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An  introduction to large-scale geometry of asymmetric spaces 

Nicolo Zava 

University of Udine 

1 Introduction 

Coarse geometry, also known as large-scale geometry, is the study of large-scale prop-
erties of spaces, ignoring their local, small-scale ones. The origin of large-scale geometry 
goes back to Milnor's problems and Gromov's ideas from geometric group theory and 
Mostow's rigidity theorem ([13]). 

Intuitively, two spaces are considered equivalent in coarse geometry if they look alike 
for an observer whose point of view is getting further and further away. For example, ev-
ery bounded space is indistinguishable from a one-point space. Another possible example 
is the pair given by the integer numbers Z and the real numbers恥.From a topological 
perspective, these equivalences seem to loose too much information of the spaces. In fact, 
"small holes" and "small discontinuities" of the spaces are ignored, and, for example, we 
can identify a discrete space, Z, with connected one, 恥. However, and somehow unex-
pectedly, this theory found applications in several branches of mathematics, for example 
in geometric group theory (following the work of Gromov on finitely generated groups 
endowed with their word metrics), in Novikov conjecture, and in coarse Baum-Connes 
conjecture. We refer to [14] for a comprehensive introduction to large-scale geometry of 
metric spaces, and to [9] for applications to geometric group theory. 

We have said that coarse geometry is the study of those properties of spaces that are 
preserved for an observer whose point of view is getting further and further away. Let us 
now more precisely describe the equivalences involved. 

A map f: (X, dx)→ (Y如） between metric spaces is said to be bornologous if, for 
every R 2'.'. 0, there exists SR 2'.'. 0 such that dy(f(x), f(y)) S: 品 ifdx(x, y) s; R. 

Defimtion 1.1. Let f: (X, dx)→ (Y応） be a map two metric spaces. Then f is called 
a coarse equivalence if there exists another map g: Y→ X and a value R 2'.'. 0 such that 
both f and g are bornologous and 

max{sup dx(g(f(x)), x), sup dy(f(g(y)), y)} s; R. 
xEX yEY 

If f is a coarse equivalence, then the spaces X and Y are called coarsely equivalent. 

Let us consider some easy examples of coarse equivalences. Every bounded metric 
space (X, d) (i.e., there exists R E恥o= {x E艮 Ix 2'. O} such that X こ恥(x,R)= 
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{y E X I d(x, y)~R}, for every x E X) is coarsely equivalent to a one point space { *} 
(just take any inclusion map f: { *}→ X and the constant map g : X→ { *}). The metric 
spaces Zand恥 endowedwith their canonical euclidean metrics are coarsely equivalent 
(we can take the inclusion map i: Z→ 恥andthe floor map L・」：恥→ Z such that, for 
every x E股， Lx」=max { n E Z I n~x}). 
In order to give more interesting examples of coarse equivalences, we need to give two 
important classes of metric spaces. 

Example 1.2. Let r = (V, E) be a non-directed connected graph. Then the set of vertices 
V can be endowed with the path metric dr defined as follows: for every x, y EX, 

dr(x, y) = min{n EN Iヨx。=x, X1, ... , Xn = y EV: Vi= 1, ... , n, {xi-1ぷ}EE}. 
Since r is connected, dr : V x V→ 記o= {x E恥 Ix~O}. If we consider also non-
connected non-directed graphs, we can extend the path metric by putting dr(x, y) = oo 
if and only if the vertices x and y are in different connected components. 

Example 1.3. Let G be a group. We say that G is finitely generated if there exists a 
finite subset~of G such that, for every g E G, there exist n E N and u1, ... , 四 E~

which satisfy g = u1・ ・ ・ 叩 (i.e.,G =〈E〉)• If a group G is finitely generated by a finite 
subset~, we assume without loss of generality that~=~-l and the identity ec of G 
belongs to区 Infact, we can replace~with~U炉 U {ec}. 

Let G be a group which is generated by the finite subset e E~=~-1. Let us define 
the (left) word metric dE as follows: for every pair of elements x, y E G, 

d汎x,y) = min { n Iヨu1,...'四 E~:y=x釘...叩｝．

Note that dもisleft-invariant, i.e., for every x, y, z E G, d叫zx,zy)= d叫x,y). 

To every finitely generated group G and every finite generating set~, we can associate 
a non-directed graph Cay(G, ~) = (G, E), called Cayley graph of G associated to~, where 
a pair {g, h} E G x G belongs to E if and only if there exists び E~such that h = gu. 

Note that the map idが (G,d叫→ (G, dcay(G,E)) is an isometry. 
A finitely generated group G can be endowed with several word metrics, in fact, they 
strongly depend on the finite generating set associated. However, from the large-scale 
point of view, they coincide as the following result shows. 

p ropos1tion 1.4. Let G be a finitely generated group, and~and • be two symmetric 
finite generating subsets of G. Then the identity map idが (G,dE)→ (G, ム） is a coarse 
equivalence. 

Proposition 1.4 can be interpreted as follows: every finitely generated group has pre-
cisely one large-scale geometry. Finitely generated groups are a very important object in 
geometric group theory where the large-scale approach turned out to be very fruitful (see, 
for example, [8] and [9] for a wide discussion of the subject). 

A classical generalisation of the notion of metric space is the one of uniform spaces. 
Uniform spaces have been widely studied since their introduction by the work of Weil and 
Tukey in the first half of the last century, and successfully applied in different areas. If 
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X is a set, every subset UこXx X is called an entourage. For every pair of entourages 
U, V, we define the composite of U and Vas the entourage 

UoV={(x,z)IヨyEX: (x,y) EU, (y,z) EV}, 

and the inverse of U as u-1 = {(y,x) I (x,y) EU}. 
Defimt10n 1.5 ([11]). A uniform space is a pair (X,U), where X is a set and U is a 
uniformity over it, i.e., a family of subsets of Xx  X that satisfies the following properties: 

(Ul) U is a filter (i.e., a family closed under taking finite intersubsections and supersets); 
(U2) for every U EU, △ x = {(x,x) Ix EX}~U; 
(U3) for every U EU, u-1 EU; 
(U4) for every U EU, there exists VE U such that Vo V~U. 

For instance, if (X, d) is a metric space, then, the family 

仙={V :2 UR IR:::: 叫， where,for every R > 0, UR= LJ {x} X恥(x,R), (1) 
咋 X

is a uniformity over X, called metric uniformity. The metric uniformity captures the 
small-scale properties (e.g., the topological properties) of a metric space. 

In order to generalise the large-scale properties of metric spaces, Roe introduced coarse 
spaces ([19]), as a counterpart of Weil's definition of uniform spaces via entourages, and 
Protasov and Banakh ([16]) defined balleans, generalising the ball structure of metric 
spaces. Furthermore, Dydak and Hoffiand with large-scale structures ([5]) and Protasov 
with asymptotic proximities ([15]) independently developed the approach via coverings, 
as Tukey did for uniform spaces. As for the definition of coarse structures and coarse 
spaces, we refer to Definition 2.1. Coarse structures are also very useful to encode the 
large-scale properties of groups. 

A very important coarse invariant (i.e., a cardinal associated to every metric space in 
such a way that two coarsely equivalent coarse spaces have the same cardinal associated 
to them) is the asymptotic dimension which was introduced by Gromov ([8]) as the large-
scale counterpart of the classical Cech-Lebesgue covering dimension (see [6]). We refer 
to [1] for a comprehensive introduction of this notion. In [20], the authors introduce 
and study some notions of asymptotic dimension in the realm of quasi-coarse spaces, 
generalising the usual concept. 

In mathematics some weakened version of metrics appeared. Let X be a set and 
d:XxX→ 股：：：0 U {oo} be a map such that d(x,x) = 0, for every x EX. The map dis 
a semi-positive-definite map. Moreover d is a 

• pseudo-semi-metric if, for every x,y EX, d(x,y) = d(y,x); 
• pseudo-quasi-metric if, for every x, y, z E X, d(x, y) :s; d(x, z) + d(z, y) (with the con-
vention that oo +a= a+ oo = oo, for every a E罠）．
In particular, a pseudo-metric is both a pseudo-semi-metric and a pseudo-quasi-metric. 
Note that we allow that the distance between two points is infinite. Usually, the prefix 
"pseudo" is dropped if, for every x,y EX, d(x,y) = 0 if and only if x = y. However, 
for the sake of simplicity, we call a pseudo-semi-metric a semi-metric and a pseudo-quasi-
metric a quasi-metric. The pair (X, d) is a semi-metric space if dis a semi-metric, and a 
quasi-metric space if d is a quasi-metric. 
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Let us now give some examples of quasi-metric spaces in order to motivate our in-
terest in those structures. The first example (Example 1.6) is due to Hausdorff himself, 
while Examples 1.8 and 1.9 are the asymmetric counterparts of Examples 1.2 and 1.3, 
respectively. 

Example 1.6 ([10]). Let (X, d) be a metric space. On the power set P(X) ={A~X I 
A~X} of X we define a map d'k: X x X→ 記oU{oc}邸 follows:for every Y, Z~X, 

d'k(Y, Z) = inf{R~0 I Zこ恥(Y,R)}, 

where inf 0 = oo. The map d'k is actually a quasi-metric, called Hausdorff quasi-metric. 

Example 1.7. Let (X, ~) be a preordered set. Then the preorder~induces a quasi-
metric屯 onX, called preorder quasi-metric, is defined as follows: for every x, y EX, 

ら(x,y)= {Q if XこY,
oo otherwise. 

Example 1.8. Let r = (V, E) be a directed graph. Then the set of vertices V can be 
endowed with the path quasi-metric dr defined as follows: for every x, y E X, 

dr(x,y) = min{n EN I :3x。=x, Xi, ... , Xn = y EV:'vi= 1, ... , n, (x;-1ぶ） EE}. 
Again min 0 = oc, and thus dr(x, y) = oo if and only if there is no directed path from x 
toY.ltise邸 yto check that dr is actually a quasi-metric. 

Before introducing the next example, let us recall some algebraic definitions. A magma 
is a pair (M, •), where Mis a set and•: M x M→ Mis a map. A magma (M, •) is called 
unitary if there exists a neutral element e E M such that g• e = e• g = g, for every g E M. 
A unitary magma is a monoid, if• is associative. 

Example 1.9. Let M be a monoid. We say that M is finitely generated if there exists 
a finite subset~of M such that, for every g E M there exist n E N and 0"1, ... , 叩 E~

which satisfy g = 0"1・ ・ ・ 匹

Let M be a monoid which is finitely generated by~- Let us define the left word 
quasi-metric dも邸 follows:for every pair of elements x, y E M, 

唸(x,y)= min{n Iヨ0"1,...'叩 E~:y= 幻1 ... 四｝

(we denote min 0 = oc). The map dさ： MxM→ NU { oo} is actually a quasi-metric. 
Similarly, we define the right word quasi-metric d名onM, as follows: for every x, y EM, 

d屈x,y)= min{n I :30"1, ... , 叩 E~: y=び1... 四 x}.

Moreover, note that dさ鳴） is left-non-expanding, i.e., for every x, y, z E M, dも(zx,zy) :::; 
dさ(x,y) (right-non-expanding, respectively, i.e., for every x, y, z E M, d屈xz,yz) :::; 
d;(x,y)). 

It is possible to extend the notion of Cayley graph, which is a useful tool to represent 
a finitely generated group, in the framework of finitely generated monoids. Let M be 
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a monoid and~ ~M a finite subset which generates M. Then the (left) Cayley graph 
of M associated to~is the directed graph Cay入(M,~) = (M, E), where (x, y) E E if 
and only if there exists a E~such that y = xa or, equivalently, dさ(x,y)= l. Similarly 
CayP(M, ~), the (right) Cayley graph, can be constructed. Also in this case, the maps 
叫： (M,dさ）→ (M,dca炉(M,~)) and idM: (M別）→ (Md , ~, CayP(M,1:)) are isometnes. 

We refer to [21] for a general introduction to the subject of quasi-metric spaces. Quasi-
metrics are innerly non symmetric, so, if we consider the family Ud as in (1), then (U3) 
may not be satisfied. 

In order to fill the gap, quasi-uniform spaces were introduced: a quasi-uniform space is 
a pair (X, U), where U is a quasi-uniformity over the set X, i.e. a family of entourages that 
satisfies (Ul), (U2) and (U4). There is a wide literature investigating those structures 
and also important applications to computer science were discovered (see the monograph 
[7] and the survey [12] for a wide-range introduction and a broad bibliography). Similarly, 
a semi-uniform space is a pair (X,U), where U is a semi-uniformity over the set X, i.e., 
a family of entourages that satisfies (Ul)-(U3) (see, for example, [2]). 

Following the paper [22], we introduce large-scale counterparts of quasi-uniform spaces 
and semi-uniform spaces, respectively, in order to generalise coarse spaces. In particu-
lar, we define quasi-coarse spaces and semi-coarse spaces (Definition 2 .1). Moreover, in 
order to provide a more comprehensive introduction to these new objects, we consider 
also entourage spaces, which are structures that generalise both quasi-coarse spaces and 
semi-coarse spaces. First of all, scratching the surface of this topic, we focus on adapting 
basic notions of coarse geometry (e.g., morphisms, as bornologous maps, connectedness, 
boundedness) to this more general setting. Moreover, we present a different character-
isation of those structures by using ball structures ([16]). We motivate our interest in 
quasi-coarse spaces and semi-coarse spaces by providing a wide list of examples in which 
those structures naturally appear. Most of them are extensions of some classical examples 
of coarse spaces. In particular, we prove that also every finitely generated monoid can be 
endowed with precisely just two word quasi-metrics up to asymorphism (Proposition 4.5), 
which coincide if the monoid is abelian. This result is a generalisation of the classical 
situation involving finitely generated groups and their word metrics (Proposition 1.4). 

Furthermore, we provide a generalisation of the notion of coarse equivalence between 
spaces in the realm of asymmetric objects, namely, the Sym-coarse equivalence. Using 
this equivalence, we could provide important characterisations of classes of quasi-coarse 
spaces: metric entourage spaces induced by quasi-metrics and graphic quasi-coarse spaces, 
giving an answer to a problem posed by Protasov and Banakh ([16, Problem 9.4]). 

Let us now describe the structure of the paper. In§2 we introduce the basic notions and 
properties of entourage, semi-coarse, quasi-coarse and coarse spaces, and the morphisms 
between them (§2.1). Then we alternatively describe them in terms of ball structures in§3. 
Examples of those structures are provided and studied in§4: relation entourage structures 
(§4.1), graphic quasi-coarse structures (§4.2), entourage hyperstructures and semi-coarse 
hyperstructures (§4.3), and quasi-coarse structures on finitely generated monoids (§4.4). 
The notion of Sym-coarse equivalence is introduced in§5, and then applied in§6 in order 
to characterise some special classes of quasi-coarse spaces. 



69

2 Coarse spaces and their generalisations 

Definition 2.1. Let X be a set. A family£ ~P(X x X) is an entourage structure over 
X if it is an ideal on X x X that contains the diagonal△ x-Moreover, an entourage 
structure£over X is 

• a semi-coarse structure if E-1 E£, for every E E£; 
• a quasi-coarse structure if E o FE£, for every E, F E£; 
• a coarse structure if it is both a semi-coarse and a quasi-coarse structure. 
The pair (X, £) is an entourage space (a semi-coarse space, a quasi-coarse space, a coarse 
space) if£is an entourage structure (a semi-coarse structure, a quasi-coarse structure, a 
coarse structure, respectively) over X. 

If£is an entourage structure on a set X, then also &-1 = {E-1 I E E£} is an 
entourage structure. Of course, £=炉 ifand only if£is a semi-coarse structure. 
Moreover, if£is a quasi-coarse structure, then炉 isa quasi-coarse structure. 

Let (X, £) be an entourage space and Y be a subset of X. Then Y can be endowed 
with the subspace entourage structure£I y = {En (Y x Y) I E E£}, and (Y, £IY) is called 
an entourage subspace of (X, £). If£is a quasi-coarse structure (semi-coarse structure), 
then Ely is a quasi-coarse structure (semi-coarse structure, respectively). 

If X is a set, a family B of subsets of X x X such that£= d(B) is an entourage 
structure (semi-coarse structure, quasi-coarse structure, coarse structure, respectively) is 
a base of the entourage structure (base of the semi-coarse structure, base of the quasi-coarse 
structure, base of the coarse structure, respectively)£. 

Let us now give some example of these structures. 

Example 2.2. (a) Every set X can be endowed with two entourage structures which are 
actually coarse structures: the discrete coarse structure£dis = d({ {△ x}}), and the 
trivial (or indiscrete) coarse structure← = P(X x X). Moreover, the discrete and 
the trivial coarse structures coincide if the set is a singleton. 
(b) A leading example of entourage structures is the metric entourage structure. Let 
(X, d) be a set endowed with an extended semi-positive-definite map d. We define the 
following entourage structure: 

品=d({ER~Xx XI R 2: O}), where, for every R 2: 0, ER= LJ ({x} x恥(x,R)).
xEX 

(2) 
Even though it is not precise, for the sake of simplicity, we call Ed a metric entourage 
structure. If d is a semi-metric, then Ed is a semi-coarse structure, while, if d is a 
quasi-metric, then Ed is a quasi-coarse structure. There are non-symmetric quasi-
metrics and semi-metrics that do not satisfy the triangular inequality which induce 
coarse structures. For example, consider the quasi-metric d1 and the semi-metric d2 
on N defined as follows: for every two points m, n E罠

d1(m, n) = max{lm -nl -1, O}, 皿 d d2(m,n) = { 
n -m if m ::; n, 

2(m -n) otherwise. 
(3) 



70

Although d1 does not satisfy the triangular inequality, and d2 is not symmetric, both 
Ed, and£d2 coincide with the metric coarse structure induced by the usual metric, 
and so they are coarse structures. 
In the sequel, for the sake of simplicity and for consistency with the previous literature, 
if d is a metric, we call品ametric coarse structure. 

More examples of entourage spaces will be given in§4. 

Remark 2.3. While uniformities capture the small-scale properties of spaces, coarse 
structures encode their large-scale behaviour. In order to clarify this idea, let us consider 
the following constructions. Let (X, d) be a metric space, and let us derived two more 
metrics from d: for every x, y E X, 

if X = Y, 

゜叫x,y)= min{d(x,y), 1}, and ん(x,y)={
max{ d(x, y), 1} otherwise. 

From the large-scale point of view, d1 loses a lot of information, in fact Ed, = Etriv, while it 
keeps all the important features from the small-scale point of view, and, in fact, Ud = U五
Conversely, the metric space (X, d2) is discrete and Udヂ叫， but品＝迄．

An entourage space (X, £) satisfies the property C4 (or X is strongly connected) if 
LJE=XxX. 

Example 2.4. One may ask whether there are quasi-coarse spaces that satisfy C4, but 
they are not semi-coarse spaces. 

Let (X, d) be a metric space and let h: X→ 尺 bean arbitrary function. Then the 
function dh : X→ 恥o,defined by the law 

叫x,y)= 
{ d(x, y) + h(y) -h(x) if h(y) -h(x) ::::: 0, 

d(x, y) otherwise, 

for every x, y E X, is a quasi-metric. 

Let now X = Z, d be the usual euclidean metric, and h(x) = x3. Then (Z立）
is a quasi-coarse space, since dh is a quasi-metric, and it is C4. However, it is not a 
coarse space. In fact, for every R ::::: a゚ndevery z E恥心(z+ R, z) = R, while 
叫z,z + R) = R(l + 3z2 + 3zR +だ）， andthe latter strongly depends on the point z. 
Hence, even though {(z + R, z) I z E Z}~ER E Ed, there exists no S ::::: s゚uchthat 
{(z,z+R)lzE 股}~Es.

In Example 2.2 we introduced metric entourage structures. We now want to charac-
terise those structures. If (X, £) is an entourage structure, its cofinality is cf£= inf{IBI I 
d(B) =£}. 

p ropos1tion 2.5. Let (X, £) be an entourage space. 

(a) There exists an extended semi-positive-definite map d on X such that£=品 ifand 
only if cf£::; w. 
(b) Suppose that£is a semi-coarse structure. Then there exists a semi-metric d on X 
such that£= Ed if and only if cf£ さw.
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Proof. First of all, the "only if" implications in both items (a) and (b) are trivial since 
he family {En In EN}, in the notation of (2), is a base of Ed. 

(a, ←） Let { Fn I n E N} be a countable base of£, and, without loss of generality, we 
can邸 kthat F;。＝△x and Fn C:: Fn+ 1, for every n E N. Then define a map d: X x X→ N 
邸 follows:for every x, y E X, 

d(x,y) = {min{n I y E Fn[x]} ifit exi~ts, 
oo otherwise. 

(4) 

It is easy to check that d satisfies the required properties. 

1s a semi-coarse structure with cf E < (b, ←） Suppose that E・ w. Then we can choose 
a base {Fn I n E N} as in item (a) with the further property that Fn = F, ご， forevery 
n EN. Then the map d defined as in (4) satisfies the desired properties. ロ

The maps din Proposition 2.5 do not assume value oo if and only if (X, E) is C4. 

The case where the entourage space is a quasi-coarse space (or a coarse space, in 
particular, which is a classical result) will be discussed in§6. 

2.1 Morphisms between entourage spaces 

Let f: X→ Y is a map between sets. If A and B are two families of subsets of X and 
Y, respectively, we denote by J(A) = {J(A) I A EA} and f―l(B) = {J―1(B) I BE  B}. 
Moreover, denote by f x f : X x X→ Y x Y the map defined by the law (f x f)(x,y) = 
(f(x), f(y)), for every (x, y) EX  x X. 

Definition 2.6. A map f: (Xぶ）→ (Yふ） between entourage spaces is said to be 
• bornologous (uniformly boundedness preserving, coarsely uniform) if (f x f) (Ex)~[y; 
• uniformly weakly boundedness copreserving if, for every E E [y, there exists F E Ex 
such that (f x f)(F) =En (f(X) x f(X)); 

• uniformly boundedness copreserving if, for every E Eふ， thereexists F E Ex such that, 
for every x EX, E[f(x)] n f(X)~f(F[x]); 
● effectively proper (or uniformly proper) if (f x f戸（ふ）こ応；
• a coarse embedding if it is both bornologous and effectively proper; 
• an asymorphism if it is bijective and both f and f―1 are bornologous. 

Note that all the properties introduced in Definition 2.6 can be checked just for all the 
entourages that belong to some base of the entourage structures. 

We can provide first trivial examples of the properties enlisted in Definition 2.6. 

Example 2.7. Let f: (Xぷ）→ (Yふ） be a map between two entourage spaces. Then 
the following properties trivially hold: 

(a) if Ex is the discrete coarse structure, then f is bornologous; 
(b) if [y is the discrete coarse structure, then f is uniformly boundedness copreserving; 
(c) if Ex is the trivial coarse structure, then f is effectively proper; 
(d) if [y is the trivial coarse structure, then f is bornologous. 
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It is easy to check that composites of bornologous maps are bornologous. Moreover, 
we have the following result. 

Propos1t10n 2.8. Let f: (X, Ex)→ (Yぶ） be a map between entourage spaces. Then: 
(a) if f is effectively proper, then f is uniformly boundedness copreserving; 
{b) if f is uniformly boundedness copreserving, then f is uniformly weakly boundedness 
copreserving. 

Proof. (a) Suppose that f is effectively proper and let E E [y. Then, for every x E X, 
E[f(x)] nf(X) C:: f((f x f)-1(E)[x]). In fact, for every y EX  such that (f(x), f(y)) EE, 
(x,y) E (f X f)-1(E) and so f(y) E f((f X f)-1(E)[x]). 

(b) Suppose now that f is uniformly boundedness copreserving and let E E [y. Let 
FE Ex be an entourage such that, for every x EX, E[f(x)] nf(X) C:: f(F[x]). We claim 
that En  (f(X) x f(X)) C:: (f x f)(F). Let (u, v) E En  (f(X) x f(X)). There exists 
zEf―1(u), and so v E E[f(z)] n f(X), which implies that there exists w E F[z] n f―l(v). 
Finally, note that (z,w) E F and (u,v) = (f(z),f(w)) E (f x f)(F). ロ

If f is injective, then both implications of Proposition 2.8 can be easily reverted. 
Proposition 2.9 gives another condition that implies their reversibility. 

Note that a map f: (Xぶ）→ Y from an entourage space to a set has uniformly 
bounded fibres if and only if恥={(x, y) EX  x X I f(x) = f(y)} E Ex. We call such a 
map large-scale injective. 

p ropos1t10n 2.9. Let f: (Xぷ）→ (Yふ） be a map between entourage spaces. If f 
is effectively proper, then f is large-scale injective. Moreover, if Ex is a quasi-coarse 
structure, then the following properties are equivalent: 

(a) f is large-scale injective and it is uniformly weakly boundedness copreserving; 
{b) f is large-scale injective and it is uniformly boundedness copreserving; 
{c) f is effectively proper. 

Proof. The first statement can be easily proved: sinceふyE [y, then凡=(f X 
f戸（ふy)EEx.
In view of Proposition 2.8, we just need to show the implication (a)→ (c). Suppose now 
that f is uniformly weakly boundedness co preserving and RI E£x. Let E E£y and (x, y) 
be an arbitrary pair in (fxf)-1(E). Let FE Ex such that (f xf)(F) = En(f(X) xf(X)). 
Then there exists (z, w) E F such that (f(x), f(y)) = (f(z), f(w)) and thus 

(x,y) = (x,z) o (z,w) o (w,y) E R10FoR1 E Ex. 口

Trivially, for a bijective map f: (Xぷx)→(Yぶ） between entourage spaces the fol-
lowing properties are equivalent: 

• f is an asymorphism; 
• f is bornologous and uniformly weakly boundedness copreserving; 
• f is bornologous and uniformly boundedness copreserving; 
• f is bornologous and effectively proper. 
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Let (Xぷx)and (Yぶ） be two asymorphic entourage spaces. Then£x is a semi-coarse 
structure (quasi-coarse structure) if and only if [y is a semi-coarse structure (quasi-coarse 
structure, respectively). For the proof of this fact, we address to [16], where the authors 
used the equivalent approach through ball structures (see§3 for the introduction of these 
structures). 

Furthermore, if X and Y are two asymorphic entourage spaces, then X satisfies C4 if 
and only if Y satisfies C4. 

3 Approach via ball structures 

Let (X, £)bean entourage space. Then we can associate to£a triple叫=(X,Pt:,B砂
where Pt:= {EE£I△ x~E} and Bt:(x, E) = E[x], for every x E X and every E E P. 
It is an example of ball structure. 

Definition 3.1. ([16, 18]) A ball structure is a triple s:B = (X, P, B) where X and P are 
sets, Pヂ0,and B: Xx  P→ P(X) is a map, such that x E B(x, r) for every x EX  and 
every r E P. The set X is called support of the ball structure, P -set of radii of a ball 
structure, and B(x,r) -ball of center x and radius r. In case X = 0, the map Bis the 
empty map. 

The terminology and the intuition come from the metric setting: if (X, d) is a metric 
space, then叫=(X忍 o,B砂isa ball structure, called metric ballean. 
For a ball structure (X, P, B), x EX, r E Panda subset A of X, one puts 

B*(x,r) = {y EX  Ix E B(y,r)} and B(A,r) = LJ{B(x,r) x EA}. 

A ball structure SB = (X, P, B) is said to be: 

• weakly upper multiplicative if, for every pair of radii r, s E P there exists t E P such 
that B(x, r) U B(x, s)~B(x, t), for every x EX; 

• upper multiplicative if, for every pair of radii r, s E P there exists t E P such that 
B(B(x, r), s)~B(x, t), for every x EX; 

• upper symmetric if, for every pair of radii r, s E P there exist r', s'E P such that 
B*(x, r)~B(x, r') and B(x, s)~B*(x, s'), for every x EX. 
It is trivial that upper multiplicativity implies weak upper multiplicativity since every 
ball contains its center. 

Definition 3.2. A ball structure is 

• a semi-ballean if it is weakly upper multiplicative and upper symmetric; 
• a quasi-ballean if it is upper multiplicative; 
• a ballean ([16]) if it is both a semi-ballean and a quasi-ballean. 

For every entourage space (Xぷ），魁 isindeed a weakly upper multiplicative ball 
structure. Moreover, if E is a semi-coarse structure, then魁 isa semi-ballean, while, if 
E is a quasi-coarse structure, then IBt: is a quasi-ballean. 
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We have seen how we construct ball structures from entourage structures. Let us now 
discuss the opposite construction. Letお=(X, P, B) be a weakly upper multiplicative 
ball structure. Then we can define an associated entourage structureら ofX as follows: 
for every r E P, 

Er= LJ ({x} X B(x,r)), 
xEX 

and the family {Er Ir E P} is a base for the entourage structure£~. Moreover, 
• if s:B is a semi-ballean, then£~is a semi-coarse structure; 
• ifお isa quasi-ballean, then£ ぉisa quasi-coarse structure; 
• if s:B is a ballean, then Eぉisa coarse structure. 
Letお ands:B'be two weakly upper multiplicative ball structures on the same support 
X. Then we identify those two ball structures and we writeお＝四 ifEぉ=£お,. We 
soon give a characterization of the equality between ball structures. Hence, for every 
entourage space (X, £) and every weakly upper multiplicative ball structure s:B on X, 

贔 =£and 叫 'B= s:B. 

The equivalence between coarse structures and balleans have been widely discussed for 
example in [18, 4]. 

Ifお andお'aretwo ball structure on a set X, thenお isfiner than s:B'and we write 
s:B ---<四 ifidx:(Eぉ）→ (Eお,)is bornologous. Moreover, 

IJ3=労 ifand only ifおぺお'and2.,'--<お． (5) 

4 Examples of entourage spaces 

In this subsection we enlist some examples of entourage spaces. 

4.1 Relation entourage structures and para-bornologies 

Let勿 bea reflexive relation over a set X. In other words, a~Xx Xis an entourage 
containing the diagonal△ x. Then we can canonically define an entourage structure 
む=d({勿}),which is called relation entourage structure. Moreover, a is symmetric 
if and only ifら isa semi-coarse structure, while勿 istransitive if and only if心 isa 
quasi-coarse structure. Furthermore note that, (ら）一1=£:Ji! 一,,where a —1 denotes the 
inverse of勿 asan entourage. 

Remark 4.1. Note that, if (X, 2:) is a preordered set and d:;, is defined as in Example 
1. 7, then£d2 =各

Another entourage structure that can be defined from a reflexive relation勿 ona set 
X is the following: £ 駅=d(虞]<wU {△ x}). 
It is easy to verify the following result. 

Proposition 4.2. Let f: (X属x)→(Y, 高） be a map between sets endowed with reflex-
ive relations. Then the following properties are equivalent: 
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(a) f preserves the relation (i.e., for every x, y EX, f(x)怠 f(y) provided that這 xY);
(b) f: (X, ら）→ (Y, £Bl』isbornologous; 
(c) f: (X, (ら）ー1)→(Y, (E; 島戸） is bornologous; 
(d)f:(X,£ 幻）→ (Y,£ 幻） is bornologous; 

(e) f: (X, (£ みt)-1)→(Y, (索）ー1)is bornologous. 

We have discussed how one can construct entourage structures from reflexive relations. 
Now, we focus on the opposite process. Let (X, £) be an entourage space. Then we 
define勿e= LJ£, which is a reflexive relation since△ x E£. Moreover, if£is a semi-
coarse structure, then島 issymmetric, and, if£is a quasi-coarse structure, then怠 is
transitive. 

Note that if勿・is a reflexive relation on X then 

~=五＝名岱·

Meanwhile, if (X, £) is an entourage space, then 

娑n こ£~ 畠・ (6) 

The inclusions in (6) can be strict. Consider, for example, 股.endowed with the usual 

metric d. Then£.、~: <;; 品こ伍.Furthermore, note that£=£&le if and only if LJ£E£ 
and, thus, every entourage structure£on a finite set X is a relation entourage structure. 
This observation will be used also in Remark 5.9. 

4.2 Graphic quasi-coarse structures 

In Example 1.8, we described how the family of vertices of a directed graph can be en-
dowed with a quasi-metric, namely, the path quasi-metric. The induced metric entourage 
structure Ed, which is a quasi-coarse structure, is called graphic quasi-coarse structure. 

The graphic quasi-coarse space can be extended to the points on the graph edges, 
by identifying every edge with the interval [O, 1] endowed with the relation quasi-coarse 
structure associated to the usual order~on [O, 1]. More precisely, if r = (V, E) is a 
directed graph and (v, w) E E, then we identify O with v and 1 with w, respectively. This 
new quasi-coarse structure is called extended graphic quasi-coarse structure. 

Let f: f(V, E)→ f'(V', E') be a map between oriented graphs. Then f is said to be a 
graph homomorphism if, for every (x, y) E E, either f(x) = f(y) or (f(x), f(y)) EE'. If 
f: f(V,E)→ f'(V', E') is a graph homomorphism, then f sends directed paths into non-
longer directed paths. Hence f: (V, d)→ (V', d) is non-expanding (i.e., d(f(x), f(y))ご
d(x,y), for every x,y EV), and thus f: (V, 品）→ (V', ら） is bornologous. 

4.3 Entourage hyperstructures 

Let (X, E) be an entourage structure. We define the following two entourage structures 
on P(X): 

H(E) = d({H(E) I△xこEEE}) and exp[= d({expE I△ x<::EEE})=社(E)nH(E)-1,
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where, for every EE£, 

1i(E) = {(A, B) I BこE[A]} and exp(E) = 1i(E) n 1i(E)―1, 

named entourage hyperstructure and semi-coarse hyperstructure, respectively. 

Remark 4.3. Let (X, d) be a metric space. In Example 1.6, we described the Hausdorff 
quasi-metric d'k on P(X). It is easy to prove that actually況=1i(品）．

First of all, note that, if£is an entourage structure, then both 1i (£) and exp£ 
are entourage structures since 1i(E) U 1i(F)こ1i(EU F), for every E, F E£. More 
precisely, exp£is actually a semi-coarse structure. Furthermore, if£is quasi-coarse 
structure, then 1i(E) is a quasi-coarse structure, while exp E is a coarse structure. In 
fact, for every E, F E£, if (A, C) E 1i(E)。1i(F), there exists B こX such that 
(A, B) E 1i(E) and (B, C) E 1i(F). Then B~E[A] and C~F[B], which implies that 
C~F[E[A]] = (FoE)[A] and so (A, C) E 1i(FoE). Note that 1i(E) is not a semi-coarse 
structure, unless the support X of£is empty: in fact, (X, 0) EH(ふ），although,for every 
EE£, E[0] = 0. Moreover, even ifwe consider the subspace (P(X) ¥ {0}, H(E)IP(X)¥{0}), 
it is a semi-coarse structure if and only if X satisfies (B砂.In fact, (X, {x}) E H(ふ），
for every x EX. 

Every map f: X→ Y between sets can be extended to a map『:P(X)→ P(Y) such 
that, for every A E P(X), 『(A)= f(A) E P(Y). 

Proposition 4.4. Let f: (Xぶ）→ (Yふ） be a map between entourage spaces. The 
following properties are equivalent: 

(a) f: (Xぶ）→ (Yぶ） is bornologous; 
(b) f: (P(X), 1i(Ex))→ (P(Y), 1i(ふ）） is bornologous. 

乃oof.As for the implication (a)→ (b), if f is bornologous, then the inclusion (『 x
f)(1i(E))~ 社((fx f)(E)), for every E E Ex, holds, and the thesis follows. Con-
versely, (b)→ (a) is a consequence of the fact that, for every entourage space (Zぷz),if 
EE Ez and x, y E Z, then (x, y) EE if and only if ({x }, {y}) E 1i(E). ロ

The study of the hyperspace of a coarse space was started in [17] and push forward in 
[3], using the language of ball structures (see§3 for their introduction). 

4.4 Finitely generated monoids 

In this subsubsection we want to briefly discuss the existence of precisely two inner 
quasi-coarse structures on a finitely generated monoid (see Proposition 4.5). The proof 
we give is similar to the proof of Proposition 1.4, which is the case of finitely generated 
groups (see, for example, [9]). 

Let M be a monoid which is finitely generated by :E. In Example 1.9 we defined the 
left, dも， andthe right, dもwordquasi-metrics. These quasi-metrics induce quasi-coarse 
structures on the monoid. 

Proposition 4.5. Let M be a monoid and :E and△ be two finite subsets of M which 
generate the whole monoid. Then愴=ed~and 信 =e唸・



77

Proof. Define k = max{ d公(e,a)I a EI:} and l = max{dさ(e,t5) I t5 E△ }. Letx,yEM, 
suppose that dさ(x,y) = n and let a1, ... , an E I: such that y =如 •••an- Suppose 
that a; = 6;,1・ ・ ・6;,k,, for every i = 1, ... , n, where k; = d公(e,叫 andt5;,J E△, for every 
i = 1, ... , n and j = 1, ... , k;. Then 

y=四・..四＝叫，1... ふ，k1必，1... 似，kn

and sod公(x,y) さ江~=1k; :::; nk =硫(x,y). Hence, Edさ ~Ed公. Similarly, dさ(x,y):::;
ld入(x,y) and then E吠~~吟.A similar proof shows that信=Ed久．ロ

5 The Sym-coarse equivalence 

In this subsection we focus on quasi-coarse spaces. We want to introduce another 
equivalence notion, which will be more flexible than the one of asymorphism. In order 
to do that, we need to fix some terminology and notation. Two maps f, g: S→ (X,£) 
from a set to a quasi-coarse space are Sym-close, and we denote it by f "'Sym g, if 
{(f(x),g(x)),(g(x),f(x)) x EX} E£. Note that the Sym-closeness relation just 
defined is an equivalence relation. 

Remark 5.1. Let f,g: S→ (X, £) be two maps from a set to a quasi-coarse space. If 
f = g, then f "'Sym g. The converse implication is not always true. However, if均 isthe 
discrete coarse structure over Y, then f "'Sym g if and only if f = g. 

Remark 5.2. It will be useful to check that some large-scale properties of a map are 
shared by all the maps in its equivalent class under Sym-closeness. Let us fix a pair 
of Sym-close maps f, g: (X, £x)→ (Yふ） between quasi-coarse spaces. Since they are 
Sym-close, M = {(f(x), g(x)), (g(x), f(x)) Ix EX} E [y. 
(a) We claim that f is bornologous if and only if g is bornologous. In fact, let us assume 
that f is bornologous, and let E E£x be an arbitrary entourage. Then, for every 
(x,y) EE 

(g x g)(x, y) = (g(x), f(x)) o (f(x), f(y)) o (f(y), g(y)) EM  o (f x f)(E) o M, 

which shows that (g x g)(E)~Mo (f x f)(E) o ME  [y. 
(b) Similarly to what we have done for the item (a), we can prove that f is effectively 
proper if and only if g is effectively proper. In fact, if f is effectively proper, for every 
EEふ， (gX g)-1(E)~(f X f)-1(M OE OM). 
(c) The map f is large-scale surjective if and only if g is large-scale surjective. Let E Eら
be an entourage such that E[f(X)] = Y. Then 

(Mo E)[g(X)] = E[M[g(X)ll~E[f(X)] = Y. 

Let f: X→ Y be a map between quasi-coarse spaces. Then a map g : Y→ Xis a 
Sym-coarse inverse off if go f "'Sym idx and fog "'Sym idy. 

Definition 5.3. Let f: (Xぷ）→ (Yむ） be a map between quasi-coarse spaces. Then 
f is a Sym -coarse equivalence if it is bornologous and has a Sym-coarse inverse g: Y→ X 
which is bornologous. 
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Two quasi-coarse spaces are Sym-coarsely equivalent if there exists a Sym-coarse equiv-
alence between them. 

In Theorem 5.6 we give other characterisations of Sym-coarse equivalences. 

A subset L of a quasi-coarse space (X, £) is Sym-large if there exists a symmetric 
entourage E = E-1 E£such that E[L] = X. A map f: (X, Ex)→ (Y, ふ） between 
quasi-coarse spaces is large-scale su巧ectiveif f(X) is Sym-large in Y. If f is also large-
scale injective, then it is large-scale bijective. The following result characterises large-scale 
bijective maps between quasi-coarse spaces. 

p ropos1tion 5.4. Let f: (Xぶ）→ (Yぶ） be a map between quasi-coarse spaces. Then 
f is large-scale bijective if and only if it has a Sym-coarse inverse. In particular, every 
Sym-coarse inverse is large-scale bijective. 

Proof. (→） Let M = M-1 Eふ bean entourage such that M[f(X)] = Y. For every 
y E Y, there exists xy E X such that (y, f(xy)) E M. If y E f(X), suppose that 
Xy E f―1(y). Define g: Y→ X with the following law: g(y) = Xy, for every y E Y. Then 
(f(g(y)), y) E M for every y E Y, which witnesses that fog ~sym idy. The fact that f 
is large-scale injective proves that g o f ~sym idx. 

（←） Let now g: Y→ X be a Sym-coarse inverse off. Let M = M-1 E Ex and N = 
N-1 Eら betwo entourages showing that go f ~sym idx and fog ~sym idy, respectively. 
Note that, for every y E Y, f(g(y)) E f(X) and (y, f(g(y))), (f(g(y)), y) E N. Hence f 
is large-scale surjective. Moreover, since R1 = {(x,y) EX  x XI f(x) = f(y)}こMoM,
f is large-scale injective. 

The last assertion is trivial since, if g is a Sym-coarse inverse of f, then f is a Sym-
coarse mverse of g. ロ

p ropos1tion 5.5. Let f: (Xぶ）→ (Y, [y) be a large-scale bijective map between quasi-
coarse spaces and let g be a Sym-coarse inverse off. Then, the following properties are 
equivalent: 

(a) f is bornologous; 
(b) g is uniformly weakly boundedness copreserving; 
(c) g is uniformly boundedness copreserving; 
(d) g is effectively proper. 

Moreover, every other Sym-coarse inverse h of g satisfies h ~sym f. 

Proof. Since g is large-scale injective, the equivalences (b)← (c)← (d) descend from Propo-
sition 2.9. Suppose now that f is bornologous. Let E E Ex and consider (g x g)-1(E). 
Denote by M = M-1 the entourage ofら suchthat (f(g(z)), z) E M, for every z E Y. 
Then, for every (x,y) E (g x g)-1(E), 

(x, y) = (x, f(g(x))) o (f(g(x)), f(g(y))) o (f(g(y)), y) EM  o (f x f)(E) o ME  [y. 

Conversely, suppose that g is effectively proper. Denote by N = N-1 E Ex the entourage 
showing that go f ~sym idx. Let EE Ex and (x, y) EE. Then 

(g(f(x)), g(f(y))) = (g(f(x)), x) o (x, y) o (y, g(f(y))) EN  o E o NE  Ex 
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and thus (f(x), f(y)) E (g x g)-1(N o E o N) E [y. 

Finally, if h is another Sym-coarse inverse of g, then, for every x EX, 

(g(f(x)), g(h(x))) = (g(f(x)), x) o (x, g(h(x))) EN  o K, 

where K = K-1 E Ex is an entourage that shows that goh ~sym idx. Hence (f(x), h(x)) E 
(g x g)-1(N oK) and so f ~sym h since (g x g)-1(N oK) = ((g x g)-1(N oK))-1 E [y. ロ

Note that, with an easy variation of the proof of Proposition 5.5, one can prove that 
every large-scale injective map f: (X, Ex)→ Y from a quasi-coarse space to a set has 
a partial Sym-coarse inverse, i.e., a map g: Y'→ (Xぶ）， whereY'~Y, such that 
go f ~sym idx・

Theorem 5.6. Let f: (Xぶ）→ (Yぶ） be a map between quasi-coarse spaces. Then 
the fallowing are equivalent: 

(a) f is a Sym-coarse equivalence; 
(b) f: (X,Ex)→ (Y, [y) is large-scale bijective, bornologous and uniformly weakly bound-
edness copreserving; 
(c) f: (Xぶ）→ (Y, [y) is large-scale bijective, bornologous and uniformly boundedness 
copreserving; 
{d) f: (X, Ex)→ (Y, [y) is large-scale surjective, bornologous and effectively proper. 

Proof. The equivalences (b)⇔ (c)⇔ (d) follow from Proposition 2.9. 

(a)→ (b) Since f has a Sym-coarse inverse g, it is large-scale bijective, thanks to Propo-
sition 5.4. Moreover, g is bornologous and thus Proposition 5.5 implies that f is uniformly 
weakly boundedness copreserving. 

(d)→ (a) Let us construct a map g: Y→ X with the desired properties. Since f is 
large-scale surjective, there exists M = M-1 Eふ suchthat Y = M[f(X)]. Hence, for 
every pointy E Y, we can fix another point x EX  with the property that (f(xy), y) EM. 
Define the map g by putting g(y) = xy, for every y E Y. Let now x E X. Then 
(f (x), f (g(f (x)))) = (f(x), f(xJ(x))) E M, and so (x, g(f(x))) E (f x f)-1(M) E Ex since 
f is effectively proper. Thus go f ~sym idx. If now y E Y, the pair (y, f(g(y))) E M 
because of the definition of g, which implies that fog ~sym idy, and so g is a Sym-coarse 
inverse off. The conclusion then follows from Proposition 5.5. ロ

Theorem 5.7. Let (Xぶ） and (Y, [y) be two quasi-coarse spaces. Then X and Y are 
Sym-coarsely equivalent if and only if there exist two subspaces X'~X and Y'~Y, 
which are Sym-large in X and in Y, respectively, and an asymorphism f': X'→ Y'. 

Proof. (→） Let assume that there exists a Sym-coarse equivalence f : X→ Y. According 
to Theorem 5.6, f is large-scale surjective, bornologous and effectively proper. Let X'こX
be a subset with the following property: for every x E X, IX'n f―1(f(x))I = 1. Then 
f'= fix,: X'→ Y', where Y'= f(X) = f(X'), is bijective. Moreover, f': (X'ぶ氏）→
(Y', らIY')is bornologous and effectively proper, since it is a restriction of f. Finally, 
since f: X→ Y is large-scale injective (Proposition 2.9), X'is Sym-large in X. 
（←） Let M = M-1 E Ex be an entourage such that M[X'] = X. Then define a map 
h:X→ X'as follows: if x EX', then h(x) = x, and, if otherwise x EX¥ X', then h(x) 
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is a point such that (h(x), x) E M. Similarly we can define a map k: Y→ Y'. We claim 
that h皿 dk are bornologous. Let EE  Ex. Then note that (h x h)(E)~M oEoM E Ex 
and thus h is bornologous. The same property can be similarly proved for k. Then the 
maps f = f'oh皿 dg = (!1)-1 o k are bornologous. We claim that g is a Sym-coarse 
inverse off. For every x EX, since kly, = id匹

(x, g(f(x))) = (x, (J')-1(k(f'(h(x))))) = (x, (J')-1(f'(h(x)))) = (x, h(x)) EM, 

皿 dthus g o f ~sym idx. The other request can be similarly proved. ロ

p ropos1tion 5.8. Let (Xぶ） and (Yぶ） be two Sym-coarsely equivalent quasi-coarse 
spaces. If (X, Ex) is a coarse space, then so it is (Y, Ey). 

Proof. Let f: X→ Y be a Sym-coarse equivalence and let g: Y→ X be a Sym-coarse 
inverse of f. Moreover, let E = E-1 E Ex and p-I = F E E y be two symmetnc 
entourages which witness that go f "'Sym idx and fog "'Sym idy, respectively. Then, for 
every KEふ and(x, y) EK, 

(y, X) = (y, f (g(y)))o(f (g(y)), f (g(x)))o(f (g(x)), X) E Fo(f X f) (((g X g)(K))―1)oF E Ey, 

皿 dthen K-1 Eら． ロ
Remark 5.9. Let (X, E) be a finite quasi-coarse space. According to the discussion 
contained in§4.1, there exists a pre-order ::::: n゚X such that E =を (actually,:::::= LJ E). 
Moreover, ::::: induces an equivalence relation竺 onX in the usual way: for every x, y EX, 
x竺 yif and only if x ::::: y and y ::::: x● L砒坐 X→見加伽叩叩叫皿p.Then::::: 
induces a p叩 ialord紅：：：：： = (q x q)(:::::) on X = X/竺. Moreover, the map q: (Xふ）→
(X, ら） is a Sym-coarse equivalence. Hence, finite quasi-coarse spaces from the large-scale 
point of view are just partial ordered sets. 

6 Characterisation of some special classes of quasi-coarse spaces 

Let (X, E) be a quasi-coarse space. Then (X, E) is monogenic if there exists an en-
tourage E E E such that the family {En I n E N} forms a base of E, where En is the 
composite of n copies of E. In the realm of coarse spaces, monogenicity is a classical 
notion (see, for example [19]). In particular, every monogenic quasi-coarse space has a 
countable base. Note that, if (X, E) is an entourage space such that there exists E E E 
with the property that d({炉 nE N}) = E, then E is a quasi-coarse structure. An 
example of a monogenic quasi-coarse space is a directed graph endowed with its graphic 
quasi-coarse structure. 

Proposition 6.1. If X and Y S are ym-coarse y equivalent quasi-coarse spaces, then: 

(a) X satisfies C4 if and only if Y satisfies Cぶ
(b) X is monogenic if and only if Y is monogenic. 

Proof. First of all, note that all those properties are invariant under asymorphism. Thanks 
to Theorem 5.7, it is enough to prove the claim when Y is a Sym-large subspace of X, 
皿 d,in this case, item (a) is not hard to shown. Let us now prove item (b). 
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Suppose that X is monogenic and E E Ex is an entourage such that { En I n E N} 
is a base of Ex. Let F E ExlY-Then there exists np E N such that F c;;; E圧 Let
(x, y) E F. Thus there exist z。=x, z1, ... , Zn = y E X such that (zi, zi+1) E E, for 
every i = 0, ... , n -l. Moreover, for every i = 1, ... , n -l, there exists z: E Y such 
that (zi, z;) E M. Then, if we define zb = x and z~= y, for every i = 0, ... , n -l, 
(zしz:+1)E (Af O E O M) n (Y X Y). Hence { ((Af O E OM) n (Y X Y) r I n E N} is a base 
of [y. 

Conversely, suppose that Y is monogenic and { En I n E N} is a base ofふ， forsome 
EE Cy. By using a similar argument, it is easy to show that {(Mo E o Mt  In EN} is 
a base ofら．ロ

Lemma 6.2. Let (X, Ex) and (Y, ら） be two Sym-coarsely equivalent quasi-coarse spaces. 
Then cf Ex= cfふ．

Proof. By applying Theorem 5.7, we can assume that Y is an entourage subspace of X 
and the inclusion map i: Y→ X is large-scale surjective. It is trivial that cf£y~cf Ex・
Let f: X→ Y be a Sym-coarse inverse of i and M = M-1 E Ex be an entourage such 
that (x, f(x)) E M, for every x E X. Then, for every base {EふEIof Cy, we claim that 
{Mo Ei o M}i is a base of Ex, and thus cf Ex~cf窃 In fact, let F E Ex and i E I be 
an index such that (Mo F o M)IYxY c;;; Ei. Then F c;;; Mo  Ei o M. ロ

We are now ready to prove the generalisations of some classical classification results in 
the framework of quasi-coarse spaces ([16, Theorems 9.1, 9.2], [18, Theorem 2.11]). The 
following results, together with Proposition 2.5, give a complete characterisation of metric 
entourage structures. 

Theorem 6.3. Let (X, E) be a quasi-coarse space. The following properties are equivalent: 

(a) there exists a quasi-metric d: X x X→ 恥0U {oo} on X such that E = Ed; 
(b) there exists a quasi-metric space (Y, d) which is Sym-coarsely equivalent to (X, E); 
(c) cfE~w. 

Proof. The implications (a)→ (b)→ (c) are trivial: in particular, (b)→ (c) is implied by 
Lemma 6.2. 

(c)→ (a) Let {F, ふ bea base of£as in the proof of Proposition 2.5(a) with the 
following further property: for every m, n EN, Fm o Fn c;;; Fm+n・We claim that the map 
d: XxX→ [O, oo] defined as in (4) is a quasi-metric and, in order to show it, proving that 
d satisfies the triangle inequality is enough. Let x, y, z E X be three arbitrary points. The 
inequality d(x, z)~d(x, y) +d(y, z) trivially holds if d(x, y) = oo or d(y, z) = oo. Suppose 
now that d(x, y)~m and d(y, z)~n. Then (x, z) = (x, y) o (y, z) E Fm o Fn c;;; Fm+n and 
thus d(x, z)~m + n. Finally, the equality£= Ed can be easily proved. ロ

A quasi-coarse space satisfying the hypothesis of the previous theorem is called quasi-
metrisable. Since the extended quasi-metric defined in the proof of Theorem 6.3 does not 
assume the value oo if and only if the quasi-coarse space is strongly connected, in view of 
Proposition 6.1, Theorem 6.3 can be specialised as follows. 
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Corollary 6.4. Let (X, E) be a quasi-coarse space. The following properties are equiva-
lent: 

(a) there exists a quasi-metric d on X which does not assume the value oo and satisfies 

E=f必
{b) there exists a quasi-metric space (Y, d) which does not assume the value oo and is 
Sym-coarsely equivalent to (X,E); 
{c) (X, E) satisfies C4 and cf E :::; w. 

[18, Proposition 2.1.1] implies that the quasi-metrics in Theorem 6.3 and in Corollary 
6.4 can be taken as metrics if and only if the initial space is a coarse space. 

Finally we can answer to a problem posed by Protasov and Banakh [16, Problem 9.4]. 

Theorem 6.5. Let (X, E) be a connected quasi-coarse space. Then the following properties 
are equivalent: 

(a) (X, E) is a graphic quasi-coarse space; 
{b) (X, E) is Sym-coarsely equivalent to a graphic quasi-coarse space; 
(c) (X,E) is monogenic. 

Proof. The implication (a)→ (b) is trivial. As for the implication (b)→ (c), since graphic 
quasi-coarse spaces are monogenic, Proposition 6.l(b) implies that also (X, E) has the 
same property. 

(c)→ (a) Let△xこEE E be an entourage such that cl({ En I n E N}) = E. Consider 
the directed graph r = (X, E) whose set of edges is the entourage E (i.e., a pair of points 
(x, y) of Xis an edge of r if and only if (x, y) EE). Then the graphic quasi-coarse space 
associated to the graph r is asymorphic to (X, E). ロ
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