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Abstract:  

The reflections and diffractions of global navigation satellite system (GNSS) 

signals from buildings may produce large measurement errors. Detecting non-

line-of-sight signals using 3D maps is a means to detect and exclude satellites 

with large measurement errors. However, the true position is typically needed 

for using 3D maps. In this study, we verify the assumption that an approximate 

user position can be used when using 3D maps. We found that the correct fixed 

position of real-time kinematic GNSS (RTK-GNSS) could be achieved when 

approximate positions for RTK-GNSS assisted by 3D maps were within 5–15 

m from the true position.  
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1 Introduction 

Reducing the multipath errors is one of the biggest challenges in global navigation 

satellite systems (GNSS), and researchers have proposed many methods to address 

this challenge. Consequently, other methods have been proposed, such as aiding 

GNSS by 3D map, fish-eye view, and GNSS/inertial navigation system 

(GNSS/INS) integration [1, 2]. In this study, we focus on the use of 3D maps to 

aid real-time kinematic GNSS (RTK-GNSS) at challenging locations. The 

applicability of RTK-GNSS is expected to increase with the advent of low-cost 

RTK-capable GNSS receivers. However, the disadvantage of using 3D maps is 

that the true position of the antenna is typically required to estimate the paths 

between satellites and the antenna location. Currently, there is a little research 

available investigating whether the true position is really required for accurately 

explaining line-of-sight (LOS) or NLOS signals. The most important aspect for a 

precise method such as RTK-GNSS, is the ability to obtain the correct fixed 

ambiguities of the carrier-phase measurements, and this is the primary focus of this 

study.  

This study demonstrates the use of 3D maps for high-accuracy positioning through 

experimental testing. This quality is assessed using 3D maps data and approximate 

user position with real GNSS observations. As a reference, the accurate residuals 

of the pseudo-range measurements for each satellite were estimated using the 

precise antenna positions. Subsequently, we discuss whether the satellites of a 

large residual matches with the multipath contaminated satellites detected by 3D 

maps. We convinced that the satellites of a large residual can estimate from 3D 

maps with the approximate position of receiver and the fix rate of RTK-GNSS had 

improved.  

 

2 Satellite signal testing using 3D maps and accurate pseudo-

range residuals 

In urban areas, buildings around the antenna may block, or cause a specular 

reflection and diffraction of GNSS satellite signals. This causes a ranging error 

where the propagation path is extended, and accordingly deteriorate the accuracy 

of positioning. The specular reflection and diffraction of signals from buildings 

may be approximately estimated using the ray-trace method used to estimate radio 

wave propagation [3]. As the position of the satellite is determined with respect to 

time, where the user can be located at a certain location, the propagation path of 

signal from the satellite to the antenna is estimated and whether it is a LOS or 

NLOS can be assessed using 3D maps.  

In the evaluation whether 3D maps was valid for detecting multipath contaminated 

satellites, the estimation of accurate residuals are useful. Pseudo-range 

measurements include errors sources from the receiver clock, satellite clock, 

ephemeris, ionosphere, troposphere, and multipath + noise. In this study, the 

predicted pseudo-range is already set as the accurate antenna position and 

geometrical range are known. All the above mentioned error sources, with the 

exception of the receiver clock and multipath + noise, can be modeled within a few 

meters in total. When the receiver clock error is determined within a few meters, 
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each residual can be precisely predicted. These residuals are almost equivalent to 

multipath errors. In this study, we were able to track a good signal from the 

Japanese quasi-zenith satellite system (QZSS) even near high-rise buildings in 

Tokyo, as at least one of the QZSSs remained at a very high elevation angle. Firstly, 

we pre-processed the receiver clock error by using a reliable QZSS. These 

estimated receiver clock errors were applied for other satellites. This generated an 

estimate of the residuals for each satellite within a few meters. 

 

3 Verification of satellite selection using 3D maps  

3.1 Evaluation setting 

Figure 1 (a) shows the experimental data and an overview of the simulation using 

the 3D maps. The true position of the receiver was used for validation of the used 

method. Figure 1 (b) shows the skyplot of observed satellites at 8:25:00 GPST and 

the condition of the satellites, indicated by the LoS between the satellite and the 

receiver estimated from the 3D map, and whether the residuals of the pseudo-range 

observations are within 15 m. Figure 1 (c) shows the measurement location, the 

surrounding environment, and part of the 3D map data (heights). 
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Fig. 1. Satellite position, measurement location, and surrounding environment. 
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3.2 Validation results 

To validate the satellite signal quality estimation from radio propagation path using 

3D maps, we compared the estimates of the satellite propagation path types (LOS 

and NLOS), and the post-processed residuals of the satellites. It is generally 

accepted that the LOS signals have smaller residuals than NLOS signals. Table 1 

classifies the relationship between the pseudo-range residuals and the propagation 

path types. The Table presents the matching rate between the type of the path and 

the pseudo-range residual within each of given thresholds (<10m, <20m, and > 

20m). 

 

ID Path type Rate Pseudo-range residuals 

below 10 m below 20 m over 20 m 

1 LOS 43.4% 73.9 % 97.2 % 2.8 % 

2 LOS + 1 Reflection 2.7% 22.7 % 22.7 % 77.3 % 

3 NLOS 16.9% 18.0 % 34.3 % 65.7 % 

4 NLOS + 1 Reflection 30.0% 16.0 % 18.0 % 82.0 % 

5 NLOS + 2 Reflections 7.0% 1.7 % 3.0 % 97.0 % 

 

For example, for the LOS signals without reflection, 97.2 % of these signals had a 

residual less than 20 m, whereas 73.9 % of them had a residual less than 10 m. For 

the NLOS + 1 reflection signals, 82.0 % of these signals had a residual over 20 m. 

These are reasonable results that are within the bounds of what was expected. 

Furthermore, in the case of the LOS + 1 reflection, 77.3 % of signals have more 

than 20 m. This means that large errors could be identified despite receiving a LOS 

signal. This could be attributed to that the low-cost receiver may use a narrow 

bandwidth, which make them not immune to LOS signals with strong reflections. 

 

4 RTK positioning using 3D maps and approximate position  

Figure 2 presents the test results and evaluation points for a path estimation using 

a 3D map. The observation data, the surrounding environment, and the 3D map 

were described in Fig. 1. Evaluation points, with ID 1 to 36, were set at 

approximately 5 m intervals along the centerline of each lane of the road. For each 

evaluation point, the type of the received observations, whether LOS, NLOS, or 

reflected waves between the satellite and each evaluation point were estimated 

from the geometry using the 3D map. The position of the satellite and the path of 

radio propagation were calculated every 30 s and used for the satellite selection for 

observation data at 1 Hz. The ‘continuous’ processing mode in RTKLIB 

version2.4.3 beta33 was used as the RTK engine. The chi-square test was not used 

because in this environment the assumption of this test that the observation errors 

are normally distribution is not valid. 

The elevation mask angle was set at 10°. We used the signal-to-noise ratio (SNR) 

mask depending on the elevation angle to 31 dB at under 10°, 33 dB at 15°, 34 dB 

at 25°, 37 dB at 35°, 39 dB at 45° and 40 dB over 55°.  

Table 1 Satellite propagation path types and residuals 
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In the satellite selection process, where satellites whose residuals are likely to be 

small are assumed in LOS with no reflected waves are selected, and all other 

satellites were excluded based on the results of the propagation path estimation. 

Each point in Fig. 2 (a) is considered as an evaluation point, and the shown value 

at each point is the fix rate of RTK-GNSS using the selected satellites as LOS 

signals based on the 3D map.  Fig. 2 (b) illustrates the number of miss fix solutions 

and the fix rate for RTK-GNSS. The fix rate is defined as the number of times an 

integer ambiguity in 1800 epochs is correctly solved. The correct fixed solutions 

were obtained in five points for over 20 % with satellite selection, and no fixed 

solutions were observed at any point without satellite selection. The fix rate at the 

true position was 18.0 % and there were no incorrect fixes. There were also no 

incorrect fixes at the nearest evaluation point 33, where the fix rate was 26.8 %. 

Some wrong fixes were observed at evaluation points over10 m away from the true 

position.  Although the true position did not result in the highest fix rate, the area 
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around the true position tended to have a higher fix rate and fewer missed fix 

solutions. 

The fix rate at evaluation point 15 was higher than evaluation point 33. Fig. 2(c) 

shows a comparison between point 15, which has the highest fix rate and point 33, 

which is closest to the true value. The upper part of the figure shows the timing of 

the fix of each point. The lower part of the figure shows the satellites used for 

RTK-GNSS at each point and the residuals within 10 meters. Point 33 and Point 

15 have different timing of fix in most of the periods. The reason for the high fix 

rate of Point 15 is due to the fix solution after 30700s. After 30700s, when the fix 

solution is found at Point 15, the difference between the selected satellites is C25 

in BDS and G07 in GPS. These satellites have large residuals of pseudo-range in 

all time periods, which is the reason for the difference in fix rates. 

C25 and G07 are shielded by buildings to the west at point 15, but are not excluded 

at point 33. As shown in the experiments, satellite selection at the true position 

does not always produce the best fix rate due to the error in the shape of the 3D 

map and the influence of the surrounding environment during actual measurements. 

However, the farther away from the true position, the more errors are made in 

satellite selection by the 3D map cause the satellites selected with lower SNR. 

In that case, the SNR filter is effective, the number of satellites is reduced, and the 

fix solution is difficult to calculate. 

As in this evaluation, satellite selection by 3D map at the point around the true 

position will select the satellite with reasonable candidates and give the desired 

positioning solution. These results demonstrate that even if the true position is not 

used, selecting the correct satellite for RTK-GNSS using 3D mapping will suffice.  

 

5 Conclusion 

This study proposed aiding positioning using 3D maps. We validated the selection 

of LOS signals with the help of commercial 3D map data using post-processed 

pseudo-range residuals relevant to multipath and noise. The data was collected in 

a dense urban area in Tokyo. For LOS signals without reflection, 97.2 % of these 

signals had a residual less than 20 m. Additionally, we confirmed that 

identification of the LOS signals based on 3D map were extremely informative for 

RTK-GNSS. Generally, 3D maps can be used on condition that the true antenna 

position is provided. To use the 3D map in practice, we verified that the 

approximate position can be used. The test results demonstrated that even if the 

approximate positions for RTK-GNSS assisted by 3D maps are set to 5-15 m from 

the true antenna position, correct fixed positions of RTK-GNSS can be achieved 

from the selected candidate satellites.  
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