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of dimension 5 *

Wataru Kuranaka, Tatsuya Maruta |
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1 Introduction

A linear code over F,, the field of ¢ elements, of length n, dimension k is a k-
dimensional subspace C of the vector space Fy of n-tuples over F,. C is called an
[n, k,d], code if it has minimum Hamming weight d. A k x n matrix G whose rows
form a basis of C is a generator matriz of C. A fundamental problem in coding
theory is to find n,(k, d), the minimum length n for which an [n, k,d], code exists
for given ¢, k,d [6, 7]. A natural lower bound on n,(k, d) is the Griesmer bound:

k—1

nlhd) 2 (k)= 3 | 5|

=0

where [z] denotes the smallest integer greater than or equal to z, see [1]. A linear
code attaining the Griesmer bound is called a Griesmer code. The values of n,(k, d)
are determined for all d only for some small values of ¢ and %k [5, 16]. Note that
ny(k,d) = g4(k,d) for all d when k =1 or 2 [6]. The problem to determine n,(k, d)
for all d has been solved for £k < 8 when ¢ = 2, for k < 5 when ¢ = 3, for £k < 4
when ¢ = 4 and only for £ = 3 when 5 < ¢ < 9, see [16]. For the case k = 5, the
following results are known.

Theorem 1.1 (]2, 9, 10, 15]). For any prime power q, ny(5,d) = g,(5,d) for
(1) ¢ —¢—q+1<d<q¢"—¢+¢ —q,
(2) ¢" =2 +1<d<q'+q,
(3) 2¢* —3¢* +1 < d < 2¢* = 3¢° + ¢*,

(4) 2¢* —2¢® — > +1<d<2¢"+¢* —q,

*This paper is a preliminary version and the final version will be submitted to elsewhere.
fCorresponding author. E-mail address: maruta@mi.s.osakafu-u.ac.jp

113



114

(5) 3¢ = 5¢° + ¢* + 1 < d < 3¢" — 5¢° + 2¢?,
(6) d>3q¢* —4¢® + 1.
Theorem 1.2 ([3, 4, 11, 15, 16]). n,(5,d) = g4(5,d) + 1 for
(1) ¢ —¢ —F+1<d<q" — ¢ —q forq>3,
(2) ¢* —2¢* —2q+1<d < q"—2¢> — q for ¢ > 4,
(3) ¢ —2¢> —q+1<d<q"—2¢* for ¢ >3,
(4) 2¢" —2¢° — ¢ —2¢+ 1 < d < 2¢* — 2¢° — ¢* for ¢ > 3,
(5) 3¢* —4¢> —2¢+1 < d < 3¢* — 4¢> — q for ¢ > 11,
(6) 3¢* —4¢° —q+1 < d < 3¢* — 4¢° for ¢ > 5.

Our main result is the following.

Theorem 1.3. n,(5,d) = ¢,(5,d) +1 for 3¢* —4¢* —4q+1 < d < 3¢* — 4¢* — ¢ for
q=>5.

2 Preliminaries

In this section, we give the geometric method through PG(r, ¢), the projective geom-
etry of dimension r over I, and preliminary results to prove the main result. The
0-flats, 1-flats, 2-flats, 3-flats, (r — 2)-flats and (r — 1)-flats in PG(r,q) are called
points, lines, planes, solids, secundums and hyperplanes, respectively.

Let C be an [n, k,d], code having no coordinate which is identically zero. The
columns of a generator matrix G' of C can be considered as a multiset of n points in
Y = PG(k—1,q), denoted by M. A point P of ¥ is an i-point if it has multiplicity
me(P) =i in Me. In other words, m¢(P) is the number of times which P appears
as columns of G. Denote by 7y the maximum multiplicity of a point from ¥ in M.
For any subset S of X, the multiplicity of S with respect to Mc, denoted by me(S5),
is defined as me(S) = Y peg me(P). Then me satisfies n = me(X) and

n—d=max{me(n) | T € Fr_a}, (2.1)

where F; denotes the set of j-flats of £. Conversely, such a mapping m¢ : ¥ — Ny =
{0,1,2,...} as above gives an [n, k, d], code in the natural manner, see [1]. For an
m-flat IT in X, we define

v;(II) = max{me(A) | AC I, Ae F;} for 0<j<m.

We denote simply by ~; instead of v;(X). Then 44_2 = n —d, -1 = n. For a
Griesmer [n, k, d], code, it is known (see [15]) that
J

d .

u=0



A line [ with ¢ = me(l) is called a t-line. A t-plane and so on are defined similarly.
Denote by a; the number of i-hyperplanes in 3. The list of a;’s is called the spectrum
of C. We usually use 7;’s for the spectrum of a hyperplane II of ¥ to distinguish
from the spectrum of C (7; is the number of j-secundums contained in II). Let 6;
be the number of points in a j-flat, ie., §; = (¢! —1)/(¢ — 1). Simple counting
arguments yield the following.

Lemma 2.1 ([17]). Let II be a w-hyperplane through a t-secundum 6. Then
(8) t <2 — (n—w)/qg=(w+qmw-—2—n)/q.

(b) ay =0 if an [w, k—1,dy], code with dy > w — {WJ does not exist, where

|| denotes the largest integer less than or equal to x.

(¢) _s(Il) = {WJ if an [w, k —1,d4], code with dy > w — {WJ +1

q q
does not exist.

(d) Let ¢; be the number of j-hyperplanes through 6 other than II. Then Zj ¢ =q
and
> (2 —j)ej =w+qra —n —qgt. (2.3)

J

(e) For a ~g_o-hyperplane 1y with spectrum (1o,...,7,_,), 7= > 0 holds if w +
k-2 —n —qt <gq.
Lemma 2.2 ([12]). Let IT be an i-hyperplane and let Cyy be an [i,k—1,do| code gen-

i+q'm7rnJ
)

erated by Mc(I1). If any vi_o-hyperplane has no t-secundum with t = L .

then doy > 17—t + 1.

i<y @i < 1, where

Lemma 2.3. The spectrum of an [n, k,d|, code satisfies )

. Ln—(n—d)(q—l)—lJ.

2

Proof. Assume a; > 0 for an ¢ < u. Then, the right hand side of (2.3) is at most
u+(n—d)g—n. Since u < (n—(n—d)(q—1))/2, we have n—d—u > u+(n—d)qg—n,
which implies that ¢; = 0 for any j < w. Hence, a; = 1 and a; = 0 for other
7 < u. O

An f-multiset F on PG(r, q) satisfying
m =min{mgz(n) | T € F_1}

is called an (f, m)-manihyper. When an [n, k, d], code is projective (i.e. 7o = 1), the
set of O-points forms a (01 —n, Ox_o — (n — d))-minihyper in PG(k — 1, ¢), and vice
versa.

Lemma 2.4 ([8]). Every (z(q+ 1), z)-minihyper in PG(2,q) with ¢ = p™, p prime,
m>1,1<z<q—q/p, is a sum of x lines.
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3 A sketch of the proof of Theorem 1.3
Lemma 3.1. Let g > 3 be a prime power.

2)
b

[2¢%, 3,24 — 2q], code has spectrum (ag, az,) = (1,¢* + q).

A

A 2¢° + q+1,3,2¢* — q|, code has spectrum (agi1,azq+1) = (1,¢* + q).
[2¢* + 2q + 1,3,2¢* — 1], code has spectrum (asyi1, azgr2) = (¢ +1,4%).

A

(
(b)

(c) A
(d) A [2¢* 4+ 2q + 2,3,2¢* — 2q|, code has spectrum asgs = ¢* +q+ 1.

Lemma 3.2. Let C; be a Griesmer [3¢* —q—1,3,3¢* — 4q|, code with ¢ > 5. Then,
the spectrum of Cy is (agg—1,asq—1) = (4,02 —4) and Mc, =35 — (I + lo + I3 + 14),
where X = PG(2,q) and 1y, ..., 1y are four non-concurrent lines.

Proof. Since vy = 3 from (2.2), the multiset F = 3X — Mc, forms a (46;,4)-
minihyper. Hence F is a sum of four lines, say [y, ...,l4, by Lemma 2.4, which are
non-concurrent because of v, = 3. U

Using Lemmas 3.1 and 3.2, one can prove the following.

Lemma 3.3. Let Cy be a Griesmer [3¢* — ¢* — q — a,4,3¢> — 4¢* — a + 1], code
with ¢ > 5 and 2 < a < 4. Then, the spectrum of Cy satisfies that a; > 0 implies
2 —q—a<i<2¢®—q—1o0r3¢*> —q—a<i<3¢>—q—1 and that

Yo oa=4 (3.1)

i<2q2—q—1

Lemma 3.4 ([14]). ny(4,d) = g,(4,d) + 1 for 2¢> —=3¢*> —q+1 < d < 2¢* — 3¢* for
q=>4.

It is known that [g,(5,d) + 1,5,d], codes exist for 3¢* —4¢> —4qg+1 < d <
3¢* — 4¢® — q for ¢ > 5, see [11]. Hence, it suffices to show the following to prove
Theorem 1.3.

Lemma 3.5. There ezists no [g,(5,d),5,d|, code for d = 3¢* — 4¢* — aq + 1 with
2<a<4 forq>5.

Proof. We prove the lemma only for a = 3. One can prove the lemma similarly for
a = 2,4. Let C be a putative [g,(5,d),5,d = 3¢* — 4¢> — 3¢ + 1], code with ¢ > 5.
Then, a y3-solid Ag gives a Griesmer [3¢® — ¢* — ¢ — 3,4, 3¢® — 4¢*> — 2], code. Since
an i-solid through a t-plane satisfies

Sz‘+q+2
q

t (3.2)

by Lemma 2.1, we have

i>(2¢° —q—3)g—(q+2) =2¢"—¢* —4g — 2.



Hence, a; = 0 for all i < 2¢% — ¢*> — 4g — 2. Applying Lemma 2.1(d), we have
>.;¢i=qand

Z(3q3—q2—q—3—j)cj:i—qt+q—|—2. (3.3)
J

Suppose an i-solid A exists for i = 2¢> —¢*> —q¢—2+y with 0 < y < g —1. Then, we
have t < 2¢>—q—1 by (3.2) and Lemma 3.3. Hence, A gives an [i, 4, 2¢> —3¢*—1+y],
code, which does not exist for y > 1 by the Griesmer bound. For y = 0,1, A
gives a Griesmer code, which does not exist by Lemma 3.4. Hence a; = 0 for
20 —* —q—2<i<2¢—¢* - 3.
Next, suppose an i-solid A exists for i = 2¢°® — ¢*> + vq — 2 +y with 0 < 2 < ¢*> — 5,
0 <y <q—1. Then, we have t < 2¢> — ¢+ 1+ x by (3.2). Since (3.3) satisfies
Cnoq=0fort=2¢>—q+1+zand c,_q=c,_q1 =0 fort =2¢> — g+ z by Lemma
3.3, we have t < 2¢*—q—1+xz. Hence, A gives an [i,4,2¢* —3¢*+ (z+1)g—1—z+y],
code, which does not exist by the Griesmer bound. Hence, a; = 0 for 2¢° — ¢> — 2 <
i < 3¢° — ¢* — 4q — 3. Now, the spectrum of C satisfies that a; > 0 implies

s¢® — > —4q—2<i<sqg®—q¢*—q—3 with s =2 or 3.

Setting (i,t) = (3¢° — ¢* —q — 3,2¢> — ¢ — 3+ ¢) with 0 < e < 2, the RHS of (3.3)
is equal to ¢ + (3 — e)g — 1. Hence

Y a=4 (3.4)

i<2¢3—q¢?—q—3

by (3.1). Setting i = 2¢°* —¢*—q—3 in (3.3), (RHS of (3.3))= 2¢*> —¢*—1—qt. When
ZJ.SQququg ¢; >0, we have t < ¢* — ¢ — 1 from (3.3). It follows from Lemma 2.3
with length n =i and n —d = 2¢> — ¢ — 1 that u = |¢* — %2] > ¢* — ¢ — 1. Hence,
Zigzqgququ a; < 2, which contradicts (3.4). Similarly, we get Zigqgfqgqug) a; <2
for 2¢° — ¢* —4q — 2 < i < 2¢* — ¢* — q — 4, which contradicts (3.4) again. Thus,
there exists no [g,(5, d), 5, d], code for d = 3¢* — 4¢> — 3¢ + 1. O
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