h) in ref. [51], successfully cover both the massless and massive cases,
which is made possible by maintaining the general spin frame vector allowed in the solution
of the constraint equations. The set of quantum kinetic theories consists of a scalar kinetic
equation (SKE) for the vector-charge and an axial-vector kinetic equation (AKE) for the
spin degrees of freedom.

The next key ingredient for describing the spin diffusion/polarization is the collisional
effects, which have not been incorporated in the above studies. On the other hand, in
ref. [54], the spin-diffusion term at O(h°) in collisions was computed in perturbative QCD
(see also refs. [55, 56] for other studies of collisions). Nonetheless, the inclusion of O(h')
corrections to the collisional effects, which is responsible for generating the spin polariza-
tion, has never been achieved. Therefore, we investigate the field-theoretical framework
to systematically include the collisional effects to the axial kinetic theory. As will be ex-
plained in this paper, one will confront with tough technical problems. The full master
equations directly obtained from the Kadanoff-Byam equations are quite involved with the
quantum corrections up to O(h!). On the other hand, similar to the previous construction
for the free-streaming part [51], we also have to ensure the smooth connection between the
collisional AKE and the CKT in the massless limit. In spite of the potential importance
of finite-mass effects in the collisions terms for the spin rotations and kinematics, the basic
framework for the collisional effects has not been touched thus far. We, therefore, intend to
establish the collisional SKE and AKE for arbitrary mass within a plausible approximation
for physical systems of our interest.

In this paper, we propose a h-counting scheme to circumvent the aforementioned dif-
ficulty and construct the quantum kinetic theory with collisions and background electro-
magnetic fields for spin transport of spin-1/2 fermions with arbitrary mass. Our power
counting entails that the axial-charge distribution function f4 is at O(h!) as opposed to
the vector-charge distribution function fi at O(h°) in the h expansion applied in the
Wigner-function formalism. However, this power counting may be applicable in most of
physical systems such as HIC. The consequent quantum kinetic theory can be regarded
as an “effective” axial kinetic theory with collisions, for which the free-streaming part has
been established in ref. [51]. Once deriving the full master equations with the self-energy
terms in the Kadanoff-Baym equations, we apply our power-counting scheme and solve the
reduced master equations. At the end of the day, we obtain the quantum kinetic equations
with collisions for the spin polarization and axial-charge evolution. The collision term
therein can be decomposed into the classical part responsible for the spin diffusion and
the quantum part contributing to the spin polarization, which importantly stems from the
spin-orbit interaction through the entangled dynamics of vector-charge distributions.

Applications of our general framework are not limited to QCD although we emphasize
the motivation for the quark transport in QGP. As an example, we further evaluate the
classical part of collisions for the spin-diffusion dynamics in the weakly-coupled QGP with
specific forms of the self-energies from the hard thermal loop approxmation. Computation
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of the quantum corrections demand the so-far unknown self-energies with polarized gluons,
which needs to be further investigated in the future.

The paper is organized as follows: in section 2, we briefly review the Wigner-function
approach and derive the master equations led by Kadanoff-Baym equations with collisions.
Then, we introduce our power-counting scheme in h. Based on this scheme, we find the
perturbative solutions for Wigner functions. In section 3, we then derive the SKE and
AKE in an effective axial kinetic theory with collisions and background electromagnetic
fields as a generic formalism for studying quantum transport of fermions. Moreover, we
highlight the simplified version suitable for the application to heavy-ion physics and make
more detailed discussions upon the collision terms. As a concrete example for applications,
in section 4, we further investigate the spin-diffusion term in weakly-coupled QGP by
utilizing our formalism. Finally, we make concluding remarks and outlook in section 5.
For completeness, we present critical steps in the derivations/computations in appendices.

2 Wigner-function approach with collisions

In this section, we first derive the “master equations” by applying the spinor decompo-
sition and the A expansion to the Kadanoff-Baym equation. Those master equations are
subsequently used to derive the quantum kinetic theories. We systematically include the
collisional effects that are necessary for describing the relaxation dynamics.

The derivation of quantum kinetic theories in this framework has been investigated
for massless fermions [30] and for massive fermions without collisions, that is, the “free-
streaming” case [51]. Below, we follow the basic flow of the derivation established in
those preceding studies and summarize the crucial intermediate steps below. One will find
that the master equations (2.12) with the collisional effects have quite involved structures
originating from the spinor structures of fermions. Those involved structures yield versatile
transport phenomena that need to be investigated with appropriate strategies for further
developments. Therefore, we propose an A counting scheme in section 2.2 that enables one
to cure the pathological complication of the collisional effects and to extract the entangled
dynamics between the vector charge and the spin polarization.

2.1 Full master equations

We shall start with the Wigner transformation applied to quantum expectation values of
correlation functions of fermionic fields,

S, X) = / dYe T S (2, y), (2.1)

where X = (z +y)/2 and Y = x — y and we work in the Minkowski spacetime with the
mostly negative spacetime metric. Here, S'Ofﬁ(x,y) = (V5(y)U (y, 2)1ba(z)) and S;B(x,y) =
(Yo (z)UT(2,y)1p(y)) are lessor and greater propagators, respectively. To maintain the
gauge invariance, we also insert the gauge link, e.g., U(y,z) = exp ( — zfg dszp(z)) for
QED with A, denoting the U(1) electromagnetic gauge field. Note that ¢/ thus represents
the kinetic momentum. Hereafter, we focus on S<(q, X) and suppress the indices of spinors.
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After the Wigner transformation, the lessor propagator obeys the Kadanoff-Baym equations
derived from the Schwinger-Dyson equation,

(M —m)S< + fmgvu% - %<z< %57~ T « s<),

S<(]71—m)—igvu5’<'y“:—%(S>*E<—S<*E>), (2.2)

where 2<(>) represents the lessor (greater) self-energy. Since we only focus on the scattering
process, here we drop the real parts of the retarded and advanced self-energies and of
the retarded propagators. See ref. [30] for the same setup to derive the equations for
Weyl fermions. The symbol of x represents the Moyal product incorporating higher-order
corrections in fi. The star product of two functions A(gq, X) and B(q, X) are expanded as

AxB=AB+ %{A, B}pp. + O(hz), (2.3)

where we define the Poisson bracket as {A, B}pp. = (04 A)(0,B) — (0,A4)(04B). The sum
and difference of eq. (2.2) read

(@t —m), 5%} + 5 (10, 9,5%) = 55,87 + [57,55).) =0,

ih
(1 —m), 55+ 5 (17, VS <} = {55, 87 L +{57, 51 ) =0, (24)
Here, we introduced {F,G} = FG+GF, [F,G]|= FG—-GF,{F,G}, = FxG+ G* F and
[F,G]. = FxG — G* F, where F and G are arbitrary matrix-valued functions.
The notations and conventions in the above equations are as follows. First, the deriva-
tive operators are given as [57]

. h . h
Viu=0u+jo(O)F,.0;, T, =qu+ 5]1(|:|)F,,H85, 0= Qapag. (2.5)
We will hereafter use 9, = 9/0X* for convenience. Here jo([J),j1(0J) are spherical Bessel
functions and 0, in O only act on the field strength F),, when having spacetime-dependent
background fields. Making the /i expansion, which corresponds to the gradient expansion

for 9,, < gy, one finds

hZ
Vy =0+ Fuoy — ﬂ(a,,aAFW)ag;agag + O(h%),
h2
M,y = g+ 15 (9pF0) 050 + O(1h). (2.6)

By using the complete basis for the Clifford algebra [57, 58], we may decompose the
Wigner functions into

Suw
S< =S+ Py’ + V" + A + %a’“’,

L _ _ S,
57 =S+ iPy’ + Vot + A" + %0’“’, (2.7)
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142~3. We shall then focus on V* and A*, which give

rise to the vector-charge and axial-charge currents through Ji; = 4 fq Vi and JE' =4 fq AH,
where fq = [d'q/(2m)*. In fact, from field theory, the axial-charge current can be regarded
as a spin current for fermions. One may also establish a direct connection between A* and

where o = i[y*,4¥]/2 and v° = i7"y

the momentum spectrum of spin polarization from the modified Cooper-Frye formula [5].
See e.g., refs. [6, 44] and appendix B for references. It is worthwhile to note that the
axial-charge currents engendered by magnetic fields and vorticity in equilibrium, known as
the chiral separation effect and axial vortical effect, could be thus pertinent to the spin
polarization particularly in the case with mass corrections [59-61]. See also refs. [62-65]
for axial-charge currents triggered by electric fields. Similarly, it is useful to carry out the
same spinor-basis decomposition for the self-energies,

ET,ul/

55 =55 +i8p7 + Bvi” + Bay + =

O_;w’
_ _ _ _ )
5% =S5 +iZpy° 4+ Syt + St + %UW. (2.8)

From the Kadanoff-Baym equations and decomposition of the Wigner functions and of
the self-energies, one can derive the master equations leading to the derivation of axial
kinetic theory.

Now, inserting the spinor decompositions (2.7) and (2.8) into the Kadanoff-Baym equa-
tion (2.4), we find ten equations according to the orthogonal property of the spinor basis.
This calculation is tedious mostly due to the manipulation of the spinor structures. Nev-
ertheless, it is a straightforward substitution and further decomposition of the products
of the gamma matrices. For brevity, we provide the intermediate steps in appendix A.1
and here show the results that serve as a set of the master equations for the derivation of
quantum kinetic theories [same as eqgs. (A.17) and (A.18)]:

mzszmvﬂ—z2 [@—fﬁ?+mu_zmu+;zﬁw]mg +O(R%), (2.9a)
mP = —Z(ﬁuw—mu)—}f [iﬁ%ﬂ%iewﬁz@ﬁ] +O(1%), (2.9b)
P.B.

TS —ID"Syo—2mVe— (S pAa— S 40P — S1yua VM)

- Fi :E/SV\Q—FE/V(J\S'F;EHV)@(EES\W“F@)‘)} p.B.+O(h3)’ (2.9¢)
MDoP—€appe 17877 —2m A — (S pVa 4+ 51 Sper — S pra AM)

:7;2 :E/SZﬁE/Aa\SJr;ewa(EES\”ME/;”\W)} P.B.+O(h3)’ (2.9d)
MSap+cappollP A" — Z(ﬁ[a V3= Saa s + 21y

P.B.
(2.9¢)
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and

~ — — —_— 1 —_—
DY, = —NgS+TpP+X 4, A0 — QETWSWJrO(h?’), (2.10a)

2 — —

oMY A, = <ESP+2PS+4eMﬁE; Saﬁ) ~ 5 [ Evado 00 Velpp. + O(R), (2.10b)
~ = 1 — /IJ\
211*S,, + D, S+h <25Va—|—26uy>\a(§]i$w\+2ljﬂ .A)‘)>

2 o

h% ——
= ?[EPAa—i_El‘j'Sua_EAQP"’_ETaﬁVB]P.B_"i_O(hg), (210C)

h < STV (S e S S
Mo P+ €arp (D' S"+370V7) (S5 Ao+ B 4aS)

R —
=1- 5[2pva—EVQPJFE*;‘SWJFETaﬁAﬂ]RB‘+(9(h3), (2.10d)
h ~ . h— — h —
H[an+§GQ5HU(D“AV—EZV’/)—5(25’8a5+27“a58)+16“yalg(2p8“”+2% 7))
o —— — — 3
- EV[aVﬁf]_EA[aA,B]"i'ET/L[aS#m]P'B"i’o(h ) (2.10e)
where €,,,, is the totally antisymmetric tensor with €p123 = —1. In the above, we in-

troduced a few shorthand notations. [ABlpp. = {A(q,X),B(g,X)}ps. is a shorthand
notation for the Poisson bracket. We use XY = XY — X Y, where X and Y are the co-
efficients of the Clifford decomposition of the propagators and self-energies. We also use
DM =V, M+ Sy, M+ O(2).!

As has been known in light of the derivation of the free-streaming case without the col-
lision term [51], one can first reduce the number of variables to solve the above master equa-
tions. Namely, one can replace S, P and S,,, by V* and A" by the use of egs. (2.9a), (2.9b)
and (2.9e). This procedure is explained in appendix A.2. Since S*” is contracted with X7,
and ETW on the right-hand side, one may not express S, as an explicit function of V,, and
A, only. Nevertheless, assuming that the interaction is sufficiently weak, we may drop the
nonlinear terms in the self-energy. Maintaining the linear terms in the self-energies and

the explicit i dependence up to O(hl), S, P, and S, are expressed as [cf. eq. (A.19)]

1 .. h S —
Sop = = —€appod’ A7 + 5 {DiVs) — Taeds + e Zrs)pAs b (2.11a)
_a
S = mV“’ (2.11Db)
h —
P — 5 (DL A" — 4, VH), (2.11c)

where we define D,M =V M + Em and the antisymmetrization 17,,| = Ty — Typ.
After elimination of those variables, the other master equations up to the linear order in

!The original definition before the hbar expansion is given below eq. (A.16).
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the self-energies and O(h) read [same as egs. (A.20) and (A.21)]
A Ty . 1 —
g"(q-V)=m?VH =2 |m(Sp AR+ 51"V ) 2 (F“6A5+§e“a57qu5Aq,) —ewﬂwqazvﬁm} :
(2.12a)
qu“—q“q-.A—mQ.A”

:%h m(E/pﬁL—i-E%aAa)—i—e“aﬂ'yangVy—Qe“amqamw—%e“ ePreo O‘qAEW A },

(2.12b)
D“VM—EAHAH [QQ;LZSV“ ewaﬁqo‘z“ Aﬁ—l-th(v CA)+35 ZHUV[ VV]} (2.12¢)

By

A= —%qﬂ(zpwmgﬂuy), (2.12d)
DN(Q'V) _qVD[,uVV]
_— —_— 1 v a —
= —mESVH—i—q[MZAa]Aa—i—Eq o€ BYuETV}ﬂAV
3 eppe { MEAT (D" FPP)0,5 A7+ 18 (VPV7) }

hq” — =
7%(ET’Y[VA’YV} ET'y[yA ]V’Y)

hg" | 1 - 1 -
+ g’ |:mETVM(Q-V)—GVMPO—E@AU+€Vupo—zgva— mEP((][VAH]>:| -
h S 174 o s o . '
+ 55 [ S A— 2 S (P A+ S,V | (2.12)

v h v o h 3 1 T
F;LV-A _CI'DA;L"‘ZGMV/)U[D ,DPY “om [EP(Q'V)“‘*Z% (q[pAO'}):|PB

—

=m ES-A,LL - *E,uupoz:;pvo "‘QQEA;J,V _q,LLEAaV += EuypaAV Zp Ao — a €a pZTﬂA’Y
2 By

~ 5 [TVt ™S (qP.AU)—i—ZEVTAl”}PB , (2.12f)

gy Lewed (D Ay - S0 V) = — [eW“Bq SsAs— qaz””va+q[“2p«4"1} (2.12g)

As opposed to the free—streamlng case, the inclusion of the collision terms cause the
drastic complication in the master equations as seen in the above expressions. This hinders
finding the perturbative solution for the Wigner functions and deriving the consequent
quantum Kkinetic equations. In the subsequent sections, we tackle this problem that needs
to be addressed at both formal and practical levels before describing any kinds of the
relaxation dynamics. Our main proposal is an appropriate i counting scheme that greatly
simplifies the collision terms and may work in some applications such as the spin transport
in the quark-gluon plasma.

2.2 Setting the power-counting scheme

Thus far, we have not specified the orders of V* and A" in the h expansion. In general,
they could be both comparable and different in magnitudes. In most of practical situations
such as in heavy ion collisions, the axial-charge current is usually smaller than the vector-
charge current since the spin polarization is basically generated by quantum effects. This
observation motivates us to introduce the power counting:

Vi~ OY) and  A* ~ O(h). (2.13)
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In light of eq. (2.11b) and eq. (2.11a), these assignments lead to the order counting:
S~0OM’ and S* ~ O(h). (2.14)
Also, in the free case, from eq. (2.11c), we find
P ~ O(h?). (2.15)

Consequently, similar power counting will be applied to X<(*). From eq. (2.12c), it is clear
that the ordinary Boltzmann equation at O(A°) comprises only X5 and Yy, in collisions
when V* ~ O(R®) and A* ~ O(h). This implies

Yg~O(R’) and X ~ O(R), (2.16)

and the same counting applies to Xg and E_J’{,. Those self-energies are responsible for the
“classical” collision term. On the contrary, other components in <) come from quantum
corrections. In light of eq. (2.12f), one finds that at most

YH ~OY) and S5~ O(R). (2.17)

This is required to balance the orders of free-streaming and collision parts, and is also
consistent with eq. (2.11c).

Physically, the “classical” Boltzmann equation only incorporates the vector-charge con-
servation. In order to have nonzero fox or Zg‘f’, either the scattered fermion or gluon should
carry nonzero chirality imbalance or spin (angular-momentum), which has to come from
quantum corrections at least at O(h) since our power counting has implied the suppression
of spin currents compared to the vector-charge currents. Albeit there exists no explicit
restriction for X p from generic master equations, it is expected that the presence of ¥ p
has to be induced by nonzero pseudo-scalar condensate, which should be at O(h?) from
the consistency with the anomaly equation (mass correction upon the chiral anomaly).
Nonetheless, due to the lack of a rigorous proof for the order of ¥ p from Kadanoff-Baym
equations, we will naively take Xp ~ O(h°) for completeness. We hence establish our
power counting in that we have

Yg~O(’) and X ~ O(R), (2.18)

while

Y~ O0mY, ZH ~OR') and Tp~ ORY). (2.19)

All components certainly can also have higher-order corrections in /i depending on the
details of collisions for different systems.
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2.3 Effective master equations and constrains

By implementing the power counting and the results shown in eq. (2.12), the master equa-
tions obtained from the Kadanoff-Baym equations at “the leading order O(h°)” now read

1 —
D'V, = ——q,XsVH, (2.20a)
¢ =0, (2.20D)
(¢° = m*)V. =0, (2.20¢)
h
q¢-A=———qSpVH, (2.20d)
h
(> — m?) A+ = 56’“’87an51)7, (2.20e)

q DA, — F, A" + %qu (g V)les. — hjm[Z/P\W]P.B.
= Zeuvm[pua DV —m (Z/SEL - ;euvpazgﬁ%) - qam‘* + qu@“, (2.20f)
q-DV,—F, V" = —mi/sﬁ. (2.20g)
Note that we have to keep the O(h) terms linear to V¥ in egs. (2.20e) and (2.20f) since

A# ~ O(R). In addition, we consider weakly coupled systems and thus drop the O(%?)
terms. One can further implement

h hm

o lBp(@-V)es. — —-[BpVies. = 5 - (9.Xp)g -V (2.21)

to simplify eq. (2.20f).
From egs. (2.20b) and (2.20c), one immediately obtains the leading-order solution for
the vector part,

V= 2716(q® — m*)¢" fv, (2.22)

where fy (¢, X) denotes the vector-charge distribution function. For completeness, we
should, in principle, multiply V* by the sign function for energy to include antiparticles.
For notational simplicity, we will mostly focus on just the positive-energy solution thor-
ough out the paper. For V#, we simply replace fir by fiy = 1 — fir as the vector-charge
distribution function for an outgoing fermion. We may also easily show that eq. (2.20g)
is a redundant equation, which can be derived from egs. (2.20a)-(2.20c). Plugging the
leading-order solution for V* into eq. (2.20a), one acquires the SKE as the usual Boltz-
mann equation

8(¢> = m?)(q- Ay + @S fy +mSsfv ) +O(h) = 0. (2.23)

For the axial part A", we have to solve egs. (2.20d) and (2.20e) up to O(h). With the
leading-order solution (2.22) constrained above, one however finds that the collisional term
vanishes on the left-hand side of eq. (2.20e). This means that the collisional effects do
not modify the dispersion relation for A* at the leading order. Nevertheless, the same

RBAFEFHERY LS b %
L

KURENAI

ooooooooooooooooooooooooooooooooooooooooooooo ry



K 5

KYOTO UNIVERSITY

A Self-archived copy in
Kyoto University Research Information Repository
https://repository.kulib.kyoto-u.ac.jp

as the collisionless case [51], we are not able to uniquely determine the magnetization-
current term at the next-to-leading order from the master equations. In the absence of
a background field, one can determine the corresponding term by explicitly solving the
free Dirac equation [51]. In addition, we refer to the correspondence between the cases
with and without a background field in the massless limit, where the latter is given by
the former with the simple replacement of the partial derivative by the derivative operator
with a background field. Based on those observations, we could generalize the free-theory

form to the case with background fields and collisions.

Namely, we “postulate”?

A =2 3P —0) (0 L RS Doy 5l ) +0P0,8 - .
(2.24)
where Cp|fy] = —Xp fy and

S,LLI/ _ éwaﬂ(]ocnﬁ _ EHUQBQanB
m(n) 2a-n 2(¢-n+m)’

(2.25)

which is generalization of the A* found in ref. [51] with the replacement of A, fiy by D, fy.
Here, a* represents a spin four-vector satisfying ¢ - a = ¢> — m? and f4 denotes the axial-
charge distribution function.

At O(h), the dispersion relation is modified by, e.g., the magnetic-moment coupling
from the last term in eq. (2.24) with §'(¢?> — m?) = dé(¢> — m?)/dq?. On the other hand,
the Sﬁl V(n) term corresponds to the so-called magnetization-current term led by spin-orbit
interaction, which depends on a frame vector n* specifying the spin basis. The presence
of such a term implies the frame dependence of fir because of the frame invariance of
full A#. In the massless limit, a* = ¢" according to the spin enslavement specified by
the helicity. The expression in eq. (2.24) then agrees with the solution directly solved
from Kadanoff-Baym equations of Weyl fermions [30]. Furthermore, for the solution of
A, we simply replace f4 and fy in eq. (2.24) by fa and fy, respectively. Nonetheless,
unlike fiy = 1 — fy, we have fa = —fa due to its origin from the expectation value of
the fermionic density operator in spinor space (see ref. [51] for a detailed definition of f4
in field theory). As a consequence of our power counting, eq. (2.24) corresponds to the
leading-order solution for A* starting at O(h). Albeit the power counting we apply, we
will still dub the terms with 7 prefactors as the “quantum corrections” at O(h) throughout
this paper for convenience. That is, in the rest part of the paper, h is simply a parameter
indicating the quantum origin of certain terms, while these terms are in the same order
of magnitudes as the classical terms without A prefactors. More precisely, one should
distinguish the difference between ki terms and O(h) terms.

2Thanks to the power-counting scheme, the generalization of the magnetization-current term with colli-
sions here is rather natural since X%, and 2"‘/ are only vectors at O(ho) in self-energies, which can then be
coupled to Sﬁ:’(n).

~10 -
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3 [Effective axial kinetic theory with collisions

In this section, we elaborate the collision terms for the effective axial kinetic theory arising
from our A counting scheme introduced in section 2.2. Assembling the ingredients obtained
in section 2.3, the general expression will be given in eq. (3.2) with the collision terms CAYL)“
and h@én)“ . Here, we maintain the general frame vector n*.

We provide a simpler form in eq. (3.9) by choosing a specific frame vector n#* = (1,0)
and dropping the background electromagnetic field, which will be useful for applications.
A further alternative expression (3.12) enables us to take the massless limit and to confirm
the agreement to the (massless) chiral kinetic theory obtained in ref. [30]. In section 3.2,

we take another frame vector n* = n)'(q) = ¢*/m specifying the rest frame of a massive

fermion. CYLQT)“ in eq. (3.14) adds collisional effects to the free-streaming part investigated
in refs. [49, 50], and leads to a useful expression of the effective axial kinetic theory (3.17).

Besides the explicit & dependences originating from those in the Kadanoff-Baym equa-
tion (2.2), there are implicit /& dependences contained in the self-energies . In section 3.3,
we therefore sort the i dependences in the actual order of our counting scheme, which
results in the form of (fg and h(fgl)“ in eq. (3.18). Finally, in section 3.4, we discus the
physical meaning of the quantum corrections to the collision terms and the conditions
to make efficient applications of our effective axial kinetic theories. As noted in the end

(n)

of previous section, one should bear in mind that Ci’fl and ﬁﬁQ " have the same order of

magnitude and we hereafter use i as just a parameter indicating the quantum origin of
attached terms unless specified.

3.1 Axial kinetic equation with general frame vector and its massless limit

We now utilize egs. (2.20f) and (2.24) to derive the effective AKE. Given that the collision-
less (free-streaming) part up to O(h) has been obtained in ref. [51], we only need to further
work out the collisional part. This can be carried out by inserting the solution (2.24) of
the constraint equations into eq. (2.20f). By the use of an identity

prpo D7 DIV = € (147, A7V + 2(A7S))V7) (3.1)
the AKE with the collisional effects and the general frame vector n* = n*(X) takes the form
O Ar = ¢Mr 4 pélmk., (3.2)
Here the free-streaming part is given by [51]
A" = 6(” = m?) (g Ala" fa) + F™a, f)

S FosnPA,
4 hq“{é(qQ B m2) [(80(5%’?”))Ay + %

g-n+m
+ ng(n)(angu)aqﬁ A mQ)Mq . A} fr
R e RN
- <apra>65> rag? - mt) O A}fv. (33)

- 11 -
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Taking A = 0, the equation above reproduces the so-called Bargmann-Michel-Telegdi
(BMT) equation as a classical kinetic equation for spin transport [66]. On the other hand,
the collision terms are

o . — 1 —
Cin)# =5(¢*—m?) [—a”q,,z’{/—f,q—mzsz;fv-FqquEquV—m<GHESfA—ZEWWCJVETPUJCV>] )

(3.4)

" 5 2 2 — _— ~ v
ey = (‘12’”) [e“”f’”qy(ApEVJ)fv = m(@"Sp) fy = 2 (4 S}~ FAS)

— 28"

“w
m(n)

(@ =vlufv) +mss (B )

q- EV(AVfV) =+ mZS(AVfV) + (q ' AEVV)fV) + %q#(q : Am]

= 5 A (862 = mPa - Afv ) — 6(a* = m?) (ALSH Ya - Afy
— F"q,8'(¢* —m?)(q- Sy fv + mEsfv). (3.5)

Note that CAYL)“ implicitly contains the h terms from, e.g., ¥} and X7,,, which hence
implicitly depends on the frame choice.
Implementing the leading-order SKE in eq. (2.23), the following term in (fén)”’ can be

also written as

- Sgly(n)Av (6((12 —m?)q- Afv)

= =5 [5(612 —m?)A, +2¢*F\,8'(¢° — m?) | (Cv[fv] + mCs[fv]), (3.6)

where Cy[fy] = ¢ - Zvfv — ¢ Svfv and Cs[fy] = Ysfy — Zsfr. Moreover, one may

rewrite
— (¢-Zv(Afv) + mEs(A, fv))
= ACyIfv] + P (ASv) fu + F2 50, fy + m(A, fr)Ss. (3.7)
Then we may re-express één)” as
ey = A=) ] o (A S 425 (A S8 o+ Fo Svndv -+ (AuSv )T
5 = 5 0w (ApXve) fr+25, ) |[M(ALES) fv +Fi Xy, fuv +¢°(AvXv,) fv

o —

~(@ ATV Jv |42 v (a- A~ FAS) }

_ {(2555(“)@1%—Fuvqy)(s/(qz_m2)+5(q2_m2) (A,,S:;”(n))} (Cvfv]+mCs[fv])
2_m2 — —
+6((]27n)(qM(Q’AEp)fV—m2(au2p)fv). (3.8)
5(n)p

In fact, we can further decompose C; " into the piece proportional to ¢/, which survives in
the massless limit and reproduces the collision term in CK'T, and another piece proportional

~12 -
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to m, which stems from the purely finite-mass correction. This decomposition can be
used as a consistency check in the massless limit. Note that the procedure is simply to

n)p

computational complexity. A similar procedure and comparison are also performed for the

rewrite C’é in the form with a more apparent connection to the CK'T despite some of the
free-streaming AKE in ref. [51]. We hence present such a complicated yet straightforward
check in appendix C (see eq. (C.15)), while we will later show such an alternative expression
for C’én)# in a simpler case suitable for the application in HIC.

Although é{n)“ + héén)” given by eq. (3.4) and eq. (3.8) serves as the generic collision
term in the presence of spacetime-dependent background electromagnetic fields and an
arbitrary spacetime-dependent frame vector n*(X), we may drop unnecessary terms for
practical applications in HIC. First, it is more convenient to work with a constant frame
vector such that 9,n” = 0. More precisely, we could simply take n* = (1,0), which also
corresponds to the frame choice for the CKT presented in early works obtained from the
Berry phase [18, 19]. Note that the choice of a frame vector is analogous to the choice of a
gauge, which does not affect the physics in the end (see e.g. refs. [30, 51] for comprehensive
discussions). Second, the background electromagnetic fields and particularly the magnetic
field may only exist in HIC for a rather short period in the pre-equilibrium phase although
the finite electric conductivity of QGP may slightly mitigate the decrease of magnetic fields
in time [67, 68]. It is thus more practical to drop the contributions from electromagnetic
fields in the QGP phase. In such a case, the explicit form of éfn)“ remains unchanged. On
the other hand, not only héén)“ but also the free-streaming part in the AKE become much
simpler. The AKE now is given by

1
5((]2_ ){q a(aMfA)+aMQVZVVfA+m Dy fV+q QVEﬁfv-i-m(a“ESfA-l-f“ pUQVZTprV)

[ 0, T+ 251, (m(059) For -+ S ) o —(a-05v ) v ) } =0, (3.9)

where we also took ¥p = ¥p = 0 as expected higher-order contributions. Note that the &
terms shown above only come from héén)“ .
By employing the Schouton identity

7726[’”0‘5 - ng\eﬁ“jaﬁ o nzi\ep,uaﬁ - 77269”#5 - ngepuau =0, (310)
one finds
Sl“/ a _ ghgov VS,uOc 6'm/paq;) ervpe 2 311

Given the relation above, the AKE in eq. (3.9) can be alternatively written as

1
3(q*—m ){q (a* fa)+a" g, S, fa+m?S; fv+q“qu22fv+m<a“25f/s+26’” Pe quTpafv>

+h

2(g-n+m)

@S2 (055 fu— m<s O fy+ ) (agzmvﬂ } —0,

(3.12)
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where we rearrange the explicit A corrections in the collision term based on the decompo-
sition for the terms proportional to ¢* and to m, respectively. One can now more easily
check that eq. (3.12) reduces to the CKT with a constant frame vector in the absence of
electromagnetic fields [30] in the massless limit by taking m = 0 and a* = ¢*. We shall
discuss later about the physical interpretations of the explicit / corrections in eq. (3.9) and
in eq. (3.12) as two mathematically equivalent expressions.

3.2 Rest-frame expression

Notably, when focusing on massive fermions with mass much greater than the gradient

scale, we can set the frame vector at their rest frame n* = n}

(g) = ¢*/m to simplify
both the Wigner functions and AKE. Such a frame choice is also applied in refs. [49, 50].
Nonetheless, this frame choice is rather different from the previous one when n*(X) only
depends on spacetime coordinates. In such a case, the magnetization-current term in A"

vanishes and the A" reduces to

- 22

AF =21 |6(q% — m?)at fo + RF™ q,8' (¢ — m?) fy + Wq“Cp[fv] . (3.13)
Accordingly, the AKE from eq. (2.20f) becomes

Q) Ak = iy e (3.14)

where CAEHT)” is the same as eq. (3.4) by taking n* = n}', while

1
Ot A = 6(¢* = m?) (q - A(a" fa) + F™ay fa — Qhewmqp<aaFgu>85fv)
+ REM q,8' (2 — m%)q - Afy (3.15)

and

S 5(q% — m? 7 1 N SRy
é P _ (‘]2) (gwpaqy(AngJ)fv + Eq“(q “AYp)fv — m(@“Ep)fv>

— Fq,8'(¢> —m?)(q- Sy fv +mSsfy). (3.16)

Finally, when considering the application to a heavy quark traveling in QGP, the AKE in
the rest frame could be simplified as

§(g* —m?) {q 0(at fa) + a2 fa + mPSh fv + ¢S4 fv

— 1 — h —
+m (a“Esz + Qe”yp”quTpafv> - 26“”"”qu(3p2vg)fv} =0, (3.17)

by taking >p = Yp =0 and F,, =0.

In general, when involving also the h corrections in V¥, such a frame choice is only
valid when m is much larger than the gradient and electromagnetic scales in the system.
The magnetization-current term in V# explicitly reveals the breakdown for the choice of a

— 14 —
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rest frame away from the aforementioned regime. Although we dot not explicitly include
the A term in V* based on our power counting, it is still essential to be aware of the valid
regime for the frame choice n* = n}’. In heavy-ion phenomenology, one may assume the
validity is held, which could be “somewhat applicable” for the spin transport of strange
quarks in QGP. For up and down quarks or other applications, it is inevitable to maintain
the general frame vector n* = n#(X). Note that the quantum correction on collisions in
eq. (3.16) is also presented in eq. (3.5). We may regard other terms in eq. (3.5) as the

O(|q]/m) corrections on top of eq. (3.16), where g here denotes the spatial momentum.

3.3 & sorting with the present order counting

In order to explicitly disentangle the (classical) spin-diffusion and (quantum) spin-
polarization parts in collisions, we have to retrieve the h terms in Xy ,, Xg, X4, and

Y71ps- That is, we have to further make the decomposition ivp = Z‘{}p + hZV(p ),
Yg = i]%l + hig(n), iAp = ECAlp + hi%}n) and iTpo E%pa + hETp , where their ex-

plicit forms depend on the details of collisions in systems. Nonetheless, th;n) and hig(n)

are coupled to f4 in é{n)” , which actually contribute to O(h?) (in the order of magnitude)
corrections from our power counting. Consequently, we only have to retain the quantum
corrections from hf}%)") and hi% o One can then rewrite the collision term in the AKE as

CY¥ + RCYVH = €1+ e, (3.18)
where
CAM:(;( 2—m2) I @_ 2@_ u( Eclaf + Edf )+ etre Ed f
cl q q(_IaAVmAVQQavAmSAm2 TpolV
(3.19)
and

Tpo

w= 5 ) | (3.20)

~(n ~(n n 1 vpo n
hc((Q B — hqu<c‘§2) +5(q2 _m2)qyzg( v f )—i—hm |:C( )#+5(q _m2) (26“ P q:/ZQ )f

Analogously, in the rest frame, it is found

eHvpo

Q(nr)
9 Z:Téa' f

BEG™ " = S 4 h3(g? —m?) {qu gz dma g, s Qg o, @
(3.21)

Note that the classical part Cl‘fl is explicitly frame independent. Now, all the A terms are
collected into héé)n)” . Despite complication, one finds that Ci’fl is proportional to a* fa;

3 5(n)p

such a term hence results in the diffusion of spin.® On the contrary, CQ is instead

proportional to fi and fy. Even when initial spin (~ a*fa) is zero, such a term can

3Here 29 and ECTIPU are in principle proportional to the axial-charge part of the Wigner functions for
outgoing fermions. Therefore, the terms coupled to fy in C! are also proportional to the spin four vector.
One may see an explicit example for application to QGP in the following section.

~15 —
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lead to the spin polarization from the entangled vector-charge transport. Similarly, when
applying egs. (3.9), (3.12), and (3.17), one should recall these extra h corrections from

R0 and AR or from HEGU) AR,

3.4 Discussions for the collision terms

In this subsection, we would like to make a comparison between the AKE in different frame
choices and discuss about their physical interpretations. However, to avoid complications,
we focus on the simplified versions in egs. (3.9), (3.12), and (3.17), which are the pri-
mary results in connection to the spin polarization of quarks in QGP. For preciseness, we
will hereafter dub the terms proportional to % in egs. (3.9), (3.12), and (3.17) as explicit
quantum (k) corrections. In contrast, we refer the i corrections encoded in self-energies
discussed in section 3.3 as implicit quantum (%) corrections.

First of all, egs. (3.9) and (3.12) as mathematically equivalent expressions both work for
an arbitrary mass of fermions. Nevertheless, the expression of eq. (3.9) could be more useful
in the large-mass regime. When comparing eq. (3.9) with eq. (3.17) as an effecti/ve\AKE
with large-mass fermions, one finds they both incorporate the term gewwqu(apzw) fv as
an explicit quantum correction in collisions. In the non-relativistic condition, such a term
further dominates over the rest of explicit A corrections coupled with an V(n) in eq. (3.9).
When m — oo, one finds ¢ — n#m and accordingly Srl; V(n) — 0. It turns out that
eq. (3.9) and eq. (3.14) coincide in the heavy-quark (fermion) limit. Consequently, as
briefly mentioned in section 3.2, eq. (3.9) further incorporates the O(|q|/m) corrections on
top of eq. (3.17). It is thus more practical to utilize eq. (3.9) for exploring heavy-quark
transport with the inclusion of non-relativistic corrections. On the contrary, eq. (3.12) has
a more explicit connection to the CKT in the massless limit. The term hq“Sﬁi’(n) ((%EVT) fv
in explicit A corrections of collisions therein matches the h correction in the collision term
of CKT up to a prefactor ¢*. In fact, the prefactor ¢* further manifests that such a term is
pertinent to the side-jump phenomena associated with the spin polarization enslaved by the
momentum and chirality, which forces a* in the free-streaming part to align with ¢#. On
the other hand, the rest of A terms proportional to m in eq. (3.12) stem from the finite-mass
effect suppressed by O(m/|q|) in the relativistic limit, which could modify the orientation
of spin characterized by the direction of a*. Therefore, the expression in eq. (3.12) could be
more suitable for analyzing the axial-charge diffusion and spin polarization of light quarks
in QGP.

In addition, similar to the case for CKT in the massless limit, the quantum correc-
tions in the AKE now only come from collisions when choosing a constant frame vector
in the absence of electromagnetic fields. As already mentioned in section 3.3 for further
separation of the classical and quantum parts in the collision term, the classical part in
egs. (3.9), (3.12), and (3.17) with the same expression will yield the spin diffusion. How-
ever, it is believe that the spin polarization in HIC is led by the local vorticity of QGP.
It is obvious to see the explicit & corrections in the collision term now originate from the
inhomogeneity of self-energies, from which the self-energies gradients could incorporate
such vortical corrections in collisions. Also, these terms manifest the spin-orbit interac-
tions through collisions, which entangle the dynamical evolution between a*f4 and fy .

~16 —
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Nevertheless, the implicit & corrections encoded in self-energies should also be taken into
account, where at least the A correction upon Wigner functions for outgoing quarks will
contribute to the vortical corrections as well.

In a recent study for the application of CKT on the chiral radiation transport theory
for neutrinos in core-collapse supernovae, it is shown the similar A corrections of CK'T give
rise to the vorticity corrections associated with fluid helicity in the collision term for the
neutrino absorption process [43]. One may expect a similar scenario when considering a
strange quark probing the QGP near equilibrium yet with local vortical fields. Nonetheless,
unlike the weak interaction governed the Weinberg-Salam model, the details of collisions
in QGP are more sophisticated due to the interacting gluons. Even though the implicit
h corrections encoded in self-energies from light quarks in equilibrium could be derived
from equilibrium Wigner functions shown in e.g. refs. [31, 51], how to include analogous
corrections led by vorticity from polarized gluons is currently unknown. For the future
application on the dynamical spin polarization of strange quarks traversing QGP, we will
have to work out the Wigner functions for polarized gluons up to O(h) with both classical
and quantum contributions at least in equilibrium as one of essential ingredients. Such a
development is beyond the scope of this work and left as the future research direction. It
is however worthwhile to note that even the classical part of the collision term in AKE is
an innovation. We will further apply such a theoretical framework to derive an explicit
expression of the spin diffusion term for massive quarks traversing weakly-coupled QGP in
the next section.

4 Example: spin diffusion of quarks in weakly coupled QGP

4.1 Scattering between massive fermions and a medium

We now apply the formalism established in the previous sections to investigate the collision
term for massive quarks traversing weakly-coupled QGP in relativistic heavy ion collisions.
For simplicity, we will just focus on the spin-diffusion term such as égl in the AKE and leave
the hCAgL)” for future study. Recently, a related study for spin diffusion has been presented
in ref. [54] with a different approach. We will mostly follow the theoretical setup therein. In
the following, we call fermions quarks and gauge bosons gluons interchangeably, and include
the color-group factors. Here, the color degrees of freedom do not play crucial roles (like in
the color conductivity), and the same computation holds for QED with simple replacements
of the relevant degrees of freedom. Furthermore, we consider the massive quarks with quark
mass much greater than the scale of thermal mass in QGP and accordingly neglect the
Compton scattering with gluons as the subleading effects analogous to the study of heavy-
quark transport in heavy ion collisions (See e.g. ref. [69] and the same approximation in
ref. [54]). Note that the O(f3) terms are not dropped a priori in the calculations, whereas
shall see that only the terms linear to f4 remain in the final result, which thus agrees with
our power-counting scheme.

The gluon-exchange processes between a massive fermion and the medium constitutes
are written down as

57 (g, X) = Ac/ 57, X )y Gt g — o, X), (4.1)

17
q/
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where ). denotes an overall coefficient including the coupling and we drop O(h?) and
higher-order correction in our order counting. The gluon propagator Giy(<) contains the
information of the spectral functions which depend on the scatterers. Here, we assume
a dilute population of the massive fermions in the medium and neglect the contributions
of the massive scatterers, and retain the massless-fermion and gluon scatterers. Having
assumed the weakly coupled system, we focus on the lowest-order contributions in the
coupling constant g., i.e., the 2-to-2 scatterings between a massive quark and a massless
quark/gluon.

Inserting eq. (2.7), one can straightforwardly decompose the gamma structures in

eq. (4.1) as

X" =187 (0

=S —ic") —iP [ n*A> ehved
= (77 10 ) Py +

ga5> _|_]_jp (nMP,}/l/_i_npu,yu_nuu,yp+i6uupa,y5,ya)

+ A, (AP = Pt — PPy iy, )
nHv prap

_ ) €
+8as (77“0‘06”—1—77”‘105“—%20‘164—217“0‘776”—1—2 75) . (4.2)

Thus, contracted with the gluon propagator, we have

) ) - B uvaf
XJGr, = (8Gr, +iS™GE,) + iy (—PGE" - iSaﬁGifQ)

AP (VG = VpGat = i€uap A7G)

+09P (= ARG, )+ AGE A+ o, VTG

L olos - - ,
5077 (289,61 ) + Spo Gt = 218Gy = iPeupe G ), (43)

where A, B,) = A,B, + A,B;,. We consider gluon propagators Gf“$>) symmetric in the

Lorentz indices, and then find that the imaginary terms in the above vanish in the con-

tractions:

Z>(q)—>\c/q/

+ 9%y (= 244G, + A G>“)+U—pa 28,1,GH + 8,n G
T pp T B ulp po Iy

o]

SG* —iPG Y + 4P (VMG — V,Go)

Y (4'4)

where A, B,) = A, B, — A, By,. In general, G,fls>) possibly contains anti-symmetric compo-

nents led by scatterings with spin-polarized scatterers in the medium. For example, when
considering the scattering with massless quarks, such anti-symmetric components can arise

>

from the side-jump terms, whereas Xq>,” G v should still remain real. Such quantum cor-

rections from a polarized medium will not be considered in the present work.

~ 18 —

RBAFEFHERY LS b

Kyoto University Research Information Ref

il



AR K 5

KYOTO UNIVERSITY

A Self-archived copy in
Kyoto University Research Information Repository
https://repository.kulib.kyoto-u.ac.jp

One can now read out the corresponding terms up to O(h) between egs. (2.8)
and (4.4) as

S = [ S,6z0 =2 [ @ vpcze, (4.50)
q/ m q/
Sp= Ac/ (_,ﬁq')G(ia7 (45b)
q/
vy = Ae /q VpGZ, — 3 ), (4.5¢)
Sy = Ae ; AS(—2GZ, + G5 o), (4.5d)
S o Q )‘C Q «@ ag
S = Ae ,(QSa[quf‘ +G2°8,,) = m//(QSa[qu] +G%S). (4.5e)
q q

The rightmost sides are obtain by using eqs. (A.19a)—(A.19¢) up to the linear orders in ¥’s

and A. In the present case, we confirm that ¥p is at O(h?) as anticipated earlier.

>
B

eq. (4.5) and X7 in the same fashion. Inserting these expressions into the collision terms
in the SKE (2.23), we have

Now, given explicit forms of G~,, V¥, and A", we can directly evaluate Zi from

(¢-Sv + mEg) = A / 2m8(q* — m?) (2Q”‘Giu(f —p- q’Gi“) fvas (4.6)
q/
where p# = g# — ¢/*'. The other term (g - Xy + mXg) takes a similar form. In addition, by
making the decompositions Ap = iﬂ p—i—hig;n) and ETM = iCTl pg—i—hig o0 W identify the
classical and quantum parts. From the classical part in eq. (2.24), egs. (4.5d) and (4.5¢)
yield

iﬂp = A // 27r(5(q/2 _ m2) (aq,pgiu _ QGZ’Gip) fA(q'), (4'7)
q
s = =22 [ oms(q? = m2) (267", €ppian + G2 epnp )0l FA().  (48)
Tee ™ ¢ 1 [ocCrplaB n €poap)d QA JAG ) .

Those terms are further investigated with a specific gluon propagator provided by the hard-
thermal loop approximation in the next section. The quantum parts are also identified
in the same way. However, computation of those quantum corrections with specific gluon
propagators are left as open issues. Note also that we have dropped possible antisymmetric
parts of the gluon propagator in eq. (4.4).

4.2 Weakly coupled QGP and hard-thermal-loop approximation

Although eqs. (4.5a)—(4.5¢) work for even non-equilibrium media, we now focus on the spin
transport in equilibrium QGP as a concrete example. In such a case, we can make further
simplification for the self-energy in eq. (4.1). For simplicity, we will only evaluate the
spin-diffusion terms in the SKE and AKE, while the claculation for the spin-polarization
term in the AKE is more involved, which will be presented in the followup work. We
will implement the hard-thermal-loop (HTL) approximation, which allows us to derive the
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leading-logarithmic result in weakly coupled QCD as in the derivation shown in ref. [54]
from a distinct approach. Recall that p* = (¢ — ¢')* and g. denotes the coupling constant
for strong interaction. We then apply the cut-gluon propagator in the Coulomb gauge and
the fluid-rest frame, which gives rise to

G (a.d) ~ g5 oL )P, + pr(p)PL | (4.9)
with
o,
Cc — T _ a pp PLuPl1v
P, =uuuy, Pl =040, (77 b4 e ) - — <@W + |;|2 > : (4.10)

where g5, = gop = 1/(e’P* = 1), g2, = 1+ gop and O = i — yty”. Here, u# and
B = 1/T denote the fluid four velocity and the inverse of temperature in local equilibrium,
respectively. We have introduced notations:

VO=V.u, VI=VFE-Va'=0MY, (4.11a)
Vi=Vvi, Vi=Vi=ViV]| (4.11D)
for an arbitrary vector V#. Then, we have V| - k) = —V -k and, especially, Vf = —|V|?

when kH = V.

In our setup, the HTL approximation is more precisely applied to ¢g.T < [p*| < T.
On the other hand, py, /T(p) correspond to the HTL gluon spectral densities, which take
explicit forms as (e.g., see ref. [70])

7Tm2Dp()
2 )

5 _ [ Po
2|p| (1 <|p\> >

where mp ~ g.1' corresponds to the Debye mass. The explicit form from the gluons in

ﬂm%po
pl°

(4.12)

pL(p) = . pr(p) =

SU(N,) color group and the Ny-flavored massless quarks is given by

22 2(N2
giT*(2N. + N N2 _1
mj = =~ ( a Y = g2Cy(F) = gc(QJCV ) (4.13)
Cc

Moreover, one should keep in mind the relation

G, (p) = (1490, )Gy (P) (4.14)

from detailed balance. In light of the theoretical frameworks constructed in the previous
section, we may now write down the SKE and AKE in the HTL approximation. It is
interesting that one can linearize the kinetic equations in terms of the distribution functions
by taking go_p1 — 0 and Giy(p) ~ G;V (p). However, in the practical calculation, we have to
at least approximate gop ~ T'/po — 1/2 + po/(12T) + O (p3/T?) to keep all relevant terms
contributing to the leading logarithmic order. In the following, we will append subindices
to fy/4 and a* for specifying their momentum dependence.
For the SKE in eq. (2.23), it is found

0:6(q2*m2) |:Q'aqu+)\c/Ql(Qap){(1+g(]p1)qu’quququ/} ) (4'15)
p
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where
Qu(a,p) = 2m0(q” — m?) (24" G,0” ~ p- G5, (4.16)

By using qu =1— fvg, we may further rewrite eq. (4.15) into
0= 5(q2 - m2) |:q : aqu + )\c/ {Ql(qu - qu—p) + Qlqu(l - qu/)}:| ’ (4'17)
P

where Qq = go_plQl. One can then further approximate fyq— fvq—p = p*Ogn fvq+O(Ipl/4l)
assuming the small-momentum transfer [p| < |g.

Next, we can simplify the AKE with the same approximation. Inserting the rightmost
sides of eq. (4.5) into eq. (3.19), we obtain

(5(q2—m2)[q-8dg‘+F”"&yq—éﬁ] =0, (4.18a)

¢t =\, / (=@l = @i~ fug-p)il + Q4 agp + Q5" fuaiig-p ), (418D)
P
where @ = aly fag, Qb = ggplQW, and

QL = —2m(q” —m?) [(p“qV —n"q- p) G5 — 2<p“G§”qp —q -pG<”“)

+ 2(q”G<p"q’p — n“”qf,G@pqp)} ) (4.19)

Here we also use f Aq = —faq- One can similarly approximate ay—p, ~ Qg — pﬁ 0y480Gq,. Such
a diffusion term in collisions of the AKE has also been constructed in ref. [54] from a distinct
approach, in which different parameterization of the spin vector is applied. Nonetheless,
it may be more practical to adopt our parameterization for the spin vector, which has a
direct connection to the axial-charge current equivalent to the spin polarization through
the Wigner functions and the combination with the free-steaming part of the AKE. Note
also that egs. (4.17) and (4.18) contain nonlinear terms in distribution functions. While
those nonlinear terms are not included in ref. [54], they are imperative to preserve the
quantum statistics for fermions. For example, as will be shown, fy, follows the Fermi-Dirac
distribution instead of just the Boltzmann distribution in equilibrium with the vanishing
collision term in the SKE. In addition, as shown in eq. (4.18), the nonlinear terms further
reveal the entangled dynamics between the vector/axial charges and spin diffusion.

4.3 SKE and AKE with diffusion effects in the leading-log approximation

We now explicitly compute the collision terms in axial kinetic theory with the HTL ap-
proximation. Notations have been introduced in eq. (4.11). The basic strategy is to collect
all the terms up to O(|p|~3) in the integrand. When combined with the integral measure,
they give rise to the leading logarithmic results in g, with the cut-offs provided by the
HTL resummation. Moreover, we will consider the onshell kinetic equations. We hence

take frq = fvq(a,X) as just a function of q and X by using ¢ = E; = /|q|? + m?
for fermions (here we neglect anti-fermions) in the Wigner functions. Similarly, we take

U - dq =—q - aq/qo for dq,u = dqu(cbX)'
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4.3.1 Results

The computations for the diffusion terms in SKE and AKE are complicated yet straight-
forward. We hence present the details of computations for egs. (4.15) and (4.18) in appen-
dices D and E, respectively. In the following, we just summarize the final results. Up to
the leading logarithmic order in g., the SKE takes the form

o:&(cf—m?)[q-a—mLL{zu—qu)+s<1>qﬁaqﬁ+s< 4207000, 8030, || fras

(4.20)
where we denote the coefficient of the leading log result xry, = [g2C2(F)m32,/(87)] In(1/g.)

0,vi) = g*/m,
which has the normalization v#v, = 1 under the delta function, and then the rapidity
ng = 27 I[(E, + |a))/(E; — |a])] = 27 In[(v? + |v])/(v° — |v])]. The coefficient in each
term is given as

2 2 3
1 _ vaH 1, (2 _ mTvg |v|"ng 3601 3 _mT vpb—s

and the Minkowski metric n*#. We also introduce the four “velocity” v* = (v

(4.21)
where 0,, = |v| — vjn,. Note that eq. (4.20) agrees with the result in ref. [54] except for

additional nonlinear terms in fy, coming from Fermi-Dirac statistics.

Carrying out similar yet more sophisticated computations for eq. (4.18), we also derive
the AKE with the spin-diffusion term up to leading-logarithmic order. Combining with
the classical free-streaming part dictated by the BMT equation, the AKE reads

NG N0 NRPNE]
(a{; QY +u Q) + ¢ QY

KVLLT

0 =6(q? —mQ)[q-&ig—

+ Qd 410y, ,aqu + Qd q”&,iag + Q ol n”p(‘? 9, 3 ay + Qg)qﬁcjl&uaqp a )], (4.22)

N 2
Qc(::ll) = Tm [( 0(1 —2fvg) — ) 7719 147 0, qu} ; (4.23a)
N2 Vo Vapa =
QP - mw(( — [v[*)a, (391 + V@ O )
m 2T
T oW vo|v[2T vp(1 = 2fvq)0-1 — *(9 12V ) 4o ag, (4.23b)

(3 m AU A ~
Q((:l) = W<UO —10gr @y + (301 + |v| )QZQﬁaq"aqV>

m 2T -
+W9_1<v0( —2fvy) — E)qL g, (4.23¢)
QY = —2m|v|, (4.23d)
) m2v3
QY = yppf-10 = 2fva), (4.23¢)
2,,2
O = —Z0 (3|vP’ — u305), (4.23f)
2|v|
2
N m
Qg) = 2‘ |3 (3U001 + nQ‘V‘ ) (4.23g)
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4.3.2 Nonrelativistic limit

In the non-relativistic limit (m > T, |q|), we have vy ~ 1+|v|?/2 and 6, ~ —(3n+2)|v|?/6.
We immediately find that the SKE and AKE reduce to similar forms,

(8 +qL8Ly)qu+gRLL

3

1
T Oy Oy — — (3(1 —fvg)+(1 —2qu)(ﬁ3qj) ] fvgs
(4.24a)

q”éu,, ~ 2 v ~ 1 v ~
0= (30+L7)ag+§m Tn paqiaqiangE{ (2(qL8qiqu)—3(1—2qu))ag

+2T (D @l ut — (12 qu)qiaqiag} (4.24b)

where we further retain the terms up to O(1/m). It turns out that the orientation of
spin for heavy quarks is fixed yet the “spin” (axial-charge) density characterized by faq
undergoes the diffusive process same as the vector-charge density led by fi-, when m — oo.
Nonetheless, the modification upon the spin orientation by, e.g., the fluid velocity could
emerge at higher orders suppressed by the mass of heavy quarks. Note that the Compton
scattering, neglected in this work, also give rise to 1/m corrections, that, however, do not
come with the logarithm enhancement ~ log(1/g.). Therefore, the above 1/m corrections
provide the consistent results within the leading-log approximation.

4.3.3 Consistency checks

In thermal equilibrium, the vector-charge distribution function takes the Fermi-Dirac form
v = 1/(ePa=m/T 1 1) such that

O fav = frq(1 qu) ng

9 \qLaq1s . fvg(1 = fvg) q1aq1p
8ql8qﬁ fov = qu<1 —3fvq+ 2qu) EgTQ 4 2Ve BT q Oap + E2 ,  (4.25)

and hence

J_aqﬁqu = _qu( qu) ‘CI’

2 _ 2
ﬁaqlaqﬂfqv__qu(1_3qu+2qu) al® | fra(l = fve) (3 al )

BT E,T E
. ‘CIP m2qu(1 - qu)
G237 0420 5 fov = frg(1 = 3fvq + 212, - (4.26)
19 e E3T

Using egs. (4.25) and (4.26), one can explicitly show that the Fermi-Dirac distribution
satisfies the SKE in eq. (4.20).

As for the AKE, although each coefficient QS) takes a complicated form, we can make
a cross check with the SKE in the massless limt. Generically, to consider the spin diffusion
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for massless or light quarks, it is inevitable to further incorporate the gluon Compton
scattering. Nevertheless, taking the massless limit here is just to scrutinize the consistency
of our results. In the massless limit, a = ¢*f4 and thus

Oy aq = (0 —u"GLp) fa+q"0, o fa, 8qﬁaq'8:3fA+Qf_aqfan
(if@qig (¢ +u") fa+q"q] 0 2 fas

0,00 jﬁ’_&g’: (@g—U”QLﬂ)aqifA‘f'(@g—u‘uQLa) 5fA+q q¢ qﬂ fA | ’( aﬁ"f'@LaCjLﬂ)fAu
P

6qM8qﬁ&Z:2(6qLu ut qL )fA+q 4.8 qﬁfA ’ |f (4.27)

where 0ga §1 5 = (@ag + (jj_acjj_g)/\q\. One can show that eq. (4.22) then reduces to

0= q"5(¢%) [q - 0faqg — KLL <2qu(1 —2fvq — ¢ 0 fvq)
(1= 2fvq)d By faq = 1T O Dt f10) |- (4.28)

We may check the consistency with the SKE in the massless limit by dropping the nonlinear
terms since the fa contributions are ignored in the SKE based on our power counting,
which could cause discrepancies from the chirality-mixing terms. By further taking fy, =
(frq+ frq)/2 and faq = frq — fLq, One finds that eq. (4.28) is consistent with the SKE in
eq. (4.20) in the massless limit. Both the linearized eqs. (4.28) and (4.20) result in

0= 5((]2 - m2) [q -0 — RLL (2 + qﬁ@qi - |q|Tna58qi8q§>] fR/Lq' (4'29)

Such a remarkable check should support the correctness of eq. (4.22). The check is also
performed in ref. [54].

5 Concluding remarks and outlook

In this paper, we have derived the effective axial kinetic theory with background fields and
collisions in the cases when the vector charge is more dominant than the axial charge (or
more precisely the spin current) as natural conditions in most of physical systems. It is
found that the AKE as a kinetic equation dictating the spin transport not only embraces
the spin-diffusion term but also quantum corrections responsible for spin polarization,
which reveals nontrivial entanglement of vector/axial-charge and spin transport through
collisions. Our SKE and AKT work for an arbitrary mass and they reproduce the CKT
in the massless limit. For the case of massive quarks, we have shown how our formalism
reproduces the spin-diffusion term up to the leading-logarithmic order in a weakly coupled
QGP and the leading of i expansion.
Here we further summarize the detailed achievements in a short list:

1. In our power counting, the leading-order SKE remains the same as a classical Boltz-
mann equation, whereas the AKE governing the dynamics of spin polarization char-
acterized by an axial-vector component A* in Wigner functions can be written as
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O Ar = é(fj + h@é")“ . Here O™ A# denotes the free-streaming AKE, while CA(’fl and

hé((gn)“ correspond to the “classical” and “quantum” parts of collisions. Such separa-
tion is explicitly shown in a generic spacetime-dependent frame and in the rest frame
for massive fermions as well.

2. It is found Cl‘l and hCA((Qn)“ are proportional to f4 and fy,, respectively. Consequently,
Cl’fl serves as a spin-diffusion term, which vanishes when f4 = 0. On the contrary, the
“quantum” correction hCAgz)“ , which survives when f4 = 0, is dubbed as the spin-
polarization term and responsible for polarizing spin via the intertwined dynamics of

vector-charge transport due to spin-orbit interaction.

3. Similar to the free-streaming case [51], for a generic spacetime-dependent frame,
héé)n)” can be separated into the term proportional to the four momentum and to
the mass, which establishes a smooth connection to the CKT with collisions [30, 31]
and manifests spin enslavement by chirality in the massless limit. Also, we present
the simplified versions of the AKE in eq. (3.9) [or eq. (3.17)] and eq. (3.12) suitable
for tracking the spin polarization of heavy and light quarks in QGP, respectively.

4. The spin diffusion term CAé‘l for massive quarks in weakly-coupled QGP is obtained up
to the leading logarithmic order, which incorporates nonlinear terms in distribution
functions as a consequence of quantum statistics for fermions. It turns out that
even the spin diffusion is affected by entangled dynamics between fiy and fa as
opposed to the previous study with only the linearized collision terms in distribution
functions [54].

Although we have explicitly evaluated the spin-diffusion term for massive quarks, which
are sufficiently heavy for dropping the gluon Compton scattering, the quantum correction
could be calculated in a similar fashion as the follow-up work. Moreover, when considering
the spin transport for light quarks, it is inevitable to further incorporate the Compton
scattering even for just spin diffusion. On the other hand, as already mentioned in the
context, in rotating QGP, it is expected that both light quarks and gluons are polarized,
which should be involved as quantum corrections in the self-energies. Recently, there have
been some relevant studies for the quantum corrections upon polarized photons [71, 72].
Albeit the validity of our formalism is held even in the presence of such corrections, it could
be challenging to systematically include the polarization of scattered gluons or even other
quarks and to obtain an analytic form of the collision term. Nevertheless, to understand the
dynamical evolution of the spin polarization for peculiarly strange quarks associated with
the local polarization of A hyperons, it will be essential to carry out the aforementioned
studies in the future.

On the other hand, our formalism is rather generic, which may have potential appli-
cations not only in heavy ion collisions but also other physical systems. For instance, it is
proposed in refs. [73-75] that the electron and neutrino transport with anomalous effects
led by chirality imbalance (axial charge) could influence the macroscopic hydrodynamic
evolution of matter in core collapse supernovae. However, the chirality imbalance of elec-
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trons produced by the electron capture process may be compensated by elastic electron
scattering with the effect of nonzero electron mass [76-78]. Our formalism could be applied
to track the axial-charge evolution in such a scenario. In such a case, eq. (3.12) will be
useful for capturing the small-electron-mass effect.
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A Derivation of the master equations

A.1 Spinor decomposition

Based on the spinor decomposition of the propagators (2.7) and the self-energies (2.8),
we perform the decomposition of the Kadanoff-Baym equations (2.4). One may use some
useful relations such as
, 1
L e e e e R e e N it

Here, €,,,0 is the totally antisymmetric tensor with €p123 = —1. The Kadanoff-Baym equa-
tions (2.4) contain the commutators [y*,V,S<] and [(JI — m), S<] and their counterparts
with the anticommutation relations. They can be decomposed with the following relations

(Y1, <] = —2AFA° 4 2iSH 4 — 2Py~ — 2iV, 0, (A.1a)
{7#, 85} = 2V + 289" + €,,,8P7 " — €' s AP, (A.1b)
Based on the decompositions above, we now have
7: . v 14
S0 VS = iV Ay — VIS + VP + VY0t (A.1lc)
%{’y“, V. S<} = iVAY, + iV, Sy — %ewpavgswm - %euy,ﬂ,vmoaﬂ% (A.1d)
(L —m), S<] = —2[T" A, ° + 20T01°S, ,y* — 2011, Py y* — 2010, V), 0 (A.1e)
{( —m), 5<} = 21"V, — mS) — 2imP~° + 2(IL,S — mV, )"
— (e"PT1,S,, + 2mA" )Yy, — (MSu + €upo TTPAT )t (A.1f)
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Assuming the following decomposition G(q, X) = K“Gu(q, X) and F(q,X) = Q“Fu(q, X)
with K# and Q* being arbitrary matrices, it is found

{G,F}*=%{K“7QV}{Gu(q,X), (¢, X) b + [K"Q][ w(a, X)), Bu (g, X)ls,

(G F], = SR, Q“1Gula, X), Fola )} + 5 {RH, Q" Gl X), Bl Xl (A2)
Accordingly, the self-energy parts can be decomposed in the same and straightforward
way as

27,55 = i({Sva, A% b — {Baa, V) iy

+ i({in Aa}* + {iu ) Sua}* - {iAa, P}* + {iTaBa VB}*)’YQ
+i({Ep, Vabe = {Zva, Pl + {4, Spa e + {Sras, A1) 77"

. = = = o
+ Z(_{EV[av VB]}* + {EA[av AB] }* - {ZTu[a7 S'um }*) 7

_ _ _ _ 1 -
[257 S]* - [ZPu P]* + [ZV,M V'LL]* - [EA;U AH]* + §[ZTNZ/7 SW’]*

+

i} , 1 e )
[Es, Pl + [Ep. Sl + JeaslEr, S ’B]*) i’ (A.3)

(67

_ _ 1 _ —
<[257 Va]* + [EVaa S]* + ie;w/\a([zljp SVA]* + [252 ,.A/\]*)>

= S 1 S S04 fo
+ <[237 Aa]* + [EAOHS]* + ieuu)\a([gl\ﬁ'a Sl/)\]* + [E% 7V)\]*)> 757

[is, Saﬁ]* + [iTag, S]* + Gm,ag(—[i/(/, .Ay]* + [ii, VV]*)

1 a*P

- gomanl(Er. 571+ 12,71 ) 5

and

_ _ _ _ 1 _
{5755 h = (B, Sh—{Zp, PhoA- {Zvi, Ve = { B0, A bt 5 (B, S 1
_ _ 1 o on ,
+ ({237P}*+{2P)S}*+4€puaﬁ{2f]€ 78 6}*) 175

1
+ {257V }*+{EVQ7S}*+ e,uzz)\a({zlu7SV)\}*+{EMV7A/\}*)>

+<{ES,A }*+{2Aa,8}*+1ewa({z SALAER VM )) vy
—|—<{Es, aﬁ}*+{ETaBaS}*+€uuaﬁ( {2!(/’“4”}*_}'{2517]}”}*) (A4)

v 1
L s ((Sp, S [ ,P}») s

2
+7’( EVCH EAch ]*)Z’Y
+i([Ep. Aa 2” Spale—[Eaa, Plat[Erap V)7
‘|"L( EP, Ei,Sua] [iVaaP]*+[2TaﬁaAB]*)’75’}/a
_ 1 o
+Z( [EV()HV,Bﬂ [ZA[ouAﬁ]] [ZTu[aaS‘ug]]*)io— /37
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where we defined the antisymmetrization 7j,,; = T, —T,,. Plugging those decompositions
back to the Kadanoff-Baym equations (2.4), we find

0= (- m), 5%} + 5 (0¥, 9,5%] - [£%, 8], +[57,57].) (A.5)
= s + A1y + Hrut + Aty + me%o*‘”,

0= [0~ m), 55+ D ({3, V,8%) — {55,570, + {27,55L) (A6)
= 95 + Z5i7° + v, V" + L5 + QTW%UW,

where

Hs=211"V, —2mS

ih _— — — — —
+ % <[2578]*_ [EPa P]*+ [EV;M Vﬂ]*_ [EA,U,)A“]*—}_ % [ET/,LIMSMV]*) ) (A7)

—_—

M = —2mP — KD A+ 5 (S, Vi)t ([2S,7>]*+ [£p, STt 3euvas [2;”,/575]9 L (A.8)
Hio = 2108 —2mVe—hD"Sya— 5 ({Sp, Aabe—{Sa Pha -t {70 V)
+2 <[z§v\a]*+[zm]*+;ewa([zi/,s\ﬂw [EWM), (A.9)
Hsa = —avpaTI7S" —2mAq+ WD P — & ({Ep, Va et {Zh. Sy o+ { S A1},
+ 2 (5 Al Bl a5+ ) ). (A10)
Hirap = —2mSas—2easpe 1P A+ iDi Vs~ 5 ({Sajar Ag b — {ZT@“@’] b)

o —

. o o
+5 ([, Sagle+[Eras, St epas (= [Z4, AT+ 55, V7))

1 S LB
_ie,uljaﬁ([Eva'uy]*_’_[E% ,,P}*)), (All)
and
L~ h — — —_— —
Qg = ’LhDNV'u—F% <{25,S}*_{2Pap}*_ {EAM7AM}*+;{ET;U/,8“V}*> ) (A12)

D5 = 2z'nu,4y+%h (@??}ﬁ{ﬁ}ﬁieumﬂ{zg@}*)
- Z (2var A, =[S a0, VL), (A.13)
Dyo = QiH”SVaJrz’hf)aSnL% ({EZV\Q}*JF ;eyy,\a({E’g/,‘S’\’”\}*—k{E@}*))
- Z (1S5 Aade+ 20, Spadw = [Saas Pla+ (S0, VI ). (A.14)
Do = —2ill, P — %eaypgﬁuspa+% ({Eﬂhﬁzﬁ}*— ;eaypa{EW}*)>
- 2 (55, Vals + 125, Spads — [Evar Plet [Drage 441, ), (A.15)
Drop = 2oV —ificasu D" A"+ ({55:Sa}x+ {Z705: )+ eap {0, V)

h — —_—

1 - = T = —
_Qeaﬁyu({zPas’uV}*"’_{zu ’P}*)) _5(_[2‘/[0{7VB]}*—F[EA[CM)AIB]]*_[ZT'LL[OHSMB]]*)'
(A.16)
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Here we introduce a shorthand notation XY = XY — X Y, where X and Y are the coeffi-
cients of the Clifford decomposition of the propagators and self-energies, e.g., {Em,,}* =
(v, Vb — {Zv 4, Vo b, We also introduced Dy M = VM + {8y, M}, /2. Hg = Hs =
Ko = Hsa = 210 = 25 = Z5 = Dva = D50 = 27 = 0 give the set of full quantum
master equations. Explicitly, they read

msznﬂvﬂ—Z [ESSEPP+EWWEAuAu+22TW5uuLB +0O(h?), (A.17a)
ho~ P Rl— —— 1 ﬁ\aﬂ 3

mP = _5(7)#"4 —ZAMV“)—Z SP+EPS+Z€MVQBET S on +O(h ), (Al?b)

2o S — D" Se—2m Ve~ (S p Aa—S 4P~ S1ya VW)

-2 {ESVQJFEVQ&LQGHVAQ(EQSWFZ% AA)} o +0O(1), (A.17¢)

MDoP—€appoe 17877 —2m A — (S Va4 S Sper — Sy AM)
= ? |:ZSACM+ZAOCS+ 56,&1/)\01(2}(/5”)\—*—2% VA):| .- +O(h3)7 (Al?d)
o h = 1 al
m5a5+€a5ngpA _§(D[av,8]_ZA[aA,B]"i_ETM[aS#m)
2

Vlas— — 1 SR
T [ZSSaB‘FETaBS_GuuaﬁEl{/AV+€/wa62l;xvy_Qeuvaﬁ(EPSW"‘E%VP) +O(1%),
P.B.

(A.17e)

and

~ — — —_— 1 —_—
DMV, = =58 + XpP + Rap Al — SN, S + O(h?), (A.18a)

211" A, = —h <2573 +XpS + ZEWQBE‘; Sa5> —?[—ZVQ.AQ + EAaVa]p.B. + O(hg),

(A.18b)
211"Syq + RD,S + R <25Va + §€uvm(2ffx‘9” + AA))
e 1 SPG> 8 3
= ?[EPAa + 30 Sua — LaaP + EragVips. + O(R), (A.18¢)
h ~ — — —
211, P + §eanU(DVSPU + 57PV9) — (S5 A + Z4aS)
R _— —
=1-5[BpVa = SvaP + YA Sua + SrasAllp . + O(R?), (A.18d)
h ~ — h —— — h — =
H[QVQ] + §€aﬂ“y(pu¢4y — E’ZV”) — 5(25&43 + ZTQQS) + Zeumg(ﬁp&“’ + 2‘7{”7))
h? — —
= Z[ZV[QVB]_EA[aA,B]—i_ZTM[aS”m]P.B. + O(h3)7 (A'18e)

where [AB]pp. = {A(g, X), B(q, X)}p.p. is a shorthand notation for the Poisson bracket.
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A.2 Eliminating S, P and S,

Equations (A.17a), (A.17b) and (A.17e) can be used to eliminate S, P, and S, from the
other master equations. Since S*” is contracted with Y7, and ETW on the right-hand
side, one may not express S, as an explicit function of V,, and A, only. However, assuming
that the interaction is sufficiently weak, we may drop the nonlinear terms in the self-energy.
Within this assumption, we may rewrite egs. (A.l?a) (A.17b) and (A.17e) as

1 o, b
SOCB% _aeaﬁpUHpA +% {D[avm ZA[OéAm [ ETﬁ]PA }

72 v ST u K2 Eaﬁwz/ﬁw 12/\
+m( Tula V"'V = 210 V)V )—@ = Ns (¢ AP) + - Sras(q-V)

—_— e 1 —
—€uvap Sty AY +€uapEi VY — mEp(q[aAg])] . +0O(h3), (A.19a)
Hu h2 E V ro
S=4 m M 4m[ Sgi )+2 V'LL ZA#A“——e“ BZT;LV(QaAﬁ)]PB—FO(hg), (A.lgb)
o= —= . I |Zp(q-V i
7’=—2m(DHAﬂ—zAMW)—m[ rla) Ly s, A, })LB+0(h3). (A.19¢)

Inserting egs. (A.19b), (A.19¢c) and (A.19a) and maintaining the linear terms in the
self-energies and the explicit / dependence up to O(h) (or O(h?) for involving at least the
next-leading-order corrections), the master equations (A.17¢) and (A.17d) up to O(h) are

reduced as
¢"(¢-V)-m*Vi~3 [ (Ep A+ Vo) —2 (F “BABJF%GWM%ABM) _euaﬁvqagmv} )
PAF—gtq- A—m> AP (A.20a)

STV TR D1 20 S L P T A

Similarly, the master equations (A.18a)—(A.18e) up to O(h) are reduced as

DY, % Sy = o 20,55V~ uapa® S AP+ RER(V- A+ 5LV, (A21a)
¢ A~ — g, (SpVR+ S A, (A.21b)

DH((]V)—(]VD[MVV]
—_— — 1 v a —
%—mESVM'i‘quAa}Aa"‘Eq qa€ ﬁ’[YMETV]B‘A’Y
o { MEAT (D" FPP) 0y A°+ RS (VPV) | =30 (S ATV, = S, B, V)

he' [1@ —— 5 -
—|—i [ETW(q-V)—eyﬂngf/Af’+ewnggV‘7—mEp(q[,,Au])]
P.B
+7[2p,4 wgv(qmo)mwvﬁ} . (A.21c)

Fu A =D Ayt Reyupo [0, DV — g, [Spla V) + 558 (g An) | (A.21d)

— 1 ——— — — v 1 "8 1
:m[ESAM—ieWpUE;pVU +anAHV°‘—qMEAaVa+§eWpUA [EiA"—mqo‘eaMpETﬂAv]

I 1 T
_ﬂ |:EPV +*6yupozy (qug)+ZTuVAU:| PB.

gy Lemed (D Ay~ S V5) & — [e‘“’o‘ﬂq SsAs— qQE“”qu“‘EpA”] (A.21e)
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where we defined D,M =V, M + m, and we used the following relation
h? h?
2eupo (TI°) A7 = = €spipo (0P FP + 0P FP) 0,547 = Eewpa(aﬂpﬁ”)aqﬁﬂ (A.22)
The master equations (A.20) and (A.21) are in general the full master equations with
collisional effects up to O(h!). In our power counting V* ~ O(h°) and A* ~ O(hl), these
equations reduce to egs. (2.20a)-(2.20g).

B Angular-momentum decomposition for fermions and spin polarization

We briefly review the derivation of the gauge-invariant angular-momentum decomposition
for fermions proposed in ref. [79] as a covariant version of the Ji’s decomposition [80]. Such
a derivation is more explicitly shown in the review paper [81] (See also ref. [82]). Here
we just summarize the derivation therein. The starting point is the Belinfante angular
momentum for “on-shell” fermions,

v

T - <= <=
Mp" = (i DP + 47 D)y — (v 4 p), (B.1)

s _
where ¢ D 1) = w(B# — gL)w and D, = 0, +ieA, denotes the covariant derivative. One
may rewrite M5 as

ME? = by i Do = b (11D — i DYy — (40 p). (B2)

Next, one has to employ the relations,

a“”iB = 7”3” - V”B”ﬂ'ew“ﬁ 76753047

%
iDot = 5“71’ — 5”7“—@'6“”“675753&, (B.3)
< _
with o*” = i[y*,~4"]/2 and the equations of motion sz/) = my and WP = —mab, to
obtain a useful identity,
_ Ry Ry _
Yy DP —APi DF)p = —ePHB G (Pryayst)). (B.4)

By using the identity, it is found

M = Lt (a7 B — 0 B ) S st 0 (27477 — 29670y
(B.5)
and thus yields the gauge-invariant angular-momentum decomposition by dropping the
surface term above,

i L = L wpB 7
Mgl/p = §w’}/u($ DP —xPD )¢_ §€M pﬁ?ﬁ’%@%% (BG)

where the first term above is regarded as the orbital angular momentum and the second
term proportional to an axial-charge current is responsible for spin. This gauge-invariant
decomposition introduced in ref. [79] is defined as the “canonical angular momentum” in
ref. [44] though it actually agrees with the usual canonical angular momentum obtained
from the Noether’s theorem only in the absence of gauge fields.
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C Decomposition of the collision term in AKE

The expression of eq. (3.8) can be equivalently written as

~(n § 2_m2 _ — v i <
Cé n = (q2) {GNV'DUQV ((ApEVU)fV - (APEVU)fv) +2Srl;(n) (m(ZSAyfV o ESAVfV)

—F? (Svpfv=Svefv) —a" (fv AuSv,— fu AuSv,) + fr (g ASy,) _fV(Q‘AiVV)>
+2(Zvufv —Zvufv) (q-AST’;”(n) —F’;S}n”(n)) } —md(q? —m2)s;jL”(n)AVCS[ v

=280 Faud' (@ =m?) (Cv[fv]+mCs[fv]) —(q* —m*) (A, S),))

< (Cv[fv]+mCs[fv])+F" 4,6 (¢* —m?) (Cv [fv]+mCs|fv])
+(5((122;;n2> [Q”(qu'ASP—qu'AEP) —mg((auip)fv—(auzf’)fv)} : (C.1)

z above into the

By analogy with the collisionless case, we would like to decompose (fén
piece proportional to ¢*, which survives in the massless limit and reproduces the collision
term in CKT, and another piece proportional to m, which stems from the purely finite-mass
correction.

The Schouton identity gives rise to

GHY g — g GV v gHe 6,praqp ehvpe 9 €9
mm 4 = 4 Pmn) T4 Omm) T 2 2(q-n+m) (maq, + ¢°ny). (C.2)
We thus find

250, (Pl AZv,) = fula- Av))

=2 [(Q"any(n) + qysﬁlp(n)) (fvA Sy, — fVAinu)] — e q, (ApSve) fv — (ApSve) fv)
P (mg, + ¢*ny)
(g-n+m)

(f_VAO'EVI/ - fVAUSVV) (03)

and Cén) " becomes

Cén)#

d 2—m? v r S v r S
= (qzrrn) {QQMSZL(TL) (fVApEVl/ - fVApEVV) +2S7I:L(n) (m(ESAVfV - ESAVfV)

eMPIm(q,+mny)
(g-n+m)

—F, (Sv,pfv _infV)> - (fvAeSve—fvAeSvy) +2(Svu fv —Svufv)

X (q-AS:SEn) —F’;\Sr))‘f(n» } —QSslzn)q/\F)\yél(qz—m% (CV [fv]—i-mCS [fv]) —5(q2—m2)

x (A8t ) (Cylfv]+mCslfv]) +mSh ACslfy]]

2_ 2 B _
W) g g A frg- M)

—m2((0"Sp) fr — (0"Sp) fv)] : (C.4)

+F"q,08' (¢ —m?) (Cy [fv]+mCs[fv]) +
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Next, applying the Schouton identity again, it is found

3(¢*—m?*)g-AShy

m(n)

—5(a®>—m EA,, YA, SH Pehvac A 4p"o THVPAN dpNo
(¢°=m®) | " AaSiiy +" DaS, T4 2(gntm) 9 € 2(g-n+m)
wrao , qu ehrao _
=4 2_ A Z/A 2Ao¢ € o pa o FH
Qv po nvpa o
A e gan7g, (C.5)
2(q-nt+m)  2(g:nt+m)
and
q Ng g 1V Vuo v o
S = g (VE A SR £ MRS (C6)
which lead to
S(a” —m*) (- A}y = SN )
Qv po
_ 2 2 L av [V v po € (qﬂ + mnﬂ) wo v
=4d(¢° —m?)|q AaSm(n) + FFY + ¢" A Sm(n) mlg 3q-n+m) Sm(n)F
4P Fpa €' ng (C.7)
(q-n+m) '

We hence obtain

één)u

5(q2_m2) o QpPv 7 S v 3 &
= # 2q Sm(n) (fVApEVV*fVApEVV) +2Sm(n)m(ESAVfV*ESAVfV)

Hvpo - < 3 >
_ € m(gp,+mny) (fvAeSve—fvAeSvy) +2(frSve— frEvy)
(g-n+m)

q#AaSgnIEn) +F'LW

qupaGMV(XUnU _ ell/l/p()é(qp_’_mnp)
(g-n+m) * 2(g-n+m)
x " q, (Cy[fv]+mCs[fv])
(280 b (g2 —m?) 4 8(a? - m?) (A1) 51 A,) ) Cslfy]

il [q“(qu-A‘Zp—qu-AEp) —m2((3“2P)fv—(3“2P)fV)} : (C8)

2m

} — ZSzZJ(n)qAFAyy(qZ —m?)Cy[fy]+6 (¢*—m?)

On the other hand, one finds

—25M )5/(q2—m2)q*FAV:—25’(q2—m2)(quspy< )+ S )) Fpy=2F1°,68' (¢* —m?)

(n
20 (q? —m?) Fe 20(q*—m?)
" (g-n+m) m (s +mng) = g-n+m

Fhen,,  (C.9)
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which yields

2 27, _ 2 2 7 m(gp + mn’))ﬁup
_25;1;12”)5/((] —m )q P, = —5/((] —m ) (qMSS"i/(n)FpV + Fupqp o (q -n+ m)
5 2 2\
_ Mpupnp, (C.10)
g-n+m
In addition, one can show
PE epvao 1 - - ~ ~
4" Lpa€” Mo (=¢"F"no + F*ngyq” + mF") — F*. (C.11)

(g-n+m) :q-n+m

Accordingly, Cén) takes the form

o 0@ =m%) [y ugor (7 A5 A, Sv) 425 m(SsAy fy —SsA
2 —# q m(n)(fV P Vl/_fV P VV)+ m(n)m( S l/fV_ S l/fV)

eMPIm(qp,+mny) , - - _ _

— AsXve— v ASy,)+2 Svi—IfvEvy) | " ALSEH
(gn+m) (F Aoy —frAeSve) +2(frEve — frEve) |6 ey

" F" n, mE* eMP*(q,+mny)

(@ntm) " gnrm) 2g-ntm)

5(q2—m? _ - — -
+((12m>[Q“(qu'AEP—qu'AEP)—mg((auzp)fv—(auzp)fv)}
sl 202 1w QpvV 7m(qp+mnp)f~7“p o (2PN _pv

8 (qg"—m )(q Sm(n)Fpu (g-m+m) )CV[fV] m((25m(n)q Fn—F QV)
X8/ (q2=m?)+8(g>~m?) (A, St ) +0(a*~m?) Sl A, ) Cs v, (C.12)

which can be further rearranged as
ézn)u

v r < r O anyn Fpon?®
un{5(q2—m2)[5p (fVApEVV_fVApEVV)+(fVEVV_fVEV1/)(8015%12”)‘1'M)

1 . v
+2m(qu-AEP—qu'AEP)] —5/(q2—m2)5£1(n)FpuCV[fv]}

"7 (gptmny)

+m{5(q2 _m2) [any(n) (ESAVfV _ESAV]PV) AW (ST'L,LLV(n)CS[fV]) - 2(q-n+m)

X (FvAeSvy—fvAeSyy)+(fvEve—frEvy) <(qii:m) —e”"paAam>

—5(@"Sp)fy=(0"2p)fy)

+6/(g—m?) [ch )= (25" 4 Fry— F"q,)Cs] fv]

}, (C.13)
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where we utilize

av FVUnU av Sf’ly(”)Fpana
Aa m(n)_(qn+m) —aaSm(n)‘Fiqn_i_m . (C14)
We can now write Cén)“ in a more succinct form as
E% — ) 4 (©.15)
where
SPY F,on®
5(n) 2 2 pv ~ S av m(n)” P9
Cq2 =d(q" —m?) [_ m(n)(ApZVV)fV —Yvufv <aasm(n) + Wn)
1 S v
+ %(q CASp)fr| =8 (¢* - WQ)S;(n)Fpqu[va (C.16)
and
Cl = 5(g% — m2) | (A,S™ VCslfv] — S™ (A,S)fv + I T mng) N SN
1 e e“”“ﬁﬁ/ (0aq - N+ nPF,y)
_ Z(HM _ - ZvvJV _ « po
5(0"Ep) fr 2t m) mdang — (qs + mng) p——
) 2 (qp—i—mnp)ﬁ’“p puv A g
— R A -2 F FHq, .
+9'(¢" —m?) (@ ntm) Cvlfv] =25, FanCslfv] + F*q,Cslfv]
(C.17)
Here, Cy[fy] = —qu% and Cg[fy] = —m. It is clear to see that éé;) reduces to the

O(h) correction in the collision term of the CKT found in refs. [30, 31] by taking m = 0
4. Combining with (ffn)“ and collisionless part, one finds that the CKT with collisions is
smoothly reproduced by AKE in the massless limit when m = 0 and a* = ¢".

D Derivation of the spin diffusion for SKE
From egs. (4.9) and (4.16), we find
Qu(p) =2r0(4%~m?) (24" G g ~pd G5

Po (5. N
=270(q" —m?)gop (267(1a%(1 - 2%) ~poao + al [P =)+ 1. (268 —podo—lalp|2) ),
(D.1)
where we defined pr/;, = pr/T/po and z = q-p. We also used the transversality puPr =0

and the on-shell conditions m? = ¢® = p?> + ¢?>+2p- ¢’ and m? = ¢’> = p> + ¢> — 2p - ¢ that
lead to relations 2p-q = p?> = —2p - ¢'.

4In refs. [30, 31], ¥p and L p are set to zero. As argued previously, such terms are actually expected to
be at higher order and vanishing in the massless limit.
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The on-shell condition can be also arranged as

> —m* =p* =2¢-p= (" - ")’ + (2lallplz — P> — 7). (D-2)

Therefore, the delta function is nonzero when the momenta satisfy the conditions

allplz | p*(¢§ —a’2?)
pozqoi\/p2—2|q|!p|z+qg~q°i(q°—’ ple | P7{% 3 : (D.3)
q0 2%
where the square root is expanded for a small momentum transfer |p|. We take the positive-

energy solution ¢"° = ¢” —p° > 0 for particles from the lower sign. Defining p = |q||p|z/q0—
P*(¢5 — a*2%)/(243), we have®

o =) ~ 5 (14 B 09 ) 00 ~ ) (D.4)

Based on the dispersion relation above, we can approximate the spectral function as

mww»ﬁf?1<(1 Mf’+ourﬂ, (D5)

0

where I7(z) = [1 — (|q|z/q0)?]"!. Here, the presence of the delta function &(p° — p) is
assumed on the right-hand side of arrow. On the other hand, we have p(p) = 7T'm%/|p|°.

Note that the difference between the distribution functions provides positive powers
in the small momentum transfer limit:

5 p°p?
qu - qu—p ~p 8q/3qu - Taq"‘aqﬁqu, (Dﬁ)
where p° ~ O(|p|!). Therefore, we have found the momentum dependences

prr ~ P, fvg— fvep~Ipl, d°p~dp|p|*. (D.7)

This order counting suggests that one should maintain the other factors up to O(|p|) to
get the leading-log result. Therefore, we expand the remaining factor as

Po 1
5((]/2 )QOp T ~ m

1+ \P!q(;)l!z (1 — ﬁ) + O(|p| )] 50— )., D)

where we used gop = T'/po — 1/2. Combining all pieces together, it is found

7T
/Ql fva = fva—p) 2‘:;|D/|p’5 (2m)o <p0_p0q>
x (1 - %) 245 + |a*(1 - ZQ)IT(Z)] (fvq = frg-p)- (D.9)

°Tt turns out that the O(|p|?) term in the Delta function does not contribute to the leading logarithmic

order.
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In eq. (D.6), we apply the following decomposition of pi in terms of the transverse
and longitudinal components with respect to qi:

p= ¢ plz +6Mp,, 0% =6 1§4], (D.10)

where qaégﬁ = 0. Moreover, The distribution function fy, in general can be a function of
qo before implementing the on-shell condition. It is in fact more convenient to keep the off-
shell form when F** # 0 due to the presence of §'(¢> —m?) term in the AKE. Nonetheless,
in the absence of background fields, it is more practical and convenient to write down the
on-shell kinetic equations. We hence take fy, = fi4(q, X) as just a function of q and X
by using go = E, = /|q|? + m? for fermions (here we neglect anti-fermions) in the Wigner
functions. Accordingly, all the terms proportional to Jy, fy4 can be dropped.
Applying the replacement

N

af

. v A Oy
pp” — pguauﬁ +po|p|z(u°‘qf +uf O‘) + \p| (qaqﬁzzQ — T(l —z )) (D.11)
for the integrand and carrying out the integration, eq. (D.9) results in

&f—m%/@mhfpr> (D.12)
p

bt m?) [T dipl [t (aP0=)nG) o
200y, COIR1 ), 2 0

af
9 - (1-2%) ) Ty | 0

qlz® . JUNIN
| | qf+(cﬁqu2

qﬁqu

87rq0

. . 2 .
X(Jc?—SJf))qﬂlaqﬁq <IQI2<J0T |(f|°2 1T+|q|4jz>+qO( h))" 0gs. 0, ]fw

mpHd(g®—m?) T T g5 .1, 348 T
:_Diln(l/gc) qo\J1 — |q|2]2 +]1 QLaﬁ Jo |q|02 1 +|q|(‘)1 2 +‘q‘2

where we take u? 0y fvg = 0 and

1 1 ¢ 1 (ﬁ a
T 0 T q0 0
SN P S (S N [ PR G VA (P
70 /1 % (1) N /1 % = jal "
90 6]
() a”
T 90 qo0 q
; :/ do— ™/ _ _an D.13
tT 2(1—%) lal™ ™ 3¢ (D-13)
9
where 7 = 27" In[(qo + |al)/(q0 — |al)], and
1 1
2
j& = / dz=2, jl= / 22dz = =, (D.14)
—1 -1 3
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By inputting explicit forms of jiL /T

St -m?) [ Qulfvg=tvams)
p
2 2 2 2 2 2 2
m7,0(q*—m*) E; meng\ g mT 3E; 3B\ & 8
=——+ " In(1/g.) | —5 | 1— q + 1——2 | ng+=—=2 | q%q/ Oy
87 ( /g)lqu qlal )™ 2l EE AT A

E,T Eg m* 5
= 28y D1
2 ((3 ‘qP Eq|cl|3 7 &h Qﬁqu’ ( 2

where we take gy = Ej.

into (D.12), we eventually obtain

Subsequently, we should also calculate the 01 fvgq term in eq. (4.17). While the same
counting (D.7) is applied to this case, there is not the order-one suppression from the
difference fyq — fyg—p. Nevertheless, a factor of g, ! provides the same order of suppres-
sion instead. Therefore, maintaining the linear terms from the other factors as in the
computation above, we find

5(q> —m?) | Qifvq

P
25002 —m2) [T 1 27(1 — 52 1 5 o
~ Tt )/ dh;’ dz MM@ 1 <1_ \q!; )qu
2q0 mp (271') ’p‘ -1 2 q0 qo
m2 5((]2 _ m2) 1 T T ’q’2 1 o o
— _D87T—q01n(1/gc) w0y —J1 +J42) — q—o(yl — T+ D) fve, (D.16)
which yields
5(g? — m?) /Qlf\/q(l — Fracp)
P
2 502 2 9 )
. mpo(g® —m?) @ Ngm 5

Accordingly, the SKE results in the form given in eq. (4.20).

E Derivation of the spin diffusion for AKE
To evaluate the collision term in AKE, we implement the same strategy as in the SKE.

E.1 Half of the terms: [Q4"ay — Q1a¥]

For convenience, we first apply the following decompositions to two of the four terms in

eq. (4.18):
ngdq/y - Qldg - 27T(5(q/2 - m2)( gl(a) + le( + ch C)) (El)
where
) = 2(07Ga ) ay —ay) + G5P(p - q'aly +p-qay) = gop s T (Q +Q a)> (E.2a)
~ Do
by = —(GoP" +26,G™)q - ag = gop s (ch(b + Q. ) (E.2b)
gl(g) = 2(pMG§qu pG< M)aq v — gOpZ;? (ch (c) + ch(c ) (E.QC)
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The remaining two terms will be addressed in section E.2. We utilized ¢’ - ay = (¢? —

m?) f Aq¢ = 0 from the on-shell condition. On the rightmost side, the terms proportional
to the transverse and longitudinal spectral functions are denoted as Qg” and QAfl“ , respec-
tively. Note that, similar to fy/4—, in the SKE, the expansion of &g_p give rise to the factors
of p for the small momentum transfer limit. Recalling the order counting in eq. (D.7), we
thus maintain the terms in Q" up to O(|p|?) in the following. For le(a)’ we have

Qhty = 2pr[lal*(1 = )@, — @) — ((poao — Iplal=) (@, + ) — (8 — b))

~ 2pr [(2<rp||q|z ~poao) + 13 — %) — (Ia*(1 — 2%) — qopo + Ipllal2 ) p 0,0t
pp” _
+lal?(1 - 20,0000 + o<\p|3>], (E.3)

AL ~ ~ ~ ~ ~ ~
Qel() = PL [Q(qg — qopo)(aly_, — al) + ((poqo — Ipllal2) (a,_, +ak) — (p§ — Ip!2)a’;>}
~ p| (Ipl* = 7 — 2(/pllal= — poao) ) a% — (248 — qopo — Ipllal= ) p* Dy

+ @GP0y d el + 0(|py3)]. (E.3b)

As for fol( we have

b)’

~ pL [(pou” — Pl = 2qou")p” gy + 2qout'p" D’ Ogpiiqy + 0(\pl3)} : (E.4a)

2

Here, we drop the terms proportional to ¢ - a; = (¢° — m?) faq based on the on-shell

condition. Finally, for le(c)’ we have

Qhty = 2pr (v (lal=p. — a%) + (qopo — lallpl2) (O™ + P} 51) )ty
~ 2,5T((pou“ + /) (lalzp' —a1) + (gopo — |al|p|2)(©"" +ﬁiﬁi))
< (a0 =050 + O(IpP) ). (E.50)
fo(c) = pL (2qOu”p” — 2(qopo — Iqllplz)u“u”) Gq—pv
~ pr(2q0u”p'! + 2|q||p|zutu”) (agy — PP sdq, + O(|p[?)). (E.5b)
In the following, we evaluate those terms one by one. As in the case of SKE, we first

retrieve the integrals for |p| that give rise to the logarithm in the following subsections.
The angle integrals, with respect to z, will be performed in section E.3 afterwards.
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E.1.1 Evaluating le(a)
Combining with egs. (D.8) and (D.5), we find

5(q> — m?) / 2m((q — p)? — mAQ )

~ 7rTm2D5(q2 —m?) /T d|p| 1 & go 2> n I72%(1 — 22)|q/? qf_a ,
2qo mp (27)2|p| J_1 T 2q0T i
Ir|ql?(1 — 22 o909
- (@4 RS (@A a-had) S a6

where we take uﬁaquff = 0 by imposing ¢o = E, = +/|q|> + m? upon @ in advance and
utilize

AU A @aﬁ (1 — 322) AU A
(QLQfZQ - T(l - Z2)> = - 9 (1- 22) - T(Iﬂlﬁ- (E.7)

E.1.2 Evaluating le(b)

Next, we evaluate the term proportional to Qé‘ 1)

Tmyd(¢* —m?) [ d’p 1 or oL
/ (Rt + K2,

§(q% — 2/2(5 — )2 —mA" | ~
(" —m7) g m((q —p)” —m”) cl(b) 2% (2m)3 |p|?

(E.8)

where

3

=T . . ? N
Keipy =1Ir [!p\ (¢ —p'| lal2) ('ql U"Z+p‘i> + J%,'T (!01|222 (u”((T—q0) ¢! +2q0Tu*)+p 1 q5)
+aT (20, a0~ a!{ ") +|allad (30, T — 5 o' + 20 Tu) + o w2 (a0 ~T))

— (¢t =#tlal?) (Lurzrpt ) (Warz+ ) b0y +O(IpP) | g, (E.9a)

0 0

~ I _ . 2 .
Kty = =20 Pl (7 a0 +lalu”2)+ B (w* (u” (lal2*(q0—2T)+43T) +5' [alao=(q0 ~T))

— ' aoT(lalu” 2+ ao) gy + 20w (2457 ) (Lr 451 ) Ip 20+ O(10 ).
(E.9b)

It is clear that O(|p|) terms in I@g{bL)“ can be dropped by symmetry of the integration. We
should further employ the useful decomposition and replacements in egs. (D.10), (D.11),
and the following relation in the integral,

2p v = 2pP (@ 2 + %) (@ 2 + D) (@5 2 + D5
22(1 — 2?%)

Hrp|3<z4czicziqi 5 (qiégﬂwﬁégﬂwiég”)), (E-10)
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where pf, = 64p,, and we drop terms with odd powers of z. Dropping the vanishing
terms by symmetry in eq. (E.8), we obtain

5(% — m?) / 278((q — p)? — m*)Q
P

7rTm%)(5(q2 —m?) /T d|p| 1
~ d KcIr + K, (E.11)
A Wc= =l I CHORE )]

v 2.,V ~H
q U q
| P B A AT I
0 0

v 2.2
+2UV\01’< (1—2%)|al*(qo—T)+q5T(1-3= ))) 94 (1—z )(2 |(;LT> G

qv

1 P
—|—§ qi(l—zQ)((ji(jﬁ(l—522)+(1—z2)®””—3q—lu”22>
40
2 2 nv P o v |q|2 v ~
—22(1-22) | e ¢t +0 (qL—l—q—Ou ) Oy gy (E.12)
and
?2%(qo—2T) |alz*(q0—T) (1-32%)
LTS Dy R i U S i E.13
cl(p) = Y [“ %< T H +4 |G1-ag—g (E.13)
2 1— 2
—u-&q% —i—@‘“’dy(;)+u“<2z2qﬁu”—cjﬁcﬁq0(1—3z2)—@p”q0(1—z2)>8qidq,,.
40
Since §(q* —m?)q-aq = 6(q¢* — m?)(Equ-ag + q1 - d,) = 0, we can use u -y = —q, - aq/qo

to further simplify ICZ;(bL)“ ), which results in

2 2 A
Ty - m?|qlz® ¢ [ 5 q0 m
,Cclélb)_IT{qL'aq [u/’l'qg2<2 (1 )(1+2T+ 4 (1*?)) ?<1 52 +2Z

0
222
+2q; 2(1 & ))> 2 — (1= ) <1Jr ‘;l!]oT )+;(1z2) [Cﬁ_ <|Q|(jﬁj_(jﬁ(15zz)

o 3lal*s® ., 201 5 oo lal? oy o ~
H+lal®™(1-2%) - — - u >—\qlz o Qi—(lqlqﬁqfou )z Cs aqﬁaqu}a
(E.14)
and
2| |52 2,2 2.2 2 2,2
ICCLI‘(‘b): Iz %_g<1_’qc’182 +mq8z )](ﬂ'&q"‘@i (1—22: )_mqu ]dj_'dq
—i—@’“’dy(l_22) +ut <2z2qiu”—cjicjﬁ_qo(1—322)—@p”qo(l—z2)>8qi&ql,. (E.15)
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E.1.3 Evaluating le(c)

In the same way, we should cope with the other term

7T'm%6(q*> — m? dp 1
6((]2 - m2)/2'ﬂ'5((q _p)2 - m2) gl(c) ~ D ( ) / (27‘(‘)3 (ICCI(C) + ’CLIEL)>,
P

2qo Ipl®
(E.16)
where
e _p| - Iql b | A \pl L
() = 1| ~IPI(L —pLlale) { © “utz 4] 2 lalqoz(qt —p11al2) (P o+ |alu”z)
—ﬂ%—w%%wmmﬁﬁmmw&uwwr¢mw)
2/ v A ’q| m AL |q| p o O 3|5 E
Hpl*(aL —pllalz) { - utz 4P qouz+m g +O(IPI”) | v, (E.17)
and

oL X _|pf . _
Keley = 2IPl(# g0 + |alu/2)u - dg — qnglq\Z(qo —2T) (' g0 + |alu”'z)u - 4

—mﬁ@m+Mw@C%W+ )%w%+mm% (E18)

As above, the O(|p|) terms in l@gl{f)“ do not contribute to the integral. Now, by employing
egs. (D.10), (D.11), and (E.10), we find

Tmpi(g>—m?) (T dp| [ T
5(q?—m? /27r6 —p)2—m?)Q" D / KLE 4+
(q ) ; ((g—p) )ch(c) 20 - 2m)2|p| ) ( cl(c) Cl(c))
(E.19)
where
_ a1 |af*2* Sl 2 lal*2* \ _lal® o
Kcte o) = IT[ = (1— )<l—|— (go—=T) | — 1 (I42%)(1- 2 T (1 z )
VST 2, 2 2 © 201 .2
(1 1 (1) 38 ) D o

)( 2gHvgh +ql((522— )qiqi+z2@pu)_(1_22)qi@p#)8qi] aq, (E.20a)

e _ - (0=2T)lalz® [ || 4 AP (192 pp(q 2
,Ccl(c) = TUlq qoT o —u +q +qo <QJ_QJ_(1 3z )Jr@ (1 z )
—2d14p 1U“z2)8qg (u-ag). (E.20b)

E.2 Rest of the terms: [QY” fvqaqy — Q1(1 — qu/)&g]

As we have evaluated two of the four terms in eq. (4.18), the remaining two terms are
given as

Co = 6(q* — m?) /gopl [Q’g”qudqu —Qu(1 — fyg)al|. (E.21)
P
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While Q1 has been given in the computation of the SKE, we now have the tensor part
Q4 agy = —2md(q"” — m2)90p{p“ [pL (p” - 2q<w”) +2pr (qﬁ — lalzp] — p”)} aq'y
—al [pL (q -+ 2(q5 — qu0)> + 2PT(|Q|2(1 —2%)—q- p)}

+ 2ufpp (q -pu” + (g0 — po)p”) aqy — 28y, q - ppT — 24P - Gg pT

—2p) (q PP — !qlzp”>pqum}. (E.22)
Combining the two terms, it is found
_mmpd(¢* —m?) [ d’p 1 roq, oL
G 240 (2m)? [pf° (Kato + Kl (E.23)

where the integrand is given as

?|

~ 2
K = —Ir ["2’0"’ 2(1-22) (1-2fvq)t) + 19 (dg(ZQ—l)(qg(l—Qzq|ﬁi(6qpqu)—2qu)

+(2qu —1) |Q|222) "‘2qu‘]02 (dqv (ﬁi(ﬁqo ‘Hﬁli |Q‘UV22 —p (‘ﬁqo + \q|u“z2)

+0(|p?), (E.24a)

— g alu” 2+ alu2) |l (034 )ao (=~ 1) ))

Kty = [2""”“(1 2fy4)i "’( (a8 2210l @ fva)+2Fra=D)+(1=2fv,)laa0=*)

+2quIqlqﬁz(ﬁiaqyuuqoﬁ’j(aqiag)—uvaqyﬁi)) +0(|p?). (E.24D)
Here, we utilize u-aq = —q -a4/qo in computations as above. Carrying out the integration,
we obtain
ey~ m%TZSf;‘ ") 1n(1/g0) (@0 + w0 O + 0 + 6P 0y,
+ 00 g 0t + QWm0 Ot + O ¢ 0y 0 ) (E.25)
where
O = oo lalab {1 = 2 ) =37 +35) ~ 2@ Fe) G +5)}
~ (2fvq = VIaPGT = i = 5T) + 2001 gt fra)iT ad] (E.26a)
0% = —2((t +Dlal - fad) Ltan -, (E.26b)
O = —2((GF +iD)lal* - i3 ) ;CV;QJ_ dq, (E.26¢)
oY =2 ( |q°| — |al Gt + 57 )) qoivq, (E.26d)
oW = ol — gD — (E.26e)
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E.3 Assembling all the pieces
Combining egs. (E.6), (E.11), and (E.20a) and carrying out the integration, we acquire

=0~ ) [ (@i - Qid)
p

N m%T{S(q2 —m?)
- 8mhy

+ Q0 d 0y alt + QY0 0 iy + QT 47 0 0 ) (E.27)

0 (3500 + G0 + 0 + Va0
41 ¥q)
1) 1 L T T T E
ch =5\ +3j1 — 3]0 +| |2( J2 ) ) ( .28&)

2 1 . . 2 ~UV o~ e
off - —2[2%(% q>(fo Gt Z%>+2q0qwi<aqzaqv>( st 4430 )

w~ ldl [ .0Q2ew-T) ,.L Tq(m*—lal*) | .7 m* (2g0+3T)
Ty, (‘71 T 30 o ~ 2 AT E T
1 g5 (T—2q0)
+ J2 |q|2 T )]a (E'28b)

3 1] 2 . . . .
Q§1)=—2[q<(q39f—lql2jg)( @)+ 1 05 (0 ) (810357 a8 - 3Iql2(J1L+J1T)))

U~ 2 . q 4
—d{a qu<|qé G —i5H-= (Jo +Jo)+37]1 +11L| C 7(290—37)—2j{ 277‘2

rlal® T m*qo T 4 T @
il o2l B ao—20)+ 238 g 6ol 2l it l)] .

4 L - L. 5/ .

O =lal (G +47 —if —38 )+t (T —33). (E.28d)
5 . . .

Q) = ((JfﬂlT)lq!Q—Jqug), (E.28¢)
6

QY ——< o lal®+ (5 — it — 241 )qo+J§q°2> (E.28f)
7 1 . .

Q) =—3 (JoT!ql2+(JoL—3jl —4j{ ) a5 +332T|q(|)2> - (E.28¢)

Note that we have implemented the following relations in computations,

lq

ve o~ - . L
Sl aql,—a’;—(aq-u)u“—afj—ku“Equ_-aq,
q

_ quL - g L (g laP
0q, (ag - u) = —0, ( >:— ea —=q" 41 - a,+ ¢ 0y, a
q1p\q q1p Eq Eq qV E2 1 q q1p7"qV

q

uM 2
©"q Ba Baqv = qLa Ba# - u“qﬁ@ (aq u) = qu) Bau + f (E2 q; + quJ_a%_> Gqp-
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By inputting exact expressions of jZ-T 'Y from egs. (D.13) and (D.14), it is found

Qill) _ _2’ (E29a)
0@ _ (% _ 2l (2+ m?) oy )y (E.29b)
cl AT qo al>/  |aPT !

q/? lq/?

L om®—1aP) nemP@ ), o (a0Bm? +lal?)  3nem’e
! [al? laf?

- U AP ~v
149 >QLQL8qiaqv

2 2 2
3 q0 Ngm A q Tlg™ " 4o ~
QY = (T —2- (g~ 2T)> GL g+ (0 - )aqia;

~ lalqT lal  af?

3m?+1a)®)  3nm3q )\ ., . .,

QY = —2/d, (E.29d)
3 2
Q) = 20 (1 - Wz > : (E.29€)
la|T qolq|
2 2 4
©® _ % 4G |, Ngm
%“_2<3‘m2+%mw)’ (E.256)
mzq
QY = Q,TI‘S(3Iq\qO +nq(lal® = 343)), (E.29g)
and

ol = 2% Jigi(1 -2 i) g (E.30a)
cl — W ‘q’( - qu) + (QJ_ qiqu) Wﬂq q0 , .30a

3 m2q fvg . -
o = Q(ITIOW - qg) ﬁ@ - g, (E.30Db)

3 miq fva . -
QY = ( |q,077q - q(2)> qO;QL g, (E.30c)

5(5) m?qo 2\ 20./vq

Qu =2 qu — TalT (E.30d)
QY =af =o' =o. (E.30e)

Finally, the sum of all the pieces C; + Co from egs. (E.25) and (E.27) provide the
collision term of the AKE:

m%6(q®> —m?)T
8wk,
\(5)@/8 ~ 1 5(6) VPO L O o Q(7)w 2900 p alt E.31
+ Qo ¢ 0y ag + Qo 0P 0gy Oy iy + Qo ¢G4 Oy Oy gy |- (E.31)

1749

A 8(@” = m?)Ch = In(1/g0) (4 QY +uQF + O + 0t 0, s

The coefficients QS) = Qg) + QS) (¢ =1,...,7) are shown in egs. (4.23a)-(4.23g).
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