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Abstract 

A minimal clone is an atom in the lattice of clones. The classification of minimal 
clones on a finite set still remains unsolved. A minimal groupoid is a minimal clone 
generated by a binary idempotent function. In this paper we report some examples of 
minimal groupoids generated by binary functions which resemble projections. 
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1 Introduction 

In the lattice of clones, an atom is called a minimal clone and a coatom is called a maximal 

clone. One of the fundamental problems in clone theory is to classify maximal clones as well 

as minimal clones. In 1970 I. G. Rosenberg [Ro70] published the complete classification of 

maximal clones on a k-element set for any finite k > 2, which solves the case for maximal 

clones. For minimal clones, however, the problem has not yet been solved. The complete 

classification for any finite set seems quite a hard task. The minimal clones on a 2-element 

set have been known since E. Post (1941) and those on a 3-element set were classified by 

B. Csakany (1983) in [Cs83]. In addition, some partial results were obtained for minimal 

clones on a 4-element set ([Sz95, WaOO]). 

A minimal groupoid is a minimal clone generated by a binary idempotent function. Main 

purpose of this article is to report our work on minimal groupoids developed in [BM19]. More 

specifically, after defining the notion of pr-distance for a binary function, we present examples 

of minimal groupoids generated by binary functions with pr-distance 1 or 2. Furthermore, 

some examples of minimal groupoids are given whose generators have larger pr-distance. 

2 Prerequisites 

Let k > I be an integer and恥={0,1, ... ,k-l}. Denote by 0炉， n> 0, the set of 
n-variable functions on Ek, i.e., 0『)= E:;:, and by Ok the set of all functions on Eか
i.e., Ok = Un>O oin). A function ef in 0『), 1 -<; i -<; n, is the n-variable i-th projection 
if呼(x1,... , Xn) = X; holds for all X1, ... , Xn E Ek. Letふ bethe set of projections on Ek. 

*behrisch@logic.at 
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A subset C of Ok is a clone on Ek if C contains all the projections, i.e., :lkこC,and is 

closed under (functional) composition. The set of clones on 1りkforms a lattice with respect 

to set inclusion, which is called the lattice of clones and denoted by .Ck. 

For a clone C on Ek and a subset F of C, F generates C if C is the smallest clone 

containing F. In other words, F generates C if C is the intersection of all clones containing F. 

When F generates C, we write C =〈F〉.If Fis a singleton, i.e., F = {f} for some f E以

we simply write〈f〉inplace of〈F〉.

A clone C inら isa minimal clone if it is an atom of the lattice .Ck. Equivalently, C is 

a minimal clone if (1) Cヂふ and(2)ふ cC'こCimplies C'= C for any C'in .Ck. 

A minimal clone is generated by a single function, which is not a projection, i.e., C =〈f〉

for some f E Ok¥ふ.A function f E Ok is a minimal function if f generates a minimal 

clone and f has the minimum arity among functions generating〈f〉.

In [Ro86], I. G. Rosenberg presented what is now called the "Type Theorem" for minimal 

functions. 

Theorem 2.1 Let k 2": 2. Any minimal function on Ek is of one of the following five types: 

(1) unary function 

{2) bina可 idempotentfunction 

{3) ternary majority function 

(4) ternary minority function 

(5) semiproJection 

(2) 
We review the definitions of the terms used above: For f E Ok , f is idempotent if 

f(x,x)~x. For g E 0ド， gis a majority (resp., minority) function if g(x, x, y)~g(x, y, x) 
()  ().  Also, h E a(nl . . ~g y, x, x~x resp., y k 1s a semiproJection if there 1s i (1さi:S n) such 

that h(x1, ... , Xn)~ 叩 wheneverl{x1,---,Xn}I < n. (Here, g(x,x,y)~x, for example, 

means g(x, x, y) = x for all x, y E Ek.) 

It is a well-known fact, and plays an important role in this article, that .Ck is atomic, i.e., 

every clone inら＼｛ふ}contains a minimal clone. 

For f and g in Okn), f is conjugate tog if f is obtained from g by renaming the elements 

in Ek. When f and g are conjugate to each other, 〈f〉isa minimal clone if and only if〈g〉is

a minimal clone. Furthermore, f is the dual of g if f(x, y) = g(y, x) for all x, y E Ek. If f is 

the dual of g then, clearly, 〈f〉=〈g〉・

We shall call a clone C a groupoid if C is generated by a binary function, that is, if 

C=〈f〉forsome f E 0戸.A minimal groupoid is a minimal clone generated by a binary 
minimal function. 

3 Pr-Distance 

Intending to measure the "distance" of a binary function from the projections, we introduced 
(2) 

a mapping 8 : Ok ----+ {O, ... , 炉}for k > 1 as follows ([BM19]). For a binary function f 

in 0戸， let

ふ(f)=炉-#{(i,j) EE~I J(i,j) = i }, 

ふ!(!)= k2 -#{ (i,j) EE~I J(i,j) =j} 
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and 

5(!) = min{釘(f),52(!) }. 

Thus, ふ(f)(resp., 52 (f)) is the Hamming distance off from the projection ei (resp., e~)­

We shall call 5(!) the pr-distance off. Evidently, 5(!) = 0 if and only if f is a projection. 

4 Minimal Groupoids on  E3 

In 1983, B. Csakany ([Cs83]) determined all minimal clones on the 3-element set E3. The 

total number of minimal clones on恥 is84. Among them, the number of minimal clones 

generated by binary idempotent functions, i.e., minimal groupoids, is 48. 

It turns out that binary minimal functions on E3 can be classified into three classes: 

Commutative functions and two types of non-commutative functions, those with 8(!) = 1 

and those with 8(!) = 2. (Here, f 
(2) 

E Ok is commutative if J(x, y) R;; J(y, x) holds.) 

The number of minimal groupoids generated by commutative binary functions is 12 and 

the number of minimal groupoids generated by non-commutative binary functions f with 

8(!) = 1 (resp., 8(!) = 2) is 12 (resp., 24). 

5 Examples of Minimal Groupoids on Ek  

We shall consider minimal groupoids on Ek, k > 2, generated by non-commutative binary 
functions f with o(f) = 1 in Subsection 5.1 and o(f) = 2 in Subsection 5.2. 

Before going further, we shall give a simple, but useful, sufficient condition for f E 0り
to be a minimal function. In the sequel, f(x, y) will be denoted by xy when f is understood. 

Lemma 5.1 ([BM19]) Let f E o~l ¥ふ bean idempotent function. If all the terms 

x(xy), x(yx), (⑬） x, (xy)y, (xy)(yx) 

are equivalent to xy or yx {as a function) then〈f〉isa minimal clone. 

The proof is by induction on the depth of a term over f. Note that y(yx), y(xy), (yx)y, 

(yx)x, (yx)(xy) are the duals of x(xy), x(yx), (xy)x, (xy)y, (xy)(yx), respectively. 

5.1 The Case: o(f) = 1 
In the last paragraph of Section 4, it is stated that the number of minimal groupoids on E3 

generated by binary idempotent functions f with t5(f) = 1 is 12. Since there are 6 pairs 

(x, y) E E§with x c/ y, this fact implies that every binary idempotent function f on E3 
having t5(f) = 1 is a generator of a minimal clone. One can ask, then, whether this property 

generalizes to arbitrary k > l? The answer turns out to be'yes', as shown below. Note that 
the contents of this subsection have already appeared in [BM19]. 

We start with two binary functions p1 and p2 in 0戸， k> 2, defined by 

Pa(x,y) = { : 
if (x,y)=(0,1) 
otherwise 

for a = l, 2. Obviously, Pa is non-commutative and 8(pa) = 1 for each a = l, 2. The top 

part of the Cayley table of Pa is shown below. 
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Lemma 5.2 For each a= 1, 2, Pa is a minimal function. 

Sketch of the proof First, consider Pl・(Here, xy denotes P1(x, y).) It is easy to see that 

all terms 

x(xy), x(yx), (xy)x, (xy)y, (xy)(yx) 

are equivalent to xy. Hence, P1 is a minimal function by Lemma 5.1. 

Next, take P2 and denote P2(x, y) by xy. In this case, Lemma 5.1 is not applicable as 

x(xy) is equivalent to x, but not to xy nor yx. 

Suppose that p2 is not a minimal function. Then, since the latticeら ofclones is atomic, 

there must exist a minimal function g E C)k satisfying〈g〉C〈P2〉wherethe inclusion is strict. 

Rosenberg's type theorem (Theorem 2.1) asserts that g must be one of the following: (1) 

unary function, (2) binary idempotent function, (3) ternary majority function, (4) ternary 

minority function and (5) semiprojection. 

We can verify, however, that none of these five cases are possible. Cases (1) to (4) are 

easy while Case (5) requires more careful inspection. (Refer to [BM19] for the detailed dis-

cussion.) This proves that p2 is, in fact, a minimal function. ロ

The following lemma says that the functions P1 and P2 represent, in a sense, all binary 

idempotent functions f with 8(!) = I. 

Lemma 5.3 Let f E 0 
(2) 
k be idempotent with 8(!) = I. Then f, or its dual, is conjugate 

to P1 or P2• 

Combining Lemmata 5.2 and 5.3 we obtain: 

Proposition 5.4 Let f E Ok2) be idempotent. If 8(!) = 1 then f is a minimal function. 

Thus the case of f with pr-distance 1 is completely settled. 

5.2 The Case: 8(/) = 2 
Let us define a binary function qab E 0戸fora, b E Ek¥ {O} in the following way. 

qゅ(x,y)~{~
if (x,y)=(0,1) 
if (x, y) = (0, 2) 
if x = 0 and y E Ek ¥ {l, 2} 
otherwise 

Clearly, qゅisidempotent and 8(qゅ） =2. 

In particular, we shall focus on four functions q11, q12, q33 and q34. The top two rows of 

the Cayley table of each of the four functions is shown below. 
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Lemma 5.5 All of q11, q12, q33 and q34 are minimal functions. 

Sketch of the proof For q11 and q12, it is easy to see that 

x(xy) = x(yx) = (xy)x = (叫y= (xy)(yx) = xy 

holds, from which the results follow from Lemma 5.1. On the other hand, for q33 and q34, 

we have 

x(xy) = x, x(yx) = (xy)x = (xy)y = (xy)(yx) = xy 

and Lemma 5.1 is not applicable. However, for these functions the similar line of argument 

used for p2 in the proof of Lemma 5.2 can be applied to verify that there does not exist 

a minimal function g E Ok satisfying〈g〉C 〈q33〉(or,〈g〉C 〈q34〉). Thus, q33 and q34 are 

proved to be minimal. ロ

Next, we consider functions qゅ for(a, b) = (1, 3), (2, 1) and (2, 3). 

Lemma 5.6 Each of q13, q21 and q23 is not a minimal function. 

Proof For q13 and q23, x(xy) has pr-distance 1 and〈x(xy)〉C〈xy〉.For q21, x(xy) = q12 

and, again, 〈x(xy)〉C〈xy〉．ロ

(2) 
Let W be the set of binary idempotent functions f E叫 satisfying

(1) 8(!) = 2 and (2) (ヨuEEk)(¥::/xEEk¥{u}) (Vy EEり[f(x,y)=x].

Thus f E W has two'singular values'and they sit only on the u-th row in its Cayley table. 

Furthermore, let V be the subset of W defined by 

V = { qab I (a, b) = (1, 1), (1, 2), (1, 3), (2, 1), (2, 3), (3, 3), (3, 4)}. 

Lemma 5.7 (1) Any two functions in V are not mutually conjugate to each other. 

(2) For any f E 0戸， iff E W then f・ f . is conJugate to some unction in V. 

In other words, functions in V represent all functions in W. Combining Lemma 5.9 to 

Lemma 5.7 we obtain the following, which appeared in [BM19] in a slightly different form. 

Proposition 5.8 For any f E W, f is a minimal function if and only if it is conjugate to 

one of Qn, Q12, q33 or q34. 
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5.3 The Case:'5(/)~3 

In the case of three-element set E3, it was shown that all non-commutative minimal functions 

have pr-distance 1 or 2. Does this property generalize to any k-element set Ek for k > 3? 
Th e answer 1s no'. In fact, there are many non-commutative minimal functions f E 0 

(2) 
k'  

k > 3, whose pr-distance exceeds 2, i.e., r5(f) :2:: 3. Here we present two such examples. 

For k > 1, let r a E 0 (2) k , a= 0, 1, be defined by 

叫y)~u
if (x, y) = (0, 0) 
if (x, y) = (0, 1) 
if x = 0 and y E Ek¥ {0, 1} 

otherwise. 

The top part of the Cayley table of ra, a= 0, 1, is shown below. 

C"冒
ー-―ーー

k
 

C, c X冒 7

一ー1
k
 

Evidently, o(r0) = k -2 and o(r1) = k -1. 

Lemma 5.9 Both of r0 and r1 are minimal functions. 

Sketch of the proof For r1, we have 

x(xy) = x(yx) = (xy)x = (xy)y = (xy)(yx) = xy, 

and the result follows from Lemma 5.1. Forro, we have 

x(xy) = x, x(yx) = (xy)x = (xy)y = (xy)(yx) = xy. 

Then the similar argument used for P2 in the proof of Lemma 5.2 can be applied again to 

prove that q。isa minimal function. ロ
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