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1 Introduction 

1.1 Some definitions from lattice theory 

Let Z be the ring of rational integers and恥 thefield of real numbers. Let u1, u2, ... , Un 

be linearly independent vectors over恥in町. The Zmodule generated by u1, u2, ... , Un is 
called a lattice L in町.These vectors are called a basis of the lattice L. The inner product 
and the norm are defined in L as a subset of JRn. 

A lattice Lis integral if L satisfies (x, y) E Z for any x, y E L where (,) is the bilinear form 
associated to the metric. Two integral lattices L1 and L2 are said to be isometric if and only 
if there exists a bijective linear mapping from L1 to L2 preserving the metric. The maximal 
number of linearly independent vectors over尺 inL is called the rank of L. The dual lattice 
L # of L is defined by 

げ={y EL幻 IQlI (x,y) E z,¥/x EL}. 

Here IQ) is the field of rational numbers. A lattice L is even if any element x of L has even 
norm (x, x). In an even lattice L, we say that xis a 2m-vector if (x, x) = 2m holds for some 

natural number m. Let A2m(L) be the set defined by 

(1.1) A2m(L) = {x EL I (x,x) = 2m}. 

A lattice L is called unimodular if L = L先 Evenunimodular lattices exist only when n = 0 

(mod 8). The minimal norm of a lattice is Min(L) = minxEL¥{o}(x,x). When Lis even 
unimodular of rank nit holds that (conf. [31]) 

Min(L) < 2 [ 
n -u] +2. 

Such a lattice which attains the above maximum is said to be extremal. 

1.2 The formulation of the problem 

When we put a sphere S瓜x)of radius R with the center at each lattice point x of a 

given lattice L C JR匹 IfR is large enough, then the set UxEL品(x)covers配.Therefore we 
may seek to find the least value R such that 

us凩x)= 酎

xEL 

holds. We call such R = p(L) the covering radius of the lattice L. 
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1.3 The simplest non-trivial case. n = 2 

This case was settled by R. Kershner [22]. He showed that the most efficient lattice cov-
ering is the hexagonal lattice covering. His original work is rather complicated and isolated 
from the methods used in the n 2 3 dimensions. 

1.4 Fundamental Parallelepiped 

Let u1, u2, ... , Un be a basis of L. The point set defined by 

:FP = {(a心＋位 ・U2+・ ··+···+a叫n)IO~ai~1,i = 1,2, ... ,n} 

is called a fundamental parallelepiped with respect to the basis u1, u2, ... , uか

From the linear algebra (c.f. for instance I. Satake "Linear Algebra") it is known that the 
volume Vol(:FP) of :FP is the absolute value of the determinant 

det(u1, u2, ... , u砂

Another formulation of Vol(:FP) is to use the Gram matrix of the lattice. 

Gram(L) = ((ui, Uj))1<::i,j<::n-

Vol(:FP) = ydet(Gram(L)). 

2 The Dirichlet-Voronoi region of the lattice 

Let L be a lattice in訊 Letu be a lattice point other than 0. Let 1l1;2u be the hyperplane 
perpendicular to u that crosses with u at the point 1/2u. The hyperplane divides the total 
space即 intotwo half-spaces. Let 1{五(0,L) one of the half-spaces that contains O plus 

the hyperplane 1l1;2u-The de恥 ingequation of 1l1;2u is given by 

(x, x) = (1/2u, 1/2u) + (x -1/2u, x -1/2u). 

This is simply the Pithagorian Theorem. The above equation can be rewritten as 

(2.1) (x, u) = 1/2(u, u). 

Consequently the definig ineq叫 ityof知 (0,L) is given by 
丹

(2.2) (x, u) :S 1/2(u, u). 

We see that the poits in知 (0,L) are the points that are of closer or eq叫 distanceto 0 -,u 
than u. 

p ropos1t10n 2.1. The set冗 (0,L is a convex set. -,u ） 

Proposition 2.2. The intersetion of any number of convex sets is also convex. 

With these preparation we define the Dirichlet-Voronoi region of L around O as 

Vor(O,L)= n咋 (0,L). 
uEL¥O 

This set consists of points that are closer to O than any other lattice points in L. 

Proposition 2.3. Let L be a lattice in配. Then the Dirichlet-Voronoi region of L around 
0 is convex in飛匹
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3
 

Basic Theorem 

Theorem 3.1. Let L be a lattice in配.Let V or(O, L) be the Dirichlet-Voronoi region of L 

arround 0. The quadratic function 

j(x1, X2, ・ ・ ・, X砂 =xi+x~+-·•+x~

that is defined on V or(O, L) attain its maximal value at some verteces of V or(O, L). We call 
such ve廿ecesdeep holes of L. 

The problem says that we want to find maximal value of the quadratic function f under 
linear constraints (2). This is a special case of the quadratic programming problems. The 
square root of the maximal value in Theorem 3.1 is the covering radius of L, and we denote 
it by p(L). 

4
 

Two Major Trends of problems 

We viewed some of the basic references ([7],[43],[46],[48]). The present speaker does not 
have a chance to read [20]. We may note that there are two major trends in studying the 
covering radius problems in the class of positive definite lattices. 

4.1 First trend 

In the dimensions where the reduction theory is well studied the Dirichlet-Voronoi region 
for a given reduced basis of a lattice L is determined. 
In [27] Lagrange determined the conditions of reducedness for the binary positive definite 

quadratic forms. In [15] Dirichlet determined the conditions of reducedness for the ternary 
positive definite quadratic forms. After ternary case Minkowski [33] gave a sketch of the 
reducedness conditions for n-ary forms (2 :s; n :s; 5) and in [34] Minkowski gave a sketch of 
the reducedness conditions for senary forms. In these two articles he did not give full details 
of the sketch. van der Waerden [52] made explicit the reducedness condions for quaternary 
quadratic forms. Ryskov [44] worked out the case n = 5. Tammela [49] worked out the case 

n = 6, and [50] worked out the case n = 7. 
A natural step to obtain the Dirichlet-Voronoi region associated with a given lattice L is to 
start from the reduced basis of L and to attain the Dirichlet-Voronoi region by an appropri-

ate process. 
Since a Dirichlet-Voronoi region is a convex polyhedron, a combinatorial type of a Dirichlet-

Voronoi region is a set of data consisting of the vertices, the edges, the two-dimensional 
faces, .... 

A Table of the combinatorial classification of the Dirichlet-Voronoi region. 

n
-
2
3
4
5
 

number of types 

2 

5 
52 
？ 

contributer 

[16], [9] 
[12], [13], [48], [10] 
？ 
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For a specified n to find the best possible lattice in艮匹

To estimate the efficiency of the lattice covering the notion of the thickness 0(L) is known. 

8(£) = 
Voln(Sp(L)) 

Vol(FP) . 

For a fixed n the lattice with smaller 8(£) is a better lattice covering. 

Remark 1. If L2 is similar to£1 with the similitude t. Then we see that Voln(Sp(L2)) = 
tnVoln(Sp(L,)) and Vol(FP(£E)) = tnVol(FP(£00)) holds. Consequently we have 8(£1) = 
8(£ 砂．

A Table of the best known lattice covering. 

n 8 lattice source 

2 1.2092 hexagonal lattice [22] 

3 1.4635 Af [4], [1], [18] 

4 1.7655 Af [14] 

5 2.1243 A# 
5 [45] 

n26 unknown 

4.2 Second Trend 

When n ?: 8 the reduction theory is not well developed explicitly. 
A principal strategy to treat the problem is that (i) to determine the exact shape of of the 

Dirichlet-Voronoi region of the lattice L, and (ii) to determine the covering radius of L. For 
specified classes of lattices L the covering radius of p(L) and its thickness 8(L) are known. 
The irreducible root lattices and their duals 

4.2.1 root lattices and their duals 

ふ(n:2: 1), Dn(n :2: 4), E6, E7, E8. First appearance of these lattices is described in [24, 
25, 26] in the form of the quadtratic forms. The lattice version of the root lattices may be 
due to v.d. Waerden [51] or Witt [59, 60]. 

4.2.2 extremal lattices 

It is known that in dimensions 8,16,24,32,40,48,56,64,72,80, there exists at least one even 
unimodular extremal lattice. 

4.2.3 uniform lattices 

A uniform lattice is a lattice which has a basis consisting of minimal vectors. 
A root lattice is a uniform lattice. An even unimodular extremal lattice of dimension 8, 

(resp.16,24, 32, 48, 72) is uniform. 
In [54] Venkov has proved that any even unimodular 32-dimensional extremal lattices is 
generated by the minimal vectors (norm 4). 
In [39] the present speaker has showed that any even unimodular 48-dimensional extremal 
lattice is generated by the minimal vectors of norm 6. 



98

Remark 2. The uniformity of the Leech lattice is easily read from the binary code construe-
tion of the Leech lattice. 

Although the uniformity of a lattice is known it is not easy to give an explicit minimal norm 
vector basis. Our present method needs to know the explicit basis of a lattice. 

In [23] Kominers has showed that any even unimodular 72-dimensional extremal lattice 

is generated by the minimal vectors of norm 8. 

Remark 3. At the time of the appearance of f邸） the existence of even unimodular露

dimensional extremal lattice is not known. Three years after this work Nebe /36} showed 
such a lattice. /23} is a kind of speculation. 

5 Examples 

Lemma 5.1. Let L be an integral lattice in股n. Suppose that U1 E Am, and U2 E Am2 satisfy 
(u1, u2) = 0. Then it holds that 

四01(0,L)n1-l〗0,(0, L) c 1-l〗(u丘u2/0, L). 

Proof. We put v = u1 + u砂.The defining inequality for知 (0,L) is 
2v 

We observe that 

(x, v) :S:: 1/2(v, v). 

(x, v) = (x, u1) + (x, u2) 
:S 1 

2 
-(v,v) 

1 1 
-(u1, u1) + -(u2, uサ
2 2 

If x E 1i; (0, L) and x E Ji+ (0, L). Then x E 1i; (0, L). This is what we should が,, が12 2(u1 +u2) 
show. ロ

5.1 D4 case 

Let D4 = [e1 -e2, e2 -e3, e3 -e4, 約+e4]z, where 

e1 = (1, 0, 0, 0), e2 = (0, 1, 0, 0), e3 = (0, 0, 1, 0), e4 = (0, 0, 0, 1). 

A fundamental parallelepiped F p++++ (Dりisdefined by 

pp++++(Dり＝

{ (x1, x2, x3, x4)l(x1, x2, x3, x4) = a1(e1 -e2) + a2(e2 -e3) + a3(e3 -e4) + a4(e3 + e4), 
〇 ~ai~l,ai E恥， i=l,2,3,4}.
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Let 
1 

D={x=(x1,x公叫，四）€的(x,u)さう(u,u) = 1, u E A2(Dり｝．

The defining inequalities for D are 

-1 Sふ 一 巧 S1, -1 S X; + X j S 1, 1さi< j S 4. 

By elementay considerations we find that the vertices of V are 

1 1 1 1 
X1 =士ー心2=士ー， X3=士ー，四＝士—,or x; =士1,巧 =O(j =/ i). 

2 2 2 2 

Since we haveいパ;可21 for v E A2m, m 2 2, we conclude that 

V or(O, D4) = V. 

The covering radius of D4 is 1. 

5.2 Leech lattice 

I A2 I = 0, 
I A4 I = 196560, 

I A6 I = 16773120, 

I As I = 398034000. 

Proposition 5.2. Let ,C be the Leech lattice and A4 = A4(£), then we have 

(5.1) L (x, a)2 = 32760(a, a) 
xEA4 

(5.2) L (x, a)4 = 15120(a, a)2 
xEA4 

(5.3) L (x, a)6 = 10800(a, a)3 
xEA4 

(5.4) L(x,aド=10080(a, a)4 
xEA4 

(5.5) L (x, a)10 = 11340(a, a)5 
xEA4 

(5.6) L (x, a)14 -91・(a, a) L (x, a)12 = -90090・(a a)7 
1 2'  

xEA4 xEA4 
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Proposition 5.3. Let ,C be the Leech lattice and A6 = A訊£),then we have 

(5.7) L (x, 0:)2 = 41932so(a, a) 
xEA5 

(5.8) L (x, a)4 = 2903040(a, a)2 
xEA6 

(5.9) 区(x,a)6 = 3110400(a, a)3 
xEAs 

(5.10) L (x, a)8 = 4354560(a, a)4 
xEA5 

(5.11) L (x, a)10 = 7348320(a, a)5 
xEA5 

5.3 Dirichlet-Voronoi region of the Leech lattice 

Theorem 5.4. Let£24 be the Leech lattice. Then Dirichlet-Voronoi region Vor(O, ら） of 
£24 arround O is determined by 

Vor(Oら） = n咋(0,L). 
uEA心 A5

Proof. A sketch of the proof. 
As the first approximation of Dirichlet-Voronoi region for the Leech lattice we begin with 

n叩 (0,L). 
ぅU

uEA4 

Take any v E A6. Then we put 

a=v, 入k= #{u E A4l(u, v) = k}. 

By a simple argument we can show that -3~k~3 and by Proposition 5.2 we have the 
relations 

2. 32ふ+2. 22ふ+2・ ふ

2. 34ふ+2・24ふ+2・ 入1

2. 36ふ+2.26ふ+2・ 入1

By solving these equations we have 

32760・6 

15120・62 

10800・63 

入3= 252, 入2= 12978, 入1= 44100. 
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We consider the vectors u Eふ whichsatisfy (u, v) = 3. Take such a vector u. The angle 
of intersection 0 between v and u satifies 

cos0 = 
(u,v) 

凶.y'(戸
3 

2・ 凶ず

The hyperplane which is perpendicular to the vector u and intersects with u at the point 
½u should meet with the vector v at cv. We see a geometric relation: 

Thus we have 

1 
《伍~cos0= -((u,u). 

2 

2 
c= -. 

3 

This shows that the point½v is inside of nuEA4甘tJo,L), and the half-space 1lい(0,L) 

sharpens nuEA4 1l; (0, L). Thus the second approximation of the Dirichlet-Voronoi region ,u 
for the Leech lattice we obtain n知 (0,L). 

呼
uEA心 A6

It remains to show that the half spaces n uEA2m Ht (0, L), m;::,: 4 do not affect to 
百u

Vor(O, Leech) = n 1-lt (0, Leech). 
引l

uELeech¥O 

We quote a result in [7], Chap. 22 and Chap. 23. 

Theorem 5.5. The covering radius of the Leech lattice is⑫ 

口

Remark 4. Let G = Aut(ら） be the automorphism group of the Leech lattice. Then any 
element a-E G acts on the Dirichlet-Voronoi region of the Leech lattice. 

Ht (0, L)→ザ (0,L). 
丹 ½u~

Thus G acts also on the set of the deep holes of the Leech lattice. The Dirichlet-Voronoi 
region has also another kind of holes (shallow holes). 

5.4 Even Unimodular Extremal 32-dimensional Lattices 

When C is a doubly even self-dual binary [32, 16, 8] code and L(C) = N(C) is the even 
unimodular extremal lattice constructed from C in the previous section, we put A2k = { x E 

L I (x, x) = 2k} (k~0). The cardinality of the set A2k is denoted by I A2k I-The 
following cardinalities are well-known: 

I A5 I = 64757760, 

I As I = 4844836800. 
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We are particularly interested in the set A4(L(C)). 心＝ふ(L(C))is a union of six 
mutually disjoint subsets: 

(8.0) 

defined by 

A4 = A4,1 U A4,2 U A4,3 U A4,4 U A4,5 U A4,6, 

Proposition 5.6. Let£32 be an even unimodular extremal 32-dimensional lattice andふ＝
ふ(£32),then we have 

(5.12) L (x, a)2 = 18360(a, a), 
xEA4 

(5.13) L (x, a)4 = 6480(a, a)2, 
xEA4 

(5.14) L (x, a)6 = 3600(a, a)3, 
xEA4 

(5.15) ど(x,a)10 -
15・(a, a) 

4 
L (x, a)s =ー7560• (a, a)見

xEA4 xEA4 

The following statement may be possible to prove. (We have not completed the proof 

yet.) 

Theorem 5.7. Let£32 be one of even unimodular extremal lattices. Then Dirichlet-Voronoi 

region Vor(O.C32 of£32 arround O is determined by 

Vor(Oら） = n四(0,L). 
xEA心 A6

Remark 5. Even if we could prove the above statement it takes much effort to determine the 
covering radius of£32. At present we face the complex computational obstacles for finding 
the ve廿icesof the Dirichlet-Voronoi region of£32. 

5.5 48-dimensional Even Unimodular Extremal Lattices 

Proposition 5.8. Let£48 be an even unimodular 48 dimensional extremal lattice , ふ＝
心(£48)and a E£48 (8) IR, then we have 

(5.16) L (x, a)2 = 6552000(a, a) 
xEA5 

(5.17) L (x, a)4 = 2358720(a, a)2 
xEAe 

(5.18) L (x, a)6 = 1360800(a, a)3 
xEA6 
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(5.19) L (x, a)8 = 1058400(a, a)4 
xEA6 

(5.20) 区(x,a)10 = 1020600(a, a)5 
xEA5 

(5.21) L (x a)14 
91-(a,a) 12 

12 L(x,a) =-7297290-(a,a) 
xEA5 xEA5 

Remark 6. We could make a statement for£48 similar to Theorem 5. 7, but it is not the 
time to circulate it. 

5.6 72-dimensional Even Unimodular Extremal Lattices 

Proposition 5.9. Let£72 be an even unimodular 72 dimensional extremal lattice , ふ＝
ふ(£72)and a E£72 (8)艮， thenwe have 

(5.22) L (x, a)2 = 690908400(a, a) 
xEAs 

(5.23) L (x, a)4 = 224078400(a, a)2 
xEAs 

(5.24) 区(x,a)6 = 117936000(a, a)3 
xEAs 

(5.25) L (x, a)8 = 84672000(a, a)4 
xEAs 

(5.26) L (x, a)10 = 76204800(a, a)5 
xEAs 

(s.21) L (14  
91-(a,a) 

x, a) - 12 L (x, a)12 = -518918400• (a, a)7 
xEAs xEA5 

6 Problems 

• For many of Niemeier lattices the Dirichlet-Voronoi regions, covering radii are not 
known. 

• For£48 andら weknow that both lattices have minimal basis. But we do not know 
explicit forms of the basis. For this reason we can not know the precise shape of the 
Dirichlet-Voronoi regions of these two lattices. 

• When the minimal basis has the different norms (even they are reduced). The deter-
mination of the covering radius of the lattice would be much hard. 

• For the class of odd unimodular lattices not many results are obtained. 
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7 Appendix 

Let Sr be a sphere of radius r in then-dimensional Euclidean space !Rn. Then the volume 

of Sr is given by 
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