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ABSTRACT 

The formation of natural gas hydrates represents a significant risk to the continuous and 

safe operation of multi-phase wet natural gas transportation pipelines. Due to the continued 

expansion of hydrocarbon production operations to increasingly remote sub-sea locations, the 

high pressure, low temperature conditions typically found within these fields and long-distance 

pipelines exacerbates the risk of hydrate formation. Mono-Ethylene Glycol (MEG) injection has 

been widely applied to prevent the formation of natural gas hydrates through its injection into 

pipelines to lower hydrate formation temperatures. Due to the ability to effectively regenerate 

and re-use MEG post hydrate inhibition, MEG injection provides a cost-effective method to 

prevent hydrate formation compared to other thermodynamic hydrate inhibitors including 

methanol and alternate polymer based kinetic hydrate inhibitors. Furthermore, various natural 

gas pipeline corrosion inhibition strategies including pH stabilisation and/or the injection of film 

forming corrosion inhibitors (FFCI) can be applied through the MEG injection systems. 

However, due to the relatively new adaptation of MEG for hydrate inhibition compared to 

other methods, low industry experience (particularly in Australia) and unexpected effects of 

MEG on process chemistry, various operational issues often arise during the MEG regeneration 

process. In particular, MEG as a solvent can have significant impacts on production chemical 

performance, chemical and physical behaviour of process contaminants (organic acids and salts) 

and process measurement capabilities and accuracy. Furthermore, it is often the case that 

significant operational issues arise following the commissioning and initial start-up of MEG 

regeneration systems that are not considered during the initial design phase. This body of work 

ultimately aims to optimise various aspects of the MEG regeneration process including process 

chemistry, corrosion inhibition strategies as well as developing solutions to operational 

problems identified through consultation with industrial operators of MEG systems.  

One such issue involves the long-term accumulation of organic acids, including acetic, 

within MEG regeneration loops owing to either suboptimal removal conditions, namely 

unsuitable pH levels and/or a lack of vacuum reclamation systems for organic salt removal. 

Excessive levels of organic acids represents a potential problem for MEG regeneration systems 

and associated natural gas pipelines due to their potential effect on production chemical 

performance and aggravation of both general and top-of-the-line corrosion. To alleviate this risk, 

the removal efficiency of acetic acid was studied over a wide range of operational conditions 

(pH levels and salinities) to model the removal during MEG regeneration and vacuum 

reclamation. Overall, the results highlight the conditions necessary during regeneration and 

reclamation, coupled with predicted pH changes generated during the distillation process 

required to prevent organic acid accumulation within closed loop MEG systems. 

A novel approach to providing continuous, long-term and cost effective corrosion inhibition 

for natural gas fields that contain high gas phase carbon dioxide (CO2) has also been proposed. 
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In such systems, the long-term injection of FFCIs for corrosion control is often cost prohibitive 

and the use of traditional salt based pH stabilisers (e.g. hydroxides) may be unsuitable if the 

dosage rate required to provide sufficient corrosion control is beyond the salt’s solubility limit 

in MEG. As such a new corrosion mitigation strategy has been evaluated that utilises long-term 

operation under pH stabilisation using methyldiethanolamine (MDEA) coupled with the 

transition to FFCIs following formation water breakthrough. As part of this study, the feasibility 

of transitioning from MDEA pH stabilisation to FFCIs was investigated and the optimal operating 

conditions required to achieve such a goal determined. Through the usage of MDEA pH 

stabilisation, long-term and cost effective corrosion mitigation for high CO2 partial pressure 

natural gas systems can be achieved. Furthermore, the transition to FFCIs post formation water 

breakthrough can extend production capabilities of formation water producing wells where 

operation under pH stabilisation would otherwise be detrimental due to scaling. 

However, it is important to consider the potential unintended side effects associated with 

performing a novel operational methodology such as the one proposed prior to being applied 

to industrial systems. To provide further insight, a study was undertaken to evaluate the 

corrosion potential of lean MEG solutions under simulated MDEA pH stabilisation at varying pH 

levels and temperatures representative of a MEG regeneration system.  It was found that under 

specific operational conditions, namely low to moderate pH and high temperature, the presence 

of MDEA poses a significant corrosion risk to components manufactured from carbon steel with 

those within the MEG regeneration system particularly susceptible.  As such, if a corrosion 

inhibition switch-over from MDEA to FFCI is to be performed, the corrosion risk to carbon steel 

components of the regeneration column and associated heating systems must be considered 

with selection of alternate materials such as stainless steel made during the design phase. 

Finally, two studies were conducted looking at operational issues that were identified 

through industry consultation including poor oxygen scavenger performance and particle 

settlement problems within MEG systems. Sulphite based oxygen scavengers are widely used in 

various industrial operations to prevent oxygen based corrosion and were found to, in the 

presented work, be detrimentally impacted by their interaction with organic acids. Therefore, 

their application to MEG systems where organic acids are widely experienced is problematic, 

and as such, several operational recommendations are presented to alleviate the risk of poor 

field performance. Conversely, the settlement behaviour of solid particles entering into a MEG 

regeneration system was found to be drastically impacted by their exposure to natural 

surfactants in the condensate phase of the up-stream pipeline rendering them oil-wet. Said 

exposure can ultimately lead to poor settlement and excessive down-stream filtration 

requirements and hence operational costs, but however, could be successfully alleviated 

through the use of cationic surfactants to modify particle surface properties. These works have 

direct application to most industry MEG systems due to the common nature of the problems 

and can provide significant operational cost savings if implemented. 
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1.0 INTRODUCTION 

1.1 Overview 

Within the last twenty years, numerous off-shore natural gas production systems in 

Northern Europe and Australia have adopted MEG for hydrate inhibition over traditional 

thermodynamic hydrate inhibitors (THI) including methanol [1-3]. The standard industrial 

philosophy regarding MEG for hydrate inhibition entails the separation of MEG from the desired 

hydrocarbon products alongside the water phase to facilitate its regeneration and ultimately its 

reuse to minimise long term operational costs [1, 4-7]. The recent adaption of MEG combined with 

the differences in chemical behaviour in MEG solutions compared to aqueous systems, results 

in numerous uncertainties in regard to the industrial usage of MEG, particularly the regeneration 

process [5, 8-11]. Due to the wide range of operational conditions (pH, temperature, salinity) and 

contaminants (organic acids, mineral salts, production chemicals) potentially present within 

MEG regeneration systems, the optimisation of process conditions and chemistry is extremely 

important to optimise the overall regeneration process and to prevent unforeseen operational 

issues occurring.  

Although the removal of water from MEG is simple, various processes involved with the 

industrial regeneration of MEG are less understood with unforeseen operational issues often 

arising. Various chemical and physical processes are utilised to purify and treat the rich MEG 

returning from the natural gas pipeline. These processes include salt and particle removal 

systems to prevent long-term build up or scaling risks [9, 10], removal of excess water by 

distillation to produce ‘lean MEG’ [1, 12] and the injection of production chemicals including 

corrosion and scaling inhibitors to protect down-stream injection systems and the primary 

natural gas pipeline [2, 5, 12-14]. Any unforeseen behaviour of chemical species (contaminant or 

production chemical) or separation systems may have significant implications on overall process 

efficiency or long-term viability of the system. 

In particular, the corrosion of metal systems within the MEG regeneration loop and 

associated natural gas transportation pipeline is a continuous operational issue facing industry 
[4, 15]. Various techniques have been applied to inhibit the occurrence of corrosion within wet gas 

pipelines utilising MEG for hydrate inhibition including artificially increasing pH (pH stabilisation) 
[4, 16, 17], injection of chemical corrosion inhibitors [2, 4, 8] and dosage of oxygen scavengers to 

prevent oxygen based corrosion [8, 18, 19]. The optimisation of these corrosion inhibition 

techniques, including the transition between them when required, coupled with minimising the 
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accumulation of corrosive species can have significant implications on the continued and safe 

operation of the MEG regeneration system and associated natural gas pipelines. Through 

optimised corrosion mitigation strategies, significant safety and operational risks associated 

with the corrosion of production and sub-sea systems can be minimised and the overall life span 

of the system extended to improve long-term return on investment. 

Detailed studies have been conducted of which form this thesis, analysing various aspects 

of the MEG regeneration and hydrate inhibition process. These topics include optimisation of 

separation processes, contaminant removal, process chemistry and production chemical 

performance and the evaluation of corrosion inhibition strategies associated with the MEG 

regeneration and natural gas systems. As part of this work, a MEG regeneration pilot plant 

operated by the Curtin Corrosion Centre has been utilised to facilitate MEG regeneration 

research. Furthermore, to facilitate insights generated using the pilot MEG system, various 

laboratory work has been conducted to improve the understanding of MEG chemistry including 

generation of novel experimental and chemical data. The overall goal of this body of work was 

to generate better knowledge of MEG regeneration operations, chemical and physical behaviour 

within MEG systems and to provide effective solutions to several operational problems currently 

being faced by indusial MEG system operators. 

1.2 Hypotheses and Overall Significance of Research 

It is hypothesised that through careful optimisation of various operational conditions in 

several areas of the MEG regeneration and reclamation processes, significant 

operational efficiency improvements and cost savings can be achieved by industrial MEG 

system operators. These can include improved removal of various contaminants from the MEG 

systems, reducing both their impact and removal costs, improved production chemical 

performance and their associated applications costs and reduced risks of various forms of 

corrosion. Overall, the improvements and research into MEG regeneration processes 

contained within this thesis can help reduce long-term operational costs and improve 

asset reliability of industrial MEG regeneration systems.  

The significance of this research primarily relates to the optimisation of the overall MEG 

regeneration process and the resulting operational benefits and reduction in long-term 

operational costs that result. Furthermore, the identification of process inefficiencies, 

undesirable operating conditions (corrosion / poor production chemical performance) and 

optimised corrosion inhibition strategies, particularly those using MDEA, will improve the design 

and operation of future MEG regeneration systems. There is also a limited volume of peer-

reviewed literature available on the industrial regeneration of MEG with the bulk of information 
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primarily limited to industry and non-peer reviewed conference papers. The research reported 

in this study significantly expands on the availability of information regarding the industrial 

regeneration of MEG.   

1.3 Research Objectives 

Through consultation with industry including major oil and gas producers, various 

uncertainties and issues associated with the industrial regeneration of MEG have been identified 

and researched as part of this study. On this basis, the overall objectives of this research are as 

follows: 

1. Identify through consultation with industry partners various operational issues and

uncertainties currently faced within major MEG regeneration systems in Western

Australia and areas of potential process efficiency optimisation

a. Optimisation of process chemistry to minimise chemical dosage and hence

reduce long-term operational costs

b. Study the behaviour of MDEA as a pH stabiliser within MEG systems

c. Optimisation of separation processes including MDEA from MEG/water or

organic acids from MEG

d. Optimisation of production chemical performance in MEG systems

e. Identification of potentially undesirable process conditions (corrosion risks)

2. Modelling of MEG regeneration processes and chemistry to facilitate the above

objectives and the identification of optimal operation conditions to achieve various

operational goals

1.4 Thesis Structure 

This thesis consists of eleven chapters including an introduction and literature review 

analysing the overall industrial MEG regeneration process, common issues faced within industry 

and the general physical and chemical behaviour relevant to MEG systems. Chapter three 

provides information regarding experimental process equipment and analytical techniques 

utilised in the development of this thesis. Chapters four to nine outline various experimental 

and theoretical studies conducted to optimise several aspects of the MEG regeneration process 

and associated corrosion inhibition strategies with particular focus on issues identified by 

industry, with additional details provided below. Figure 1-1 provides a framework for the 

structure of this thesis outlining the issues that have been identified in consultation with 

industry and how each individual chapter attempts to improve knowledge within these areas. 

• Chapter Four studies the removal of organic acids, primarily acetic acid, from closed

loop MEG regeneration systems under varying pH and salinity levels through

distillation and vacuum reclamation. The overall objective was to optimise the long-
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term removal of organic acids from MEG systems to minimise the associated 

corrosion risk to down-stream natural gas systems. 

• Chapter Five analyses the potential switchover from pH stabilisation using MDEA to 

film forming corrosion inhibitors (FFCI) and recommendations to improve the 

overall efficiency of the process. To date, the switchover from MDEA to FFCIs has 

not yet been performed in industry with Chapter Five providing the first in-depth 

analysis of the process and identification of potential issues. 

• Chapter Six attempts to identify potentially corrosive conditions resulting from the 

switchover from MDEA to FFCI due to the low pH / high temperature conditions 

experienced within the MEG regeneration unit.   

• Chapter Seven identifies the potential effects of particle wettability on the 

settlement behaviour of solid particles including iron carbonate and quartz within 

MEG settlement systems based on issues faced within an industrial MEG 

regeneration system in Western Australia.  

• Chapter Eight provides an in-depth analysis of how various process conditions 

including MEG concentration, temperature and ionic strength influence the acid 

dissociation behaviour of common organic acids found in MEG systems and MDEA. 

The experimental results and generated models allow the optimisation of process 

conditions required for the removal of the respective chemicals from MEG systems. 

• Chapter Nine analyses the behaviour of MDEA within MEG and water systems under 

high temperature vacuum conditions to simulate the vacuum reclamation process. 

Greater knowledge of MDEA behaviour and design data such as vapour liquid 

equilibrium (VLE) data will allow improved design of vacuum reclamation systems 

for the removal of MDEA from closed loop MEG systems. 

• Chapter Ten summaries the work conducted within this thesis and discusses the 

conclusions drawn from each individual study. Further discussion of how this work 

is relevant to industry and potential future work recommendations are also 

presented. 

• Appendix E presents a conference paper analysing the behaviour of sulphite-based 

oxygen scavengers in the presence of various commonly encountered contaminates 

including organic acids and mineral salts with MEG systems. The study provides 

various recommendations to increase sulphite oxygen scavenger performance to 

minimise the risk of oxygen-based corrosion in MEG injection systems. 



CHAPTER ONE:  Introduction 

5 

Figure 1-1. Thesis structure 

Optimisation of Oxygen 
Scavenger Performance

Optimisation of Process 
Chemistry for Separations

Chapter Nine: Experimental Vapour-Liquid 
Equilibrium Data for Binary Mixtures of 
Methyldiethanolamine in Water and 
Ethylene Glycol under Vacuum

Chapter Seven: Effect of Wettability on 
Particle Settlement Behaviour within Mono-
Ethylene Glycol Regeneration Pre-Treatment 
Systems

Chapter Six: Corrosion of Carbon Steel 
during High Temperature Regeneration of 
Mono-Ethylene Glycol in the Presence of 
Methyldiethanolamine

Chapter Five: Operation of a MEG Pilot 
Regeneration System for Organic Acid and 
Alkalinity Removal during MDEA to FFCI 
Switchover

Chapter Four: Removal of Organic Acids 
during Mono-Ethylene Glycol Distillation 
and Reclamation to Minimize Long-Term 
Accumulation

Chapter Ten 
Summary and 

Overall 
Discussion

Optimisation of Particle 
Settlement

 Effect of Process 
Conditions on Chemical 

Behaviour

Identification of 
Potentially Corrosive 

Conditions

Chapter One:
Introduction

Chapter Two:
Literature 

Review

Current Issues Faced 
in Industry

Poor Understanding 
of Process Chemistry

Poor Production 
Chemical Performance

Corrosive Conditions

Motivation and 
Objectives 

Consultation 
with Industry

Chapter Eight: Acid Dissociation Constant 
(pKa) of Common MEG Regeneration 
Organic Acids and Methyldiethanolamine at 
varying MEG Concentration, Temperature 
and Ionic Strength

Appendix E: Effect of Organic Acids upon 
Sulphite Oxygen Scavenger Performance 
within Mono-Ethylene Glycol Injection 
Systems

Poor Contaminant 
Removal Efficiency



 

6 

2.0 LITERATURE REVIEW 

2.1 Hydrate Formation in Natural Gas Pipelines 

The formation of natural gas hydrates poses a significant threat to both the safe and 

continuous operation of natural gas transportation pipelines and is considered to be the most 

critical aspect of continued flow assurance [20, 21]. The formation of gas hydrates arises following 

the ‘entrapment’ of small gaseous molecules within a lattice of water forming an ice-like solid 

structure [20, 22-24] – (Figure 2-1). Methane, ethane, propane, butane, hydrogen sulphide, nitrogen 

and carbon dioxide represent the most well-known hydrate forming components [22, 23]. The 

presence of gas molecules within the water lattice increases the stability of the lattice structure 

allowing gas hydrates to exist at much higher temperatures than pure ice [21, 24]. 

2.1.1 Risk of Hydrate Formations and Implications on Flow Assurance 

Gas hydrate formation within transportation lines can pose a significant risk to the 

continued economical and safe operation of flow-lines. The formation of gas hydrate blockages 

(Figure 2-2) within critical systems can halt production for several days to months depending on 

the severity, with the abandonment of a pipeline possible if hydrate removal is considered too 

costly or impractical [20-22]. The large amount of energy required to dissociate hydrate formations 

coupled with the poor heat transfer through the hydrate structure makes them difficult to 

remove [21]. Furthermore, the formation of hydrate slugs may ultimately damage flow systems 

including pipeline walls and downstream flow restrictions, valves or bends if repeated impacts 

occur [21, 23]. The blockage or damage of transportation lines also poses significant risk of 

environmental damage if rupture and release of hydrocarbons and process chemicals into the 

surrounding environment results.  

 

Figure 2-1: Methane hydrate type sII (Janda [25]) 
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Figure 2-2. Gas hydrate plug in pipeline (Makogon [26]) 

2.1.2 Hydrate Formation Conditions and Mechanisms 

The formation of hydrates within natural gas systems primarily occurs in two distinct 

structures; structure 1 hydrates form a body-centred cubic cell whereas structure 2 hydrates 

form a diamond lattice [22, 23, 27]. The combination of low temperatures and high pressure 

conditions are essential for the formation of gas hydrates to occur [20-24, 26, 28]. For natural gas 

systems, sub-sea pipelines exposed to low ambient water temperatures and high pressure 

originating from the well are particularly at risk of hydrate formation [21]. Furthermore, as natural 

gas production expands into deeper waters and more cold climates, the risk of hydrate 

formation poses a continually growing risk to flow assurance due to more favourable hydrate 

formation conditions [29, 30]. Figure 2-3 shows the locations within offshore natural gas extraction 

systems where hydrates are most likely to form, typically where pressure is greatest and 

following exposure to the cold sea environment.  

Figure 2-3. locations of gas hydrate formation in offshore systems (Giavarini and Hester [31]) 



CHAPTER TWO:  Literature Review 

8 

2.2 Inhibition of Hydrate Formation 

Due to the inherent risks of hydrates, numerous methods to prevent their formation have 

been developed.  Modern hydrate inhibition methods can be categorised into three main 

techniques: (1) injection of thermodynamic hydrate inhibitors (methanol, ethanol, MEG), (2) 

injection of low-dosage hydrate inhibitors such as kinetic hydrate inhibitors of which modify 

hydrate nucleation and growth mechanics and (3) maintaining pipeline operating conditions 

(temperature and pressure) outside the hydrate formation zone [20, 23, 29]. Due to impracticalities 

often surrounding modifying pipeline temperature and pressure, the injection of 

thermodynamic and kinetic hydrate inhibitors is most commonly performed [20, 27, 32]. 

2.2.1 Thermodynamic Hydrate Inhibitors 

Thermodynamic hydrate inhibitors (THI) operate by shifting the hydrate formation conditions 

outside of the operational zone of the pipeline towards lower temperature and higher pressure 

conditions [4, 27, 29, 32]. The current industry trend for newer natural gas developments is to use 

MEG as a hydrate inhibitor, replacing more traditional chemicals such as methanol due to variety 

of health, safety and environmental concerns [1, 4, 27, 32]. Figure 2-4 illustrates the locations of 

natural gas systems utilising MEG injection for hydrate inhibition around the world, within 

Australia specifically, several new developments have been recently commissioned. The hydrate 

inhibition effect of MEG occurs through its interaction with water through hydrogen bonding 

between water and the MEG hydroxyl functional group [30]. The resulting bond effectively 

reduces the hydrate stability temperature for a given pressure as the number of water hydrogen 

bond sites available for hydrate formation to occur are reduced [30, 33]. Table 2-1 compares the 

physical and chemical properties of methanol and MEG, the two most common THIs. 

 
Figure 2-4. Fields using MEG injection for hydrate inhibition (modified from Al Harooni [34]) 
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Table 2-1. Chemical and physical properties of methanol and MEG (Akers [35]) 

Methanol MEG 

Family Alcohol Glycol 

Chemical Formula CH3OH C2H4(OH)2 

Chemical Structure 

Molecular Weight (g/mol) 32.04 68.068 

Density (g/cm3) at 20°C 0.7915 1.1135 

Viscosity (cP) at 20°C 0.55 21 

Freezing point (°C) -97 (176 K) -12.9 (260 K)

Boiling point (°C) 64.7 (337.8 K) 197.3 (470 K)

Flash point (°C) 11 111 

Solubility in water Fully miscible Fully miscible 

2.3 Regeneration of Mono-Ethylene Glycol 

In order to minimise the operational costs associated with the injection of MEG for hydrate 

control, the MEG is separated alongside the water phase and regenerated through a series of 

chemical and physical processes to remove excess water, salts and production chemicals [1, 4-7]. 

The design of closed loop MEG systems are highly variable depending on expected fluid 

compositions and field requirements with only the distillation step being constant throughout. 

Depending on expected salt loads, industrial MEG regeneration systems may operate using no 

salt control systems, a pre-treatment stage for divalent cation removal, vacuum reclamation or 

a combination of both. Appendix A illustrates an industrial MEG regeneration flow-scheme 

utilising a combination of pre-treatment and slip-stream vacuum reclamation for salt control.  

2.3.1 Distillation 

The distillation step is the most crucial aspect of MEG regeneration process due to the need 

to remove excess water to facilitate continued hydrate inhibition. To produce a final lean MEG 

product suitable for reinjection at the well-head, excess water is separated from rich MEG (30-

60 wt. % MEG) by distillation to regain a MEG concentration typically between 80-90% by weight 
[1, 7, 9, 12, 36]. To achieve the desired lean MEG concentration, the MEG regeneration unit (MRU) is 

typically operated between 120-140°C at atmospheric pressure [1, 37, 38].  Several operational 

issues are faced within the MRU including corrosion at low pH if manufactured of low corrosion 

resistant carbon steel, scaling at high temperature and pH conditions and fouling due to the 

presence of incompatible production chemicals [7, 9, 10]. 
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2.3.1 Conventional Recovery Operation (No Reclamation) 

The conventional regeneration of MEG post hydrate inhibition simply involves the removal 

of excess water via a single distillation column (or multiple in parallel) [1, 9, 32]. Of the most 

common MEG regeneration philosophies, the conventional method is the most simple, but 

however, comes with several drawbacks due the lack of salt handling systems. Dissolved salts 

and other process contaminants entering into the system will accumulate within the closed MEG 

loop leading to various long-term operational issues, potentially requiring total or partial 

replacement of the MEG inventory. As such, the conventional regeneration method is only 

applied to systems where the expected level of dissolved salts over the life time of the system 

is low, or formation water producing wells are expected to be shut-in [39].  

2.3.2 Full Stream Vacuum Reclamation Operation 

The reclamation of glycol solutions during the MEG regeneration process is an additional 

step that may be performed in order to control the levels of dissolved salts within closed loop 

MEG systems. The reclamation process entails the vaporisation of the MEG solution in order to 

force the precipitation of dissolved ionic species including organic and inorganic salts [1, 7, 8, 40]. 

The MEG solution is boiled under low pressure (≈100 mbar [7, 8, 32, 38, 40]) to minimise the 

operational temperature required (120-150°C [2, 7, 38, 40]) to vaporise the MEG/water phase in 

order to reduce heating requirements and to prevent thermal degradation of the MEG at 

excessive temperatures (>150°C [5, 7, 38, 41]). The vaporised MEG solution is then condensed and 

recovered whilst any remaining non-volatile salt components removed from the liquid phase 

through solid handling systems such as centrifuges. 

MEG systems utilising reclamation may operate using either full-stream reclamation 

whereby the rich glycol stream is flashed under vacuum to totally remove dissolved salts or using 

a slip-stream mode post distillation to remove primarily monovalent ions from a fraction of the 

produced lean glycol [1, 2, 7, 8, 32, 42]. The type of reclamation process employed is determined by 

the expected salt production rate over the life-span of the asset with systems operating at high 

salt loads requiring full-stream reclamation [8, 9]. During full-stream reclamation, all salt species 

are removed from the MEG/water phase producing a salt free rich glycol that is then 

reconcentrated. The full-stream reclamation flow-scheme is illustrated by Figure 2-5. Typically, 

an initial separation stage is utilised prior to the reclamation system whereby the MEG is heated 

and depressurised within a three-phase separator to remove residual hydrocarbons from the 

MEG/water phase.  
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Figure 2-5. Full-Stream reclamation system  

2.3.3 Slip-Stream Vacuum Reclamation Operation 

In contrast, for fields with relatively low salt production rates, a lean glycol slip-stream 

reclamation system is often sufficient to control the salt content within the MEG loop [1, 8, 43] with 

such a flow scheme presented in Appendix A. For such systems, only a fraction of the produced 

lean glycol product from the regeneration unit is processed effectively reducing the total 

operational costs and capital expedition requirements compared to full-stream reclamation [8]. 

The operational slip-stream rate is dictated by the expected salt load at maximum formation 

water production and the corresponding fraction required to maintain a constant tolerable level 

of dissolved salts within the MEG loop [8]. Furthermore, slip-stream reclamation systems are 

typically operated in conjunction with pre-treatment systems to remove divalent cations prior 

to the regeneration unit. Divalent cations such as calcium and iron are removed to prevent the 

formation of scale on high temperature heat exchanging equipment whilst monovalent cations 

such as sodium pass through and are removed during down-stream reclamation [9, 10, 12]. 

Table 2-2 compares the advantages and disadvantages of both reclamation operational 

methodologies and the conventional recovery method without reclamation facilities. 

Ultimately, for MEG systems operating past formation water breakthrough, the removal of 
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dissolved salts is essential to avoid mineral deposition and to ensure salt concentrations remain 

within operational limits. The optimisation of operational conditions during the vacuum 

reclamation process can provide significant improvement in the removal of organic based 

contaminants including organic acids and production chemicals such as corrosion inhibitors if 

desired. 

Table 2-2. Comparison of three MEG regeneration operational methods [1, 8, 32] 

Operating 
Model Advantages Disadvantages 

Conventional 
Recovery 

• Least expensive in terms of 
operational and capital cost 

• Simplest system to operate 
• No loss of salt based pH stabilisers 

• Unable to handle continuous 
formation water production. Non-
volatile chemicals (organic acids) 
and salts will accumulate within 
closed loop 

• Risk of scaling in regeneration 
column due to salt build-up 

Full-Stream 
Reclamation 

• Total removal of non-volatile 
chemicals and dissolved salts 

• Can withstand full formation 
water production 

• Prevention of scaling down-
stream during regeneration 

• Highest operational and initial 
capital cost 

• Larger physical size of unit 
compared to slip-stream mode 

• Salt based pH stabilisers removed 

Slip-Stream 
Reclamation 

• Reduced cost compared to full 
stream reclamation 

• Lower operational and capital cost 
compared to full stream 
reclamation. Reduced throughput 
requires less heating and cooling 
and reduced system size 

• More flexible operation compared 
to full stream reclamation 

• Accumulation of salts and 
impurities within recycle loop 
may be problematic. Viscosity 
must be controlled 

• Cannot handle excessive salt 
loads within MEG loop 

• Pre-treatment required to 
prevent scaling within 
regeneration column 

2.3.3.1 Rich MEG Pre-Treatment 

Where slip-stream reclamation is utilised, the pre-treatment of rich MEG is performed to 

prevent the formation of scaling products downstream within the regeneration system that 

would otherwise significantly impact operational performance [9, 10, 12]. Section 2.4.2 outlines the 

most prevalent scaling products found within MEG regeneration systems and the operational 

concerns regarding their presence and the overall need for pre-treatment. The removal of 

predominantly divalent cationic species (calcium, iron and potentially magnesium) during the 

pre-treatment process is achieved by generating alkaline conditions that favour the formation 

and subsequent precipitation of divalent salts [10, 12]. The presence of dissolved carbon dioxide 

from the pipeline coupled with alkaline conditions (typically pH >8) allows the formation of 



CHAPTER TWO: Literature Review 

13 

carbonate (Equation (2-1)) facilitating the formation of carbonate salts, namely calcium and iron 

carbonate (Equations (2-3) and (2-4)). The formation of hydroxyl salts may also occur at pHs 

greater than 10.2 allowing the removal of magnesium (Equation (2-5)). Solids precipitated during 

the pre-treatment process can be removed via either settlement within down-stream storage 

tanks or in-line filtration systems at sufficiently large particle sizes.  

A variety of operational issues may be faced within industrial pre-treatment and associated 

settlement systems stemming from poor particle size, sub-optimal operating conditions, as well 

as the effect of production chemicals such as scale inhibitors and hydrocarbons on crystallisation 

mechanisms and particle behaviour [10, 12]. 

2.4 Salts, Scaling and Organic Acids within MEG Regeneration Systems 

During the regeneration of MEG, various contaminants can be experienced within the 

regeneration system including mineral salts, both mono and divalent, organic acids and 

production chemicals including corrosion and scale inhibitors. 

2.4.1 Monovalent Salts 

The presence of monovalent ions within closed loop MEG regeneration systems primarily 

occurs in the form of sodium, potassium, chloride and bromide. Monovalent species may enter 

the system via two path ways including the dosage of production chemicals such as basic 

chemicals for pH control or following formation water breakthrough. The term formation water 

defines the liquid water naturally present within the pores of the reservoir rock formation [10]. 

The breakthrough of formation water refers to the commencement of extraction of said water 

from the reservoir and may not occur until several years into the production [10]. Dissolved 

sodium alone may account for as much as 90-95% of all dissolved cationic species within closed 

loop MEG systems with potassium accounting for the majority of the remainder [1, 7, 10]. In a 

similar manner, chloride and bromide ions are the primary anionic species found within MEG 

regeneration systems and may pose significant operational issues at high concentrations 

including contribution to general and pitting corrosion [44-46]. Due to the high levels of sodium 

and chloride ions typically found within closed loop MEG systems, sodium chloride is one of the 

primary salts produced within salt removal reclamation systems [7, 47].  

2.4.2 Divalent Cations and Scaling Within MEG Regeneration Systems and 
Natural Gas Pipelines 

The formation of mineral scaling is a continuous concern within MEG regeneration systems 

and natural gas pipelines due to the presence of divalent cation species and favourable scale 

formation conditions. Divalent cations including calcium, magnesium and barium may enter the 
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natural gas and MEG regeneration systems following the breakthrough of formation water as 

they are naturally present within the pores of the reservoir [7, 9, 10, 12, 48, 49]. The presence of 

dissolved iron instead arises from the corrosion of the carbon steel pipeline with between 10-

100 ppm Fe2+ typically experienced at the pipeline outlet within the aqueous/MEG phase [48]. 

The primary scale formations experienced within MEG/natural gas systems and their respective 

formation reactions are outlined by Table 2-3. The primary risk of scale formation occurs within 

natural gas pipelines and MEG systems operating under pH stabilisation post formation water 

breakthrough where the pH is sufficiently high to form carbonate ions (pH > 8.2) [48, 50, 51]. The 

formation of scale within sub-sea injection systems and tie-ins can result in significant 

operational issues including blockages and restriction of flow [48, 50, 51]. 

Table 2-3. Dominant scale formation reactions in MEG and natural gas systems 

Carbonate 
CO2 + H2O ↔ H2CO3 ↔ HCO3

− + H+ ↔ CO3
2− + 2H+ (2-1) 

CO2 + MDEA ↔ HCO3
− + MDEAH+ (2-2) 

Calcium Ca2+ + CO3
2− ↔ CaCO3 (2-3) 

Iron Fe2+ + CO3
2− ↔ FeCO3 (2-4) 

Magnesium Mg2+ + OH− ↔ Mg(OH)2 (2-5) 

Barium Ba2+ + SO4
2− ↔ BaSO4 (2-6) 

2.4.2.1 MEG Regeneration Systems 

The primary risk of scaling within MEG regeneration system specifically arises within 

systems operating at high temperatures including the main MRU and heat exchanging 

equipment [9, 10, 12]. Operating at temperatures between 120-140°C to boil-off excess water [1, 7, 

38], processing of rich MEG solutions containing divalent cations will result in significant scale 

formation within the reboiler due to the inverse solubility of carbonate salts with respect to 

temperature [7, 9, 10, 12, 49]. Excessive scale formation upon the reboiler bundle will ultimately the 

reduce heat transfer efficiency of the reboiler increasing heating requirements or require 

frequent cleaning reducing operational uptime. Typically, the most frequently experienced 

scaling during MEG regeneration includes the formation of various calcium carbonate 

polymorphs including vaterite, aragonite and calcite [48-50, 52, 53], magnesium-based scales 

(hydroxide at high pH, dolomite in the presence of calcium) and iron-based scales including iron 

carbonate and sulphide following corrosion in the pipeline [7, 9, 10, 12, 49]. Figure 2-6 illustrates a 

MRU reboiler bundle fouled by predominantly FeCO3 during industrial MEG regeneration 

resulting in reduced operational performance. In order to prevent scaling within MEG 

regeneration systems, either pre-treatment or full-stream reclamation is performed to remove 

scaling products from the system prior to entering the MRU. 
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Figure 2-6. MEG regeneration unit tube bundle fouled by FeCO3 (Latta [10]) 

2.4.2.2 Natural Gas Pipelines and Scale Inhibition 

To combat the risk of scale formation, scale inhibitors may be injected independently or in 

conjunction with pre-treatment to ensure scaling does not occur within subsea systems where 

scale formation would be costly and difficult to remove [53]. However, if the breakthrough of 

formation water and subsequent introduction of divalent cations is not correctly predicted and 

controlled through either scale inhibitors and/or pre-treatment, the lean MEG injected at 

elevated pH and alkalinity poses a significant scaling risk downstream of MEG injection points 

and the primary pipeline [1, 7, 48]. Potential temperature and pressure changes along the pipeline 

during transportation may shift the salt concentration into their respective super saturation 

regions resulting in scale formation [48]. Although the conditions for scale formation are present, 

the actual formation of scale is dependent upon the ability of scale nucleation to occur and 

induction time [48]. The work of Flaten and co-workers [48, 50, 52, 54, 55] has extensively covered the 

formation of scale in terms of formation mechanics, induction times and polymorphism of 

calcium carbonate within MEG systems.  

Multiple mechanisms by which scale inhibitors influence or disrupt the formation of scale 

have been proposed including the inhibition of nucleation and the inhibition of crystal growth 
[56-62]. Nucleation inhibition refers to the process by which scale proto-crystals successfully form 

but are then redissolved through interaction with inhibitor molecules hence disrupting 

significant growth [56, 59, 60]. Conversely, some scale inhibitors may act by retarding the growth of 

the crystal following nucleation through adsorption or interaction with the active crystal growth 

sites hindering future crystal growth [56, 59, 60]. It is widely agreed upon that most commercially 
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available scale inhibitors varying from phosphonates to polymeric types, inhibit scale formation 

through a combination of both mechanisms [56]. However, the extent to which a scale inhibitor 

influences scale through either mechanisms is dependent on the type of scale being inhibited. 

Smaller phosphonate based inhibitors primarily operate through inhibition of crystal growth 

whilst polymeric based inhibitors such as carboxylic acids typical inhibit the nucleation process 
[56, 59]. 

2.4.3 Organic Acids 

The presence of organic acids within natural gas pipelines and associated MEG 

regeneration systems can occur through several pathways. Primarily, free organic acids present 

within the reservoir will enter through the condensed water phase and ultimately transition into 

the MEG regeneration system alongside MEG and water during initial inlet separation from the 

gaseous and liquid hydrocarbons [7-9, 63]. The primary organic acids experienced during industrial 

natural gas processing and MEG regeneration include acetic, propanoic, butanoic and formic 

acids [7, 9, 63], with acetic acid accounting for an estimated 50-90% of total organic acid content 
[64]. Additionally, further organic acids may enter into the system during key points in a natural 

gas production systems lifespan including post formation water breakthrough or during back-

production of well drilling/completion fluids following new well start-up [9, 63]. The thermal 

degradation of MEG during high temperature regeneration in the presence of oxygen may also 

provide an additional avenue in which organic acids are produced. MEG will undergo thermal 

oxidation at temperatures above 110°C with the primary products including glycolic, formic and 

acetic acids [1, 3, 5, 39, 63]. 

The introduction of organic acids into natural gas transportation pipelines and MEG 

systems can have several adverse operational effects including direct reduction of the pipeline’s 

liquid phase pH. Ultimately, reduced pH within the liquid phase of a transportation pipeline can 

pose a corrosion risk through increased solubility of protective iron carbonate film formed 

during pH stabilisation requiring sufficient alkalinity within the injected lean MEG to neutralise 

incoming organic acids [65-68]. Organic acids have been directly linked to increased corrosion rates 

in carbon and mild steel piping in industrial natural gas and oilfield systems [69-72] and are capable 

of being reduced upon the surface of metals and hence contributing to electrochemical 

corrosion reactions [67, 68, 72]. Furthermore, in combination with carbon dioxide, organic acids may 

exacerbate the rate of Top-of-the-Line-Corrosion (TLC) [17, 63, 72-76]. As such, the presence of 

organic acids within natural gas transportation pipelines may pose significant operational issues 

in terms of corrosion. Although the introduction of organic acids into the system from the 
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reservoir cannot be prevented, the total system wide level of organic acids can be controlled 

through the MEG regeneration system via either distillation or reclamation. Optimisation of 

organic acid removal during MEG processing can therefore help to minimise the long-term 

corrosion risks associated with organic acids. 

2.5 Corrosion and Corrosion Prevention in Natural Gas Pipelines and MEG 
Regeneration Systems 

The corrosion of metals is one of the most consistent problems faced in almost every 

chemical processing industry, with the prevention of corrosion in the oil and gas industry 

particularly important. Various processing systems within the oil and gas industry are susceptible 

to corrosion including long distance transportation pipelines made of poor corrosion resistant 

carbon steel and high temperature/pressure systems where the risk of failure can have 

significant implications on safety and the environment. Within the oil and gas industry, the cost 

of corrosion has been estimated by the National Association of Corrosion Engineers (NACE) to 

be as high as $1.372 billion owing to unscheduled plant shutdowns, equipment failure, 

maintenance and regulatory fines due to loss of containment and environmental damage [77]. As 

such, the prevention or minimisation of corrosion can have significant implications on all 

industries in terms of reduced operational expenditure and improved process safety [78-80]. 

2.5.1 Types of Corrosion 

2.5.1.1 General Corrosion 

The corrosion of metals occurs as part of an electrochemical reaction between the metal 

and its environment [78-80]. Electrochemical reactions involve the transfer of electrons from one 

chemical species to another, with the metal surface acting as the anode during corrosion process 

providing electrons for a reduction reaction to occur [80]. For systems comprised of steel, 

corrosion of the metal surface occurs through the anodic dissolution of iron and subsequent 

oxidation to Fe(III) given by Equations (2-7) and (2-8). For the corrosion process to occur, the 

metal surface must be in contact with a liquid phase containing dissolved chemical species to 

facilitate the corresponding cathodic reduction reaction. Within most liquid systems, the 

presence of hydrogen ions at low pH and dissolved oxygen are the primary reduction reactions 

as given by Equations (2-9), (2-10) and (2-11). In terms of general corrosion, dissolved oxygen is 

considered a stronger oxidant than the hydrogen reduction reaction and may occur at all pH 

levels [81]. Figure 2-7, illustrates the corrosion of a carbon steel surface through the reduction of 

hydrogen ions by Equation (2-7) and (2-9).  
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Table 2-4. General corrosion electrochemical reactions 

 
 Figure 2-7. Corrosion of carbon steel by hydrogen reduction 

2.5.1.2 Uniform Corrosion 

Uniform corrosion is one of the most common types of corrosions of metal surfaces within 

aqueous environments where uniform contact between the corrosive medium and metal 

surface occurs [78-80]. Uniform corrosion involves an even attack across the surface of a metal and 

is considered one of the more mild forms of corrosion due to its ease in detection, 

reproducibility and prevention [80]. 

2.5.1.3 Pitting Corrosion 

Pitting corrosion is a localised form of corrosion leading to the formation of cavities or ‘pits’ 

upon the surface of a metal [78-80]. Pitting corrosion is considered one of the most destructive 

types of corrosion due to the difficulty in detecting the formation of pits and problems in 

designing against pitting corrosion [80, 82, 83]. The formation of a deep, narrow pit can ultimately 

lead to the complete failure of an entire system with transportation pipelines particularly 

susceptible to failure [82, 83]. Several factors may contribute to the onset and propagation of 

pitting corrosion including [78-80, 82-84]:  

H+ H+

H+ H+H2

Fe2+

e-
e-

Carbon Steel

Oxidation (Anode):   

Iron 
Fe → Fe2+ + 2e− (2-7) 

Fe2+ → Fe3+ + e− (2-8) 

Reduction (Cathode):   

Hydrogen ions 2H+ + 2e− → H2 (2-9) 

Oxygen (low pH) O2 + 4H+ + 4e− → 2H2O (2-10) 

Oxygen (high pH) O2 + 2H2O + 4e− → 4OH− (2-11) 
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• Localised damage to protective films formed on the surface of the metal such as during

pH stabilisation of natural gas pipelines. Breakdown may occur through mechanical or

chemical means with several factors influencing chemical breakdown:

 Dissolving of protective films under acidic conditions, metal oxides and

carbonates will dissolve at low pH.

 Dissolved oxygen [84-86] and high chloride concentrations [80, 87] will destabilise

protective films.

• Poor application or selection of coatings.

• Non-uniformities in the metal structure of the surface including non-metallic inclusions

at the metal surface providing active sites for corrosion to occur.

2.5.1.4 Crevice Corrosion 

Crevice corrosion is another form of localised corrosion of which occurs when stagnant 

microenvironments form within shielded areas including under washers, bolt heads, gaskets and 

potentially under scale and other surface formations [78-80]. Crevice corrosion is often initiated 

by a variation in oxygen concentration between the crevice corrosion site and the adjacent bulk 

fluid, often referred to as the differential-aeration mechanism. Oxygen present within the 

crevice corrosion site is consumed through reaction with the metal (Equation (2-10) and (2-11)) 

leading to a differential aeration cell due to restricted oxygen diffusion into the area. Due to the 

limited oxygen supply available, the cathodic oxygen-reduction reaction cannot be sustained 

within the crevice and reduction commences at the surface of the metal. The large cathodic 

surface area relative to the anodic corrosion site exacerbates the rate of corrosion due to the 

high current density [80]. Furthermore, within the crevice microenvironment, metal ions 

produced during corrosion tend to readily hydrolyse forming hydrogen ions and as a result, a 

highly acidic microenvironment conductive to corrosion.  

2.5.2 Corrosion in Natural Gas Pipelines 

Long distance natural gas and condensate pipelines are typically constructed from low 

corrosion resistant carbon steel due to the low cost of production [4, 88] and are susceptible to 

‘sweet’ and ‘sour’ corrosion in the presence of acid gases and free water during transport and 

processing, refer to Figure 2-8 [4, 89, 90].  The primary gas phase contributors to corrosion in natural 

gas pipelines include CO2 (sweet) and H2S (sour) [4, 51, 81, 88, 91-94] with up to 60% of corrosion 

experienced in the oil and gas industry resulting from CO2 based corrosion [88, 95]. The presence 

of these acidic gases in the gas phase will lead to their dissolution into the liquid phase resulting 

in the release of hydrogen ions and hence reduced liquid pH (refer to Equations (2-12) and 

(2-13)). The low corrosion resistance of carbon steel ultimately requires effective corrosion 
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mitigation strategies to maintain pipeline integrity over the life span of the asset. The presence 

of MEG itself has also been shown to impede CO2 corrosion of carbon steels when used as a 

hydrate inhibitor through adsorption to the metal surface [4, 96, 97]. Furthermore, natural gas 

pipelines are susceptible to failure due to excessive pitting corrosion arising from dissolved 

oxygen in drilling fluids and the breakdown of protective films such as coatings, organic films 

(FFCI) or mineral deposits (pH stabilisation) [82, 83, 98].  Figure 2-9 illustrates the failure of a natural 

gas pipeline due to pitting corrosion. 

 

Figure 2-8. Internal corrosion of a natural gas pipeline (Popoola [98]) 

 

Figure 2-9. Pitting failure of a natural gas pipeline (Mansoori [82]) 

Carbon Dioxide CO2 + H2O ↔ H2CO3 ↔ HCO3
− + H+  ↔ CO3

2− + 2H+ (2-12) 

Hydrogen Sulphide H2S → 2H+ + S2− (2-13) 
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2.5.2.1 Factors Influencing Natural Gas Pipeline Corrosion 

2.5.2.1.1 Gas Phase Composition 

One of the primary factors driving the rate of corrosion in wet gas and condensate 

transportation pipelines is the composition of the gas phase [88]. The presence and partial 

pressure of acidic gases (CO2 and H2S) within the gas phase will ultimately dictate the acidity of 

the liquid phase and the rate of pipeline corrosion [4, 91, 93]. Many wet gas pipelines will experience 

sweet corrosion due to the presence of CO2, however, H2S may not be present within all systems 
[88]. The additional presence of H2S can increase that rate of CO2 based corrosion acting as a 

promoter of the anodic dissolution of iron. However, one of the primary concerns regarding the 

presence of H2S includes the potential for sulphide stress cracking corrosion to occur [99]. 

2.5.2.1.2 Liquid Phase pH 

The liquid phase pH within a wet gas pipeline plays an important role in determining the 

rate and extensiveness of corrosion. Predominantly, the liquid phase pH is a measurement of 

hydrogen ion activity and hence an indirect measure of how corrosive a liquid will be [88]. 

Maintaining a high pH can have significant corrosion benefits to the operation of a pipeline 

including buffering against acidic gases, reduction in hydrogen availability for cathodic reduction 

and the promotion of protective scale formations [4, 88]. However, excessively high pH levels may 

contribute to stress cracking corrosion of steel [100] and undesirable scaling of process systems. 

2.5.2.1.3 Temperature 

The operating temperature of a pipeline can have numerous impacts on the rate of 

corrosion predominantly through its effects upon the formation of protective films (discussed in 

Section 2.5.3.1) including reaction kinetics, morphology and film stability [4, 88, 91, 94, 101].  At low 

temperatures (<30°C), the solubility of FeCO3 is high and the kinetics of formation low resulting 

in difficulties in the formation of protective FeCO3 films [4, 51, 88]. With increasing temperature, 

the rate of formation of protective scale films increases reducing the overall corrosion rate in 

the presence of CO2 [102-104]. Furthermore, with increasing temperature the thickness of the 

FeCO3 protective film increases further providing corrosion prevention [101]. 

2.5.2.2 Top of Line Corrosion 

The occurrence of Top of Line Corrosion (TLC) is a common issue facing the oil and gas 

industry, particularly within multi-phase wet gas and condensate pipelines [16, 63, 65, 72, 105]. Water 

within the gas phase of the pipeline tends to condense above the liquid phase level commonly 

referred to as the top of the line. Acidic gases such as carbon dioxide and hydrogen sulphide 

within the pipeline dissolve within the condensed water forming a highly corrosive low pH 

solution [63, 65, 72, 105] as illustrated by Figure 2-10. The occurrence of TLC is often difficult to control 
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as conventional corrosion inhibitors are restricted to the liquid phase of the pipeline and often 

cannot reach where TLC occurs [63, 65, 72, 105]. Furthermore, organic acids are often present within 

the produced gas and will condense alongside water further reducing pH and contributing to 

TLC [63, 72]. 

 

Figure 2-10. TLC mechanism due to water condensation (Yeaw [106]) 

TLC corrosion can be minimised by various techniques including internal cladding of 

pipelines with corrosion resistance alloys (CRA) and the use of thermal insulation to reduce the 

water condensation rate [63]. Volatile corrosion inhibitors have also been developed in attempts 

to control TLC through their condensation above the liquid line to form a protective film [63, 107, 

108]. The presence of MEG has been demonstrated to influence the rate of TLC in wet gas 

pipelines through several factors including, differences in CO2 solubility in the liquid phase 

compared to pure water [4, 72] and potential absorption of water from the gas phase reducing the 

rate of condensation [72]. Alternatively, wet gas pipelines operating under pH stabilisation 

typically experience TLC to a significantly less extent than those utilising FFCIs [8, 17]. A high pH 

within the liquid phase helps neutralise free organic acids preventing their evaporation and 

subsequent condensation at the top of the line [4, 16, 51, 72]. 

2.5.3 Corrosion in MEG Regeneration Systems 

A wide range of operational conditions including temperature and pH may be utilised in 

MEG regeneration systems in order to remove water (distillation) and other process 

contaminates that potentially require low pH to facilitate their removal during vacuum 

reclamation. Additionally, due to the high partial pressure of CO2 in the transportation pipeline, 

the pH of the incoming rich glycol is often highly acidic. As such, care must be taken during 



CHAPTER TWO: Literature Review 

23 

industrial MEG regeneration to ensure that the operational conditions do not pose a corrosion 

risk to systems constructed of carbon steel including storage vessels and potentially the MRU 

reboiler [2, 9, 10]. The study of Gonzalez [109] found high corrosion rates of carbon steel in rich 

MEG solutions up to 95°C at pH 5. For rich glycol solutions at the higher temperatures tested, 

carbon steel showed corrosion rates of up to 0.45 mm/y and the occurrence of pitting.  

Furthermore, oxygen may be present within high concentrations within the rich and lean glycol 

solutions with oxygen contamination potentially occurring through various pathways including 
[8, 19, 84, 86]: 

• Impure blanketing gases for MEG storage vessels containing up to 3-5% oxygen

• Vacuum reclamation systems operating under vacuum may result in oxygen

intrusion through poor seals

• Oxygen contaminated production chemicals injected into the MEG system

The presence of oxygen may facilitate corrosion through the reduction of oxygen upon the 

metal surface (Equation (2-10) and (2-11)). Palencsár [86] studied the corrosion of carbon steel 

MEG injection lines in the presence of oxygen contaminated lean MEG. The study concluded 

that the contribution of oxygen reduction on the overall corrosion of carbon steel between 5-

65°C over a wide range of pHs was minimal. It was suggested that the bulk of oxygen was 

typically consumed by ferrous ions present within the solution before corrosion could occur. 

However, if insufficient consumption of oxygen occurs, the presence of oxygen may pose a risk 

to both the injection pipeline and sub-sea MEG injection systems made of corrosion resistant 

alloys (CRA). The presence of even minute concentrations of oxygen prior the reinjection has 

been shown to present a significant corrosion risk to the CRAs used in sub-sea systems [8, 81, 82, 84,

110-113]. Furthermore, oxygen may negatively influence the stability and corrosion mitigation

properties of passivating iron carbonate films formed during pH stabilisation [81, 111]. To minimise

the risk of corrosion via oxygen, it is common practice in industry to reduce the total dissolved

oxygen content in the lean MEG to below 20 ppb prior to injection through either chemical

oxygen scavengers or ultra-pure blanketing gasses [8, 83, 113, 114].

2.5.4 Corrosion Mitigation Methods 

2.5.4.1 pH Stabilisation 

pH stabilisation is a corrosion mitigation strategy utilised in carbon steel wet gas and 

condensate pipelines operating using MEG for hydrate inhibition to limit the rate of internal 

corrosion. The basis of pH stabilisation entails artificially increasing the liquid phase pH to reduce 

the availability of hydrogen ions for the cathodic corrosion reaction, whilst also promoting the 

formation of a protective FeCO3 film on the surface of the pipeline [4, 15, 17, 51, 96]. The application 
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of pH stabilisation is primarily utilised in systems experiencing sweet corrosion due to the 

presence of CO2 [9, 17, 51, 115]. Where H2S is present within the reservoir, limited industrial usage of 

pH stabilisation for corrosion control has been reported, however, several studies indicate pH 

stabilisation may be suitable for sour gas systems [17, 115]. Corrosion control by pH stabilisation 

can be achieved through dosage of any basic chemical including salt-based hydroxides and 

carbonates as well as amine compounds such as methyldiethanolamine (MDEA). The selection 

of suitable pH stabiliser is dependent on several operational concerns including solubility in 

MEG, compatibility with other process chemicals and the behaviour during the regeneration and 

reclamation processes [4]. 

The lean glycol pH or alkalinity required to achieve sufficient corrosion control during pH 

stabilisation is primarily dependant on the partial pressure of CO2 within the pipeline and the 

pipelines operating temperature [15, 17, 51]. Pipelines operating at lower temperatures require 

significantly more bicarbonate alkalinity to generate the protective FeCO3 films due to the high 

solubility and reduced formation kinetics of FeCO3 at low temperatures [17]. At temperatures 

below 20°C, Pojtanabuntoeng [4] suggested that corrosion control by pH stabilisation was 

limited to the neutralisation of acidic gases due to limited FeCO3 precipitation. 

The application of pH stabilisation has several operational limits including the high risk of 

scaling once formation water breakthrough occurs [9, 15, 17, 116]. Upon the onset of formation water 

production, the introduction of divalent cations including calcium, magnesium and barium pose 

a significant scale risk to sub-sea MEG injection systems and the primary pipeline at the high pHs 

and alkalinities (carbonate and hydroxide) maintained during pH stabilisation. As such, the 

application of pH stabilisation for corrosion control is limited to systems producing condensed 

water only. Likewise, during well clean-up operations the sudden back production of drilling and 

completion fluids may also pose a scaling risk [4].   

Where moderate to high risk of formation water production is present, such systems may 

instead operate under partial pH stabilisation in conjunction with the injection of film forming 

corrosion inhibitors (FFCIs) to ensure adequate corrosion control  [4, 17]. A chemical scale inhibitor 

may also be injected to minimise the risk associated with sudden formation water breakthrough 
[17, 32]. The dual combination of partial pH stabilisation and FFCIs provides good control of both 

general and local CO2 corrosion and reduced TLC rates compared to pure FFCI usage [8, 17].  

2.5.4.2 Film Forming Corrosion Inhibitors 

Film forming corrosion inhibitors (FFCIs) are another corrosion mitigation strategy 

commonly used in carbon steel wet gas pipelines and can be utilised at the natural pH of the 

liquid phase [8-10, 14]. FFCIs provide corrosion protection through the formation of a thin film upon 
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the surface of the pipeline preventing direct contact with the corrosive liquid phase and pipeline 

wall. FFCIs typically consist of surfactant molecules that attach themselves to the pipeline 

surface through chemisorption or physisorption forming a hydrophobic surface that repels 

water. The film formed by FFCIs must be capable of withstanding high shear stress to prevent 

degradation of the protective film and hence loss of corrosion protection [2, 117] . The generally 

accepted limit for corrosion in pipelines using FFCIs is 0.1 mm/year [4, 14]. 

Several operational issues may be faced when utilising FFCIs for corrosion control including 

thermal degradation within MEG regeneration and reclamation systems at high temperature, 

and poor compatibility with other production chemicals [4, 8, 14]. The accumulation of FFCI 

degradation products may ultimately result in foaming, emulsion and fouling issues downstream 

over multiple regeneration cycles [2, 4, 8, 32]. Furthermore, localised corrosion including crevice and 

pitting corrosion may occur when utilising FFCIs if insufficient film formation occurs within 

difficult to reach areas [9, 10]. 

2.5.4.3 Corrosion Mitigation Strategy Switchover 

The transition from one pH corrosion mitigation strategy, either pH stabilisation or FFCI 

injection, to the other method may be ideal under certain operational conditions [8-10, 14]. During 

the initial start-up of a MEG regeneration and natural gas pipeline and well clean-up operations, 

FFCIs are typically utilised for corrosion protection due to the scaling risk associated with sudden 

back production of drilling and completion fluids [4]. Once the scaling risk has subsided, the 

transition to pH stabilisation is ideal due to the better overall corrosion protection compared to 

FFCIs and can be achieved through removal of FFCIs within the vacuum reclamation system and 

simultaneous injection of basic pH stabilisers [8, 10].  

Upon the onset of formation water production, the reverse switchover from pH 

stabilisation to FFCIs may instead be performed to minimise the risk of system wide scaling [8-10]. 

Under such an operational philosophy, pH stabilisation chemicals are gradually removed from 

the MEG loop through the vacuum reclamation system and a more neutral lean glycol pH 

maintained [8]. To provide adequate corrosion and scale control, FFCIs and scale inhibitors are 

injected into the lean glycol prior to being reinjected at the well-head [8-10]. Although scale 

inhibitors may be injected to control scale formation within systems operating under pH 

stabilisation, there are operational uncertainties regarding whether sufficient scale inhibition 

can be generated and the overall scale risk avoided under pH stabilisation conditions [8, 13, 14]. 

Lehmann [8] further suggests that the transition from pH stabilisation to FFCIs may be necessary 

once acetate levels in the lean MEG product exceeds 2 g/L due to associated TLC risks.  
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The conduction of a corrosion mitigation ‘switch-over’ from pH stabilisation using salt-

based pH stabilisers including hydroxides can be achieved simply through the vacuum 

reclamation system and neutralisation of the lean glycol product to the target pH through 

hydrochloric acid (HCl) injection. In contrast, switchover from pH stabilisation using amines 

including MDEA is considerably more difficult and to date has not been performed. Due to the 

high MDEA content utilised to provide corrosion control, potentially up to 5% by volume in the 

lean glycol, the removal of MDEA represents a significant undertaking and may take several 

regeneration cycles to perform if slip-stream reclamation is utilised. Ultimately, the optimisation 

of MDEA removal from the closed loop MEG system during the switchover process can have 

considerably cost savings. The continued presence of MDEA in the MEG loop increases 

regeneration duty requirements [1, 2] and will buffer against any targeted pH changes increasing 

the required dosage of acid and bases. 

2.5.4.4 Oxygen Scavengers 

There are two potential avenues in which oxygen-based corrosion can be avoided within 

MEG systems including the use of ultra-pure cryogenic nitrogen or chemical oxygen scavengers. 

However, the use of ultra-pure nitrogen may be impracticable in MEG regeneration systems 

where a cryogenic nitrogen generation system cannot be installed and operated due to potential 

CAPEX/OPEX considerations or space limitations if the regeneration system is located on an off-

shore platform. In such cases, a chemical oxygen scavenger must instead be injected into the 

lean MEG product prior to reinjection at the well-head to provide oxygen control. Oxygen 

scavengers have been widely used in water systems including high temperature boilers and 

seawater injection systems for oxygen control, however, their application in MEG systems is 

often more complex and unpredictable [8, 19, 113, 118]. One of the most widely used oxygen 

scavengers in water systems is sulphite due to its low cost, proven reaction kinetics and 

mechanism in water and chemical stability at high temperatures [19, 119-123]. 

Extensive review of the oxygen scavenger performance of sulphite and a more recently 

developed organic acid based oxygen scavenger utilising erythorbic acid in MEG systems has 

been previously conducted [8, 19, 113, 118]. The primary issues facing oxygen scavenger usage in MEG 

solutions include low temperatures in sub-sea pipelines reducing reaction kinetics and the 

negative interaction with process contaminants including salts and organic acids [8, 19, 113]. 

Furthermore, various alcohols including MEG itself has been conclusively shown to inhibit the 

chain-reaction mechanism of oxygen scavengers including sulphite [19]. As such, the optimisation 

of process conditions including pH are essential to maximise the performance of oxygen 

scavengers to reduce the risk of oxygen-based corrosion. However, previously conducted 

studies examining the performance of oxygen scavengers in MEG fail to conclusively measure 
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their performance over a wide range of contaminant concentrations and system conditions 

including pH leading to uncertainties in their usage. Conclusive measurement of oxygen 

scavenger performance under these conditions can therefore help to minimise the risk of 

oxygen-based corrosion in MEG systems. 

2.6 Chemical and Physical Behaviour in MEG Systems  

2.6.1 Uncertainty and Operational Issues Faced in Industry 

Identifying how various production chemicals interact with each other and other process 

contaminants during operation is a primary concern in industry [8]. Unforeseen negative 

interactions between production chemicals can ultimately result in loss of efficacy leading to 

corrosion, scaling or other process concerns. Similarly, various production chemicals may cause 

operational issues including fouling, foaming or ultimately generate degradation products if 

exposed to high temperature conditions [4, 8-10]. For example, surfactant based corrosion 

inhibitors and demulsifying agents injected upstream may cause foaming within the high 

temperature MEG regeneration unit through reduce liquid phase surface tension [4, 8, 10, 51]. 

Foaming within the distillation column will ultimately result in entrainment and reduced 

separation efficiency [124, 125]. As such, identifying how various production chemicals interact and 

influence down-stream operations is extremely important to minimise process upsets.  

Furthermore, difficulties in measuring various process parameters in MEG systems poses a 

significant risk to continued and optimal operation of industrial regeneration systems. For 

instance, Sandengen [11] outlined the uncertainty in pH measurements within MEG solutions. 

They concluded that with increasing MEG concentration, the inaccuracy of any pH measurement 

consequently increased and provided a calibration factor to correct for the effects of MEG 

content. Ultimately, pH is one of the most important operating parameters in MEG systems 

governing various processes including production chemical behaviour, corrosion and the 

potential removal of weak acid/base species from the MEG regeneration system. Any 

uncertainty associated with the measurement of pH will result in significant uncertainty 

associated with the aforementioned aspects of the MEG regeneration process. Furthermore, it 

is often difficult to measure important process parameters including dissolved oxygen content 

in remote locations including within sub-sea equipment where the presence of oxygen may pose 

a corrosion risk. The difficulty in such measurements requires certainty in the performance of 

production chemicals including oxygen scavengers over a wide range of conditions to prevent 

operational issues from arising.  

The lack of rigorous design and experimental data regarding the behaviour of chemicals 

within MEG solutions can also have detrimental effects on the optimal design and operation of 

MEG regeneration systems. The generation of design data including vapour-liquid equilibrium 
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(VLE) behaviour under conditions relevant to MEG systems such as under vacuum (reclamation 

systems) can aid in the design of industrial separation systems designed for MEG processing. 

Likewise, better understanding regarding how the presence of MEG and other common 

contaminants in MEG systems influences chemical behaviour can help to optimise the overall 

MEG regeneration process. The presence of MEG often has significant implications for 

production chemical behaviour [2, 4, 8, 19, 126], behaviour of weak/acids and bases [127-130] and the 

settlement behaviour of solid particles [9, 10, 12]. 

2.6.2 Vapour-Liquid Equilibrium (VLE) 

VLE is in fundamental concept describing the behaviour of gas and liquid phases within 

systems undergoing interfacial mass transfer and forms the basis of physical separation 

processes including distillation [124]. The concept of VLE describes the distribution of components 

within the liquid and gas phases within a system and can be used to define two component 

systems (binary) or systems composed of multiple components (refer to Figure 2-11). From a 

known liquid phase composition, the corresponding composition of the gas phase can be 

predicted, thus allowing the modelling of gas/liquid separation processes. The generation of 

experimental VLE data at untested temperatures and pressures can aid in the design of industrial 

separation equipment including distillation columns and potentially vacuum reclamation units. 

VLE data can be used to describe isobaric (constant pressure) or isothermal (constant 

temperature) systems, with Figure 2-11 illustrating a T-xy diagram for an isobaric binary system 

of MEG and water at atmospheric pressure. A T-xy or P-xy diagram illustrates the known or 

estimated liquid and vapour fraction of a singular component in a binary system over a 

temperature or pressure range respectively. From T-xy or P-xy data, VLE diagrams can be 

constructed illustrating the distribution of a single component in a binary system between the 

liquid and vapour phase (Figure 2-12).  

2.6.2.1 Modelling of VLE Systems 

For the most basic ideal single component liquid-vapour systems, the distribution of the 

chemical species within the liquid and vapour phases can be described by Raoult’s Law (Equation 

(2-14)). A species vapour pressure (𝑃𝑃𝑖𝑖∗) at a given temperature can be calculate from the semi-

empirical correlation given by the Antoine Equation (Equation (9-1)). For binary systems 

consisting of two ideal species, the distribution of each component can be calculated through 

Equation (2-15) by combining the individual component’s Raoult’s Law equations. However, 

most real-world systems are un-ideal and do not directly follow Raoult’s law thus requiring 

correction parameters to accurately model such systems. 
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Figure 2-11. T-XY Diagram of MEG-water binary system at 101.325 kPa 

Figure 2-12. VLE Diagram MEG-water binary system at 101.325 kPa 

yiP = xiPi∗ (2-14) 

P�yi + yj� = Pi∗xi + Pj∗xj (2-15) 

log(Pi∗) = A −
B

T + C
(2-16) 

Where: P is the total system pressure, Pi∗ the component ‘i’s vapour pressure and xi, yi the 

fraction of component ‘i’ in the liquid and vapour phase respectively. 
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To account for the un-ideal behaviour of gases and liquids, the two most commonly utilised 

correction parameters include activity coefficients and the fugacity coefficient. Activity 

coefficients are utilised to correct the un-ideal behaviour of the liquid phase resulting from an 

excess in Gibbs energy when compared to a corresponding ideal liquid. The required activity 

coefficient to correct for un-ideal behaviour can be estimated from Equations (2-17) and (2-18). 

In contrast, the fugacity coefficient corrects for the residual Gibbs energy of the un-ideal gas 

compared to that of a corresponding ideal gas and can be determined from Equations (2-19) and 

(2-20). From the activity and fugacity coefficients, the un-ideal behaviour of the liquid and gas 

phases can then be predicted using the extended Raoult’s law equation given by Equation (2-21).  

However, the estimation of the excess or residual Gibbs energy of a liquid or gas 

respectively may not always be practical or possible. Various activity coefficient models have 

been proposed to facilitate the accurate modelling of the physical separation of chemical 

solutions without the need to determine the Gibbs energies of the system. The Non-Random 

Two Liquid (NRTL) model represents one of the most commonly used activity coefficient models 

for the calculation of phase equilibria with the NRTL model summarised in Table 2-5. To utilise 

the NRTL model, the binary parameters 𝑔𝑔𝑖𝑖𝑖𝑖 and 𝑔𝑔𝑗𝑗𝑗𝑗 must be regressed from experimental data. 

Furthermore, for most systems at atmospheric and vacuum pressure, the behaviour of the 

vapour phase is often considered ideal and the φ factor considered negligible [131, 132]. However, 

for systems above a pressure of 10 bar, an equation of state (EOS) model is required to calculate 

the gas fugacity coefficient to allow accurate modelling of gas phase behaviour [133]. 

 ln(γi) =
GiE

RT
 (2-17) 

 GiE = Greal − Gideal solution (2-18) 

 ln(ϕi) =
GiR

RT
 (2-19) 

 GiR = Greal − Gideal gas (2-20) 

 yiPϕi = xiPi∗γi (2-21) 

Where: The Gibbs energy, G of a chemical refers to the sum of its enthalpy (H) and entropy 

(S) at a given temperature (G = H -TS), R is the ideal gas constant, T the temperature of the 

system and ϕi the gas phase fugacity coefficient 
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Table 2-5. NRTL activity coefficient model 

2.6.3 Particle Settlement within MEG Regeneration Systems 

The removal of divalent cationic species including calcium, iron and magnesium during the 

pre-treatment of rich glycol is an important aspect of the MEG regeneration process [9, 10, 12]. 

However, beyond simply the formation of divalent salts to facilitate cationic species removal, 

the formed salts must be removed from the bulk solution to complete the removal process. 

Removal of the solid particles can be achieved through either in-line filtration, particle 

settlement or a combination of both [10, 12]. Alongside mineral salt products formed during pre-

treatment, corrosion products (iron carbonate and sulphide) formed within the pipeline and 

quartz from the reservoir may also enter the MEG regeneration system [9, 10].  The optimisation 

of particle settlement within MEG pre-treatment settlement systems can have significant 

operational implications through reduced filtration requirements and minimising any 

undesirable flow-through of particles into down-stream systems.  

2.6.3.1 Physical Factors Influencing Particle Settlement 

2.6.3.1.1 Particle Physical Properties 

The primary particle physical properties that influence the settlement rate of solids 

particles include particle density, size, shape and concentration [134-137]. A particle will undergo 

settlement when its density exceeds that of the surrounding fluid with the settlement velocity 

of a singular particle under ideal conditions given by Stokes Law (Equation (2-22)). Within 

settlement systems where the concentration of the solid particles is high, Stokes Law fails to 

accurately predict settlement velocity due to particle-particle interactions including collisions, 

friction and particle-particle repulsion/attraction [136, 137]. Stokes Law is primarily applicable to 

particle settlement where the Reynolds number of the particle is low (Re < 0.4) [136, 137]. 

Furthermore, a particles shape may also influence particle settlement with irregularly shaped 

particles tending to settle slower compared to comparable spherical particles due to an increase 

in projected area exposed to frictional forces of the fluid [135, 136]. 

lnγi = xj �
τjigji2

�xi + xjgji�
2 +

τijgij2

�xj + xigij�
2�  

τij =
gij − gjj

RT
  τji =

gji − gii
RT

 

gij = exp(−αijτij)     gji = exp(−αjiτji) 

Where: 𝛼𝛼𝑖𝑖𝑖𝑖 ,𝛼𝛼𝑗𝑗𝑗𝑗 are non-randomness parameters from literature, 𝜏𝜏𝑖𝑖𝑖𝑖 , τji are dimensionless 
interaction parameters and gij, gji the NRTL binary parameters regressed from experimental 
data 
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 u =
D2𝑔𝑔
18𝜂𝜂

∆𝜌𝜌 (2-22) 

Where D = particle diameter, 𝜂𝜂 = liquid viscosity 𝑃𝑃𝑃𝑃. 𝑠𝑠, g = gravity 𝑚𝑚/𝑠𝑠2 and ∆𝜌𝜌 = density 

difference between solid particle and liquid phase 𝑘𝑘𝑘𝑘/𝑚𝑚3 

2.6.3.1.2 Liquid Phase Properties 

In a similar manner to the particle, the density of the liquid phase is a primary factor 

influencing particle settlement as dictated by Stokes Law and equivalent settlement models [134, 

136-138]. Other liquid phase factors influencing particle settlement include liquid viscosity (refer to 

Equation (2-22), formation of independent water/polar and oil/non-polar phases and liquid 

convection currents. The combined presence of oil and water within a liquid system may 

influence particle settlement due to particle surface chemistry. Particles that are oil-wetted 

(discussed in proceeding section) have a strong tendency to adsorb to oil-water interfaces 

improving emulsion stability through reduced contact area between the two fluids [139, 140]. 

Likewise, most particles whether water-wet or oil-wet will have difficulties in transitioning 

through two distinct oil-water phases due to the high interfacial tension [141].  Liquid phase 

convection currents may also significantly influence particle settlement due to liquid phase flow 

against the direction of particle settlement. Convection currents can be generated by variations 

of liquid phase density and temperature (through effect on liquid density) due to uneven mixing, 

fluid composition and heating [134, 136-138], factors highly variable in large scale industrial systems 

including MEG settlement tanks. 

2.6.3.2 Chemical Factors Influencing Particle Settlement 

2.6.3.2.1 Particle Wettability 

The ‘wettability’ of a solid surface is a measure of the surface’s affinity to a liquid such as 

water, MEG, or oil with the degree of wettability is dictated by the liquids ability to spread on 

the solid surface [142]. In the presence of hydrocarbons and water, a particle may vary from 

strongly ‘water-wet’ to strongly ‘oil-wet’ with the degree of wettability providing a measure of 

a particles hydrophilicity or hydrophobicity [143, 144]. The wettability of a solid particle plays an 

important role in the particle agglomeration process necessary for settling to be achieved [145, 

146]. The agglomeration of particles is facilitated by the formation of a ‘liquid bridge’ between 

colliding particles [145, 147, 148] which is influenced by the particles wetted state [145, 146]. 

Furthermore, the wetted state of a particle may also influence its settlement behaviour. The 

process of film flotation is used to separate water-wet and oil-wet particles whereby particles 

are introduced at the water-air interface, as a result, the water-wet particles sink and oil-wet 
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particles float [149]. Particles are submerged into the wetting liquid only when the critical wetting 

surface tension of the particle is equal or greater than the surface tension of the liquid [141]. Diao 

and Fuerstenau [141] states that the floatation of particles is sensitive primarily to the 

hydrophobicity and heterogeneity of the particles with little impact due to particle size and 

density. 

2.6.3.2.2 Particle-Particle Attraction and Zeta Potential 

The stability of a dispersion of solid particles and ability to settle in liquid largely depends 

on particle-particle interactions that are primarily influenced by van der Waals, electrostatic and 

potentially steric forces [150, 151]. DLVO theory describes the interaction of particles by evaluating 

the balance between two opposing forces, electrostatic repulsion and van der Waals attraction. 

The net interaction between two particles is therefore the summation of the particle-particle 

repulsive and attractive forces. Van-der Waal attraction arises due polar interactions between 

molecules in the form of London Dispersion forces and Dipole-Dipole interactions. In contrast, 

electrostatic repulsion between similarly charged particles occurs between the electrical double 

layers surrounding the particles formed due to the particles surface charge [152-157] (refer to 

Figure 2-13). Particles with charged surfaces will attract counter-ions of which form a layer 

immediately adjacent to the particle surface as well as a second more diffuse layer of counter 

ions [157]. 

Figure 2-13. Electrical double layer around a positively charged colloidal particle from Tadros 

[152]. 

The formation of a surface charge upon a particle may arise due to defects in the structure 

of the crystal lattice and the interaction of the particle with electrolytes within the liquid [154, 158]. 

Solids with ionisable function groups (e.g. hydroxides) will also develop surface charges 

dependent on the degree of ionisation of the molecule [158]. Simultaneously, van der Waals 

attraction forces act upon particles in close proximity and must be greater than the electrostatic 
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repulsion due to the surface charge for agglomeration to occur [153, 155]. Zeta potential represents 

a measure of the electrostatic charge repulsion/attraction between particles providing an 

analytical method to determine the stability of a particle suspension. At greater absolute zeta 

potentials, particles exert greater electrostatic repulsion between similarly charged particles 

prohibiting their agglomeration and settlement. Particles with low zeta potential will form large 

particle agglomerations and will have a stronger tendency to settle. 

The presence of electrolytes strongly dictates the range of the double layer interaction 

between particles with increasing ionic strength reducing the overall electrostatic repulsion, 

indicated by reduced zeta potential [155, 159-161]. In low ionic strength solutions where particles 

exhibit high surface potentials particle suspensions will tend to stabilise, in contrast, with greater 

ionic strength the particle suspension will lose stability and tend to flocculate and settle [160-162]. 

Furthermore the surface charge of particles is also influenced by pH due to the change in 

hydronium and hydroxide concentrations as well as the degree of ionisation of molecules with 

ionisable function groups [158] (refer to Figure 2-14). For silica particles, generation of a surface 

charge will occur due to the deprotonation of the surface hydroxyl sites followed by pH 

dependant dissociation forming discrete charged sites [156]. As such, the surface of silica particles 

will tend to be positive at low pH and negatively charged at high pH. Similar behaviour is also 

observed for other particle species including calcite as depicted by Figure 2-14. The pH point of 

zero charge (pHpzc) (also known as the isoelectric point) refers to the pH of the system whereby 

the surface charge of colloidal particles is zero [158]. At this point, the particle will exhibit zero 

zeta potential indicating maximum agglomeration and hence settling potential.  

 

Figure 2-14. Effect of pH on particle surface charge in water (Frimmel [158])  

2.6.3.2.3 Behaviour of Hydrophobic Particles in Liquid Suspensions 

Non-polar substances such as hydrocarbons are insoluble within polar substances (such as 

water and MEG) due to the less stable nature of solute-solvent interactions compared to the 
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hydrogen bonds present among water-water and MEG-water molecules [156, 163]. However, the 

attraction between hydrophobic molecules (such as oil-wet particles) within water (and by 

extension MEG) is considered strong and a major source of particle agglomeration in other 

industries [156, 164-167]. Crist [167] evaluated the interaction behaviour of both hydrophilic and 

hydrophobic colloids within water. The results of the study indicated a strong interaction 

potential between hydrophobic particles at close distances within water leading to their 

aggregation. In contrast, the hydrophilic particles exhibited poorer interaction potential due to 

a repulsive energy barrier existing between the hydrophilic particles [167]. The greater 

aggregation of hydrophobic particles was attributed to the absence of an energy barrier 

between hydrophobic colloids and particle-particle interaction potential (van der Waal forces) 

over short distances. Ultimately, the strong tendency of hydrophobic particles in water and MEG 

solutions may facilitate greater settlement aiding in the removal of solid particles in the pre-

treatment systems of MEG regeneration loops.  

2.6.3.3 Particle Wettability in MEG Systems and Factors Affecting Wettability 

Within MEG systems, the exposure to particles to condensate within the hydrocarbon 

transportation pipeline or organic compounds during pre-treatment may lead to the transition 

from water-wetted to oil-wetted. Polar organic compounds including long-chain fatty organic 

acids and potentially short-chain organic acids such as acetic, propanoic and butanoic may 

adsorb to the surface of positively charged particle surfaces including iron and calcium 

carbonate at low pH  [143, 159, 168-170]. At low pH (<8-9 [171, 172]) the surface of carbonate salt particles 

becomes positively charged due to the presence of the divalent cation whereas at higher pH the 

increased concentration of CO3
−2 produces a negatively charged particle surface [171, 173]. The 

study by Thomas [172] suggests that medium to long chain fatty acids (octanoic, decanoic) show 

a strong affinity for the surface of calcite. However, the results of the study state that propionic 

acid did not show any significant adsorption onto the surface of calcite suggesting that short-

chain acids such acetate, butanoate and propanoate will not produce oil-wet surfaces. As such, 

the primary contribution to particle oil-wetting within MEG systems can be considered the 

exposure of particles such as iron corrosion products (carbonates, sulphides) and quartz 

(possibly present in the reservoir) to long chain fatty acids present within the hydrocarbon phase 

of the pipeline. 

2.6.3.3.1 Measurement of Wettability 

The measurement of contact angle is considered one of the primary analytical methods for 

quantifying the wettability of solid surfaces [143, 145, 174-176]. Typically, wettability is determined via 

contact angle measurements (θ) [177], which is a function of solid-fluid systems interfacial tension 

(Equation 2-23 – Young’s equation). The degree of wettability is determined by the angle formed 
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by the intersection of the liquid-solid interface and the liquid-vapour interface where θ < 90° 

indicates high wettability and θ > 90° indicates poor wettability (refer to Figure 2-15) [142]. To 

characterise the wettability of a particle or surface, a substrate of the substance is prepared and 

the contact angle measured by various methods including the tilted plate contact angle method 
[159, 169, 174, 176]. The method involves tilting the substrate surface at an angle, introducing a droplet 

of the desired fluid and measured the advancing (θmax) and receding (θmin) contact angles [142, 159, 

169, 176]. However, the validity of Young’s equation (Equation (2-23)) and by extension the tilted 

plate contact angle method requires the solid surface to be smooth, flat, homogenous, inert, 

insoluble and non-porous [178, 179].  

 

Figure 2-15. Wettability with respect to contact angle of liquid droplet (Yuan and Lee [142]) 

 

Figure 2-16. Contact angle measurement by tilted plate method (Yuan and Lee [142]) 

2.6.3.3.2 Liquid Surface Tension 

The wettability of a solid surface is directly related to the surface tension of the surrounding 

liquid. A solid surface is more wettable when the liquid surface tension and the resulting liquid-

solid contact angle is low [180].  The concept of critical surface tension provides a method to 

characterise a specific surface and by extension estimate its wettability [149, 180]. The critical 

surface tension corresponds to the surface tension at which a liquid completely wets a solid and 

 cosθ =  
γ(Solid−Liquid) − γ(Solid−Air)

γ(Liquid−Air)
 

 

(2-23) 
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dictates at which liquid surface tension a particle will float or sink [149]. Furthermore, alcohol-

water mixtures exhibit altered properties in comparison to pure water included reduced 

interfacial surface tension [181, 182]. Water-alcohol mixtures have also been shown to reduce the 

hydrophobic interaction of particles with increasing alcohol content by stabilising the structure 

of water around the hydrophobic surface [181]. As a result of reduce surface tension, the presence 

of ethanol has been demonstrated to reduce the contact angle of water (increased water-

wetness) of initially partially hydrophobic surfaces [182]. 

2.6.3.3.3 Particle Shape, Size and Surface Roughness 

The wetting behaviour of solid particles is influenced by the physical properties of the 

particle itself including surface roughness and particle size and shape [178, 179, 183]. For hydrophilic 

materials, increasing surface roughness results in a decrease in measured contact angle and 

hence more water-wet in the presence of water, whereas the opposite is true for hydrophobic 

particles [144, 178, 179, 184]. Figure 2-17 illustrates the influence of surface roughness on hydrophilic 

surface-particle interaction whereby the rougher surfaces provides a greater interfacial area for 

contact to occur [179]. Alternatively, for hydrophobic surfaces, the water bubble will attempt to 

distance its-self from the crevices effectively limiting the total interfacial surface contact. 

Figure 2-17. Surface roughness effect on liquid particle – surface interaction. a) smooth surface 
b) rough surface with increased liquid-solid interfacial contact (Kumar and Prabhu [179])

2.6.3.3.4 Surface Heterogeneity 

Mixtures of solid particles typically exhibit significant heterogeneity due to differences in 

chemical compositions and crystal orientations [149]. Furthermore, individual surfaces may 

exhibit regions where the wettability of one area differs slightly from surrounding areas. Regions 

of chemical contamination also exhibit similar behaviour to chemical heterogeneities. For 

heterogeneous surfaces, the apparent contact angle (measured) is related to the Young’s 
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contact angle (actual) by the Cassie Equation given by Equation (2-24). 

 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝐶𝐶 = 𝑓𝑓1cosθ1 + 𝑓𝑓2𝑐𝑐𝑜𝑜𝑠𝑠𝜃𝜃2 (2-24) 

Where: 𝑓𝑓1 and 𝑓𝑓2 are the fractional areas of the surface for material 1 and 2 

2.6.3.3.5 Presence of Metal Cations / Salinity  

Within systems containing brine, oil and rocks, salinity can strongly influence the surface 

charge on the particles surface and liquid interface in turn affecting the particles wettability [185]. 

The presence of sodium, magnesium and sulphate ions within brine have been shown 

experimentally to reduce the oil-wetness of calcite surfaces in the presence of carboxylic anions 
[168, 170, 186, 187]. Rezaei Gomari and Hamouda [168] suggests that the adsorption of the dissolved 

ions onto the calcite surface (attraction to the negative double layer reduces the adsorption of 

carboxylics present in crude oil onto the calcite surface. Furthermore, Mg2+ exhibits a greater 

affinity for hydration than Ca2+ and as such the adsorption of Mg2+
 onto the calcite surface may 

also lead to increased water-wetness [168]. 

The research of Qi [188] evaluated the wettability of quartz surfaces in the presence of 

asphaltenes present in crude oil. For quartz surfaces, the presence of magnesium and sulphate 

ions increased the oil-wettability of the surface by interacting with the negatively charged 

double layer surrounding the particle [188]. The resulting interaction between the metal cations 

and negative double layer reduced the magnitude of electrostatic repulsion facilitating greater 

adsorption of asphaltenes present in crude oil onto the quartz surface hence producing a 

hydrophobic surface [188].  Based on this, and the information presented in prior sections, the 

literature seems to suggest that factors that increase the water-wetness of calcite also increase 

the oil-wetness of quartz. 

2.6.3.3.6 Application of Surfactants for Particle Surface Modification 

The wetting preference of solid surfaces including calcium carbonate oil and gas reservoirs 

can be altered by interaction with surface-active agents such as emulsifiers and surfactants [176, 

189, 190], with surfactants typically injected into reservoirs to reduce the oil/water interfacial 

tension and shift the wettability towards less oil-wet / more water-wet [190, 191]. The exposure of 

surfaces to surfactants/emulsifiers induces a change in the interfacial tension at the fluid/fluid 

and fluid/solids interface(s) by adsorption of the surfactant onto the particle surface [192, 193]. As 

a result, the wettability of the particle is altered dependent on the type of surfactant and the 

nature of rocks [156, 190, 191].  

The interaction of surfactants is dependent on the surface charge of the particles, whether 

positive or negative. For example, a dissociated cationic surfactant ion is comprised of a 
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positively charged polar head and a neutral hydrocarbon tail. The positively charged head will 

be adsorbed to the surface of negatively charged particles due to electrostatic attraction with 

the particle surface displacing the counter ions present in the electrical double layer surrounding 

the particle [156]. As such, the neutral hydrocarbon tail will protrude from the particle into the 

bulk liquid producing an oil-wetted surface. However, if organic compounds such as carboxylics 

are initially present upon the particle surface, cationic surfactants will interact within the 

negatively charged carboxylics resulting in their desorption from the surface, and hence a more 

water-wet surface [194-196]. Alternatively, if crude oil components have been adsorbed onto the 

surface of a particle, anionic surfactants will form a monolayer on the surface through 

hydrophobic interactions [194, 197]. The resulting layer of adsorbed surfactants results in 

hydrophilic head groups covering the oil-wet particle producing a more water-wettable surface 
[190, 191].   

2.6.4 Acid Dissociation Behaviour of Chemical Species 

A chemicals acid or base dissociation constant (Ka, Kb) is a quantitative measure describing 

the extent an acid or base will dissociate within water or other solvents. Weak acids and bases 

will only partially dissociate, with the extent of dissociation calculable from the respective 

dissociation constants through Equations (2-25) and (2-26). A chemicals Ka and hence speciation 

behaviour can be influenced by a variety of factors including temperature, ionic strength and 

the dielectric constant (ε) of the solvent [130]. Organic solvents such as ethylene glycol typically 

result in an increase in acid/base dissociation constants compared to aqueous solutions [127-130]. 

Ka =
[A−][H+]

[HA]

 

(2-25) 

Kb =
[BH+][OH−]

[B]
(2-26) 

Where: A/B represent the undissociated acid or base and HA/BH+ represent the respective 
conjugate acid or base 

The effect of temperature on acid dissociation behaviour is related to temperatures 

impact on the dissociation reaction’s change in Gibbs free Energy given by Equations  (2-27) in 

terms of standard state enthalpy change ∆H° (kJ. mol−1 ) and entropy change ∆S° (kJ. mol−1. 

K). The Gibbs free energy of a reaction can be related to the equilibrium constant,  Keq by 

Equation (2-28) to develop the van’t Hoff equation given by Equation (2-29) of which can be 

used to estimate the effect of temperature on the equilibrium constant of a reaction 
[198]. For dissociation reactions which are endothermic, pKa decreases within increasing 

temperature with the opposite occurring for exothermic reactions. 
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Due to the uncertainties associated with MEG chemistry, better understanding of how and 

to what extent various factors influence chemical speciation behaviour can have significant 

implications to the operation of MEG regeneration systems. In particular, the tendency to 

remove or retain weak acid/base chemical species including organic acids, amine-based pH 

stabilisers and other production chemicals during physical separation processes (distillation and 

reclamation) is dependent on the respective chemical’s speciation behaviour. For long-term 

operation, it is ideal to minimise the loss of several process chemicals including pH stabilisers 

such as MDEA during the vacuum reclamation process to reduce re-dosage requirements and 

hence long-term operational costs [7, 8, 40, 199]. Alternatively, organic acids and MDEA post 

formation water breakthrough are undesirable and their removal from the closed loop MEG 

system beneficial  [7]. As such, the accurate determination and modelling of acid dissociation 

constants under a wide range of conditions including MEG concentration, temperature and 

salinity will ultimately help to identify the critical pH levels required for either the optimal 

removal or retention of varying chemical species thus optimising the overall regeneration 

process.  

For instance, Figure 2-18 illustrates the effect of temperature on the acid dissociation 

constant of MDEA within water as reported by Hamborg and Versteeg [200]. With increasing 

temperature, a lower pH is required to ensure MDEA is completed dissociated to its conjugate 

acid, MDEAH+ (Figure 2-19). Knowledge of such effects and accurate speciation data would 

therefore allow field operators to maximise the amount of MDEA removed during the vacuum 

reclamation process following the onset of formation water production. Similar improved 

speciation data can also help maximise the removal of organic acids during MEG regeneration 

separation processes.  Furthermore, various process contaminants including organic acids may 

negatively interact with production chemicals including oxygen scavengers reducing their 

efficacy [19, 201, 202]. As such, improved speciation data of problematic chemicals such as organic 

acids tailored to the highly variable conditions within MEG regeneration systems may help to 

reduce negative interactions with production chemicals and resulting production issues. 

∆G° = ∆H° − T∆S° (2-27) 

∆G° = −RT ln𝐾𝐾𝑒𝑒𝑒𝑒 (2-28) 

ln Keq = −
∆H°
RT

+
∆S°
R

(2-29) 
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Figure 2-18. Effect of temperature on the pKₐ of 
MDEA in water [200] 

Figure 2-19. Effect of temperature on the 
speciation of MDEA in water 
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3.0 EXPERIMENTAL EQUIPMENT, METHODOLOGIES AND MEASUREMENT 
TECHNIQUES 

This chapter outlines various experimental methodologies, description of process 

equipment, instrumentation and measurement methods common between all chapters within 

this thesis. 

3.1 Mono-Ethylene Glycol Regeneration Pilot Plant 

The pilot MEG regeneration plant utilised within several studies conducted as a part of this 

thesis is owned by the Curtin Corrosion Centre (CCC) to identify, study and solve potential issues 

facing industrial MEG regeneration systems. A flow-scheme outlining the various processes and 

equipment encompassing the system is presented in Appendix B. 

3.1.1 MEG Regeneration Unit (Distillation) 

The MRU is the primary process system utilised during the regeneration of MEG in order 

to achieve the desired final lean glycol purity necessary to facilitate continued hydrate inhibition. 

To simulate the MRU within the pilot plant, a glass distillation column constructed by De Dietrich 

Process Systems|QVF was utilised (Figure 3-1). The design and operational specifications of the 

distillation column are outlined by Table 3-1. The column was constructed using DuraPack 

borosilicate glass 3.3 structured packing developed by De Dietrich, with the packing selected for 

its high mass transfer efficiency. Table 3-2 outlines the specifications and dimensions of the 

structured packing. 

Table 3-1. MEG distillation column design specifications 

Feed Rate Up to 6.5 kg/hr. 

Feed Conditions Temperature: 40-50°C, Pressure: 1.1 
bara 

Column Operating Pressure (1) – (1.5) bar 

Colum Operating Temperature (20) – (150)°C 

Condenser Type Total 

Reflux Drum Capacity 5 Litres 

Reboiler Type (Capacity) Kettle type (8.5 Litres) 

Reboiler Power requirements 5 kW 

Column Diameter DN 80 (76.2 mm) 

Packing height 900 mm x 2 Sections 

Packing material Borosilicate glass 3.3 Structured Packing 
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Table 3-2. MEG distillation column packing specifications 

Figure 3-1. Curtin Corrosion Centre MEG distillation system 

3.1.2 Feed Blender, Rich MEG Pre-Treatment Unit and Three Phase Separator 

The separation of hydrocarbons from the MEG/water phase is an important aspect of 

industrial natural gas processing in order to facilitate further refinement and production of the 

Packing Surface Area 300.0 m2/m3 

Packing Factor, 𝐹𝐹𝑃𝑃 195.3 m2/m3 

Packing Void Fraction 0.824 

Corrugation Base Width 1.8856 cm 

Corrugation Side Dimension 1.3333 cm 

Corrugation Height 0.94281 cm 

Corrugation Angle 45° 
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desired natural gas and condensate products for sale. Initial separation of light gaseous 

hydrocarbons ranging from methane to propane is achieved within the slug-catcher and sent to 

the gas processing system. The liquid phase from the slug-catcher consisting of heavier 

hydrocarbons (condensate), water and MEG is then further separated within a three-phase 

separator. The condensate product is separated from the MEG solution due to inherent 

differences in density, however, the separation process is not perfect and condensate may enter 

into the MEG regeneration system. Within the MEG regeneration pilot plant, the feed blender 

simulates a slug catcher mixing MEG, water and hydrocarbons if present. Furthermore, the feed 

blender simulates the high partial pressure of carbon dioxide within natural gas pipelines 

saturating the MEG/water phase with CO2 to replicate field conditions. 

Following on from the feed blender, the rich glycol solution is fed into a pre-treatment 

vessel. The pilot plant pre-treatment system was designed for the dual purpose of the separation 

of hydrocarbon condensate from the rich MEG phase to simulate three-phase separation and 

the removal of divalent cations via pre-treatment. However, the studies conducted using the 

pilot plant within this thesis were conducted without hydrocarbon condensate present. As such, 

the system was utilised solely as a pre-treatment system for the removal of divalent cations prior 

to the regeneration process. Table 3-3 outlines the design specifications and typical operating 

conditions of the pilot plant pre-treatment system.  

Table 3-3. Pre-treatment / three-phase separator specifications 

To facilitate the removal of divalent cations (typically calcium and iron) from the rich MEG 

solution, it is critical to control the pH and alkalinity of the liquid phase to allow formation and 

precipitation of divalent salt products. pH within the pre-treatment system was directly 

measured using a pH probe located within the recirculation loop of the system. Adjustment of 

pH was achieved through a Pro Minent dosing pump injecting 45% wt. sodium hydroxide into 

the recirculation loop of which is directly controlled via a PLC system (Section 3.1.4). To maintain 

sufficient carbonate alkalinity to form carbonate salts, carbon dioxide was continuously sparged 

into the liquid phase at a rate of 0.5 SLPM. The continuous sparging of carbon dioxide in 

conjunction with a consistent liquid phase pH above 8.2 allows the formation of carbonate ions 

and as a result, strong tendency to form carbonate salts. 

Height 0.75 m 

Diameter 0.45 m 

Operating Temperature 80°C 

Operating Pressure 1.3 bar 
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3.1.3 Vacuum Reclamation Unit 

Vacuum reclamation is an important aspect of the overall MEG regeneration process in 

order to control the level of dissolved salts within the closed loop MEG system. In order to 

simulate the reclamation process on a pilot plant scale, a Heidolph Hei-VAP Industrial vacuum 

rotary evaporation system was utilised (Figure 3-2). The system is capable of generated a 

vacuum as low as 5 kPa and a liquid phase temperature of 180°C ±1°C to allow boiling of the 

MEG/water phase. Salt rich lean glycol solution was fed into the reclamation system using the 

internal vacuum to generate liquid flow into the system. Once inside the liquid flask, the high 

temperature low pressure conditions evaporated the MEG/water solution facilitating the 

removal of any dissolved salts present. 

The system was modified from its original batch design to allow continuous processing of 

lean MEG for salt removal. To allow continuous operation, the system was fitted with an external 

liquid level sensor upon the liquid phase collection flask of which was connected to a control 

system. Once a pre-defined liquid level was reached, the system would pump out the collect 

solution to be returned to the lean glycol storage tank.  

Figure 3-2. Curtin Corrosion Centre MEG reclamation system 
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3.1.4 System Control 

To facilitate long-term experimentation using the pilot plant, a programmable logic 

controller (PLC) system was utilised to control various operational processes. The PLC system 

procured from National Instruments allowed direct control of various process parameters within 

the pilot plant system. The primary parameters controlled during operation including reboiler 

temperature, stream flow rates and pH within various sections of the plant, particularly the rich 

and lean glycol tanks and within the pre-treatment system. To allow control of pH, the control 

system was connected to several Mettler Toledo M800 process measurement systems of which 

provided continuous measurement of pH and dissolved oxygen content with the locations 

illustrated in Appendix B. 

3.1.5 Process Instrumentation 

3.1.5.1 pH Measurement 

Measurement of pH within the pilot regeneration plant was performed using Mettler 

Toledo InPro 4800(i) pH probes. InPro 4800(i) pH probes are capable of pH measurement 

between 0-14 pH ±0.01 pH units from -5-80°C with automatic temperature compensation.  

3.1.5.2 Dissolved Oxygen Measurement 

Accurate measurement of dissolved oxygen concentration is an important process 

parameter due to the potential thermal degradation of MEG in the presence of oxygen during 

the regeneration process. Mettler Toledo InPro 6800 polarographic dissolved oxygen sensors 

were utilised for oxygen concentration determination. The InPro 6800 probes are capable of 

oxygen measurement from saturation to 6 ppb with an accuracy of ±1% up to 80°C.  

3.1.5.3 Control of Gas Compositions and Flow Rates 

Various gas compositions were utilised during pilot plant operation to simulate field and 

operational conditions. For example, within the feed blending system a CO2/N2 gas mixture was 

continuously sparged into the liquid phase to replicate the saturation of the rich MEG phase by 

CO2 experienced within the hydrocarbon transportation pipeline. Likewise, nitrogen was 

continuously sparged into the storage vessels to drive out any dissolved oxygen to prevent 

thermal degradation during the regeneration process. To control the gas flow into the system, 

several Alicat mass flow controllers were utilised. Where mixtures of multiple gas were utilised, 

the pure gases were mixed using the gas mixing capabilities of the Alicat mass flow controllers 

to generate the required gas composition.  

3.1.5.4 Liquid Stream Flow Rates 

The mass flow rate of each liquid stream was measured by Promass A100 inline mass flow 

metres manufactured by Endress+Hauser with an accuracy of ±0.1%. Flow rates were 

continuously monitored by the PLC and controlled via the respective variable speed pumps. 
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3.2 Experimental Measurement and Analysis 

3.2.1 Ion Chromatography 

Ion chromatography (IC) was utilised to measure the concentration of varying ionic species 

within MEG samples generated by pilot plant testing and laboratory scale experiments. The 

primary cationic species measured by IC including sodium, potassium, calcium, magnesium and 

dissociated MDEA (MDEAH+). In contrast, anionic IC was performed in order to measure the 

concentration of various organic acids including acetic, butanoic, propanoic, glycolic and formic 

acids present either as part of simulated fluid compositions or generated by MEG thermal 

degradation. Table 3-4 and Table 3-5 outline the respective systems used to perform cation and 

anion ion chromatography.  The system components and operational conditions were 

recommended by Thermo Fisher Scientific based on method development performed to 

measure dissolved salts components and organic acids within ethylene glycol matrices.  

Table 3-4. Cation ion chromatography specifications 

System Dionex ICS-2100 

Column Dionex IonPac CS16, 2x250 mm 

Conditions 0.36 ml/min flow rate, 30°C column temperature 

Detector Electrical Conductivity 

Suppressor Dionex CERS-500, 2 mm 32 ma 

Eluent Methanesulphonic acid, variable gradient 

Table 3-5. Anion ion chromatography specifications 

System Dionex ICS-2100 

Column Dionex IonPac AS15, 2x250 mm 

Conditions 0.30 ml/min flow rate, 30°C column temperature 

Detector Electrical Conductivity 

Suppressor Dionex ACRS 500, 2 mm with 25 mM H2SO4 regenerate 

Eluent Potassium Hydroxide, variable gradient 

3.2.2 High Performance Reversed Phase Liquid Chromatography 

In a similar manner, high performance liquid chromatography (HPLC) was utilised to 

perform chemical analysis of samples generated using the MEG pilot plant. The primary chemical 

species measured using HPLC was the FFCI utilised in Chapter 5 whilst studying the switchover 

between FFCIs to MDEA. HPLC was performed using the operational conditions and system 

components recommended by the FFCI supplier as outlined Table 3-6 and further discussed in 

the following section. 
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Table 3-6. High performance liquid chromatography specifications 

System Dionex Ultimate 3000 

Column Acclaim Surfactant HPLC, 5 µm 120 Å 4.6x150 mm 

Conditions 0.30 ml/min flow rate, 30°C column temperature 

Detector Ultraviolet – 240 nm 
Charged Aerosol Detector (CAD) 

Eluent 50/50 DI water- acetonitrile 

3.2.2.1 Selection of HPLC System Components and Operational Conditions 

Column / Stationary Phase: In order to measure the concentration of the FFCI via either the 

UV or charged aerosol detectors, the FFCI was separated from the MEG using a dedicated 

surfactant HPLC column. The selected column utilises a silica-based stationary phase designed 

to facilitate surfactant separation via anion-exchange and dipole-dipole interactions. Unless 

separated, the MEG would otherwise interfere with the FFCI measurement by the UV and 

charged aerosol detectors due to the significantly higher concentration in each sample 

compared to the FFCI.  

Detector: A combination of UV and a CAD was utilised to improve the reliability of FFCI 

determination and improve confidence in the reported result. UV detection at 240nm was used 

based on the reported functional group adsorption wavelengths provided by the FFCI supplier.  

Eluent / Mobile Phase: A 50/50 DI water – acetonitrile eluent was used to ensure solubility 

of both polar and non-polar components due to the dual polarity nature of the FFCI surfactant 

molecule. 

3.2.3 Determination of Alkalinity by pH Titration 

Acid/base titrations were utilised as a chemical analytical technique to measure the 

alkalinity of samples generated during operation of the MEG pilot plant. The alkalinity of a 

sample is an important parameter for several MEG operations including pre-treatment and pH 

stabilisation corrosion control. Within MEG systems, the primary contributors to alkalinity are 

hydroxide, carbonate, carboxylic acids and MDEA if utilised as a pH stabiliser. Sample analysis 

by titration was performed using an automatic potentiometric Hanna HI902C titration system 

by pH measurement using 0.1 M HCl/NaOH as required. The following procedure was then 

utilised to estimate the molar concentration of each type of alkalinity present within a sample. 

3.2.3.1 Alkalinity Titration Procedure 

The total and individual alkalinities of the lean glycol was measured by a combination of 

forward titration using 0.1 M HCl and backward titration using 0.1 M NaOH with the individual 

alkalinities calculated using the inflection point method. The inflection point method is 
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illustrated by Figure 3-3 and Figure 3-4 for the forward and backward titrations respectively 

where no MDEA is present. As organic acids are typically present within the MEG samples, the 

total alkalinity calculated during the forward titration was inclusive of carboxylic alkalinity 

requiring the backward titration to estimate their contribution (refer to Equation (3-1)). To 

accurately estimate the concentration of carboxylics, following the forward titration the lean 

glycol sample was sparged with nitrogen for 15 minutes to drive out any dissolved CO2. The 

concentration of each component was calculated from the volume at which the corresponding 

inflection point was determined. Where MDEA was present, a slightly modified procedure was 

utilised in which an additional inflection point associated with MDEA/MDEAH+ is measured on 

both the forward and reverse titrations.  

Figure 3-3. Forward titration to determine hydroxide, carbonate and total alkalinity 

Figure 3-4. Backward titration to determine carboxylic alkalinity 
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3.2.4 Measurement of MEG Concentration 

Verification of prepared solution MEG concentration during each experiment was 

performed using an ATAGO PAL-91S refractometer. The refractometer measures the MEG 

concentration within a 0-90% concentration range with an accuracy of ±0.4% (V/V) based upon 

the refractive index of the solution. Refractive index is a physiochemical property of a medium 

including liquid phases based on the ratio of the measured speed of light in a test medium 

compared to that in a vacuum. It can be used to estimate the ratio of chemical solvents based 

on the known refractive index of the pure chemicals.  
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4.0 REMOVAL OF ORGANIC ACIDS DURING MONO-ETHYLENE GLYCOL 
DISTILLATION AND RECLAMATION TO MINIMISE LONG-TERM 

ACCUMULATION 

4.1 Introduction 

Mono-ethylene glycol (MEG) has found widespread use as a thermodynamic hydrate 

inhibitor to prevent the formation of natural gas hydrates within offshore multiphase 

hydrocarbon transportation pipelines [1, 2, 4, 7, 9, 113]. In order to minimise the operational costs 

associated with MEG injection, post hydrate inhibition, the excess MEG is separated alongside 

the water phase to be regenerated and recycled for further use [1, 4-7]. The MEG regeneration 

process entails a series of chemical and physical steps to remove a wide range of contaminants 

including excess water, mineral salts and process chemicals [7, 9, 10, 40]. To produce a final lean 

MEG product suitable for reinjection at the wellhead, excess water is separated from rich MEG 

by distillation to regain a MEG concentration typically between 80-90% by weight [1, 7, 9, 12, 203]. To 

achieve the desired lean MEG concentration, the MEG regeneration unit (MRU) is typically 

operated between 120-140°C at atmospheric pressure [1, 37, 38]. 

Alongside other contaminants, organic acids such as acetic, propanoic, butanoic and formic 

may be present within the regeneration system originating from the condensed water phase or 

following formation water breakthrough [7, 9, 63]. Furthermore, the thermal degradation of MEG 

at high temperature in the presence of oxygen may also lead to the formation of organic acids 

including glycolic, acetic and formic acid [3, 5, 39, 63]. The presence of organic acids within industrial 

MEG regeneration systems can pose several operational issues including contributing to 

corrosion of downstream process equipment and pipe systems [7]. Organic acids have been 

found to increase the rate of corrosion of carbon and mild steel piping in natural gas and oil field 

systems through reduced system pH and direct reduction of the acid species [69-72]. In 

combination with carbon dioxide, acetic acid may also exacerbate the rate of Top-of-the-Line-

Corrosion (TLC) [17, 63, 72-76]. Additionally, organic acids will directly reduce the pH of the liquid 

phase increasing the solubility of protective iron carbonate films, reducing corrosion protection 

and may also be directly reduced on the surface of metals enhancing the anodic reaction of the 

metal [67, 68, 72].  

To minimise corrosion within natural gas pipelines two primary corrosion inhibition 

strategies can be utilised including pH stabilisation and injection of film forming corrosion 

inhibitors (FFCI) [4, 7, 9, 40, 70]. The basis of pH stabilisation entails artificially increasing system pH 
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to reduce the availability of hydrogen ions for the cathodic corrosion reaction, whilst also 

promoting the formation of a protective FeCO3 film on the surface of the pipeline. The pH within 

pipelines is typically increased through addition of hydroxides, carbonates or amine based 

compounds including methyldiethanolamine (MDEA) [1, 4, 17, 40]. pH stabilisation as a corrosion 

mitigation strategy is most effective when carbon dioxide is the main source of corrosion and is 

limited to systems where formation water breakthrough has not occurred due to the scaling risk 

at high pH [9, 15, 17, 116]. Where scaling is a concern, FFCIs may instead be used due to their limited 

impact on system pH and hence scaling risk [2, 9, 15, 204].  

The removal of excess ionic species including salt components from closed-loop MEG can 

be performed using vacuum reclamation systems. MEG systems utilising reclamation may 

operate under either full-stream reclamation whereby the rich glycol stream is flashed under 

vacuum to totally remove salts or using a slip-stream mode post distillation to remove primarily 

monovalent ions including sodium from a fraction of the produced lean glycol [1, 2, 7, 8, 32, 42]. The 

type of reclamation is dictated by the expected salt production rate with systems operating at 

high salt loads requiring full-stream reclamation. However, for systems with low salt production 

rates, a lean glycol slip-stream reclamation system is often sufficient to control the salt content 

within closed loop MEG systems [1, 8, 43].  

In a similar manner, the removal of organic acids from the MEG regeneration loop is 

typically achieved via vacuum reclamation systems, however, removal through distillation may 

also occur [7]. If a high pH is maintained within the reboiler during the distillation process, organic 

acids will exist in their ionic form and tend to remain within the lean MEG product resulting in 

their accumulation within the MEG loop [7, 17, 116]. As such, to facilitate their removal during 

distillation, it is essential to maintain a low pH (pH <7) within the reboiler to ensure the organic 

acids are present in their undissociated form and readily vaporised [7]. In contrast, vacuum 

reclamation may be utilised to remove organic acids through their reaction with monovalent 

salts including sodium to form non-volatile organic salts [7, 41]. The resulting salts will be 

subsequently captured within the vacuum reclamation system as the vaporisation of the MEG-

water phase occurs, allowing their removal [7, 63]. As such, the removal of organic acid from the 

MEG loop by either process is primarily dependent on liquid phase pH. 

The pH within closed loop MEG systems is influenced by several factors including the type 

of corrosion inhibition strategy used [4, 7, 51, 116], exposure to acidic gases such as CO2 and H2S, and 

a potential pre-treatment process used for divalent salt removal [5, 7, 12]. MEG systems operating 

under pH stabilisation maintain a high pH in the regenerated lean glycol and will naturally favour 
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removal of acetic acid during reclamation. In contrast, under FFCI corrosion control, a lower lean 

MEG pH can be expected to minimise the risk of scaling in subsea systems upon reinjection of 

the lean MEG [7, 8]. Under both operational methods, the incoming rich glycol from the pipeline 

will be acidic due to the presence of acidic gases including CO2 and H2S within the well and 

subsequent gas phase of the pipeline. The acidic rich MEG will ultimately favour removal of 

organic acids during the distillation process if not otherwise controlled through the corrosion 

prevention methodology. If removal of divalent cationic species including calcium, magnesium 

and iron is required, pre-treatment prior to MRU may be performed through formation of 

divalent salt species at moderate to high pH (8-10 [7, 9, 12, 205]) resulting in alkaline rich MEG fed 

into the distillation system. 

The study outlined in the subsequent chapter demonstrates the potential simultaneous 

removal of organic acids and MDEA during MDEA to FFCI corrosion inhibition switchover. By 

targeting a low pH (≈ 6) rich glycol feed to the MRU, sufficient levels of acetic acid were boiled 

over with the produced water to prevent accumulation whilst also achieving MDEA/alkalinity 

removal during downstream reclamation. Further to this study, the removal efficiency of acetic 

acid during MEG regeneration and reclamation has been investigated at varying pH and 

salinities to further optimise removal of organic acids during long term MEG regeneration. 

Based on the pH within key areas of the MEG regeneration process, coupled with estimated pH 

changes during distillation, the overall removal of acetic acid over an entire regeneration cycle 

has been estimated.  

4.2 Experimental Methodology 

4.2.1 Chemicals 

MEG solutions were produced using MEG supplied by Chem Supply (CAS: 107-21-1) and 

deionised water with a resistivity of 18.2 MΩ.cm. Acetic acid was procured from Sigma Aldrich 

(CAS: 64-19-7) with a mass purity of ≥99%. To produce solutions of a given salt content, sodium 

chloride supplied by Chem Supply with a mass purity of ≥99% was used. Where pH adjustment 

was performed, MDEA (CAS: 105-59-9, ≥99% wt.), Hydrochloric acid (HCl) – CAS: 7647-01-0 and 

Sodium Hydroxide (NaOH) – CAS: 7647-01-0 from Sigma Aldrich was utilised.  

4.2.2 Experimental Apparatus and Procedure 

4.2.2.1 Regeneration Process 

To measure the removal efficiency of acetic acid during atmospheric distillation of rich MEG 

to lean MEG, the experimental apparatus depicted by Figure 4-1 was utilised. A one litre glass 

cell was used to simulate the regeneration unit’s reboiler with a 380 mm Aldrich Synder glass 
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distillation column from Sigma Aldrich used to replicate a distillation column. A heating mantle 

was used to heat the experimental solution with a temperature accuracy of ±0.1°C. To analyse 

the removal efficiency of acetic acid during the regeneration process, 700 grams of 80% wt. lean 

glycol containing 1000 ppm acetic was filled into the reboiler cell. 420 grams of distilled water 

was added to the reflux chamber representing the amount of water removed during the 

transition from 50% wt. rich MEG [7, 38, 43] to a typical industry lean MEG concentration of 80% 

wt. [1, 7, 9, 12]. The distillation system was then operated with the condensed water phase 

continuously refluxed to the top stage of the distillation column until equilibrium concentration 

of acetic acid within the distillate product was reached. Testing was conducted over a pH range 

of 4-11 and salinities (NaCl) ranging from 0-5000 mg/L to analyse the removal of acetic acid over 

a wide range of potential field conditions. 

To continuously monitor the transition of acetic acid into the produced distillate, a 

ThermoFisher Orion 8102BNU pH probe was submerged in the water reflux chamber. Post 

experiment, the concentration within the distillate was determined through ion 

chromatography using a Dionex ICS-2100 IC System. Furthermore, to prevent thermal 

degradation of the MEG solution at high temperature, ultra-pure nitrogen was continuously 

introduced into the reboiler and reflux chambers to minimise oxygen contamination. The 

prevention of thermal degradation is essential to prevent the formation of additional organic 

acid by-products and as a result, unwanted reduction in solution pH. To account for the inherent 

error associated with pH measurement in MEG solutions, the empirical correction factor 

described by Sandengen [11] given by Equations (4-1) and (4-2) was applied. 

∆pHMEG = 0.416w − 0.393w2 + 0.606w3 

where: w = weight fraction of MEG 

(4-1) 

pHMEG = pHMeasured + ∆pHMEG (4-2) 

4.2.2.2 Reclamation Process 

For the reclamation process, the apparatus depicted by Figure 4-2 was utilised in order to 

achieve complete vaporisation of initial MEG/water solution. A Heidolph vacuum pump 

connected to an Alicat vacuum pressure controller (±1 mbar) was used to regulate the pressure 

within the reclamation chamber at a constant 100 mbar. A secondary Alicat mass flow controller 

with pressure measurement was utilised to verify the operating pressure within the chamber 

and to continuously introduce nitrogen into the system to minimise oxidative thermal 

degradation. Testing was again conducted from pH 4-11 and NaCl concentrations from 0-5000 

mg/L. 
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Figure 4-1. Laboratory MEG regeneration system 

Figure 4-2. Laboratory MEG vacuum reclamation system 

Cooling
Water Out

Cooling
Water In

Condensor

Reflux 
Pump

pH
Probe

Cooling
Water Out

Cooling
Water In

Heating
Mantle

Temperature
Probe

Nitrogen

Temperature
Probe

Distillation
Column

Distillate 
Reflux



CHAPTER FOUR:    Removal of Organic Acids during MEG Regeneration and Reclamation 

56 

4.3 Results and Discussion 

4.3.1 Speciation of Acetic Acid in MEG Solutions at Varying Temperature and 
Salinity 

The speciation of acetic acid plays a vital role in determining its removal efficiency during 

separation processes [7]. Using the experimental model developed cover ed in Chapter  8 to 

estimate the dissociation constant (pKₐ) of acetic acid at varying MEG concentration, 

temperatures and salinities, the theoretical maximum acetic acid available for removal can be 

calculated. Figure 4-3 illustrates the change in the speciation behaviour of acetic acid within 

80% wt. MEG solution due to the effect of MEG concentration and temperature. In comparison 

to water, the pKₐ of acetic acid within MEG solution is increased due to the change in dielectric 

constant of the solvent (ε) [127-130, 199]. Furthermore, the pKₐ of acetic acid changes according to 

a parabolic function with respect to temperature [7, 199, 206, 207]. The resulting shift due to MEG 

concentration and temperature effectively increases the percentage of acetic acid present at 

higher pHs and subsequently the amount of acetic acid available to be vaporised during 

distillation [7]. A very small shift in pKₐ can also be expected due to the presence of dissolved 

salts with the model presented Chapter  8 taking salinity into account. 

Figure 4-3. Speciation of acetic acid as a function of pH (80% wt. MEG) at varying temperature. 
acetic acid pKₐ at 125°C extrapolated from model of Soames [199] (Chapter 8 – Equation 8-12) 
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Beyond the physical removal of water and subsequent reconcentration of rich MEG to lean, 

the MEG distillation process can have significant impact on system chemistry. In particular, the 
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to water removal [7]. The change in pH during the regeneration process is influenced by a 

combination of the initial concentration of dissolved CO2 and pH of the rich glycol feed stream 
[7]. It is also important to consider how various pH stabilisers commonly used in industry such as 

hydroxides or amines including MDEA [4, 7, 8, 40, 199] induce different pH changes during the 

regeneration process. Overall, the change in pH occurring through the regeneration system can 

have a significant impact on the removal efficiency of acetic acid during the distillation and 

reclamation processes if operated downstream [7].  

The effect of initial rich glycol pH, initial dissolved CO2 concentration and type of pH 

stabiliser utilised was investigated to determine the corresponding pH change across the 

regeneration unit. Testing was conducted using a MEG concentration gradient of 50-80 wt. % 

representing a standard industry operation [7, 43] using either NaOH or MDEA to control the initial 

rich glycol pH. Testing utilising MDEA was performed using a base lean MEG MDEA 

concentration of 500mM (312.5 mM rich glycol) and the pH adjusted to the target initial rich 

glycol pH following CO2 saturation using either HCl or NaOH as required to represent a standard 

industrial MDEA pH stabilisation scenario [7]. To allow comparison of initial and final pH values, 

all pH measurements were conducted at 25°C. The initial dissolved CO2 concentration was varied 

by saturating the rich glycol solution at atmospheric pressure using varying gas phase CO2/N2 

partial pressure ratios, followed by pH adjustment.  

The pH change induced using hydroxide as the primary pH stabiliser is illustrated by Figure 

4-4 showing a significant pH change occurring at initial when dissolved CO2 is present for all 

initial pHs above six. In comparison, when no dissolved CO2 is initially present and hydroxide is 

solely responsible for the pH change during distillation, only a minor pH change was found to 

occur. The results highlight the synergistic effect of CO2 boil off and the concentration of 

hydroxide during the distillation process has on the pH change generated. In contrast, the pH 

change induced during distillation where MDEA was present was ultimately dependent on 

whether HCl or NaOH was used to supplement the pH control (Figure 4-5). For systems 

containing no dissolved CO2 (unlikely during industrial operation) the change in pH occurring 

during distillation changed linearly with respect to the initial rich glycol pH. This also occurred 

for systems with the initial rich glycol pH adjusted using HCl after CO2 saturation had occurred, 

a scenario possible during MDEA to FFCI switchover where pre-treatment prior to distillation is 

performed for divalent cation removal [7]. This operational methodology is  discssued in 

Chapter 5 to facilitate simultaneous removal of acetic acid and MDEA from a closed loop MEG 

system. However, most significantly, upon the use of NaOH to supplement control of the initial 

rich glycol pH, the final lean glycol pH produced increased significantly in a similar manner to 

that generated using solely NaOH (Figure 4-4). This is likely for MEG systems operating under 

MDEA pH stabilisation where addition of NaOH is required following saturation of the 
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rich glycol with CO2 within the natural gas transportation pipeline. The results again highlight 

that the most significant pH changed induced during MEG distillation occurs through the 

combination of hydroxide and carbon dioxide boil off. 

Figure 4-4. Effect of initial rich glycol (50 wt. %) pH25°c and gas phase CO2 concentration on final 
lean MEG (80 wt. %) pH25°c using sodium hydroxide pH control 

Figure 4-5. Effect of initial rich glycol (50 wt. %) pH25°C and gas phase CO2 concentration on final 
lean MEG (80 wt. %) pH25°C using MDEA pH control 
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4.3.3 Removal Efficiency of Acetic Acid during MEG Distillation 

The removal of organic acids including acetic through the distillation system may provide 

an alternative method to prevent their accumulation within closed loop MEG systems if a 

vacuum reclamation system is not utilised downstream or low pH is maintained during the 

reclamation process [7]. The removal efficiency of 1000 ppm (mg/L) acetic acid in 80% wt. MEG 

is illustrated by Figure 4-6 showing improved removal at lower pH levels in line with the acetic 

acid speciation behaviour. For comparison purposes, Aspen Plus® V8.4 was utilised to simulate 

the removal rate of acetic acid during MEG regeneration. The Electrolyte NRTL (ELECNRTL) 

property package was used to construct the simulation to allow modelling of acetic acid 

speciation, pH and interaction of acetate with other ionic species including sodium ions. The 

default Aspen Plus® ELECNRTL parameters including binary interaction, electrolyte pair and 

dissociation and salt reaction parameters were utilised. The simulated removal results were 

found to slightly overestimate the removal of acetic acid with the greatest absolute error 

occurring in the low pH region. Furthermore, the influence of salinity in the form of NaCl on the 

remove efficiency of acetic acid during the distillation process was found to be minimal over the 

entire pH range tested. With increasing salinity up to 5000 ppm (mg/L) NaCl, a small increase in 

acetic acid removal percentage was observed of which can be attributed to the minor effect of 

salinity on the acid dissociation of organic acids [199].  

Figure 4-6. Removal efficiency of acetic acid during 80% wt. MEG distillation 
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4.3.4 Removal Efficiency of Acetic Acid during MEG Reclamation 

MEG reclamation systems operate under low pressure conditions (≈100 mbar [7, 8, 32, 38, 40]) 

to minimise the operational temperature required to vaporise the MEG/water phase to reduce 

thermal degradation of the MEG (120-150°C [2, 7, 38, 40]). Vaporisation of the reclaimed solution 

results in separation from the non-volatile salt components facilitating their removal through 

solid handling systems. Organic acids present within the lean MEG in their conjugate base form 

prior to reclamation will also be separated upon reaction with cations including sodium through 

Equation (4-3) and (4-4) to form non-volatile organic salts [41, 208]. If no corresponding cationic 

species such as sodium are present, the formation of pure acetic acid crystals may occur [209]. In 

a similar manner to distillation, the removal efficiency of organic acids during reclamation is 

primarily influenced by the acids speciation behaviour (pKₐ) and the lean glycol pH. 

CH3COOH ⇄  CH3COO− + H+ (4-3) 

CH3COO− + Na+ ⇄ NaCH3COO(S) (4-4) 

The removal efficiency of acetic acid during vacuum reclamation of 80% wt. lean glycol with 

0, 2500 and 5000 ppm NaCl content is illustrated by Figure 4-7 with comparison to the simulated 

removal predicted by Aspen Plus® V8.4. Aspen Plus® V8.4 utilising the ELECNTRL with default 

parameters was again used for its ability to simulate salt formation and properties relevant to 

reclamation [43]. The experimental results were found to match that predicted by Aspen Plus® 

validating the simulation model. However, a small discrepancy in removal efficiency was 

observed at initial lean glycol pHs greater than nine within solutions containing no NaCl. The 

lower than simulated removal can be attributed to the formation of acidic degradation products, 

primarily glycolic and formic acids (Section 3.4.1), reducing the pH of the partially reclaimed 

solution. Ultimately, the reduction in pH during reclamation facilitated a minor carryover of 

acetic acid into the reclaimed MEG solution. The effect of pH reduction due to degradation 

product formation was found to be lower within solutions containing 2500 ppm and 5000 ppm 

NaCl likely as a result of the greater sodium content available for organic salt formation. A 

constant shift in the final reclaimed MEG solution pH was also measured when comparing 

corresponding points at varying salinity (0 and 5000 ppm illustrated in Figure 4-7). Furthermore, 

during each experiment, approximately 0.4-0.6% loss of MEG was experienced, a result in line 

with the simulation study of Son [43] and industry data reported by Trofimuk [42]. 

4.3.4.1 Generation of Organic Acids during Reclamation through Thermal 
Degradation 

The work of Psarrou [38] and Rossiter [210] found formic and glycolic acid to be the 

dominant MEG degradation products formed during thermal degradation of MEG in the presence 
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Figure 4-7. Removal efficiency of acetic acid during 80% wt. MEG reclamation 

of oxygen (Equations (4-5) and (4-6) respectively). Conversely, the recent study by Odeigah [41] 

found significant production of acetic acid during MEG thermal degradation at high 

temperatures over prolonged periods (>60 hours). Organic acids formed through thermal 

degradation during reclamation will be subjected to removal as dictated by their speciation 

behaviour. Reclamation systems operating at low pH will ultimately generate greater 

concentrations of acidic degradation products in the reclaimed solution. Figure 4-8 illustrates 

the levels of glycolic and formic acid produced in the reclaimed lean glycol solution following the 

reclamation process used within this study. Although the initial lean glycol solution was sparged 

with nitrogen to sub 20 ppb oxygen content, and the apparatus continuously purged with ultra-

pure nitrogen, significant levels of glycolic acid were produced likely as the result of minor 

oxygen intrusion under vacuum. As such, unless a high pH is maintained, significant 

accumulation of glycolic and formic acids through MEG degradation can be expected in the 

reclaimed lean MEG solution. 

Furthermore, it can be suggested that the formation of acetic acid during the degradation 

process may account for the lower than simulated removal rates within the high pH regions (pH 

>9). Ultimately however, it was observed that minimal additional acetic acid was formed during 

the vacuum reclamation procedure through thermal degradation in this study. This suggests that 

the formation of acetic acid via MEG degradation primarily occurs after exposure to long term 

high temperatures as used by Odeigah [41]. This however may still influence industrial 

reclamation systems where dissolved oxygen concentrations may be higher or oxygen intrusion 

via vacuum leakage more severe, potentially leading to lower than expected acetic acid removal 

rates compared those reported in this study.  
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4.3.5 Modelling of Plant Wide Acetic Acid Removal 

Through a combination of removal through the distillation and subsequent reclamation 

system (if present), it may be possible to optimise the removal of organic acids over the entire 

regeneration system. A low targeted rich glycol pH into the distillation column in combination 

with a high pH rise across the reboiler may ultimately further facilitate a high rate of acetic acid 

removal during down-stream reclamation. Control of the lean glycol pH entering into the 

reclamation system can either be achieved through control of the initial rich glycol pH and 

dissolved CO2 concentration (Figure 4-4 and Figure 4-5) or through additional dosage of acids or 

bases following the regeneration process via in-line dosing points. To estimate the total plant 

wide acetic acid removal generated during distillation and reclamation or a combination of both, 

the experimental removal rates reported were fitted to the equations given by Equations (4-7) 

and (4-8) for distillation and reclamation respectively. The parameters A1/A2 and B1/B2 were 

regressed from the experimental data utilising the objective function given by Equation (4-10). 

The equation parameters and average error of the individually simulated results (distillation and 

reclamation) compared to experimental data are given in Table 4-1, with visual compassion of 

calculated and experimental data given in Figure 4-9. From the individual distillation and 

reclamation Equations (4-7 and 4-8), the total plant wide acetic acid removal can be estimated 

using Equation (4-9). 

Figure 4-8. MEG organic acid degradation products generated during reclamation 
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Figure 4-9. Comparison of modelled acetic acid removal rate during distillation and 
reclamation 

Distillation Removal, RD (%) = B1 −  
B1 × 10−A1

10−pHdistillation + 10−A1
(4-7) 

Reclamation Removal, RR (%) =  𝐹𝐹𝑅𝑅 × 100 − �B2 −  
B2 × 10−A2

10−pHreclamation + 10−A2
� 

Where A and B are regressed parameters from experimental data and FR is the slip-
stream reclamation fraction 

(4-8) 

Total Removal, TR (%) = RD + RR �1 −
RD

100
� (4-9) 

OF =
∑ |yexp − ycalc|

n
(4-10) 

Table 4-1. Regressed model parameters and average model errors 

Parameter Distillation Removal (1) Reclamation Removal (2) 

A1/A2 5.916 7.707 

B1/B2 50.268 99.552 

Average Error (%) 0.38 2.6 

The model given by Equation (4-9) was then used to identify the optimum rich glycol pH 

that in combination with a known pH rise across the reboiler (Figure 4-4 and Figure 4-5), are 

required to achieve the optimal conditions necessary to maximise plant wide acetic acid 

removal. Figure 4-10 illustrates the total acetic acid removed by distillation at an initial rich glycol 
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pH with incremental pH rises across the reboiler in combination with subsequent full-stream 

vacuum reclamation at the corresponding lean glycol pH. Systems with an initially low pH 

combined with low pH rise across the reboiler are ultimately constrained by the removal 

efficiency in the distillation system with minimal subsequent removal downstream in the 

reclamation system, reaching maximum acetic acid removal as per Figure 4-6. In contrast, 

systems generating a large pH increase across the reboiler, or utilising in-line dosage of bases 

into the reclaimer feed achieved significant removal of acetic acid primarily due to the 

reclamation stage (Figure 4-7). As such, it is evident that the maximum acetic acid removal is 

primarily generated through the reclamation system particularly for systems operating using a 

combination of low initial rich glycol pH and large pH rise across the regeneration system.   

Figure 4-10. Simulated acetic acid removal rate full reclamation 

However, it is important to consider that MEG systems utilising vacuum reclamation 

downstream of the regeneration unit typically operate using a slip-stream or partial reclamation 

mode to minimise operational costs and equipment size requirements [1, 7, 9]. Instead of full 

reclamation of the regenerated lean glycol product, only a fraction of the lean glycol is reclaimed 

with the fraction dependent on field requirements to maintain a specific level of salts within the 

closed-MEG loop. The study outlined in the proceeding Section 5.0 utilised a slip-stream rate of 

11% based on an Australian industrial  MEG regeneration system processing up to 2500 m3 of 

MEG day. For the purposes of this study, a reclamation slip-stream rate of 20% was utilised to 

model the plant wide acetic acid removal rate illustrated by Figure 4-11. Due to the restricted 

reclamation rate, it is evident that the bulk of acetic acid removal is achieved when rich glycol 
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with pH levels below six is fed into the distillation system. Ultimately, if a low reclamation rate 

is utilised in combination with high lean glycol pH, accumulation of acetic acid within the MEG 

loop will occur. In the study discussed in Chapter 5.0, a lean MEG slip-stream rate of 11% was 

sufficient to prevent the accumulation of organic acids within a closed loop MEG system 

where the produced water contained approximately 200 mg/L total organic acid content.  

4.4 Conclusion 

The level of organic acids within closed-loop MEG systems is often controlled via vacuum 

reclamation through the formation of non-volatile organic salt products allowing separation 

from the evaporated MEG/water phase. However, if a reclamation system is unavailable, or 

operated at low pH, organic acids will ultimately accumulate within the closed-loop MEG system. 

To maximise the removal of organic acids during long term operation, the removal efficiency of 

organic acid during a combination of distillation and reclamation has been studied in conjunction 

with measured pH changes during the MEG distillation process. The experimental results 

generated during distillation and reclamation were compared to models developed using Aspen 

Plus® simulation software with good agreement found. Using the experimentally reported data, 

two equations have been proposed to estimate the removal of acetic acid during distillation and 

reclamation individually with an average model error of 0.38% and 2.6% respectively. The 

individual distillation and reclamation models can be utilised to estimate the total plant wide 

acetic acid removal within closed loop MEG systems. 
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Overall, the results highlight the importance of both operational pH during the individual 

distillation and reclamation processes and the expected pH rise across the regeneration system 

in determining total organic acid removal from closed loop MEG systems. Although complete 

removal of acetic acid during reclamation is achieved for reclamation systems with a pH above 

nine, closed loop MEG systems are ultimately constrained by the operating slip-stream rate and 

may face acetic acid accumulation if the designed slip-stream rate is insufficient [7]. For such 

systems, it may be advantageous to operate with a low rich glycol pH feed into the distillation 

system, as per the recommendations made in Chapter 5.0, to allow simultaneous removal during 

the regeneration and reclamation processes given sufficient pH rise across the regeneration 

system. For MEG regeneration loops without reclamation facilities for salt handling, the 

removal of organic acids through the MRU may be the only option available to prevent long 

term accumulation besides costly replacement of MEG inventory. If left uncontrolled, 

accumulation of organic acids may lead to various operational issues including increased 

corrosion [17, 63, 72-76], TLC [17, 63, 72-76] and poor interaction with production chemicals such as 

oxygen scavengers [113, 118]. However, if organic acids are to be removed alongside the 

produced water in the regeneration system to maximise plant wide removal, the potential 

corrosion risk to overhead systems due to low pH must also be considered [10].
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5.0 OPERATION OF A MEG PILOT REGENERATION SYSTEM FOR 
SIMULTANEOUS ORGANIC ACID AND ALKALINITY REMOVAL DURING 

MDEA TO FFCI SWITCHOVER 

5.1 Introduction 

The formation of natural gas hydrates in hydrocarbon transportation pipelines represents 

a major flow assurance concern with major implications upon safe and economical process 

operation. The inhibition of hydrate formation is of critical importance in maintaining process 

flow and the prevention of damage to process equipment and piping. The annual cost associated 

with preventing hydrate formation has been estimated to be greater than $500 million through 

inhibition by methanol injection alone [211]. In many recent oil and gas developments, Mono-

Ethylene Glycol (MEG) has seen increasing popularity replacing methanol as the thermodynamic 

hydrate inhibitor of choice [1, 4, 6]. The preference for MEG over methanol stems from its low 

volatility, toxicity and flammability, favourable thermodynamic behaviour and simple and 

proven technology requirements [2, 3].  

Post hydrate inhibition, the recovery and reuse of MEG is essential due to the significant 

volume required to provide effective hydrate control, its high cost and its effects on downstream 

processes [4-6]. Following the three-phase separation from gaseous and liquid hydrocarbons, 

MEG is removed in combination with water and must be regenerated before it is recycled back 

to the wellhead for reinjection. The regeneration of MEG is typically performed by distillation to 

remove surplus water in order to regain a glycol purity between 80-90% by weight [9, 36]. 

Alongside hydrate inhibition, the prevention of corrosion in piping and processing systems 

is a critical aspect of hydrocarbon flow assurance. The majority of natural gas pipelines are 

manufactured from carbon steel and are susceptible to ‘sweet’ corrosion due to the presence 

of carbon dioxide and free water during transport and processing [4, 89, 90]. The annual global cost 

associated with corrosion has been estimated by Koch [212] at roughly US $2.5 trillion with up 

to 60% of corrosion experienced in the oil and gas industry resulting from CO2 based corrosion 

[95]. To combat corrosion in hydrocarbon pipelines two methods of corrosion control can be 

applied including the injection of film forming corrosion inhibitors (FFCI) and/or pH stabilisers [4, 

9, 70]. The presence of MEG itself has also been shown to impede CO2 corrosion of carbon steels 

[4, 96, 97]. 
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Corrosion prevention though pH stabilisation can be achieved through the addition of salt 

based (hydroxide or carbonate salts) or amine-based compounds such as methyldiethanolamine 

(MDEA) [4, 17]. The basis of pH stabilisation is to promote the formation of an iron carbonate 

protective film in order to protect the surfaces exposed to corrosion [4, 16, 17, 72]. pH stabilisation 

is effective when carbon dioxide is the primary source of corrosion but less so when high levels 

of hydrogen sulphide are present [9]. The use of pH stabilisers to inhibit corrosion is limited to 

pipelines where little to no formation water is present and, in some cases, can be used in 

combination with FFCIs [9, 15, 17, 116]. Within systems with large quantities of formation water, pH 

stabilisation tends to promote the precipitation of divalent salts through reaction with alkalinity 

(carbonates, hydroxide) at elevated pH [2, 4, 9]. Where formation water is expected, the injection 

of film forming corrosion inhibitors is the preferred method of corrosion prevention due to its 

minimal impact on pH, lessening the potential for scale formation [2, 9, 15, 204]. Furthermore, pH 

stabilisers such as MDEA can result in the increased boiling point of lean MEG impacting upon 

the design and operation of the MEG regenerator and reclaimer systems [9]. 

Once formation water breakthrough occurs and the risk of scaling cannot be managed 

through alternative means including scale inhibitor injection, it may be beneficial to perform a 

corrosion strategy switch over from pH stabilisation to FFCIs to extend the life-span of the field 
[8, 9]. This process cannot be performed instantaneously, instead, once formation water is 

detected or anticipated, MDEA must be gradually removed from the system whilst FFCIs are 

introduced. The removal of MDEA  may be accomplished through a vacuum reclamation system 

by converting MDEA to its salt form at low pH where it is not readily vaporised alongside the 

MEG solution [9]. The protonated form of MDEA, MDEAH+ can react within ionic species including 

chlorides, sulphates, sulphides and organic acid ions to form heat stable salts, a common 

occurrence in industrial CO2 and H2S capture systems using amines [213-217]. However, such low 

pH within the reclaimer may result in poor organic acid removal rates during reclamation leading 

to organic acid enrichment within the lean glycol. An increase in organic acids within the MEG 

regeneration loop may potentially lead to operational issues including corrosion of downstream 

process equipment and pipelines. The aim of this study is to investigate the feasibility of 

removing organic acids and MDEA simultaneously by careful adjustment of system pH at critical 

points to facilitate switch over from pH stabilisation using MDEA to FFCI. 

5.2 Organic Acids within MEG Regeneration Systems 

The presence of organic acids including acetic, propionic and butanoic acids within MEG 

regeneration systems may arise upon the breakthrough of formation water alongside mineral 

salts [9, 63]. The degradation of MEG if exposed to excessively high temperatures or oxidation 
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during the regeneration process can also lead to the production of organic acids including 

glycolic, acetic and formic acids [3, 5, 39, 63]. Furthermore, free organic acids may be present with 

the natural gas within the reservoir and may enter into the MEG regeneration system through 

the condensed water phase or formation water [63]. The presence of organic acids within carbon 

and mild steel piping has been shown to increase corrosion rates in natural gas and oilfield 

systems [69-72]. Top of the Line Corrosion (TLC) may also be experienced within carbon steel 

systems in the presence of carbon dioxide and acetic acid, with organic acids increasing the rate 

of TLC [17, 63, 72-76]. 

Organic acids present within the rich MEG can lead to reactions with the alkalinity 

contained within the MEG solution reducing the effective alkalinity within the system [8, 116]. 

Furthermore, organic acids will directly reduce the pH of the solution acting as a proton provider 

and may be directly reduced on the surface of metals enhancing the anodic reaction of the metal 

[67, 68, 72]. The presence of organic acids and the resulting low pH MEG will also pose a greater 

corrosion risk to carbon and mild steel piping through increased solubility of iron in the 

condensing water reducing its efficacy in forming a protective film [65-68]. This effect may be 

counteracted by use of pH stabilisation chemicals such as MDEA to raise the pH to safer levels 

and to promote the formation of protective corrosion films [72, 116]. Furthermore, the work 

conducted by Amri [73] suggests that the presence of acetic acid within the aqueous phase of 

gas condensate pipelines directly increases the potential for localised corrosion attacks in 

carbon steel pipelines.   

During MEG regeneration by distillation where the water phase is boiled off, if a high pH is 

maintained in the reboiler, any organic acids present within the rich MEG will exist in their ionic 

form and accumulate within the regenerated lean MEG and will be recycled back to the wellhead 

[17, 116]. Therefore, if not otherwise removed, acetic acid will begin to build up within the MEG 

regeneration loop and excessive exposure will begin to occur within process pipelines enhancing 

the potential for corrosion. To ensure removal of organic acids during MEG regeneration, their 

removal can be performed through the reclamation system at elevated pH where organic acids 

will dissociate to their ions forming salts in the presence of monovalent cations [63]. The organic 

salts will subsequently be captured within the vacuum reclamation system whilst the lean MEG 

is evaporated and recovered to be reused. 

5.3 Operational Scenario 

The switch over from pH stabilisation (for example, using MDEA) to film forming corrosion 
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inhibitors may be required as part of the hydrocarbon pipeline corrosion inhibition strategy once 

formation water breakthrough has occurred. Upon the introduction of formation water, pH 

stabilisation will no longer be suitable due to its tendency to cause scaling issues as a result of 

the elevated pH [2, 4, 9]. Therefore, it may be necessary to ‘switch over’ from using a pH stabiliser 

to a more conventional corrosion inhibitor to limit scaling within the transportation pipelines to 

ensure flow can be maintained. To facilitate the switch over process, the MDEA must be 

removed from the MEG regeneration loop with removal through the reclamation system being 

a possible method [9, 15].  

To achieve removal of MDEA within the reclamation system, MDEA must first be 

neutralised to its salt form to allow accumulation within the reclaimer [9, 40]. Through prior 

extensive testing conducted by the Curtin Corrosion Centre (CCC) involving removal of MDEA 

from lean MEG, a pH level below 8 has been identified as the pH range at which MDEA will begin 

to experience appreciable removal during reclamation. At a pH of approximately 8 and below, 

MDEA will be converted to its salt form allowing it to be removed along with any monovalent 

salt cations whilst MEG and water evaporate under vacuum [40]. However, if the pH into the 

reclaimer is too low, the tendency of organic acids to form salts will decrease leading to 

vaporisation within the reclaimer and carry over alongside the MEG and water. Thus, organic 

acid enrichment within the lean glycol may begin to occur. Therefore, significant removal of 

MDEA and organic acids can sometimes not be performed simultaneously within the reclaimer 

due to the opposing pH conditions required.  

5.3.1 Comparison of Operational Methodologies 

Two operational methods have been evaluated using a pilot MEG regeneration system at 

Curtin Corrosion Centre, the first being an industrial methodology and the second an alternative 

switch over strategy by the CCC. Experimental replication of the industrial methodology entails 

the injection of HCl in the lean glycol tank in order to target a lean glycol pH of 7. A target pH of 

7 was selected to minimise the risk of scaling following the reinjection of the lean MEG at the 

well head following the breakthrough of formation water. Several questions arose during testing 

due to the rise in pH experienced across the reboiler as a result of CO2 boil off and concentration 

of any alkalinity present within the lean MEG. The industrial switch over process is illustrated by 

Figure 5-1 with causes of pH change during a regeneration cycle identified. As formation water 

production had initiated, a pH of 8.2-8.3 within the pre-treatment vessel (MPV) was targeted to 

facilitate the removal of divalent cations (primarily calcium) through reaction with carbonate to 
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prevent scaling at higher temperature within the regeneration system. 

An alternative switch over process developed by the CCC, involves the injection of HCl in-

line into the rich glycol feed to the reboiler system. The pH of the rich glycol solution was not 

adjusted within the rich glycol tank its self to prevent redissolving of carbonate particles 

produced upstream during pre-treatment allowing them to settle within the tank. The proposed 

methodology was designed to minimise the pH change occurring across the reboiler by 

neutralising the additional alkalinity introduced during pre-treatment allowing improved MDEA 

removal within the reclamation system. Simultaneously, the removal of organic acids including 

acetic acid was theorised to occur at the target reboiler pH (pH 7) via the produced water 

product to a sufficient extent to prevent its accumulation within the regeneration loop. Under 

the industrial operational philosophy, removal of organic acids would otherwise occur in the 

reclaimer at high pH. Two primary goals were identified to improve the MDEA to FFCI switchover 

process including minimisation of total lean glycol alkalinity to below 5 mM as quickly as possible 

and the prevention of organic acid accumulation within the regeneration loop. Furthermore, 

targeting a lower pH within the reboiler reduces the risk of scaling within the regeneration 

system particularly on the surface of the reboiler bundle at high temperature.  

5.3.2 Behaviour of Organic Acids and MDEA during MEG Regeneration and 
Reclamation 

To facilitate the simultaneous removal of MDEA and organic acids within the MEG 

regeneration loop, it has been suggested that adjustment of the rich MEG feed pH prior to the 

reboiler may provide adequate removal of organic acids during distillation to prevent 

accumulation. Upon the introduction of acetic acid into the distillation system, the acetic acid 

will boil-off with the produced water and be removed within the reflux drum. However, the 

ability of acetic acid to be removed is highly dependent upon pH and the extent of dissociation 

of acetic acid to acetate. For removal of acetic acid to occur during distillation, it must remain in 

its un-dissociated form. If dissociation of acetic acid to acetate occurs, acetate will bond with 

free mineral ions including sodium to form low volatility salts that will remain within the lean 

MEG during distillation, a common occurrence in industry due to the high pH required upstream 

to remove divalent salts [2, 9]. Therefore, to achieve efficient removal of acetic acid during 

distillation, it is essential to maintain conditions that inhibit its dissociation to acetate namely 

low pH.  
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Figure 5-1. Industrial FFCI to MDEA switchover methodology 

 
Figure 5-2. Alternative FFCI to MDEA switchover methodology 

To obtain a better understanding of the behaviour of acetic acid during the MEG distillation 

process, the dissociation of acetic acid to acetate was modelled. Organic solvents such as 

ethylene glycol have been shown experimentally to influence the acid dissociation constant 

(pKₐ) of various weak acids and bases typically increasing pKₐ compared to aqueous solutions 
[127-129]. To estimate the dissociation of acetic acid to acetate within 80% wt. MEG solution at 

130°C, the pKₐ for acetic acid was determined experimentally by potentiometric titration. As 

evaporation of the MEG solution would occur at 130°C, multiple titrations were performed at 

varying temperatures (25-80°C) to generate a relationship between pKₐ and temperature from 

which the pKₐ of acetic acid at 130°C was extrapolated from. The resulting titration curves were 

then used to calculate the pKₐ value of acetic acid at the respective temperature with 

determination of experimentally derived pKₐ values discussed in Chapter 8. 
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However, the extent of acetic acid dissociation is dependent upon solution pH, with greater 

conversion of acetic acid to acetate occurring at higher pHs where it can be more readily 

neutralised [19, 119]. To calculate the percentage of acetic acid present, the acid dissociation 

equation represented by Equations (5-2) and (5-3) were used based upon the dissociation of 

acetic acid given by Equation (5-1). The percentage distribution of acetic acid and acetate can 

be then estimated through Equations (5-4), (5-5) and (5-6) where the concentration of the 

hydronium ion is calculated through pH. The overall percentage distribution of acetic acid with 

respect to pH is given by Figure 5-3 for varying MEG concentrations and temperatures based 

upon pKₐ values estimated using the model proposed in Chapter 8.0. As such, it is clear that for 

appreciable removal of acetic acid to occur during distillation, a lower pH is required to ensure 

acetic acid is readily available to be removed. 

Figure 5-3. Speciation of acetic acid – acetate 
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KA = 10−pKA =
[CH3COO−][H3O+]

[CH3COOH]
(5-2) 

[CH3COOH] =
[CH3COO−][H3O+]

KA
(5-3) 

[CH3COOH] + [CH3COO−] = Total[HAc] (5-4) 

Total[HAc] − [CH3COO−] =
[CH3COO−][H3O+]

KA

(5-5) 

[CH3COO−] =
Total[HAc]. KA

[H3O+] + KA
(5-6) 
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Through prior testing conducted using the pilot MEG distillation system utilised within this 

study, a pH rise across the reboiler of approximately 1 pH unit can be expected during operation 

using the proposed alternative operational philosophy (refer to Figure 5-2). The rise in pH within 

the reboiler can be attributed to the removal of dissolved CO2.  CO2 is initially introduced into 

the rich MEG through sparging within the feed blender to simulate the presence of dissolved 

CO2 originating from the well and is boiled off within the reboiler during operation when 

exposed to high temperature [9, 38]. Additional CO2 is also introduced during the pre-treatment 

stage as a source of carbonate alkalinity to facilitate the removal of calcium. At the target 

reboiler feed pH of 5.8-6.0, the rise in pH over the reboiler will provide an estimated pH of 7.0, 

with approximately 12-15% of the total acetic acid within the MEG solution present in its 

undissociated form and potentially removed during distillation (Figure 5-3). Moreover, a lean 

MEG pH of 7 to the reclaimer will facilitate efficient removal of MDEA during the reclamation 

process as per Figure 5-4 due to the conversion of MDEA to its protonated form, MDEAH+ at low 

pH. As a consequence of the lower reclaimer pH, a slight reduction in the removal of acetic acid 

will occur within the reclamation system in comparison to the industry procedure where a lean 

glycol above pH 11 is fed to the reclaimer.  

 

Figure 5-4. MEG reclamation removal efficiency at 25°C, 80% wt. Lean MEG 
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are likely to occur in the field. The regeneration system is comprised of a pre-treatment stage, a 

distillation system to remove excess water and a reclamation section to process and remove 

monovalent salts and other process chemicals from the lean MEG product as illustrated in 

Appendix B.    

The pre-treatment section of the pilot plant includes a feed blender where brine is added 

as required and mixed with previously processed lean MEG to achieve the desired rich MEG 

composition. Following the blending process, the MEG solution undergoes pre-treatment to 

remove divalent cations from the solution within a multi-phase separation vessel. The pre-

treated rich MEG is subsequently stored within the rich glycol where hydrochloric acid (HCl) was 

added to adjust the pH of the reboiler feed. A recirculation pump was added to the vessel to 

thoroughly blend the HCl into the rich MEG to achieve a more equal pH throughout the solution. 

From previous testing, it was found that if the HCl was added inline, the downstream inline pH 

probe would intermittently detect spikes of HCl leading to inaccurate pH measurement. 

The main section of the distillation column is comprised of two individual sections; each 

one 900 mm in height with the sections connected and fitted with 80 mm DN (3”) borosilicate 

glass structural packing, additional specifications of the distillation column are listed within 

Table 3-1 and Table 3-2. The rich MEG feed to the distillation column is introduced directly into 

the column’s reboiler unit at temperature of between 40-50°C with mass flow rate measured by 

a Mass Flow Metre (MFM) and maintained by a programmable logic controller (PLC) at 

approximately 5.0 kg/hr. The distillation column operates using a 10-litre glass reboiler in 

combination with a 5 kW immersion heater. Throughout testing the reboiler unit was operated 

at 128°C (±1°C.) with operating temperature maintained during distillation by a PLC. 

During distillation, lean MEG is extracted from the bottom of the column through the MEG 

pump with mass flow rate measured by a MFM. The lean MEG product is subsequently cooled 

through a plate heat exchanger operating using cooling water at 10°C and then store in the lean 

MEG tank. The regeneration system operates using a slip-stream reclamation methodology 

where a portion of the lean MEG product undergoes reclamation. Within this study, a slip stream 

rate of 11% was used to model the field operating conditions of a particular industrial facility. 

The reclamation process is performed to remove monovalent cations including sodium and 

potassium to prevent accumulation within the closed loop system. Under the operational 

scenario performed within this study, MDEA is also removed during the reclamation stage to 

simulate the switch over from MDEA to FFCI. The reclaimed lean MEG is then recycled back and 

mixed with remaining lean MEG within the lean glycol tank for further reuse as hydrate inhibitor.  
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To determine the composition of process streams within different sections of the MEG 

system including within the reboiler, reflux drum and storage tanks, sampling ports were 

installed to allow samples to be taken and tested at a later time using High-Performance Liquid 

Chromatography (HPLC) and Ion Chromatography (IC). HPLC was performed using a Thermo 

Scientific UltiMate 3000 LC/HPLC system whilst IC was performed using a Dionex ICS-2100 IC 

System. Inline pH measurements are also made continuously throughout operation at the points 

depicted in Appendix B using inline Mettler Toledo InPro 4800(i) pH probes connected to a 

Mettler Toledo M800 system to transmit data to the PLC. Other process measurements taken 

during operation include dissolved oxygen content and solution electrical conductivity using 

inline probes supplied by Mettler Toledo. 

5.5 Chemicals and Feed Stream Compositions 

The MEG used during operation of CCC’s MEG regeneration pilot plant was supplied by 

Chem-Supply with a purity greater than 99.95% by weight. To produce the rich MEG and brine 

used within this study, distilled water with an electrical resistivity above 18 MΩ·cm was used. 

The brine and rich MEG compositions tested within this study were chosen to simulate the 

conditions of an industrial MEG regeneration facility. The compositions of the feed streams are 

outlined by Table 5-1 in terms of MEG and water mass fractions and the amounts of dissolved 

salt ions and organic acids in terms of parts per million by weight (ppmw). All metallic salts were 

supplied by Chem-Supply as metal chlorides and SO4
2− and HCO3

− as their respective sodium 

salts at a purity above 99% wt. Organic acids including acetic, propanoic, butanoic and pentanoic 

were sourced from Sigma Aldrich at a purity greater than 99% wt. 

Additionally, the sparge gas compositions outlined by Table 5-2 were used to simulate the 

CO2 of the well and as a source of carbonate alkalinity within the feed blender and pre-

treatment vessel respectively. As the pilot MEG facility cannot operate under pressure in the 

feed blending unit, the partial pressure of carbon dioxide was limited to 1 bara. In a real pipeline, 

which operates at around 100 bara, the partial pressure of CO2 will be much higher. 

Table 5-1. Feed stream compositions 

Stream 
Component 

Brine 
Rich MEG Reboiler 

Feed 
Lean MEG Recycle 

MEG (Mass Frac.) - 0.440 0.800 
Water (Mass 

Frac.) 
0.99928 

0.558 0.194 
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Table 5-1. Feed stream compositions continued 

Stream 
Component 

Stream Mass Compositions (ppmw) 

Na+  266 994 1601 

K+ 3.5 13 21 

Ca2+ 3.4 4 5 

Mg2+ 0.32 1.2 1.9 

Fe2+ 0.033 0.12 0.20 

Sr2+ 0.09 0.34 0.55 

Ba2+ 0.64 2.4 3.9 

Cl− 118 440 709 

HCO3
− 1.1 4.0 6.4 

SO4
2− 193 721 1162 

Acetic Acid 17 63 102 

Propanoic Acid 4.1 15 24 

Butanoic Acid 5.8 22 35 
Pentanoic Acid 118 440 709 

MDEA (mM) 0 319 580 

Table 5-2. Sparging gas compositions 

 Feed Blender Pre-treatment Vessel 

mol% CO2 at 1 bara 100%  76% 

mol% N2 at 1 bara 0% 24% 

5.6 Operating Procedure 

Operation of the MEG regeneration pilot plant was initiated by pre-filling the lean glycol 

tank (LGT), rich glycol tank (RGT), feed blender and reboiler vessels with their respective MEG 

solutions. Furthermore, approximately two kilograms of distilled water was used to pre-fill the 

distillation column’s reflux drum to provide liquid reflux upon the commencement of operation. 

Prior to the conduction of the experiment, each vessel was sparged with high purity nitrogen 

(purity >99.999 mol %) to achieve an oxygen content below 20 ppb. A low oxygen content (<20 

ppb) is important to prevent degradation of MEG when exposed to high temperatures within 

the reboiler, and prevention of pitting corrosion of downstream process equipment including 

MEG injection lines [8, 114]. To commence operation, the distillation column was operated under 

total reflux conditions until the reboiler operating temperature was stabilised at 128°C and 

steady state conditions within the column reached. Once steady state operation of the column 
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had been achieved, the rich MEG feed was then introduced directly into the distillation column’s 

reboiler and outlet valves opened. 

For the industrial methodology, operation was commenced by neutralising the MDEA 

within the lean glycol tank by injection of HCl. The evaluate the system chemistry as lean glycol 

pH decreased to the target of pH seven, the lean glycol pH wise decreased stepwise over 

multiple inventory turnovers (operational days). In contrast, for the proposed switch over 

procedure, during the first day of operation the pH within the RGT was adjusted from a starting 

pH of seven to six by continuous injection of HCl. Once sufficient neutralisation of the initial 

MDEA had occurred, the pH of the rich MEG feed to the columns reboiler was gradually 

decreased step-wise. In order to investigate the behaviour of organic acids during distillation, 

the pH was decreased in steps of 0.1 from a pH of six. Following each decrease of pH of the rich 

MEG feed, the pH was kept constant and operation allowed to proceed for one inventory 

turnover. To maintain a constant target pH within the rich and lean glycol tanks, HCl was added 

using a dosage pump controlled by a PLC system. The PLC system utilised a combination of 

feedback measurements from an inline pH probe located at the outlet of the pH adjustment 

vessel and a pH probe located within the vessel itself. The probes were connected to a Mettler 

Toledo M800 process measurement system to allow direct communication to the PLC.  

Furthermore, to prevent accumulation of divalent salts such as calcium present in the brine 

from accumulating within the regeneration loop sodium hydroxide was dosed within the pre-

treatment vessel (MPV). By maintaining a sufficiently high pH within the MPV (>8) the formation 

of carbonate alkalinity within the vessel allowed the precipitation of calcium carbonate 

facilitating its removal through settling downstream in the rich glycol tank. Conversely, mono-

valent salts such as sodium and potassium were partially removed via a vacuum reclamation 

unit operating at 100 mbara ±5 mbara and 120-130°C.  

To determine whether separation of the organic acids from the MEG solution had occurred 

during distillation, samples were taken every three hours from various sampling ports located 

around the MEG distillation system. The samples were then analysed post operation using the 

ion chromatography system to determine the concentration of organic acid ionic species within 

each sample.  

5.7 Operating Results and Discussion 

5.7.1 pH Change during MEG Regeneration Process 

The change in pH experienced within the LGT, RGT and reboiler under the industry and 

modified operational philosophies is illustrated by Figure 5-5 and Figure 5-6 respectively. Under 

the industry procedure, the pH within the LGT is gradually reduced over several regeneration 
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cycles to the target pH of 7. However, due to the addition of sodium hydroxide within the pre-

treatment vessel to facilitate calcium removal and hence constant MPV pH, no variation in rich 

glycol pH and the produced lean glycol within the reboiler occurred. The removal of carbon 

dioxide and concentration of the hydroxide alkalinity within the produced lean glycol as excess 

water is removed ultimately produced a lean glycol feed to the reclamation system upwards of 

11.2. The resulting high pH within the reclamation system will push the MDEA equilibrium from 

its dissociated MDEAH+ form to its more volatile form allowing it to be vaporised alongside the 

MEG solution inhibiting its removal. 

In contrast, whilst targeting a pH of six within the rich glycol feed to the reboiler a pH of 

approximately 7-7.1 was maintained within the reboiler of the regeneration system.  The 

addition of HCl into the rich glycol solution provided initial neutralisation of the excess carbonate 

and hydroxide alkalinity present within the rich glycol following pre-treatment. The resulting pH 

increase across the reboiler occurred due to the boiling off of dissolved carbon dioxide and 

organic acids suggesting that the addition of carbonate and hydroxide downstream and 

subsequent concentration is the primary cause of the high pH produced lean glycol experienced 

as per Figure 5-5. The produced lean MEG fed into the reclamation system at pH 7 would 

facilitate a greater conversion of MDEA to MDEAH+ allowing superior removal efficiency 

compared to the industrial procedure evaluated in this study. The effect of the regeneration 

process on the produced lean MEG is illustrated by Figure 5-7 and Figure 5-8 as the rich MEG 

from the pre-treatment vessel undergoes pH adjustment and distillation, ideal target pHs at the 

respective stages of the process have been included.  

 
Figure 5-5. pH levels during MEG regeneration (industry operational philosophy) 
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Figure 5-6. pH levels during MEG regeneration (modified operational philosophy) 

 

Figure 5-7. Ideal target pHs and current pH change during regeneration (industry operational 
philosophy) 
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Figure 5-8. Ideal target pHs and current pH change during regeneration (Modified Operational 
Philosophy) 
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Figure 5-9. Lean Glycol Tank MDEA and alkalinity measurements (industry operational 

philosophy) 

 
Figure 5-10. Lean Glycol Tank MDEA and alkalinity measurements (modified operational 

philosophy) 

Complete removal of the total alkalinity within the lean glycol in this study was unable to 

be achieved under the industrial operational methodology plateauing at approximately 10 mM 

after 12 regeneration cycles. In comparison, whilst targeting a rich glycol pH of six, rapid removal 

of alkalinity was successfully achieved reaching below 10 mM total alkalinity approximately five 

regeneration cycles faster. Rapid reduction in alkalinity within the first two days of operation 

1

10

100

1000

0

100

200

300

400

500

600

700

800

900

0 20 40 60 80 100 120

Al
ka

lin
ity

 (m
M

)

M
DE

A 
 (m

M
)

Time (Operational Hours)
MDEA Alkalinity

Feed Feed Feed Feed Feed Feed Feed
pH: pH: pH: pH: pH: pH: pH:
7-6 6-5.9 5.9 5.8 5.6 5.7 5.7

1

10

100

1000

0

100

200

300

400

500

600

700

800

0 20 40 60

Al
ka

lin
ity

 (m
M

)

M
DE

A 
(m

M
)

Time (Operational Hours)

MDEA Akalinity



CHAPTER FIVE:                 Removal of Organic Acids and Alkalinity During MDEA-FFCI Switchover  

83 

was achieved as neutralisation of MDEA by hydrochloric acid occurs whilst targeting the desired 

rich glycol pH. Furthermore, the produced lean glycol at pH 7 reached below 5 mM total 

alkalinity successfully after six regeneration cycles, with a comparison of alkalinity removal 

under both methods given by Figure 5-11. As such, this study suggests that the short-term switch 

over from MDEA to FFCI can be significantly improved under the proposed operational 

methodology.  

Furthermore, consistent removal of MDEA was achieved during the reclamation process 

under the modified procedure removing a total of 356 mM of MDEA over a period of seven days 

of operation as per Figure 5-9. The produced lean glycol at pH 7 (Figure 5-6) being fed into the 

reboiler facilitated the conversion of MDEA to MDEAH+ (refer to Figure 5-4) allowing the 

formation of MDEA heat stable salts through reaction within anionic species including chloride, 

sulphate and organic acid ions [213-215]. The formation of heat stable salts therefore facilitated its 

removal within the reclamation system as the MEG solution evaporated under vacuum. In 

comparison, the removal of MDEA under the industry procedure occurred at a much slower rate 

reaching the same final MDEA concentration after an additional five regeneration cycles. Under 

both operational methodologies, the rate of MDEA removal was non-linear due to only a fraction 

(11% slip-stream) of the produced lean MEG undergoing reclamation, as such reduced MDEA 

removal is expected in proceeding cycles. Based on the operational results, it was estimated that 

under the current MDEA removal rates achieved under both operational methodologies, a total 

of approximately 25-30 regeneration cycles for the industry method and 10-11 cycles for the 

modified procedure would be required to achieve the desired final MDEA concentration within 

the MEG regeneration loop. 

 
Figure 5-11. Comparison of MEG regeneration alkalinity removal methods 
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Due to the necessity to increase the pH of the rich MEG entering the regeneration system 

within the MPV to facilitate divalent salt removal, the continued presence of MDEA/alkalinity 

within the MEG loop will increase the amount of NaOH and HCl required to control the pH levels 

within the system and hence increase operational costs. It is therefore beneficial from an 

economic perspective to reduce the alkalinity and MDEA concentration within the regeneration 

loop as quickly as possible. Therefore, the modified HCl dosing procedure used in this study 

would reduce the total costs associated with NaOH and HCl dosage during the switchover 

process.  

Furthermore, the continued presence of alkalinity in the form of carbonates and hydroxide 

can pose a scaling risk due their reaction with dissolved mineral salts [2, 218]. The formation of 

carbonates arises due to the presence of carbon dioxide from the well and can react with 

bases/pH stabilisers including MDEA to form bicarbonate and hence carbonate at higher pH [4, 9, 

218, 219]. As such, the formation of mineral scales including CaCO3 and Mg(OH)2 can pose 

operational issues if sudden formation water breakthrough occurs and the system is operating 

under high pH. Therefore, it is advantageous to remove alkalinity whether in the form of MDEA, 

hydroxide or carbonates as quickly as possible to minimise long term scaling. However, within 

this study the pH of the lean glycol was insufficient (<10.2) to produce hydroxide alkalinity with 

the primary non-MDEA alkalinity arising due to the presence of carbonate whilst above a pH of 

approximately 8.2-8.3. 

5.7.3 Removal of Organic Acids through the MEG Regeneration and 
Reclamation System (Modified Procedure) 

Under the experimental replication of the industrial operating procedure where the lean 

glycol was fed into the reclamation system at high pH (Figure 5-5), significant removal of organic 

acids in their ionic form would occur during reclamation (refer to Figure 5-4). However, due to 

the lower reclaimer feed pH produced during the modified operational procedure, reduced 

conversion of acetic acid to acetate can be expected. As such, it is important to maintain a 

careful balance of low reclaimer pH to facilitate MDEA removal whilst also either achieving 

sufficient removal of organic acids during distillation or in combination with partial removal 

during vacuum reclamation. A pH of 7 within the reboiler and hence feed to the reclaimer was 

selected as the ideal pH to achieve removal of both MDEA within the reclaimer and partial 

removal of acetic acid during both distillation and reclamation (Figure 5-4). 

The concentration of acetic acid within the rich and lean glycol tanks of the pilot MEG 

regeneration system was monitored to evaluate the removal efficiency of acetic acid during 

distillation. Figure 5-12 illustrates the level of acetic acid (ppm) within the rich and lean glycol 

solutions over the 75-hour period of operation in 3-hour intervals under the modified 
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operational philosophy.  The level of acetic acid within the MEG regeneration loop was found to 

remain stable over the entire operation within both vessels with an average acetic acid 

concentration of approximately 1040 and 1600 ppm for the rich and lean glycol tanks 

respectively. Furthermore, the accumulation of acetic acid over the 75 hours of operation within 

the reflux drum is illustrated within Figure 5-13 showing a gradually accumulation of acetic acid 

with time. The accumulation of acetic acid within the reflux drum resulted in a water distillate 

pH of approximately 3.3-3.5 (Figure 5-6), in comparison, under the industry procedure the water 

distillate pH stabilised between 5.5-6.0 (Figure 5-5). 

 
Figure 5-12. Acetic acid content within rich and lean glycol tanks 

 
Figure 5-13. Acetic acid content within reflux drum 
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As such, it is evident that the organic acids entering into the MEG regeneration loop within 

the brine stream (refer to Table 5-1) were being sufficiently removed through the distillation 

column and reclamation system to prevent accumulation. As a result, the subsequent corrosion 

risks associated with organic acid accumulation within the MEG regeneration system [63, 69-73] has 

been reduced, whilst also achieving improved MDEA and alkalinity removal. Therefore, while 

complete removal of organic acids is not possible during the switch over from MDEA to FFCI 

under the proposed methodology, the accumulation of organic acids can be successfully 

prevented through control of the rich glycol pH to promote organic acid boil-off during the 

distillation process in combination with partial removal in the reclaimer.  

From Figure 5-3, it was estimated that at a rich glycol feed pH to the reboiler of 5.8-6.0 and 

resulting pH 7 within the reboiler a 12-15% removal of acetic acid could be achieved during each 

cycle of the MEG regeneration loop. In comparison, during the experiment conducted, a 

maximum 10-12% removal of acetic acid was achieved within the distillation system over the 

final 3 days of operation as indicated by Figure 5-14. Overall, approximately 24-26% of the total 

incoming acetic acid present within the rich MEG was removed in comparison to the produced 

lean MEG. The remaining acetic acid removed following distillation occurred within the 

reclamation system (11% slip-stream). Improved organic acid removal may be achieved by 

targeting a lower rich glycol pH and hence lower pH within the reboiler and reclaimer to push 

the acetic acid – acetate equilibrium further. However, too low of a pH within the rich glycol 

tank may pose a corrosion risk to both the storage vessel and downstream carbon steel systems. 

The target rich glycol pH of 5.8-6.0 used within this study was identified as the minimum 

achievable pH to prevent corrosion of carbon steel components within the reboiler.  

 

Figure 5-14. Average percentage removal of acetic acid during distillation 
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5.7.4 Accumulation of Sodium Ions within MEG Regeneration Loop 

Under both operational methodologies, significant accumulation of sodium ions occurred 

within the MEG regeneration loop far greater than that introduced within the brine feed (Figure 

5-15). The accumulation of sodium within the MEG regeneration loop occurs primarily due to 

the sodium hydroxide (NaOH) dosage requirement within the MEG pre-treatment vessel. To 

ensure sufficient removal of divalent salts including calcium occurs during pre-treatment, a 

sufficiently high pH was maintained to promote the formation of calcium carbonate that can be 

subsequently removed. The NaOH dosage requirement was exacerbated due to the low pH of 

the recycled MEG from the LGT following pH adjustment before the reboiler as well as the 

presence of protonated MDEA acting as a buffer. As such, it is further beneficial to remove the 

total alkalinity as quickly as possible to minimise the sodium hydroxide dosing requirement 

within the pre-treatment system 

To ensure sufficient removal of sodium ions during the reclamation process, a greater 

reclamation slip stream rate would be required. The slip stream rate utilised within this study 

was fixed at 11% to simulate an industrial MEG regeneration system. However, if a greater 

reclamation slip-stream percentage was used, the increased reclamation rate would increase 

operational costs of the facility potentially making the operational scenario analysed within this 

study economically unfeasible. To determine whether or not an increased reclamation rate is 

feasible or if dumping and replacing of MEG within the regeneration loop is more favourable a 

full cost benefit analysis (CAPEX vs OPEX) between the reclaimer capacity and MEG loss is 

required to make this judgement. 

 
Figure 5-15.  Accumulation of sodium within the MEG regeneration loop (modified philosophy) 
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5.8 Conclusion 

A case study was performed to investigate the simultaneous removal of MDEA and hence 

lean glycol alkalinity alongside organic acids during the MEG regeneration process through 

adjustment of the pH of the rich glycol feed to the distillation system. Through the testing 

conducted, it was concluded that simultaneous removal of MDEA during reclamation can be 

achieved whilst preventing accumulation of organic acids within the MEG regeneration loop. A 

constant concentration of acetic acid was achieved within the lean glycol product whilst organic 

acids were introduced into the system through simulated brine by reducing the distillation feed 

pH to 5.8-6.0 to promote the removal of organic acids together with the water distillate. The 

prevention of organic acid accumulation within the MEG regeneration system during the switch 

over process will reduce the associated corrosion risk of excessive organic acid content [17, 63, 69, 

70, 72, 73]. 

Furthermore, removal of MDEA was achieved within the reclamation system at pH 7 

producing a lean glycol product of sufficiently low alkalinity to facilitate full switch over to FFCI 

corrosion inhibition after five regeneration cycles. It was observed that faster removal of 

alkalinity and MDEA was achieved in comparison to alternative testing conducted using the 

operational methodology of an external company where by the pH of the produced lean glycol 

was adjusted step-wise to pH seven by HCl. The proposed switch over process outlined in this 

study overall lead to reduced NaOH and HCl dosage requirements over the timeframe of the 

MDEA to FFCI switch over process through faster removal of the MDEA of which was acting as a 

buffer. The increased rate of MDEA and alkalinity removal can hence reduce the operational 

expenditure associated with the dosage of acids and bases during the corrosion inhibition 

switchover.  

However, it was observed that an accumulation of sodium ions within the MEG 

regeneration loop occurred under both operational methodologies as a consequence of the 

divalent ion pre-treatment process. To achieve removal of divalent ions including calcium 

introduced through formation water, pH above 8 was required to facilitate their removal 

through reaction with carbonate. To achieve sufficient pH to facilitate divalent ion removal, 

sodium hydroxide was dosed within the pre-treatment system but consequently the removal of 

the additional sodium ions was unable to be achieved at the reclamation slip-stream rate used 

within this study (11%). A greater slip-stream rate could be used to remove a greater amount of 

sodium ions preventing its accumulation with the MEG regeneration loop however this was not 

investigated within this study.
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6.0 CORROSION OF CARBON STEEL DURING HIGH TEMPERATURE 
REGENERATION OF MONO-ETHYLENE GLYCOL IN THE PRESENCE OF 

METHYLDIETHANOLAMINE 

6.1 Introduction 

The formation of gas hydrates pose a major risk to the continuous and safe operation of 

wet gas/condensate pipelines. Gas hydrates form when water molecules surround gas 

molecules, such as methane, creating a solid material at the low temperatures and high 

pressures typically encountered in offshore hydrocarbon production flow lines [5, 220]. Under 

favourable formation conditions, hydrate blockages can occur rapidly, with hydrate plugs 

potentially taking days or weeks to remove whilst significantly impacting production capabilities 

and representing a major safety risk for the asset. The injection of Mono-Ethylene Glycol (MEG) 

is one of the preferred methods of preventing the formation of gas hydrates either during well 

restart and well testing operations, or in some instances, continuously during gas production [1,

5, 7, 32, 40]. MEG as a thermodynamic hydrate inhibitor (THI) achieves hydrate inhibition through 

shifting of the hydrate formation temperature below the pipeline operational temperature [1, 2,

4, 7, 9, 113]. 

In comparison to traditional THIs such as methanol, MEG can be effectively regenerated 

and reused over multiple regeneration cycles to significantly reducing long term operational 

costs [1, 4-7]. The regeneration of MEG involves a series of chemical and physical processes to 

remove excess water, production chemicals and contaminants including salts and organic acids 
[7, 9, 10, 40, 221]. The primary MEG regeneration process involves the distillation of ‘rich MEG’, 

typically between 30-60% wt. MEG, to achieve a final ‘lean MEG’ product above 80% wt. [1, 7, 9,

12]. To achieve sufficient MEG purity to facilitate reinjection, the MEG regeneration unit (MRU) 

is typically operated between 120-140°C at atmospheric pressure [1, 37, 38].  

Alongside hydrate inhibition, mitigating corrosion is also an important aspect in 

maintaining continued flow assurance during hydrocarbon transportation and processing. Due 

to the widespread use of low corrosion resistant carbon steel for pipeline construction owing to 

its low cost relative to corrosion resistance alloys, the need for effective corrosion mitigation 

strategies is essential [4, 222].  The prevention of corrosion within carbon steel pipelines where 

CO2 represents the primary corrosion risk [7, 17, 95, 223], is often achieved via one of two methods 

including pH stabilization or the injection of film forming corrosion inhibitors (FFCIs) [2, 4, 7, 9, 116]. 

Corrosion prevention via pH stabilization is achieved through the injection of basic chemicals 

including hydroxides, carbonates or amines to artificially increase the pipelines liquid phase pH 
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[1, 4, 17, 40]. Corrosion inhibition is achieved through a reduction in the availability of hydrogen ions 

(the primary corrosive species in CO2 corrosion [4, 224, 225]) for the cathodic corrosion reaction 

whilst simultaneously promoting the formation of a protective iron carbonate film on the 

internal surface of the pipeline [4, 51, 116]. However, the use of pH stabilization is limited to systems 

where formation water breakthrough and the risk of scaling at high pH has not yet occurred [9, 

17, 116]. Under such circumstances, FFCIs are instead used due to the limited impact on system pH 
[2, 9, 204]. For carbon steel pipelines where FFCIs are utilized, a corrosion rate below 0.1 mm/year 

is often targeted [4, 222]. 

Methyldiethanolamine (MDEA), a tertiary amine, has been used as a pH stabilizer to 

provide effective corrosion control of several large scale natural gas pipelines in Northern 

Europe and Western Australia [4, 7]. MDEA will react with dissolved carbon dioxide (CO2) – 

Equation (6-1), and other corrosive acidic species including hydrogen sulphide and organic acids 

effectively neutralizing them as they enter the system. The use of MDEA over traditional salt 

based hydroxides or carbonates for pH stabilization has several advantages including thermal 

stability over multiple regeneration cycles, the ability to be reclaimed during vacuum 

reclamation minimizing continuous injection requirements and large buffer capacity [4, 7, 8, 40, 199]. 

The use of MDEA for pH stabilization however, is often only performed in natural gas systems 

where the expected CO2 content in the gas phase will require dosage of salt based pH stabilizers 

beyond their solubility limits in MEG solutions potentially resulting in scale deposition [19]. 

Furthermore, the use of MDEA also has several drawbacks including increased MRU heating 

requirements [7, 9] and being less environmentally friendly compared to salt based pH stabilisers 
[4].  

The introduction of divalent cations including calcium following formation water 

breakthrough represents a significant scaling risk at the high pH conditions under pH 

stabilization. If scaling cannot be managed through the injection of scale inhibitors or 

reallocation of production, it may be beneficial to gradually transition from MDEA pH 

stabilization to more scale friendly FFCIs to extend the life span of the field [7-9]. The removal of 

MDEA from the closed loop MEG system can be achieved by neutralizing MDEA to its protonated 

form  MDEAH+ (Equation (6-2)) allowing its removal as a non-volatile quaternary ammonium 

salt from the vacuum reclamation system (Equation (6-3)) [7]. The continued presence of MDEA 

within the closed loop MEG system represents significant operational costs associated with 

increase MRU reboiler requirements and additional acid/base dosage due to MDEA’s large 

 MDEA + H2O + CO2 ↔ MDEAH+ + HCO3
− (6-1) 
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buffer capacity [7, 9]. As such, the rapid removal of MDEA from the MEG loop is desirable, with 

the study outlined in the previous chapter analysing the optimal operational conditions for 

removal of MDEA from a closed loop MEG system using slip-stream vacuum reclamation. 

Ultimately, it was found that maintaining a low pH (pH ≈6) rich MEG feed into the MRU was 

the optimal condition to remove MDEA during downstream vacuum reclamation whilst also 

minimizing the accumulation of organic acids within the loop. Furthermore, it may also 

beneficial to operate the MRU at near neutral pH (pH = 6-7) to prevent the formation of 

carbonate scales, particularly FeCO3, on the reboiler bundle which would otherwise reduce 

heat transfer efficiency and require frequent cleaning. 

(6-3) 

However, it is important to consider the potential corrosion effects of operating at 

moderate to low pH at high temperature in the presence of MDEA/MDEAH+ within the MRU. 

Various components within MRU reboiler systems may be constructed of carbon steel including 

the reboiler shell, piping systems and the reboiler bundle if corrosion is predicted to be minimal 

during the design phase. Components manufactured from carbon steel may be susceptible to 

corrosion under certain conditions, namely low pH. The study conducted by Pojtanabuntoeng 

[4] found low corrosion rates of carbon steel within 45.6% wt. MEG under simulated pH 

stabilization using MDEA at 10°C and pHs between 6.5-8.5. However, the effects of temperature 

can be considered a significant factor influencing corrosion, particularly due to its effect on the 

speciation of weak acid/base chemicals including MDEA [199, 200, 226-228]. Table 6-1 outlines the 

potential electrochemical reactions relevant to the corrosion of carbon steel in MRUs using 

MDEA [229, 230]. Protonated MDEA has been found to be a strong oxidizer and one of the primary 

contributors to the cathodic corrosion reaction in CO2 capture systems utilizing MDEA [4, 229, 230]. 

Likewise, carbonic acid and bicarbonate may be present through the reaction of MDEA and 

dissolved CO2 (Equation (6-1)) contributing to the corrosion of carbon steel [230]. In contrast, the 

oxidation of carbon steel by oxygen can be considered negligible within MRUs due to the low 

solubility of oxygen in MEG at high temperature [41, 231]. 
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Table 6-1. Electrochemical corrosion reactions with MEG/Water/MDEA systems 

Cathodic (Reduction) Reactions: 𝐸𝐸0(V)  

Hydronium 2H3O+ + 2e− → 2H2O + H2 0 (6-4) 

Water 2H2O + 2e− → 2OH− + H2 -0.83 (6-5) 

MDEAH+ 2MDEAH+ + 2e− → 2MDEA + H2  (6-6) 

Carbonic Acid 2H2CO3 + 2e− → 2HCO3
− + H2  (6-7) 

Bicarbonate 2HCO3
− + 2e− → 2CO3

2− + H2  (6-8) 

Oxygen (pH <7) O2 + 4H+ + 4e− → 2H2O +1.23 (6-9) 

Oxygen (pH >7) 2H2O + O2 + 4e− → 4OH− +0.40 (6-10) 

Anodic (Oxidation) Reactions 𝐸𝐸0(V)  

Iron Fe → Fe2+ + 2e− 0.44 (6-11) 

The potential switchover from MDEA pH stabilization to FFCIs following formation water 

breakthrough represents a potentially innovative method to extend natural gas field life spans 

where MDEA is utilized [7]. However, potential methods to gradually remove MDEA from closed 

loop MEG systems raise several possible issues including unfavourable operating conditions for 

poor corrosion resistance materials due to the low pH required to dissociate MDEA. As such, the 

corrosion rate of carbon steel within CO2 free lean MEG solutions containing MDEA under 

regeneration conditions has been evaluated. Corrosion rates were measured using a 

combination of weight loss measurements and Linear Polarization Resistance (LPR) at varying 

pH25°C and temperatures to study the effect of MDEA on corrosion. The results of this study have 

significant implications for industrial MEG regeneration systems operating using MDEA due to 

the potential corrosion of operationally critical equipment. The potential corrosion of the MEG 

distillation reboiler system may have significant impacts on tolerable operating conditions or if 

severe corrosion occurs, long term production capabilities.  

6.2 Experimental Methodology 

6.2.1 Materials, Chemicals and Solution Preparation 

Experimental solutions were produced using technical grade MEG sourced from Chem 

Supply and MDEA from Sigma Aldrich with the respective chemical purities and structures 

outlined by Table 6-2. Corrosion evaluation was performed within 80% wt. MEG solutions, 

representing a typical industrial lean MEG composition [1, 7, 9, 12, 36]. A MDEA concentration of 
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500mM was utilized to represent a potential concentration of MDEA within the lean glycol 

product to provide effective corrosion control of a gas/condensate pipeline operating under pH 

stabilization with a high CO2 gas phase content [4, 7]. Within this study however, no dissolved CO2 

was present within the test solutions to ensure that the initially prepared solution pH remained 

constant during corrosion testing. Due to the reduced solubility of CO2 with respect to increasing 

temperature, dissolved CO2 is boiled off during the MEG regeneration process generating a pH 

increase across the MRU [7, 221]. As such, the prepared lean glycol solutions in this study represent 

regenerated lean MEG post CO2 boil-off with pH measured after cooling. Furthermore, the 

reduction of carbonate species (Equations 6-6 and 6-7) may contribute to the electrochemical 

corrosion of carbon steel [4, 232, 233], the presence of dissolved CO2 was further avoided to allow 

the effect of solely MDEA on corrosion to be determined.  

Table 6-2. Chemical purity and structures 

Compound CAS Purity (wt. %) Chemical Structure 

MEG 107-21-1 >99.5%  

MDEA 105-59-9 >99% 
 

6.2.2 Experimental Procedure 

6.2.2.1 Experimental Apparatus and Test Conditions 

Experimental testing was conducted using a stainless-steel autoclave as depicted Figure 6-1 

to allow for corrosion measurement under high temperature conditions. Temperature was 

maintained within the system by an external electrical heating band connected to a temperature 

controller with an error of ±0.1 °C. To prevent boiling of the solutions at high temperature and 

subsequent solution loss, the system was maintained at 6 bara pressure using high purity 

nitrogen controlled by an Alicat gas mass flow controller (±0.01 bar). High purity nitrogen was 

utilized to prevent oxygen ingress into the system that would otherwise increase the cathodic 

corrosion reaction and cause thermal degradation of the MEG resulting in a reduction in solution 

pH [5, 12, 41]. Carbon steel coupons (AISI 1030 / UNS G10300 grade) were submerged in the solution 

and the resultant mass loss measured over a period of three days. Additional testing was also 

conducted using the same methodology for stainless steel 316L coupons to further investigate 

the corrosive behaviour of MDEA on more corrosion resistant metals. 
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Figure 6-1. Experimental autoclave apparatus for corrosion testing 

The corrosion rate of carbon steel in the presence of MDEA was evaluated within lean glycol 

solutions initially at 25°C and heated to 30, 80, 140 and 180°C. The high temperature conditions 

(140 and 180°C) were selected based on the temperature required during the regeneration of 

MEG with 500mM MDEA [7] and a potential reboiler skin temperature required to achieve 140°C 

within the reboiler liquid phase. Additional testing was also performed at 30 and 80°C to further 

highlight the effect of temperature on MDEA speciation and resulting corrosion. Testing was 

conducted in lean glycol pHs prepared at 25°C ranging from pH 6 to 11 to cover the wide range 

of potential operating pHs found within industrial MEG regeneration systems [221]. 37 vol. % 

hydrochloric acid was used to neutralize MDEA and adjust solution pH. 

6.2.2.2 Corrosion Measurement 

The measurement of carbon steel corrosion rates was performed using a combination of 

carbon steel coupon mass loss and LPR measurements. LPR measurements were performed 

using industrial grade Cosasco 7012-0-0 carbon steel LPR probes designed for monitoring 

corrosion of pipelines under harsh conditions including high temperature and pressure. LPR 

monitoring is an electrochemical method that measures the current required to maintain a 

specific potential between two electrodes from which the corrosion rate can be derived using 

the Stern-Geary equation [234]. The LPR probes were calibrated for measurement of corrosion 

rates in MEG through comparison to corresponding coupon mass loss measurements [4]. 

Secondary LPR probe corrosion measurements were also made through mass loss 

measurements of the LPR probe’s carbon steel tips submerged in the test solutions for 

additional comparison.  
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6.2.2.3 pH Measurement 

Due to the error associated with measuring the pH of MEG solutions, the correction factor 

developed by Sandengen [11]  was applied.  

6.3 Results and Discussion 

6.3.1 Speciation of MDEA at Varying Temperature 

The speciation of weak acid and bases including MDEA is dependent on multiple factors 

including temperature, ionic strength and the dielectric constant (ε) of the solvent [127-130, 199]. 

Several studies have been conducted to measure the change in the dissociation constant (pKa) 

of MDEA with respect to temperature in water [199, 200, 226-228] and MEG solutions [199]. The change 

of MDEA pKa with respect to temperature within 80% wt. MEG is illustrated by Figure 6-2A from 

25-80°C from the reported data in Chapter 8 and extrapolated to 180°C with the resulting

shift in MDEA speciation illustrated by Figure 6-2B. It is clear, that with increasing temperature

a significant shift in MDEA pKa can be expected favouring the undissociated form of MDEA. As a

result, with increasing temperature an increase in hydrogen ions will be available for reduction

at the metal surfaces within the reboiler unit as the MDEA-MDEAH+ equilibrium shifts.

At the reboiler-fluid interface the skin temperature of the reboiler bundle maybe 

significantly hotter than the bulk fluid temperature (potentially up to 180°C). The greater 

temperature at the interface will ultimately cause a greater conversion of MDEAH+ to MDEA, 

resulting in a greater hydrogen ion concentration localized at the interface. As a result, the 

localized corrosion rate at the reboiler bundle surface will be exacerbated potentially leading to 

rapid failure of the bundle if constructed of carbon steel.  

Figure 6-2 A) Effect of temperature on MDEA dissociation constant within 80% wt. MEG 

solution (Soames [199] – Chapter 8) and B) Speciation of MDEA in 80% wt. MEG at varying 

temperature 
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6.3.2 Effect of MDEA on Corrosion at Regeneration Temperature (140°C) 

To verify the potential corrosion at high temperature arising from the behaviour of MDEA, 

the corrosion of carbon steel was evaluated at 140°C within varying pH25°C lean glycol solutions 

containing 500mM MDEA and corresponding solutions without. Figure 6-3 illustrates the 

corrosion rate determined by the average weight loss of three carbon steel coupons over a 

period of three days. The transition from 25°C to 140°C ultimately lead to a more corrosive lean 

glycol solution due to the shift in MDEA speciation and overall exacerbated the rate of carbon 

steel corrosion. Most interestingly, notable corrosion was also observed within lean glycol 

solutions containing MDEA within the high pH region (pH > 10) where corrosion would typically 

not be expected. As such, carbon steel corrosion may not just be limited to MEG loops 

undergoing transition to FFCIs, but also under pH stabilization operation whilst MDEA is present.  

 
Figure 6-3. Effect of MDEA on corrosion at varying initial lean glycol pH25°C and 140°C 

6.3.3 Effect of Temperature and Initial Lean Glycol pH25°C on Corrosion 

Figure 6-4 illustrates the dual effect of initial lean glycol pH at 25°C and temperature on the 

corrosion rate of carbon steel using coupon weight loss measurements. It is highly evident that 

within increased temperature, the rate of corrosion of carbon steel is increased significantly 

likely as a result of the effect of temperature on MDEA speciation behaviour. Even moderate 

initial lean glycol pH conditions (pH25°C 7- 9) in combination with the high temperature during 

regeneration will ultimately pose a significant corrosion risk to reboiler components 

manufactured from carbon steel. To verify the corrosion rates derived from weight loss coupons, 

LPR measurements were conducted in 30 minute intervals over a period of three days. Figure 

6-5 compares the corrosion rates measured at 140°C by coupon weight loss measurements, 

averaged stabilized LPR measurements and the weight loss of the carbon steel LPR probe tips. 
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Good agreement between all three corrosion measurement methods was observed at the 

temperature conditions tested within this study, further confirming the strong tendency of 

carbon steel to undergo corrosion at high temperatures in the presence of MDEA. In contrast, 

corresponding testing performed using stainless steel 316L showed effectively no corrosion with 

a corrosion rate of 0.004 mm/year and no pitting observed under the worst case conditions 

tested (pH25°C = 6 and 180°C). 

 
Figure 6-4. Corrosion rate of carbon steel at varying pH25°C and temperature 

 

Figure 6-5. Comparison of corrosion measurement techniques at 140°C 
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6.3.4 Pilot Scale Distillation Corrosion Testing 

To verify the experimental corrosion rates generated using the autoclave corrosion cell, 

larger scale testing was conducted using a pilot MEG regeneration column. The pilot distillation 

column forms part of a larger MEG regeneration loop utilized in various previous MEG related 

studies [1, 7, 12] with the distillation columns design discussed by Zaboon [1]. Corrosion rates were 

measured by submerging an LPR probe adjacent to the reboiler bundle operating with a liquid 

phase set-point temperature of 140°C. Figure 6-6 compares the corrosion rates generated using 

the distillation column and autoclave testing with a slightly higher corrosion rate measured 

within the pilot distillation column. The increased rate of corrosion compared to autoclave 

testing can be attributed to the dynamic conditions within the reboiler leading to increased 

circulation and reduced build-up of corrosion products on the LPR probe tips and corrosion 

proceeds. Furthermore, Figure 6-7 shows the evolution of hydrogen from the carbon steel LPR 

probe tips within pH25°C 7, 140°C lean MEG solution during operation visually demonstrating a 

high rate of corrosion. 

 
 

Figure 6-6. Comparison of autoclave vs. distillation 

column corrosion measurements (140°C – LPR 

measurement) 

Figure 6-7. Corrosion of LPR probe 

during regeneration (pH25°C = 7, 

140°C) 

6.3.5 Process Fouling Concerns due to Corrosion 

If unaccounted for, the high concentration of Fe2+ formed through the corrosion of the 

carbon steel reboiler components may have several operational issues for the reboiler itself and 

downstream systems. Latta [10] provides an extensive review of the effect of various MEG 
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process contaminants including Fe2+ on individual MEG regeneration systems with Figure 6-8 

summarizing the primary effects on the MRU. The primary risk associated with excessive Fe2+ 

content primarily involves the deposition of FeCO3 on process heat exchangers including rich 

glycol preheaters and the MRU reboiler bundle potential leading to reduced heat transfer 

efficiency [1, 10]. The high reboiler skin temperatures significantly increase the kinetics of Fe+2 

precipitation to FeCO3 resulting in high fouling potential of the reboiler bundle [8-10]. 

Furthermore, if low fouling resistant trays are utilized within the MEG regeneration tower, solids 

created within the reboiler recirculation loop may foul trays below the feed entry point [10]. In 

the presence of oxygen, Fe2+ may also form iron oxide particles leading to further fouling issues 

and potential blockage of MEG injection nozzles [8, 19]. 

Figure 6-9 illustrates the total Fe2+ concentration produced following corrosion testing at 

varying initial lean glycol pH25°C levels for testing conducted at 140°C. The total Fe2+ 

concentration was measured via spectroscopy by first acidifying the samples to dissolve any 

precipitated iron particles. As expected due to the high rates of corrosion experienced, the 

corrosion of carbon steel reboiler components due to MDEA may ultimately produce Fe2+ 

concentrations far beyond what is tolerable in closed loop MEG systems. Figure 6-10 depicts the 

final lean glycol solution saturated with solid particles after three days of corrosion at pH25°C 7 

and 140°C. 

Figure 6-8. Potential impact of MDEA corrosion and excessive iron particles on MEG 

regeneration unit 
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Figure 6-9. Fe2+ concentration after 3-days of corrosion 
(140°C) 

Figure 6-10. Final solution after 3-
days of corrosion (pH25°C = 7, 

140°C) 

6.3.6 Application of Corrosion Inhibitors during High Temperature 
Regeneration 

Following formation water breakthrough the presence of divalent cations will pose a 

scaling risk at the high pH conditions maintained under pH stabilization. Likewise, during well 

clean-up operations back production of drilling and completion fluids will also pose a risk of scale 

formation [4, 5, 32, 220]. Under both scenarios the use of FFCIs to provide corrosion protection is 

preferred due to the reduced scaling risk [5, 220]. However, the transition between corrosion 

protection using pH stabilization via MDEA to FFCIs post formation water breakthrough is 

problematic and time consuming [7]. Removal of MDEA can be achieved via vacuum reclamation 

systems by maintaining a low lean glycol pH which simultaneously alleviates the downstream 

scaling risk [7, 8, 221].  If MDEA is to be removed from the MEG loop, FFCIs will be injected into the 

lean MEG to provide continued corrosion inhibition of the primary pipeline [5, 220]. As a result, the 

presence of FFCIs within the MEG loop may provide some level of unintended corrosion 

protection inside the MRU as they are often designed to be thermally stable at regeneration 

conditions [2]. 

The review of FFCI application in oil and gas pipelines by Askari [222] outlines the most 

common types of film forming chemicals and the general mechanism by which they facilitate 

corrosion protection. It is often the case that the performance of corrosion inhibitors decrease 

with increasing temperature [222, 235-238]. As such the high temperature conditions within the MRU 
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will likely reduce the efficacy of any FFCIs injected upstream limiting their potential benefit. To 

evaluate the potential corrosion protection generated by FFCIs during MEG regeneration, three 

commercially available FFCIs outlined by Table 6-3 were tested from 30 to 180°C at pH25°C 7. 

Figure 6-11 illustrates the corrosion rates measured in the presence of the respective FFCIs 

compared to baseline testing with no CI present. Under low temperature conditions (≤80°C) 

each FFCI successfully reduced the corrosion rates to below 0.1 mm/yr. However, the corrosion 

rates measured under high temperature regeneration conditions at 140 and 180°C continued to 

exceed tolerable corrosion rates. Figure 6-12 illustrates the corrosion inhibition efficiencies (%) 

of the respective FFCIs indicating that the maximum inhibition efficiency of each FFCI was 

reached at 140°C with no further decline at higher temperatures. 

Table 6-3. FFCIs evaluated at high temperature regeneration conditions 

FFCI Type Primary CI components 

1 Amine Polyamines 

2 Amine Amine derivatives 

3 Quaternary ammonium salt 

Benzyldimethyldodecylammonium 
chloride 

Benzylquinolinium Chloride 

2-Mercaptoethanol 

 
Figure 6-11. Corrosion rates of carbon steel under high temperature conditions with FFCIs 

present (pH25°C 7) 
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Figure 6-12. Corrosion inhibition efficiencies of FFCIs under high temperature conditions 
(pH25°C 7) 

6.4 Conclusion 

MDEA may be utilized as a pH stabilizer in natural gas pipelines if the expected gas phase 

CO2 content would otherwise require traditional salt based pH stabilizers to be dosed beyond 

their solubility limits in MEG. Various previous studies have suggested that the protonated form 

of MDEA may induce corrosion of carbon steel through contribution to the cathodic corrosion 

reaction [4, 229, 230, 239]. However the results of this study indicate that significant corrosion of 

carbon steel may instead occur through the effect of temperature on MDEA dissociation 

behaviour [199, 200, 226-228]. The dissociation constant of MDEA is inversely proportional to 

temperature and will hence lead to the deprotonation of MDEAH+ as temperature increases. 

The subsequent release of hydrogen ions will ultimately increase the risk of corrosion through 

the cathodic reduction of hydrogen at metal surfaces. In particular, the surface of reboiler 

bundle tubing is especially susceptible to this form of corrosion if manufactured from carbon 

steel. The skin temperature of the tubing bundle will be hotter compared to the bulk liquid phase 

and will hence result in a greater concentration of hydrogen ions localized at the liquid-metal 

interface.   

The transition from an initial temperature of 25°C to MEG regeneration temperatures 

ultimately led to a significant increase in measured carbon steel corrosion rates with the greatest 

rates of corrosion expectedly found at the lower initial pH25°C values. For initial lean glycol pH25°C 
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of 9 and below, carbon steel corrosion rates in excess of 1 mm/year were observed at ≥140°C 

with a corrosion rate of 6.4 mm/year measured under the worst case conditions tested (pH25°C 

= 6 and 180°C). In contrast, stainless steel 316L was found to be resistant to the low pH 

conditions generated during MEG regeneration in the presence of MDEA with a corrosion rate 

of 0.004 mm/year measured under similar worst-case conditions and with no pitting observed. 

As such, it is highly evident that carbon steel components are the most susceptible to the 

potentially corrosive conditions generated by MDEA during the high temperature regeneration 

of MEG and should be avoided if practicable.   

FFCIs may be injected upstream into the natural gas pipeline to provide continued 

corrosion inhibition if MDEA is to be removed from the closed loop MEG system. As such, the 

presence of FFCIs within the MEG loop may provide some level of unintended corrosion 

protection inside the MRU. To account for this, various commercially available FFCIs were 

evaluated and were found to reduce the rate of carbon steel corrosion at all temperatures 

tested. However, at 140 and 180°C, the corrosion rate of carbon steel remained above tolerable 

limits. Overall, if process conditions during the MEG regeneration process are not carefully 

considered and controlled, MDEA may pose a significant unintended corrosion risk to reboiler 

components constructed from carbon steel in MEG loops utilizing MDEA for pH stabilization.  
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7.0 EFFECT OF WETTABILITY ON PARTICLE SETTLEMENT BEHAVIOUR 
WITHIN MONO-ETHYLENE GLYCOL REGENERATION PRE-TREATMENT 

SYSTEMS 

7.1 Introduction 

Mono-Ethylene Glycol (MEG) is widely used as a thermodynamic hydrate inhibitor to 

prevent the formation of gas hydrates within natural gas transportation pipelines [1, 4, 6, 7, 9, 32, 40, 

199]. Due to the large dosage requirement to ensure sufficient hydrate control and cost of 

inhibitor dosage, the regeneration and reuse of MEG is essential to minimise operational costs 
[1, 2, 4-6]. The industrial regeneration of MEG entails a variety of chemical and physical processes 

to remove contaminants such as process chemicals, mineral salts and organic acids as well as 

the reconcentration of the MEG by removal of excess water [1, 2, 7, 9]. In particular, following the 

breakthrough of formation water, the removal of divalent cations included calcium and 

magnesium is important to prevent the formation of scale within downstream equipment 

operating at high temperature including the regeneration column [4, 32, 74, 205, 218, 240].  

If a slip-stream reclamation system is utilised for salt control, the removal of divalent 

cations including calcium, iron and magnesium is typically performed during pre-treatment 

(Figure 7-1) [7, 8] by reaction within carbonate or hydroxide to form divalent salts that 

subsequently precipitate out under moderate to high temperatures (≥80°C [10, 12, 53, 240, 241]). The 

precipitated solids can then be removed within downstream filtration systems [10]. Likewise, the 

removal of pipeline corrosion products such as iron carbonate (FeCO₃) as well as other solid 

particles present with the reservoir fluids including sand may be required [10]. Downstream of 

the pre-treatment system, the treated rich glycol is subsequently stored within the rich glycol 

tank of which may act as a settlement tank for particles not removed by initial filtration. If 

considerable levels of solid particulates are present or poor settlement occurs within the rich 

glycol tank, excessive strain may be placed on downstream filtrations systems requiring frequent 

replacement of filters. 

Based upon analysis of one of the largest MEG regeneration systems operating in Western 

Australia, quartz and FeCO₃ have been identified as problematic particles that often fail to 

completely settle resulting in excessive filter replacement. The exposure of the particles to 

condensate (typically C6-C20) and associated organic compounds (long-chain fatty 

acids/carboxylics) has been suggested as a possible reason for reduced settlement rate within 

the rich glycol tank. Furthermore, the use of surfactant based corrosion inhibitors may also 

produce oil-wetted particles in order to repel water and hence reduce corrosion [242]. Following 

exposure to condensate or corrosion inhibitors, the surface properties of the particles are 
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altered potentially reducing their settlement within MEG-water systems.  The behaviour of oil-

wetted quartz and FeCO₃ has hence been analysed within MEG solution in terms of settlement, 

particle attraction (Zeta potential) as well as the behaviour of the particles at MEG-vapour 

interface. Furthermore, modification of surface properties has been studied through application 

of surfactants to improve particle settlement.  

 

Figure 7-1. Curtin Corrosion Centre’s rich MEG pre-treatment and settlement systems 

7.2 Wettability of Solid Particles 

The ‘wettability’ of a solid surface is a measure of the affinity of a liquid to a solid surface 

in the presence of another fluid (vapour of liquid) dictating the liquids ability to spread on the 

solid surface [142, 243]. In the presence of hydrocarbons and water, a particle may vary from 

strongly ‘water-wetted’ to strongly ‘oil-wetted’ with the degree of wettability providing a 

measure of a particles hydrophilicity or hydrophobicity [143, 144]. Within solid/water/oil systems, 

the surfaces of metal oxides and other naturally occurring inorganic materials are typically 

completely wetted by water [176]. However, some metal oxides such as barite (BaSO4) and 

hematite (Fe2O3) can also be wetted by oil indicating partial or intermediate wettability [176, 244]. 

The modification of a particles wettability influences the particles behaviour and interactions 

within liquid films and at liquid interfaces. The wettability of solid particles is a key parameter 

influencing solid-liquid separation as well as other applications including oil agglomeration and 

dust abatement [149, 183]. The wettability of a particle or surface is influenced by numerous factors 

including particle shape, size, surface chemistry and roughness [178, 179, 183, 184, 245], temperature 
[246-252], pressure [143, 169] and the presence of ionic species such as sodium, magnesium and 

sulphate [168, 170, 186, 187]. 
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The wettability of a solid particle plays an important role in the particle agglomeration 

process necessary for settlement to be achieved [145, 146]. If insufficient wetting of the particles is 

present, poor adhesion between the particles may result [146]. Furthermore, the wetted state of 

a particle may also influence its settlement behaviour. The process of film flotation is used to 

separate water-wet (hydrophilic) and oil-wet particles (hydrophobic) whereby particles are 

introduced at the water-air interface, as a result, the water-wet particles sink and oil-wet 

particles float [149]. Particles are submerged into the wetting liquid only when the critical wetting 

surface tension of the particle is equal or greater than the surface tension of the liquid [141]. 

Furthermore, the wettability of particles plays an important role in the formation of oil-water 

emulsions due to their behaviour at oil-water interfaces [139]. Particles that are strongly wetted 

by water tend to have poor stability at the oil-water interface, with the opposite true for oil-

wetted particles [139]. Oil-wetted particles have a tendency to adsorb to the oil-water interface 

improving emulsion stability through reduced contact area between the two fluids [139, 140].  

7.2.1 Wettability in Oil and Gas Reservoirs and Pipelines 

Typically, carbonate surfaces within oil reservoirs are neutral to oil-wet due to the 

adsorption of carboxylic components onto the carbonate surface [185, 253]. The conversion of 

calcite surfaces from water-wet to oil-wet in the presence of fatty organic compounds (such as 

stearic acid) has been conclusively demonstrated whereby such compounds will absorb onto the 

surface of calcite [143, 168-170, 254]. Likewise, the adsorption of polar organic compounds present in 

crude oils has been identified as the mechanism for why carbonate oil reservoirs exhibit oil-wet 

characteristics [168, 195, 255]. Organic compounds containing negatively charged carboxyl groups (-

COO−) are the most strongly adsorbed oil components onto calcium carbonate surfaces [172, 194]. 

Carboxylate molecules present within crude oil have a tendency to adsorb onto the positive sites 

of the calcite surface at low pH [168, 256]. At low pH (<8-9 [171, 172]) the surface of calcite becomes 

positively charged due to the presence of calcium ions whereas at higher pH the increased 

concentration of CO3
2− produces a negatively charged calcite surface [171, 173].  The presence of 

calcium ions at the calcite surface provides a point for which chemisorption of the carboxylic 

molecules can occur replacing surface hydroxyls (formed by surface hydration by water) [256]. 

Ultimately, the absorbed acids confer a hydrophobic characteristic to the calcite surface 

resulting in poor wettability in water. Due to the similar nature of FeCO3 and CaCO3, the lessons 

learned regarding calcite wettability behaviour and modification can be applied directly to 

FeCO3. 

The exposure of initially water-wet carbonates, quartz and shale surfaces to oil-based 

drilling fluids has also been shown to alter the wettability of the solid surface to oil-wet [156, 176, 

257-260]. The wettability of solid particles has been demonstrated to influence their dispersion 
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(and hence agglomeration) within liquid phases, specifically drilling muds [259, 261]. For drilling 

mud applications, weighting agents (such as calcium carbonate) are added to increase liquid 

phase density and in most cases are made oil-wet via wetting agents to prevent particle 

agglomeration and settling [189, 259]. The exposure of solid particles including FeCO₃ and quartz 

(potentially already oil-wet from the reservoir) to oil-wetting compounds within hydrocarbon 

transportation pipelines including condensate and residual drilling mud fluids may ultimately 

lead to settlement problems downstream. 

7.3 Chemicals and Particle Modification Procedure 

Quartz particles (50-70 mesh particle size) and technical grade FeCO₃ particles (≥99% wt.) 

were sourced from Sigma Aldrich and City Chemical respectively. To produce particles of sizes 

relevant to industrial MEG regeneration systems, particle size analysis was performed on rich 

MEG samples taken downstream of an industrial MEG regeneration system rich MEG storage 

tank (refer to Figure 7-2). Quartz and FeCO₃ particles were crushed and subsequently passed 

through a set of 63 µm, 32 µm and 10 µm particle sieves to produce two particle size ranges of 

interest (10-32 µm and 32-63 µm). 

To evaluate the influence of particle wetted state on particle settlement, particles were 

wetted by oil in order to render them hydrophobic. This was achieved by submerging the 

respective particles in a solution of 0.01 M stearic acid (Chem Supply, ≥99.5% wt.) in decane 

(Sigma Aldrich, ≥99% wt.) for 2 hours at 50°C [254, 262-264]. Oil-wetted particles were then separated 

from the liquid phase by centrifuge and the recovered particles dried for one day at 75°C. For 

testing purposes, an artificial condensate produced by ExxonMobil referred to as IsoPar M was 

utilised. The artificial condensate primarily contains C11-C16 hydrocarbons and was selected 

due to its close representation to the condensate produced in the field of interest.   

 

Figure 7-2. Particle size analysis of field rich MEG samples 
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7.4 Results and Discussion  

7.4.1 Behaviour of Particles at MEG-Vapour and MEG-Condensate Interface 

To better understand the behaviour of oil-wetted particles and how they distribute within 

MEG systems, their behaviour at MEG-vapour and MEG-condensate interfaces was analysed. 

Condensate present within the pre-treatment system maybe inadvertently carried under 

alongside the MEG phase within the rich glycol tank.  Condensate entering into the rich glycol 

tank will ultimately form a distinct layer above the MEG phase due to the inherent difference in 

solution density (Figure 7-1). Unmodified (hydrophilic) and oil-wetted (hydrophobic) particles 

were introduced above the MEG-vapour and condensate-vapour interfaces and allowed to 

settle. Both quartz and FeCO₃ hydrophilic particles were observed to easily transition through 

the MEG/vapour interface completely settling with minimal issue. In contrast, the hydrophobic 

particles of sizes ranging from 10-32, 32-63, 63-100 and 200-300 µm were unable to break the 

surface of the 50% wt. MEG (Appendix C – Figure C1). Once settled at the MEG/vapour interface, 

the oil-wetted particles demonstrated strong hydrophobic attraction accumulating into large 

particle build-ups (Appendix C – Figure C2). 

Where condensate was present as a distinct layer above the MEG phase, both water-

wetted and oil-wetted particles failed to transition through into the MEG phase (Appendix C – 

Figure C3). Interestingly, both water and oil wetted particles tended to accumulate into larger 

particle formations, likely in order to minimise surface contact with the opposing water/oil 

phase for oil-wetted/water-wetted particles respectively. A significant visual difference 

between water-wetted and oil-wetted FeCO₃ was also observed within the condensate phase. 

The condensate is unable to wet the surface of the water-wetted particles resulting in a ‘dry’ 

appearance compared to the oil-wetted particles. Overall, if adequate removal methods such as 

skimming pumps are not in place, the long term accumulation of particles at the vapour/liquid 

interface may pose significant problems for industrial MEG regeneration systems including 

interference with liquid level and other measurement sensors. 

7.4.2 Settlement of Particles within Rich Glycol Systems 

Poor settlement of suspended particles within processing systems can have notable impact 

on downstream operations, or if filtration systems are in place, increase the need for frequent 

filter replacement. As such, it is important to optimise the particle settlement process during 

the design phase or if problems arise during operation, removal of the factors that cause poor 

settlement. Due to the increased viscosity of MEG solutions (2.906 mPa.s, 50% wt. 20°C)  

compared to water systems (1.0016 mPa.s, 20°C), reduced particle settlement is expected. 

However, due to the limited ability to influence particle size through polymeric flocculants owing 

to unideal behaviour at the high temperatures experienced during downstream regeneration 
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including foaming, identification and rectification of other factors leading to poor settlement 

beyond particle size is important. The effect of a particles wetted state has hence been 

investigated to identify the implications on particle settlement within MEG systems and 

identification of potential solutions to improve settlement.   

XRD analysis of field samples obtained from filter systems located downstream of a rich 

MEG system identified quartz, cinnabar/metacinnbar and FeCO₃ as the primary crystalline 

components. As such, the settlement behaviour of water/MEG-wetted and oil-wetted quartz 

and FeCO₃ has been investigated within 50% wt. MEG solution representing a typical rich MEG 

composition. To investigate the particle settlement behaviour, the respective particles were 

initial suspended in 50% wt. MEG solution and injected horizontally into a vertical chamber filled 

with the 50% wt. MEG solution.  

The resulting settlement behaviour of water/MEG-wetted and oil-wetted FeCO₃ (10-32 

µm) is illustrated by Figure 7-3 and Figure 7-4 respectively, with the water/MEG-wetted FeCO₃ 

demonstrating efficient settlement. In contrast, oil-wetted FeCO₃ demonstrated a continuous 

tendency to float to the vapour-liquid interface with significant accumulation at the interface 

occurring due to hydrophobic interaction of the particles to each other [156, 164-167].  Furthermore, 

a portion of the oil-wetted FeCO₃ particles effectively remained suspended in the solution at the 

injection level of which would ultimately pass through with the eluent causing excessive 

filtration requirements. Overall, oil-wetted FeCO₃ particles between 10-63 µm demonstrated a 

strong tendency to float and accumulate at the interface with oil-wetted particles above 63 µm 

successfully settling (Appendix C – Figure C4). This result is particularly troublesome for MEG 

systems where particle sizes are often significantly below 63 µm (Figure 7-2). 

Figure 7-3. Settlement of water/MEG-wetted FeCO₃ (10-32 µm) in 50% wt. MEG solution 

   

T = 0 second T = 10 seconds T = 30 seconds 
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T = 0 T = 10 seconds 

  T = 2 minutes T = 5 minutes 

Figure 7-4. Settlement of oil-wetted FeCO₃ (10-32 µm) in 50% wt. MEG solution 

The settlement behaviour of 10-32 µm quartz is illustrated in Figure 7-5 showing a general 

trend to settle within the 50% wt. MEG solution. However, due to the difference in density 

between quartz (≈2.6 g/cm3) and FeCO₃ (≈3.9 g/cm3) low particle size quartz 10-32 µm 

demonstrated poor settlement regardless of wetted state, often taking upwards of an hour for 

water/MEG-wetted quartz to achieve full settlement. In a similar manner to FeCO₃, the 

settlement behaviour of quartz particles between 10-32 µm was observed to be negatively 

influenced following the oil-wetting process with oil-wetted particles tending to transition 

towards the vapour-liquid interface (Figure 7-6). Oil-wetted 32-63 µm quartz particle primarily 

settled at a reduced rate compared to corresponding water/MEG-wetted particles with only a 

minor portion (<10%) floating or remaining suspended after 5 minutes (Appendix C – Figure C5). 

Overall, the behaviour of quartz appeared to be less influenced by the effects of oil-wetting 

suggesting the adsorption of condensate and carboxylics to the quartz surface occurs to a lesser 

extent compared to FeCO₃. This is likely due to the presence of positive iron ions at the particle 

surface providing sites for chemisorption of the stearic acid molecules to occur.   
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Figure 7-5. Settlement of water/MEG-wetted quartz (10-32 µm) in 50% wt. MEG solution 

T = 0 T = 10 seconds 

  T = 1 minute T = 5 minutes 

Figure 7-6. Settlement of oil-wetted quartz (10-32 µm) in 50% wt. MEG solution 

7.4.3 Selection of Suitable Surfactants through Zeta Potential Measurement 

The zeta potential of a solid particle is often used as a measure of the particles charge due 

to its relation to both surface charge and the electrical double layer surrounding the particle [154,

159, 265]. Zeta potential has also been routinely applied as a measure of a solid suspension’s 

stability with lower absolute zeta potential indicative of particle agglomeration and increased 

T = 0 seconds T = 10 seconds T = 5 minutes 

Upwards 
Motion 

Accumulation 
at interface 

Upwards 
Motion 

Accumulation 
at interface 

Suspended in 
solution 



CHAPTER SEVEN:                             Effect of Particle Wettability on Settlement Behaviour in MEG  

112 

settlement [159]. As the absolute zeta potential decreases towards the isoelectric point (IEP), the 

electrostatic repulsion between similarly charged particles is diminished resulting in greater 

relative attraction by van der Walls forces according to DLVO theory [152, 158, 159]. The surface 

charge of a particle and hence zeta potential is also an important parameter in selecting a 

suitably charged ionic polymer surfactants [266]. The zeta potential of a particle and hence its 

effective surface charge has been shown extensively to be dependent upon both solution pH 

and the presence of ionic species [154, 159, 251, 256], factors highly variable in industrial MEG systems. 

Measurement of zeta potential within this study was performed using a dynamic light 

scattering (DLS), Zetasizer Nano ZS (Malvern Instruments). The zeta potential of quartz and 

FeCO₃ within 50% MEG solution at varying pH is presented in Figure 7-7 showing a general trend 

towards negative surface charge at higher pH. The increasingly negative surface charge of both 

particles within the pH range of interest to MEG systems suggests that a cationic surfactant such 

as cetrimonium bromide (CTAB) is best suited for neutralizing particle surface charge. The 

adsorption of oil-wetting agents (stearic acid) to the surface of both particles ultimately 

influenced the measured zeta potentials with the greatest variation occurring in the higher pH 

regions once the respective particle zeta potential transitioned to negative. The results are in-

line with the findings of Kasha [267] who reported similar behaviour when comparing aged 

calcite exposed to stearic acid in decane compared to pure calcite. Likewise, the effect of ionic 

species at concentrations measured within two industrial MEG regeneration systems (Appendix 

C – Table C-1) was evaluated. The presence of ionic species at reported concentrations had the 

expected effect of reducing the absolute zeta potential [154, 159, 251, 256], but to within a range where 

cationic surfactants are still suitable. 

Furthermore, to generate a better understanding of how both anionic and cationic 

surfactants influence particle behaviour in terms of particle attraction, the zeta potential of 

FeCO₃ and quartz was measured at pH 9 with varying surfactant concentrations (Figure 7-8). The 

cationic surfactant CTAB, had the greatest influence on particle zeta potential resulting in a shift 

to a positively charged surface, a result in line with Foss [268]. The shift to a positive zeta 

potential can be attributed to the adsorption of CTAB molecules to the surface of the particle, 

or to within the particles electrical double layer [159, 269, 270]. The work of Bi [269] suggests that 

CTAB will directly adsorb to the initially negatively charged particle surface through electrostatic 

attraction, neutralising the particles surface charge. However, at sufficiently high concentrations 

CTAB will continue to form a double layer through hydrophobic attraction between the chains 

of adsorbed surfactant molecules in the initial monolayer and free monomers [159, 269, 270]. The 

resultant double layer leaves the positively charge head of the CTAB molecule exposed 

producing a positive surface charge with more hydrophilic characteristics [159, 269]. In contrast 
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sodium dodecyl sulphate (SDS), an anionic surfactant showed minimal effect on the initially 

negatively charged particle surface instead remaining constant in the case of quartz and 

transitioning through the IEP of FeCO₃. The use of SDS may be beneficial in the settlement of 

FeCO₃ due to the dominance of van der Walls attraction relative to electrostatic repulsive forces 

allowing greater particle agglomeration [158, 159, 178, 266]. 

 

Figure 7-7. Zeta potential of quartz and FeCO₃ within 50% wt. MEG solution 

 
Figure 7-8. Effect of CTAB and SDS on particle Zeta potential (pH 9) 
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7.4.4 Application of Surfactants to Modify Particle Surface Properties 

The study of Standnes and Austad [271] concluded that 𝑅𝑅 − 𝑁𝑁+(𝐶𝐶𝐻𝐻3)3 cationic surfactants 

including CTAB were capable of desorbing negatively charged carboxylics contained in crude oil 

irreversible from solid surfaces through formation of ion pairs [272, 273]. The cationic head group 

of the CTAB molecule potentially forms ion-pairs with the negatively charge carboxylic acid 

group through electrostatic attraction, ultimately leading to their desorption from the solid 

surface and hence an increase in water-wetness [272-274]. Al-Anssari [159] also suggest that the 

positively charged head of the CTAB molecule may adsorb directly to negatively charged 

particles leading to the protrusion of the hydrophobic tail into the solution. Through 

hydrophobic interaction of the tails, neighbouring CTAB coated particles will ultimately 

agglomerate facilitating a great level of settlement [275, 276]. In contrast, non-ionic and anionic 

surfactants instead modify solid surfaces from oil-wet to water-wet through adsorption of the 

surfactants onto the solid surface forming a more water-wettable layer [274]. Anionic surfactants 

such as SDS have been shown to adsorb onto solid surfaces through hydrophobic interaction 

between the tail of the surfactant and adsorbed carboxylics thus increasing water-wettability 

through exposure of the hydrophilic head into the solution [273, 274]. 

To improve the settlement of oil-wetted particles entering into the rich glycol storage 

system, two surfactants were evaluated for their ability to transition the particles from oil-

wetted to water-wetted. Firstly, CTAB, a cationic surfactant, was selected due to the negative 

surface charge of both quartz and FeCO₃ at the pH levels of interest to MEG pre-treatment 

systems (typically pH 8 and above, refer to Figure 7-7) and potential to induce particle 

aggregation [159, 275]. For comparison purposes, the anionic surfactant SDS was also selected due 

to its proven capability to transition a variety of surfaces from oil-wet to water-wet [159, 274]. The 

effectiveness of surfactant treatment was evaluated using a graduated cylinder submerged 

within a water bath at 80°C to replicate temperature conditions with industrial MEG pre-

treatment systems [9, 10, 12]. Initially oil-wet particles were introduced at the liquid-vapour 

interface of 50% MEG solution containing the respective surfactant with the solution then mixed 

using a high-powered mixer at 1000 rpm for 10 minutes to rigorously expose the particles to the 

surfactant solution. Based on the settlement behaviour of water/MEG-wetted and oil-wetted 

particles demonstrated by Figures 3-6, particles observed to completely settle were considered 

successfully modified by the surfactant and now water/MEG-wetted, whilst those returning to 

the interface considered to be unaffected. Particles that were found to remain suspended within 

the solution were considered to undergo a partial removal of the oil-wetted layer. 

Figure 7-9 illustrates the particle modification efficiency of CTAB up to 100 ppm 

concentration for both FeCO₃ and quartz. Each experiment was repeated three times and the 
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average result with error bars representing the standard deviation of all three experiments 

presented. The percentage of particle settlement was determined by independently weighing 

the particles remaining at the surface, suspended in solution and those settled at the bottom of 

the cylinder after a period of 30 minutes. CTAB demonstrated a strong ability to increase particle 

settlement by transitioning the initially oil-wetted particles to either fully water/MEG-wetted or 

partially water/MEG-wetted thus aiding in settlement behaviour. From the experimental results, 

FeCO₃ appeared to be more susceptible to the effects of CTAB in comparison to quartz. The 

behaviour of the particles coupled with the physical appearance of the post-surfactant 

treatment particles suggests that the CTAB molecule has effectively desorbed the oil-wetting 

agents from the surface of the particle. The desorption of the oil-wetting agents by CTAB 

produced a particle in similar physical appear to the unmodified FeCO₃ particles (Figure 7-3 

compared to Figure 7-4) whilst also resulting in minimal particle size change as illustrated by 

Figure 7-11. This behaviour is in line with the studies of Hou [272], Standnes and Austad [194] 

and Jarrahian [273] who suggested that cationic surfactants like CTAB are capable of desorbing 

oil-wetting agents by the formation of ion pairs through electrostatic attraction. 

 

Figure 7-9. Effect of CTAB on initially oil-wet 10-32 µm FeCO₃ and quartz settlement 
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on the results and conclusions of Al-Anssari [159], it is likely that SDS adsorbed to the surface of 

the FeCO₃ and quartz particles during treatment resulting in the formation of the large particle 
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agglomerations. Adsorption of the surfactant may ultimately lead to cross-linking of the 

surfactant molecules through hydrophobic attraction between the polymer chains. 

Furthermore, due to the effect of SDS on the zeta potential of FeCO₃ particles at pH 9 (Figure 

7-8), the effect of SDS on the particle size of FeCO₃ was far more pronounced compared to that 

of CTAB. FeCO₃ reached its IEP at approximately 50 ppm SDS concentration helping to facilitate 

the strong particle attraction observed due to the dominance of van der Waals attraction 

between the particles [152, 158, 159].  

 

Figure 7-10. Effect of SDS on initially Oil-Wet 10-32 µm FeCO3 and quartz settlement 

 

Figure 7-11. Effect of CTAB on FeCO₃ particle size after oil-wetted to water/MEG-wetted 
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Figure 7-12. Effect of SDS on FeCO₃ particle size after oil-wetted to water/MEG-wetted 

transition 

Further comparison of anionic and cationic surfactants for particle modification of FeCO3 is 

illustrated by Figure 7-13, whereby several generic and commercially available surfactants were 

evaluated at a 50 ppm dosage rate. Table 7-1 outlines the varying types of surfactants used, 

including the manufacturer provided surfactant descriptions. Overall, the results further 

highlight that cationic surfactants are more suitable for modifying particle wettability properties 

within the high pH conditions of MEG pre-treatment systems where particle surface charge is 

more likely to be negative. The negative surface charge and resultant electrostatic repulsion 

between particle and surfactant molecule may ultimately overwhelm the hydrophobic 

attraction required for anionic surfactants to perform, particularly in the case of quartz and 

particles within higher pH solutions (>8-9)  [273, 274]. 

Table 7-1. Generic and commercially available surfactants 

Surfactant Type Description 

SDS Generic Anionic Sodium Dodecyl Sulphate 

Anionic Commercial Anionic Anionic high molecular weight polymer 

CTAB Generic Cationic Cetrimonium bromide 

DODAB Generic Cationic Dimethyldioctadecylammonium bromide 

Hyamine Generic Cationic Benzethonium chloride 

Cationic 1 Commercial Cationic Cationic brine dispersion polyacrylamide flocculent 

Cationic 2 Commercial Cationic Mixture of four cationic surfactants developed as a 
wax dispersant in MEG systems 
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Figure 7-13. Comparison of generic and commercially available surfactants (50 ppm) - FeCO₃ 
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MEG regeneration systems, the oil-wetting of particles, and potential chemical treatments, must 

be taken into consideration to maximise particle settlement efficiency. 

a) Oil-wet 10-32 µm FeCO₃ particles
b) Oil-wet 10-32 µm FeCO₃ particles with

50ppm CTAB 

c) Oil-wet 10-32 µm FeCO₃ particles with 50 ppm SDS

Figure 7-14. Modification of FeCO₃ surface properties by CTAB and SDS surfactants 

7.5 Conclusion 

A variety of studies have been conducted to analyse the impact of wettability of particle 

and solid surfaces with direct application to Enhanced Oil Recovery (EOR) [143, 159, 171, 190, 272, 274]. 

However, the impact of wettability on the behaviour of solid particles in terms of settlement has 

received minimal attention, particularly for industrial systems. The exposure of FeCO₃ and 

quartz to condensate and formation of oil-wetted particles has been identified as a potential 

cause of poor particle settlement within an industrial MEG regeneration system operating in 

Western Australia. The effect of oil-wetting on settlement behaviour was hence evaluated and 

potential methods to increase settlement rate explored.  
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Oil-wetted particles formed through exposure to a stearic acid/decane solution showed a 

strong tendency to either remain suspended in solution indefinitely or transition to the MEG-air 

interface. As such, it is clear that the formation of oil-wetted particles through exposure to 

condensate within the transportation pipeline or within the pre-treatment system may 

ultimately result in poor settlement and the need for excessive filtration. To combat this, a 

variety of cationic surfactants including CTAB showed strong potential in transitioning the 

initially oil-wetted particles to a more settleable water/MEG-wetted state, a result consistent 

with prior studies into EOR [143, 272-274]. The strong performance of cationic surfactants for particle 

modification can be attributed to the negative surface charge of iron and quartz at the pH levels 

typical in MEG pre-treatment systems (>8). In contrast, due to the negative particle surface 

charge, SDS and a commercially available anionic surfactant, showed poor performance in 

increasing particle settlement. 

Furthermore, the addition of CTAB and SDS also showed the ability to increase the particle 

size of FeCO₃ potentially aiding in settlement performance [159, 178, 246, 256]. However, the 

conversion of oil-wetted particles to water-wetted was found to be a greater contributing factor 

to improved settlement performance than the increase in particle size, with large particles 

formed after SDS treatment failing to settle. Overall, the settlement of initially oil-wetted quartz 

and FeCO₃ particles was increased from 0% when completely oil-wetted to 80 and 90% 

respectively following treatment using 100 ppm of CTAB, with good settlement percentages also 

generated via treatment using commercially available cationic surfactants. As such, the work 

within this study may provide a potential cause behind poor settlement of particles within 

industrial rich MEG processing systems and a possible method to combat this issue through 

application of cationic surfactants. 
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8.0 ACID DISSOCIATION CONSTANT (PKₐ) OF COMMON MEG 
REGENERATION ORGANIC ACIDS AND METHYLDIETHANOLAMINE AT 

VARYING MEG CONCENTRATION, TEMPERATURE AND IONIC 
STRENGTH 

8.1 Introduction 

The presence of organic acids within MEG regeneration systems poses a potential corrosion 

risk to natural gas transportation pipelines [69-72]. Organic acids such as acetic, propanoic and 

butanoic typically enter into the MEG regeneration loop via the condensed water phase where 

free organic acids are present within the reservoir [63]. Alternatively, following the breakthrough 

of formation water, organic acids may also be introduced alongside mineral salt ions [9, 63]. The 

thermal degradation of MEG at high temperature in the presence of oxygen may also lead to the 

formation of organic acids including glycolic, acetic and formic acids [1, 3, 5, 39, 63]. 

The introduction of organic acids into natural gas transportation pipelines will ultimately 

reduce the pH of the liquid phase and hence pose a corrosion risk through increased solubility 

of the protective iron carbonate film [65-68]. Furthermore, organic acids such as acetic acid have 

been demonstrated to increase the rate of Top of the Line Corrosion (TLC) in the presence of 

carbon dioxide [17, 63, 72-76]. As such, whilst operating under pH stabilisation corrosion control it is 

important to ensure sufficient alkalinity is present to neutralise incoming organic acids.  

Corrosion prevention through pH stabilisation can be achieved through the addition of 

hydroxide or carbonate salts, or amine-based compounds including MDEA [4, 17]. The application 

of MDEA within closed loop MEG systems for pH stabilisation is advantageous due to its thermal 

stability allowing multiple regeneration cycles before degradation occurs and its ability to be 

recovered during reclamation at high pH [277, 278]. However, upon the onset of formation water 

the risk of scaling within subsea and MEG regeneration systems at high pH is present. As such, 

if scaling cannot be alternatively managed through scale inhibitors it may be beneficial to 

transition from pH stabilisation using MDEA to more scaling friendly film forming corrosion 

inhibitors [8, 9].  

The removal of MDEA from the MEG regeneration loop can be accomplished alongside 

monovalent cations including sodium via vacuum reclamation [9, 40]. Removal of MDEA during 

the reclamation process involves first neutralising the MDEA to facilitate reaction with anionic 

species including chlorides, sulphates, sulphides and organic acid ions to form heat stable salts 

in a similar manner to industrial CO2 capture systems using amines [40, 213-215, 217]. Upon the 

evaporation of lean MEG under vacuum, the heat stable MDEA salts will remain, hence 

facilitating their removal. Likewise, removal of organic acids via the vacuum reclamation system 



CHAPTER EIGHT:                          Acid Dissociation Behaviour of Organic Acids and MDEA in MEG  

122 

may also be achieved in a similar manner to prevent their accumulation within the loop. As such, 

the acid dissociation behaviour of a chemical is an important factor dictating the efficiency of its 

removal during reclamation.  

The acid dissociation constant (pKₐ)  of a chemical is influenced by a variety of factors 

including temperature, ionic strength and the dielectric constant (ε) of the solvent [130]. Organic 

solvents such as ethylene glycol have been shown experimentally to influence the pKₐ of various 

weak acids and bases typically increasing pKₐ compared to aqueous solutions [127-130]. The 

dielectric constant of ethylene glycol (37.7 at 20°C [279]) is noticeably lower than that of water 

(78.54 at 20°C [279]) and will hence influence the dissociation behaviour of weak acids and bases. 

The pKₐ of chemicals within MEG are hence important to MEG regeneration system 

operators and designers. The removal of MDEA and organic acids via vacuum reclamation is 

dependent on both system pH and temperature and will ultimately be influenced by the acid 

dissociation behaviour. Likewise, the complete neutralisation of incoming organic acids from the 

well is important whilst operating under pH stabilisation corrosion control. The pKₐ of organic 

acids commonly found within MEG regeneration systems and MDEA have hence been 

determined at varying MEG concentrations, temperatures and ionic strengths. 

8.2 Experimental Methodology 

8.2.1 Chemicals  

The organic acids and MDEA utilised within this study were procured from Chem Supply 

and Sigma Aldrich respectively. The purities of the chemicals used, and their respective chemical 

structures are outlined by Table 8-1. 

8.2.2 Apparatus and Procedure.  

The pKₐ of organic acids and MDEA within varying MEG concentrations was determined via 

titration using a HI902 potentiometric automatic titration system. The automatic titration 

system utilises a dynamic titration mode whereby the addition of the titrant is reduced as the 

equivalence point approaches. For this study, a minimum titrant volume step size of 0.025 ml 

was utilised to ensure accurate identification of the equivalence point (±0.1% dosed volume). 

pH measurements were performed using a Thermo Scientific Orion 8302BNUMD pH probe 

(±0.01 pH units) with automatic temperature compensation. Temperature was maintained 

within the titration cell via an external water heating jacket (±0.1°C). For the organic acids and 

MDEA respectively, 0.1 M (±0.002 M) NaOH and HCl supplied by Hanna instruments was utilised 

as the titrant. 

Solutions of varying MEG concentration (wt. %) were prepared using de-ionised water 

(18.2MΩ.cm) and ethylene glycol supplied by Chem Supply (CAS: 107-21-1). The concentration 
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of prepared MEG solutions was verified using an ATAGO PAL-91S refractometer pre-calibrated 

for the determination of MEG concentration with an accuracy of ±0.4% (V/V). Prior to titration 

all solutions were sparged using ultra-pure nitrogen (>99.999 mol. %) to remove dissolved CO2. 

Each titration was repeated three times with the average pKₐ presented. To account for the 

inherent error associated with pH measurement in MEG solutions, the correction factor 

described by Sandengen [11] was applied.  

To assess the accuracy of the titration and pKₐ determination procedure utilised, the pKₐ of 

the respective organic acids and MDEA within water at 25°C was compared to literature values. 

The measured pKₐ and comparison literature values are summarised in Table 8-2 with good 

agreement found. Furthermore, the effect of temperature on the measured pKₐ of the organic 

acids and MDEA within aqueous solutions was compared to published literature studies (Figure 

8-1 to Figure 8-3). 

Table 8-1. Chemical purity and structures 

Compound CAS Purity Chemical Structure 

Formic acid 64-18-6 >99.5% 

 

Acetic acid 64-19-7 >99.5% 

 
Propanoic acid 109-52-4 >99.5% 

 

Butanoic acid 107-92-6 >99.5% 

 

MDEA 105-59-9 >99% 

 

Table 8-2. Water pKₐ comparison to literature a 

Compound 
pKₐ,(water) (25°C) 

Literature This Study 

Acetic acid 4.76[280] 4.76 

Propanoic acid 4.88[280] 4.87 

Butanoic acid 4.82[281] 4.82 

Formic acid 3.75[281] 3.76 

MDEA 8.58[227] 8.58 

aStandard uncertainties: u(T) = 0.01°C and u(pKₐ) = 0.03  
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Figure 8-1. Effect of temperature on pKₐ of acetic and propanoic acid (aqueous solution) 
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Figure 8-2. Effect of temperature on pKₐ of formic acid (aqueous solution) 
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Figure 8-3. Effect of temperature on pKₐ of MDEA (aqueous solution) 

8.3 Determination of pKₐ Values 

The determination of pKₐ from potentiometric titration data is often performed by plotting 

the pH as a function of titrant volume and estimating the pKₐ value from the curves inflection 

point [130]. At the equivalence point, the concentration of the acid or base and is conjugate form 

is equal and hence through Equation (8-1), pKₐ is equal to pH. However, the measurement of 

pKₐ is influenced by the ionic strength of the solution and in turn the dissociation of the acid or 

base to its conjugate form [130, 284, 285]. As such, calculation of the acid dissociation constants (pKₐ) 

reported in this study was performed using Equation (8-2) [285] where the activity coefficient of 

the ionic species (𝛾𝛾𝑖𝑖−) is incorporated. Through Equation (8-2), pKₐ was calculated over the 

entire pH range of the titration and the average pKₐ reported. The activity coefficient of the 

undissociated species (𝛾𝛾𝑖𝑖) was assumed to be one [285-287]. 

pKa = pH + log �
[A±]
[HA]

� (8-1) 

pKa = pH + log �
1 − α
α

� + log �
γi
γi−

� (8-2) 

where α =  V/Veq 

To calculate the activity coefficient of the dissociated species (𝛾𝛾𝑖𝑖−), the Debye-Hückel 

equation given by Equation (8-3) was utilised [228, 284, 285, 287, 288]. Where the A and B terms are 

constants, 𝑎𝑎𝑖𝑖 is the ionic size parameter, 𝑧𝑧𝑖𝑖 the valence of the ionic species and I the ionic 

strength of the solution (calculated through Equation (8-4)). The ionic size parameters reported 

by Kielland [289] were utilised for the organic acids (𝑎𝑎𝑖𝑖 = 3.5Å [285]) and MDEA (𝑎𝑎𝑖𝑖 = 4.5Å  [228]). 
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The values of the A and B constant terms were taken from the works of Manov [290] and 

Robinson and Stokes [291].  

 − log(γi) =
Azi2I

1
2

1 + BaiI
1
2

 (8-3) 

 I =
1
2
∑zi2. ci 

 

(8-4) 

where 𝑐𝑐𝑖𝑖 = ion concentration and 𝑧𝑧𝑖𝑖 = ion valence 

 8.4 Results and Discussion 

8.4.1 Effect of MEG Concentration on pKₐ.  

The effect of varying MEG concentration on the pKₐ of the organic acids and MDEA at 25°C 

is presented within Table 8-3 and Table 8-5 respectively. For the organic acids, increasing MEG 

concentration resulted in an increase in the measured pKₐ as per Figure 8-4. The change in 

measured pKₐ was found to change linearly with respect to MEG mole fraction (not shown). As 

a result, the change in pKₐ directly correlated with the change in dielectric constant of the 

solution (refer to Figure 8-6 and Figure 8-7)[130]. In contrast, the measured pKₐ of MDEA was 

found to decrease with respect to increasing MEG concentration (Figure 8-5), however, again in 

line with the change in MEG mole fraction and resultant change in dielectric constant of the 

solution (Figure 8-8). 

8.4.2 Effect of temperature on pKₐ.  

The effect of temperature on the pKₐ of the organic acids and MDEA was evaluated within 

varying MEG concentration solutions (30, 50 and 80% wt.) and is presented in Table 8-4 and 

Table 8-5 respectively. The pKₐ of the organic acids within MEG solution demonstrated similar 

behaviour with respect to temperature as within water (Figure 8-9 to Figure 8-11). A similar 

response was observed for MDEA whereby the change in temperature induced a large reduction 

in the measured pKₐ matching that of water (Figure 8-12). The results are in line with the findings 

of Castells [226] who suggested a large change in pKₐ can be expected for amines with a lower 

temperature response exhibited by organic acids. 

Table 8-3. Effect of MEG concentration on measured organic acid pKₐ (25°C) a 

Compound 
MEG Concentration (wt. %) 

0 30 40 50 60 70 80 

Formic 3.75 3.89 3.99 4.10 4.25 4.40 4.65 

Acetic 4.76 4.96 5.08 5.22 5.42 5.63 5.93 

Propanoic 4.88 5.23 5.38 5.55 5.74 6.01 6.29 

Butanoic 4.82 5.13 5.28 5.46 5.64 5.90 6.21 
aStandard uncertainties: u(T) = 0.01°C, u(𝑀𝑀𝑀𝑀𝑀𝑀 %) = 0.2, u(pKₐ) = 0.04 
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Table 8-4. Effect of temperature on measured organic acid pKₐ in aqueous and varying MEG 

concentration solution a 

Compound 
Temperature (°C) 

25 30 40 50 60 70 80 
Aqueous Solution  

Formic 3.76 3.76 3.76 3.77 3.79 3.82 3.85 

Acetic 4.76 4.76 4.77 4.79 4.81 4.84 4.87 

Propanoic 4.87 4.88 4.89 4.91 4.94 4.96 4.99 

Butanoic 4.82 4.82 4.84 4.86 4.88 4.91 4.94 

30% wt. MEG 

Formic 3.89 3.89 3.90 3.90 3.92 3.95 3.99 

Acetic 4.96 4.96 4.97 4.99 5.01 5.04 5.08 

Propanoic 5.23 5.23 5.25 5.26 5.29 5.32 5.37 

Butanoic 5.13 5.14 5.15 5.16 5.19 5.22 5.27 

50% wt. MEG 

Formic 4.09 4.09 4.10 4.11 4.12 4.15 4.09 

Acetic 5.22 5.22 5.23 5.25 5.27 5.30 5.22 

Propanoic 5.55 5.56 5.57 5.58 5.61 5.65 5.55 

Butanoic 5.46 5.46 5.47 5.49 5.52 5.55 5.46 

80% wt. MEG 

Formic 4.65 4.65 4.65 4.66 4.68 4.71 4.76 

Acetic 5.93 5.93 5.94 5.96 5.99 6.02 6.07 

Propanoic 6.29 6.30 6.31 6.33 6.35 6.39 6.44 

Butanoic 6.21 6.22 6.23 6.25 6.28 6.31 6.36 
aStandard uncertainties: u(T) = 0.01°C, u(𝑀𝑀𝑀𝑀𝑀𝑀 %) = 0.2, u(pKₐ) = 0.04 

Table 8-5. Effect of MEG concentration and temperature on measured MDEA pKₐa 

MEG Concentration 
(wt. %) 

Temperature (°C) 
25 30 40 50 60 70 80 

0 8.57 8.45 8.27 8.08 7.90 7.73 7.58 

30 8.53 8.41 8.22 8.03 7.87 7.69 7.54 

40 8.51 8.39 8.19 8.01 7.85 7.67 7.51 

50 8.47 8.35 8.16 7.99 7.82 7.63 7.48 

60 8.43 8.30 8.12 7.94 7.77 7.59 7.43 

70 8.38 8.24 8.07 7.89 7.72 7.54 7.37 

80 8.32 8.18 8.01 7.82 7.64 7.46 7.29 
aStandard uncertainties: u(T) = 0.01°C, u(𝑀𝑀𝑀𝑀𝑀𝑀 %) = 0.2, u(pKₐ) = 0.04 
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Figure 8-4. Effect of MEG concentration on pKₐ of organic acids (25°C) 

 

Figure 8-5. Effect of MEG concentration and temperature on pKₐ of MDEA 
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Figure 8-6. Dielectric constant of varying MEG concentration solutions [292, 293] 

 

Figure 8-7. Dielectric constant vs. organic acid pKₐ (25°C) 
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Figure 8-8. Dielectric constant vs. MDEA pKₐ 

 

Figure 8-9. Effect of temperature on pKₐ of organic acids (30% wt. MEG) 
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Figure 8-10. Effect of temperature on pKₐ of organic acids (50% wt. MEG) 

 

Figure 8-11. Effect of temperature on pKₐ of organic acids (80% wt. MEG) 
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Figure 8-12. Effect of temperature on pKₐ of MDEA in varying concentration MEG solution 

8.4.3 Estimation of Thermodynamic Properties 

The measured MDEA dissociation constants were correlated with temperature using the 

van’t Hoff equation described by Equation (8-5). Subsequently, the Gibbs free energy 

(∆𝐺𝐺° 𝑘𝑘𝑘𝑘.𝑚𝑚𝑚𝑚𝑙𝑙−1), standard state enthalpy change (∆𝐻𝐻° 𝑘𝑘𝑘𝑘.𝑚𝑚𝑚𝑚𝑙𝑙−1) and entropy change 

(∆𝑆𝑆° 𝑘𝑘𝑘𝑘.𝑚𝑚𝑚𝑚𝑙𝑙−1.𝐾𝐾) were calculated at 25°C by Equations (8-6) to (8-8) and are listed in Table 8-8. 

Comparison of the thermodynamic properties of MDEA within aqueous solution at 25°C was 

made to literature (Table 8-6) with good agreement found. In contrast, the organic acids were 

found to be temperature dependent and hence the temperature dependant form of the van’t 

Hoff equation was applied (Equations (8-9) to (8-11)). Comparison of the thermodynamic 

properties of the organic acids to prior studies of organic acids in aqueous solutions showed 

good agreement (Table 8-7). The thermodynamic properties of the organic acids at 25°C in 

varying MEG concentration solutions is presented in Table 8-9. 
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 ln(𝐾𝐾𝑎𝑎) = − ln(10𝑝𝑝𝐾𝐾𝑎𝑎) = 𝑎𝑎 +
𝑏𝑏

𝑇𝑇/𝐾𝐾
 (8-5) 

 ∆G° = ∆H° − T∆S° (8-6) 

 ∆H° =  −R × b (8-7) 

 ∆S° =  R × a (8-8) 
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Table 8-6. Comparison of MDEA thermodynamic quantities in aqueous solution (25°C) a 

aStandard uncertainties: u(T) = 0.01°C, u(∆rGm° ) = 0.05,  u(∆rHm
° ) = 0.05,  u(∆S°) = 0.05 

Table 8-7. Comparison of organic acid thermodynamic quantities in aqueous solution (25°C) a 

aStandard uncertainties: u(T) = 0.01°C, u(∆rGm° ) = 0.05,  u(∆rHm
° ) = 0.05,  u(∆S°) = 0.05 

Table 8-8. MDEA thermodynamic quantities in varying MEG concentration solutions (25°C) a 

a Standard uncertainties: u(T) = 0.01°C, u(𝑀𝑀𝑀𝑀𝑀𝑀 %) = 0.2, u(∆rGm° ) = 0.05,  u(∆rHm
° ) = 0.05,  

u(∆S°) = 0.05. 

ln(Ka) = − ln(10pKa) = a +
b

T/K
+

c
(T/K)2 

(8-9) 

∆H° =  −R �b +
2c

T/K
� (8-10) 

∆S° =  R �a −
c

(T2/K) 
� (8-11) 

Properties This Work 
Literature 

Tagiuri [228] 
Hamborg 

[294]
Kim [295]

Hartono 
[227] 

∆rGm°  kJ. mol−1  48.93 48.88 48.87 48.63 48.97 

∆rHm
°  kJ. mol−1 36.20 26.49 34.9 35.2 35.69 

∆S° kJ. mol−1. K−1 -0.042 -0.07 - -0.045 - 

Properties 

Formic Acetic Propanoic Butanoic 

This work Kim [296] 
This 
work 

Harned 
and 

Ehlers 
[206] 

This work 

Harned 
and 

Ehlers 
[297] 

This work 

∆rGm°  kJ. mol−1 21.74 21.44 27.83 27.82 27.14 27.15 27.51 

∆rHm
°  kJ. mol−1 1.28 1.23 -0.85 -0.87 -0.58 -0.54 -0.75

ΔS° kJ. mol−1. K−1 -0.069 -0.068 -0.096 -0.096 -0.093 -0.093 -0.095

Properties 
MEG Concentration (wt. %) 

30 40 50 60 70 80 

∆rGm°  
kJ. mol−1 

48.70 48.52 48.36 48.11 47.82 47.49 

∆rHm
°  

kJ. mol−1 
36.13 35.84 36.35 36.62 36.56 37.47 

ΔS° 
kJ. mol−1. K−1 

-0.042 -0.042 -0.040 -0.038 -0.037 -0.033
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Table 8-9. Organic acid thermodynamic quantities in varying concentration MEG solution 
(25°C) a 

aStandard uncertainties: u(T) = 0.01°C, u(𝑀𝑀𝑀𝑀𝑀𝑀 %) = 0.2, u(∆rGm° ) = 0.05,  u(∆rHm
° ) = 0.05,  

u(∆S°) = 0.05. 

8.4.4 Effect of Sodium Chloride Content and Ionic Strength on pKₐ 

The introduction of mineral salts into MEG regeneration systems is a major process concern 

due to its effect on regeneration performance and increased scaling potential [1, 9]. Sodium 

Chloride (NaCl) represents one of the major salt species introduced into MEG regeneration loops 

following formation water breakthrough [9, 39]. The effect of ionic strength in the form of NaCl 

upon the acid dissociation behaviour of acetic acid and MDEA at 25°C was analysed in varying 

MEG concentration solutions and is presented in Table 8-10.  

The effect of ionic strength on MDEA pKₐ (Figure 8-13) was in line with the findings of 

Hartono [227] who concluded that at low ionic strengths (<1 mol/L) the change in pKₐ is linear. 

A similar response was observed for acetic acid pKₐ with respect to increasing ionic strength 

(Figure 8-14). A small deviation in ΔpKₐ was observed at the higher ionic strengths when 

comparing the varying MEG concentration solutions. This small deviation may be as a result of 

the reduced mobility of ionic species in higher concentration MEG solutions [298, 299]. 

Properties Formic Acetic Propanoic Butanoic 

30% (wt.) 

∆rGm°  kJ. mol−1 22.20 28.32 29.85 29.29 

∆rHm
°  kJ. mol−1 1.99 0.84 0.65 0.44 

ΔS° kJ. mol−1. K−1 -0.068 -0.092 -0.098 -0.097 

50% (wt.) 

∆rGm°  kJ. mol−1 23.36 29.79 31.68 31.16 

∆rHm
°  kJ. mol−1 2.19 0.96 0.39 0.88 

ΔS° kJ. mol−1. K−1 -0.071 -0.097 -0.105 -0.102 

80% (wt.) 

∆rGm°  kJ. mol−1 26.53 33.84 35.91 35.46 

∆rHm
°  kJ. mol−1 2.23 1.07 0.40 0.45 

ΔS° kJ. mol−1. K−1 -0.082 -0.110 -0.119 -0.117 
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Table 8-10. Effect of salinity (NaCl) on pKₐ of acetic acid and MDEA in varying MEG 
concentration solution (25°C) a 

Sodium (ppm 
wt.) 

Ionic Strength 
(mol/L) 

Acetic Acid MDEA 

pKₐ ΔpKₐ pKₐ ΔpKₐ 

Aqueous Solution 

0 0.000 4.755 0 8.573 0 

250 0.011 4.754 -0.001 8.577 0.003 

500 0.022 4.753 -0.002 8.579 0.006 

1000 0.043 4.750 -0.005 8.589 0.016 

2000 0.087 4.747 -0.008 8.602 0.029 

5000 0.217 4.738 -0.017 8.643 0.070 

10000 0.435 4.725 -0.030 8.717 0.144 

30% wt. MEG 

0 0.000 4.961 0 8.532 0 

250 0.011 4.960 -0.001 8.535 0.003 

500 0.022 4.959 -0.002 8.539 0.007 

1000 0.043 4.956 -0.005 8.548 0.016 

2000 0.087 4.952 -0.009 8.563 0.031 

5000 0.217 4.943 -0.018 8.603 0.070 

10000 0.435 4.930 -0.031 8.677 0.145 

50% wt. MEG 

 0.000 5.220 0 8.472 0 

250 0.011 5.219 -0.001 8.475 0.003 

500 0.022 5.218 -0.002 8.479 0.007 

1000 0.043 5.216 -0.004 8.488 0.016 

2000 0.087 5.212 -0.008 8.504 0.032 

5000 0.217 5.202 -0.018 8.545 0.073 

10000 0.435 5.189 -0.031 8.620 0.148 

80% wt. MEG 

 0.000 5.928 0 8.320 0 

250 0.011 5.927 -0.001 8.325 0.005 

500 0.022 5.926 -0.002 8.329 0.009 

1000 0.043 5.924 -0.004 8.337 0.017 

2000 0.087 5.920 -0.008 8.352 0.032 

5000 0.217 5.910 -0.018 8.395 0.075 

10000 0.435 5.896 -0.032 8.472 0.152 
aStandard uncertainties: u(T) = 0.01°C, u(𝑀𝑀𝑀𝑀𝑀𝑀 %) = 0.2, u(pKₐ) = 0.04, u(sodium) = 10 ppm wt. 
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Figure 8-13. Effect of salinity (NaCl) on pKₐ of MDEA in varying MEG concentration solution 
(25°C) 

 

Figure 8-14. Effect of salinity (NaCl) on pKₐ of acetic acid in varying MEG concentration solution 

(25°C) 
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8.4.5 pKa Modelled as Function of MEG Concentration, Temperature and Ionic 
Strength (NaCl) 

Industrial MEG regeneration systems may be operated at a wide range of target MEG 

concentrations, pHs and salinities depending on field conditions and requirements. As such, the 

pKₐ of acetic acid and MDEA has been modelled as a function of MEG concentration, 

temperature and ionic strength to allow prediction at a wide range of conditions. The 

relationship between acetic acid pKₐ within 80% wt. MEG solution is illustrated by Figure 8-15 

further demonstrating the parabolic and linear relationship of acetic acid pKₐ with temperature 

and salinity respectively. Sigmaplot’s parabolic regression function was used to fit the 

experimental data presented in Appendix D, Table D-1 to the function given by Equation (8-12). 

The model coefficients at the respective MEG wt. concentrations is provided in Table 8-11. To 

allow estimation of acetic acid pKₐ for varying MEG concentrations, a correction factor based on 

the mole fraction of MEG was used to develop the model given by Equation (8-13). The average 

error of Equation (8-12) and (8-13) is reported in Table 8-11. Furthermore, a graphical 

representation of the model is illustrated by Figure 8-12 showing the agreement between 

experimental (data points) and calculated (mesh plot). 

Likewise, a similar model was developed to predict the pKₐ of MDEA at varying 

temperature, salinity and MEG concentration. The three-dimensional relationship between 

MDEA pKₐ, temperature and salinity within 80% wt. MEG is illustrated by Figure 8-16. 

Sigmaplot’s 3D linear regression was used to fit the experimental data (Appendix D, Table D2) 

to the model given by Equation (8-14) with the coefficients and model accuracy reported in 

Table 8-11. Furthermore, correcting for MEG concentration, Equation (8-15) can used to 

calculated MDEA pKₐ varying MEG concentrations. 

pKa(Acetic Acid) = A + B × (T°C) + C × �I
mol

L
� + D × (T°C)2 + E × �I

mol
L
�
2

 (8-12) 

pKa(Acetic Acid)  =  A80% + B80% × (T°C) + C80%  × �I
mol

L
� + D80% × (T°C)2 

+E80% × �I
mol

L
�
2

−
(x80% MEG − xi% MEG)

0.441
 

(8-13) 

pKa(MDEA) = A + B × (T°C) + C × �I
mol

L
� (8-14) 

pKa(MDEA) = A80%  + B80% × (T°C) + C80% × �I
mol

L
� +

(x80% MEG − xi% MEG)
2.033

 (8-15) 

Where:  xi% MEG = Corresponding mole fraction at given mass fraction  



CHAPTER EIGHT:                          Acid Dissociation Behaviour of Organic Acids and MDEA in MEG  

138 

Table 8-11. pKₐ model coefficients and errors 

 
Figure 8-15. Acetic acid pKₐ within 80% wt. MEG as a function of ionic strength and 

temperature 
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Temperature (°C
)

Ionic Strength (mol/L)

Acetic Acid Model Coefficients 

MEG Conc. (wt. %) 80% 50% 30% 

A 5.9621 5.2441 4.9929 

B -0.0025 -0.0018 -0.0023 

C -0.0942 -0.0901 -0.103 

D 4.814 × 10−5 3.801 × 10−5 4.18 × 10−5 

E 0.0422 0.0418 0.055 

Model Error (%) 

Individual 0.133 0.165 0.151 

Combined 0.133 0.348 0.413 

MDEA Model Coefficients 

MEG Conc. (wt. %) 80% 50% 30% 

A 8.7666 8.9018 8.9639 

B -0.0186 -0.0180 -0.0181 

C 0.3544 0.3353 0.353 

Model Error (%) 

Individual 0.151 0.187 0.213 

Combined 0.151 0.233 0.265 
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Figure 8-16. MDEA pKₐ within 80% wt. MEG as a function of ionic strength and temperature 

Figure 8-17. Acetic acid pKₐ within 80% (yellow), 50% (green), 30% (blue) wt. MEG as a function 
of ionic strength and temperature. Data points = measured pKₐ (Appendix D Table D1), mesh 

plot = calculated pKₐ (Equation (8-12)).
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8.5 Conclusion 

The dissociation constants of four organic acids commonly present within MEG 

regeneration systems and MDEA were measured at varying MEG concentrations (0-80 wt. %) 

and temperatures (25-80°C). The change in measured pKₐ of each species was found to be 

primarily influenced by the change in dielectric constant of the solution as MEG concentration 

increased (linear with respect to MEG mole fraction). Furthermore, the influence of temperature 

on the measured pKₐ of each species was determined and the thermodynamic properties of the 

dissociation process including Gibbs free energy ∆𝐺𝐺°  𝑘𝑘𝑘𝑘.𝑚𝑚𝑚𝑚𝑙𝑙−1   standard enthalpy  

∆𝐻𝐻°  𝑘𝑘𝑘𝑘.𝑚𝑚𝑚𝑚𝑙𝑙−1 and entropy ∆𝑆𝑆°  𝑘𝑘𝑘𝑘.𝑚𝑚𝑚𝑚𝑙𝑙−1.𝐾𝐾−1   were calculated at 25°C using the van’t Hoff 

Equation.. Good agreement was found between the measured dissociation constants and 

thermodynamic properties of each species within aqueous solution to prior published literature. 

The influence of ionic strength on acetic acid and MDEA dissociation was also determined with 

the measured pKₐ changing linearly with respect to ionic strength. A model has been proposed 

to calculate the pKₐ of acetic acid and MDEA within MEG solutions of varying concentration, 

temperature and ionic strength. The proposed models had a maximum average error of 0.413% 

and 0.265% for acetic acid and MDEA respectively.  
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9.0 EXPERIMENTAL VAPOUR-LIQUID EQUILIBRIUM DATA FOR BINARY 
MIXTURES OF METHYLDIETHANOLAMINE IN WATER AND ETHYLENE 

GLYCOL UNDER VACUUM 

9.1 Introduction 

Mono-Ethylene glycol (MEG) and N-methyldiethanolamine (MDEA) are common chemicals 

used in the natural gas processing industry. The injection of MEG is performed to prevent the 

formation of natural gas hydrates within transportation pipelines [1, 4, 6]. Whereas MDEA and 

other alkanolamines are typically used as chemical absorbents for the removal of carbon dioxide 

and hydrogen sulphide during natural gas processing [300, 301]. Furthermore, the application of 

MDEA within natural gas transportation extends to its use as a basic compound suitable for pH 

stabilisation corrosion control [4, 17].  

pH stabilisation corrosion control is performed to promote the formation of an iron 

carbonate protective film by artificially increasing system pH [4, 16, 17, 72]. MDEA as a pH stabiliser 

may be preferable to salt based (hydroxide or carbonate) chemicals due to its ability to be 

recovered during vacuum reclamation minimising operational losses and dosing requirements 
[4, 51]. Moreover, the thermal stability of MDEA is advantageous during industrial MEG 

regeneration where exposure to high temperature (120-140°C)[1] is required allowing multiple 

regeneration cycles before thermal degradation occurs [277, 278]. 

Vacuum reclamation is often performed to prevent the accumulation of salts within the 

MEG regeneration loop [2, 9, 32]. The vacuum reclamation process entails the vaporisation of MEG 

to remove non-volatile salt compounds. Vacuum reclamation of MEG is typically performed at 

low pressure (≈100 mbar [8, 32, 38]) to minimise the required operational temperature (120-150°C 
[2, 38]). Low temperature vaporisation of MEG is desired to prevent its degradation [8, 9]. However, 

the vacuum reclamation process may inadvertently lead to MDEA losses due its higher boiling 

point in comparison to MEG. Therefore, ensuring the vaporisation of MDEA alongside MEG is 

important aspect of MEG regeneration during pH stabilisation to minimise MDEA losses. 

Alternatively, the removal of MDEA within MEG regeneration systems operating under pH 

stabilisation control is essential following formation water breakthrough [8, 9]. The combined 

presence of MDEA (high pH) and divalent cations including calcium, magnesium and barium 

presents a scaling risk within both transportation lines and equipment operating at high 

temperature (heat exchangers, MEG regeneration system) [9, 218]. MDEA will react in the 

presence of CO2 to form bicarbonate [4, 9, 218] facilitating the formation of scaling products 

including CaCO3. pH stabilisation chemicals such as MDEA must therefore be removed to 

facilitate switch over to more scaling friendly Film Forming Corrosion Inhibitors (FFCIs). The 

removal of MDEA can be achieved via vacuum reclamation systems alongside mineral salts [9].  
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Therefore, knowledge of the vapour-liquid equilibrium (VLE) of MDEA with respect to MEG 

at low pressure is essential for the design of separation equipment. Current literature for MDEA 

VLE data in MEG and water solutions is limited at the low-pressure conditions necessary for MEG 

vacuum reclamation. This work outlines the VLE of MDEA with respect to water and MEG under 

low pressure conditions (40-10 kPa) and (20-5 kPa) respectively. However, the operating 

conditions of reclamation systems for MEG regeneration may ultimately depend on whether 

MDEA removal of retention is desired. 

9.2 Experimental Methodology 

9.2.1 Materials 

MDEA and MEG were purchased from Chem Supply with a mass purity greater than 99.5% 

wt. and were used without further purification. Where water was used, deionised water with a 

resistivity of 18.2 MΩ.cm was utilised. The physical properties of water, MEG and MDEA 

including refractive index of the pure solutions their boiling points and critical properties are 

outlined by Table 9-1 and Table 9-2. 

Table 9-1. Chemicals, suppliers and purity 

Table 9-2. Refractive indices (𝑛𝑛𝐷𝐷), boiling points and critical propertiesa 

aStandard uncertainties are u(𝑛𝑛𝐷𝐷) = 0.0003, u(𝑇𝑇) = 0.1°C and u(P) = 0.1 kPa 

9.2.2 Apparatus and Procedure 

The VLE data of the MEG-MDEA system under vacuum was generated using a Heidolph 

vacuum rotary evaporation system. The system is designed to perform vacuum distillation and 

was modified to permit the generation of VLE data using the flow-scheme shown in Figure 9-1. 

Chemical Supplier CAS No. Purity (mass %) 

Ethylene glycol 
Chem Supply 

107-21-1 >99.5 

Methyldiethanolamine 105-59-9 >99 

Water   18.2 MΩ.cm 

Chemical 

Refractive indices (𝒏𝒏𝑫𝑫) 
at 20°C, 101.325 kPa 

Boiling 
point 
(°C) at 

101.325 
kPa 

Tc/K Pc/MPa Zc 

Literature Measureda 

Water 1.3325 1.3323 100 647.096[302] 22.064[302] 0.23[302] 

MEG 
1.4318 
[303, 304] 

1.4315 197.3[305] 645[131, 306] 8.573[131] 0.262[131] 

MDEA 1.4642[307] 1.4684 247[279] 678[131, 306] 3.88[131] 0.254[131] 
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The system is capable of generating a vacuum down to 20 mbar with an accuracy of ±1 mbar. 

Furthermore, the system is capable of producing a maximum solution temperature within the 

heating flask of 180°C ±0.1°C using an oil heating bath. 

The system was modified from its original design by placing a manually adjustable valve 

between the condenser and condensed liquid storage to continuously return the condensed 

vapour to the flask. Liquid reflux of the condensed vapour was maintained until a constant 

temperature of the liquid and vapour phases was achieved indicating equilibrium. Following 

temperature stabilisation, the valve was opened to allow accumulation of the condensed vapour 

with the storage vessel. Liquid and vapour phase samples were extracted from the system and 

analysed by a combination of ion chromatography and refractive index measurement.  

Ion chromatography was performed using a Dionex ICS-2100 IC System. For comparison 

purposes, the mole fraction of MDEA was also measured via refractive index at 20°C using an 

ATAGO PAL-BX/RI refractometer with an accuracy of ±0.0003. The calibration curve of nD vs 

mole fraction (MDEA) is given by Figure 9-2. The MDEA concentration was calculated using the 

nD of the sample and a polynomial equation fitted to the respective calibration curve. 

Furthermore, nitrogen was continuously introduced into the rotary flask to prevent the thermal 

degradation of MDEA and MEG in the presence of oxygen. Thermal degradation would 

otherwise result in discolouration that would impact refractive index measurement [3, 5, 39] 

 

Figure 9-1. Experimental apparatus (Heidolph Hei-VAP Rotary Evaporator) 
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9.3 Results and Discussion 

The experimental VLE data of the water-MDEA at P = (40, 20, 10) kPa and MEG-MDEA P = 

(20, 10 and 5) kPa binary systems is presented in Table 9-3. To assess the applicability of using 

the modified rotary evaporator for generation of VLE data, the water-MDEA VLE data at 40 kPa 

was compared to literature data reported by Voutsas [308] with good agreement found (Figure 

9-3). Furthermore comparison was also made to the limited water-MDEA VLE data reported by 

Barreau [309] for water-MDEA at 10 kPa with good agreement again found (Figure 9-5). 

Likewise, comparison of the VLE data generated for the MEG-MDEA system was compared to 

the literature data reported by Yang [131] (Figure 9-6). Due to the temperature limitations of 

the rotary evaporator system VLE data up to approximately 175°C was generated for the MEG-

MDEA system at 20 kPa. 
 

The liquid-phase activity coefficients γ for each chemical was calculated from the 

experimental data by Equation (9-1)[310]. Where, 𝑝𝑝𝑖𝑖𝑠𝑠 represents the vapour pressure of the pure 

component, 𝑖𝑖 at equilibrium temperature[131]. As the VLE data was generated at low pressure, 

the behaviour of the vapour phase can be considered ideal and the φ factor considered 

negligible [131, 132]. Estimation of water vapour pressure was performed using the empirical 

correlation proposed by Wagner and Pruß [311] as per Equation (9-2). The correlation provides 

accurate estimation of water vapour pressure over a wide range of temperature (273.15-

633.15K). Conversely, estimation of ethylene glycol vapour pressure was achieved using the 

Antoine coefficients listed Table 9-4 [312]. For MDEA, the vapour pressure was calculated via the 

Clausius−Clapeyron type equations proposed by Voutsas [308] and Xu [313] given by Equations 

(9-3) and (9-4) respectively. The equation used to calculate MDEA vapour pressure was 

dependant on equilibrium temperature with the applicable temperature ranges of Equations  

(9-3) and (9-4) being 413-513K[308] and 323-383K[313] respectively. 

  

Figure 9-2. Refractive index vs. MDEA mole fraction calibration curve at 20°C, 101.325 kPa. 
A) Water-MDEA, B) MEG-MDEA 
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Table 9-3. VLE data and calculated activity coefficients (𝜸𝜸) for Water-MDEA and MEG MDEA 

systemsa 

Water-MDEA  MEG-MDEA 
x2 y2 γ1 γ2 T/K 𝐱𝐱𝟐𝟐 𝐲𝐲𝟐𝟐 𝛄𝛄𝟏𝟏 𝛄𝛄𝟐𝟐 𝐓𝐓/𝐊𝐊 

40 kPa 20 kPa 
0.000 0.000 1.000  349.02 0.000 0.000 1.000  423.01 
0.356 0.0015 0.993 1.101 360.12 0.031 0.004 0.993 0.763 423.56 
0.532 0.0035 0.992 1.042 368.57 0.088 0.013 0.998 0.755 424.81 
0.756 0.013 0.932 0.925 388.95 0.135 0.022 0.986 0.790 426.25 
0.825 0.023 0.950 0.924 398.56 0.283 0.059 0.963 0.814 430.89 
0.880 0.042 0.977 0.939 409.65 0.385 0.102 0.956 0.854 434.25 
0.912 0.065 1.009 0.939 418.65 0.434 0.127 0.939 0.855 436.37 
0.928 0.087 1.006 0.934 425.32 0.491 0.154 0.928 0.882 438.65 
0.939 0.109 1.001 0.930 430.65 0.572 0.210 0.893 0.913 442.60 
0.950 0.142 1.037 0.968 435.92 0.621 0.256 0.872 0.930 445.11 
0.966 0.221 1.034 0.941 447.59 0.676 0.315 0.851 0.992 447.50 
0.980 0.359 1.107 1.000 458.69 1.000 1.000  1.000 467.46 
1.000 1.000  1.000 488.42 10 kPa 

20 kPa 0.000 0.000 1.000  406.01 
0.000 0.000 1.000  333.20 0.041 0.005 0.992 0.620 406.65 
0.075 0.0001 1.016 1.197 334.56 0.078 0.011 0.990 0.687 407.50 
0.224 0.0005 1.010 1.151 338.57 0.110 0.016 0.992 0.727 408.15 
0.295 0.0008 1.006 1.133 340.80 0.204 0.036 0.978 0.842 410.67 
0.446 0.0017 0.931 0.991 348.20 0.366 0.092 0.940 0.980 415.69 
0.613 0.0038 0.914 0.913 357.50 0.460 0.140 0.926 1.002 418.83 
0.675 0.0054 0.893 0.881 362.50 0.610 0.239 0.888 0.986 425.15 
0.785 0.012 0.862 0.824 374.50 0.668 0.300 0.862 1.000 428.03 
0.856 0.022 0.902 0.832 384.56 0.755 0.413 0.808 0.992 433.13 
0.912 0.045 0.955 0.856 397.56 0.832 0.541 0.789 0.988 437.49 
0.955 0.112 1.031 0.922 414.80 1.000 1.000  1.000 448.32 
0.980 0.260 1.184 0.982 432.60 5 kPa 
1.000 1.000  1.000 467.58 0.000 0.000 1.000  390.40 

10 kPa 0.039 0.005 0.984 0.804 391.10 
0.000 0.0000 1.000  318.95 0.118 0.017 0.990 0.860 392.40 
0.188 0.0003 0.972 1.111 323.65 0.201 0.034 0.995 0.873 394.00 
0.276 0.0005 0.948 1.057 326.50 0.276 0.052 0.999 0.911 395.90 
0.436 0.0011 0.954 1.012 331.60 0.363 0.082 0.968 0.918 398.79 
0.565 0.0022 0.864 0.885 339.48 0.453 0.117 0.951 0.915 401.78 
0.659 0.0037 0.798 0.782 346.89 0.598 0.210 0.931 0.928 407.14 
0.766 0.0075 0.772 0.752 356.80 0.682 0.283 0.887 0.953 411.27 
0.826 0.013 0.755 0.725 364.91 0.732 0.345 0.878 0.981 413.51 
0.876 0.022 0.776 0.742 373.21 0.835 0.515 0.860 0.975 419.26 
0.926 0.046 0.825 0.773 385.68 0.925 0.725 0.841 0.997 424.90 
0.965 0.120 1.001 0.924 400.89 1.000 1.000  1.000 430.52 
0.991 0.415 1.213 1.037 425.54 

 
1.000 1.000  1.000 448.42 

aStandard uncertainties are u(𝑇𝑇) = 0.1 K, u(𝑃𝑃) = 0.1 kPa and u(x,y) = 0.005 
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γi =
yiP
xipis

𝜙𝜙𝑖𝑖  (𝑖𝑖 = 1,2) (9-1) 

ln �
PWater

Pc
� =

TC
T

(a1θ + a2θ1.5 + a3θ3 + a4θ3.5 + a5θ4 + a6θ7.5) 

θ = 1 −
T
TC

 
(9-2)[311] 

ln 𝑝𝑝𝑠𝑠 = 26.1369 − �7588.516
𝑇𝑇

�,   𝑝𝑝𝑠𝑠 = 𝑃𝑃𝑃𝑃 (9-3)[308] 

ln 𝑝𝑝𝑠𝑠 = 26.2942 − �7657.86
𝑇𝑇

�,   𝑝𝑝𝑠𝑠 = 𝑃𝑃𝑃𝑃 (9-4)[313] 

Table 9-4. Water vapour pressure and MEG Antoine parameters 

Water 
Equation 

(9-2) 
Parameters 

𝒂𝒂𝟏𝟏 𝒂𝒂𝟐𝟐 𝒂𝒂𝟑𝟑 𝒂𝒂𝟒𝟒 𝒂𝒂𝟓𝟓 𝒂𝒂𝟔𝟔 

-7.8595178 1.84408259 -11.786649 22.6807411 -15.961871 1.80122502 

MEG 
Antoine 

Parameters 

A B C 

8.0908 2088.94 −67.70 

log (pis/mmHg) = A − B/[(T/K) − C] 

9.3.1 Correlation of VLE Data 

Correlation of the experimental VLE data reported was performed using the NRTL, Wilson 

and UNIQUAC models. Regression of the respective binary parameters was performed using the 

objective function outlined by Equation (9-5) [131, 132] where 𝛾𝛾𝑒𝑒𝑥𝑥𝑥𝑥 was calculated through Equation 

(9-1). The models and their respective equations are outlined by Table 9-5 with the utilised 

UNIQUAC parameters reported in Table 9-6. For the NRTL model, the non-randomness 

parameter 𝛼𝛼𝑖𝑖𝑖𝑖 was set to 0.3 [131, 314]. The regressed binary parameters for each model is 

presented in Table 9-7 and Table 9-8 for water-MDEA and MEG-MDEA respectively. The 

comparison of experimental data to calculated values is illustrated by Figures 9-3 to 9-5 for the 

water-MDEA system and Figures 9-6 to 9-8 for the MEG-MDEA system. 

Table 9-5. Activity coefficient models 

 
OF = ��

γexp − γcal
γexp

�
2

 (9-5) 

NRTL 

lnγi = xj �
τjigji2

�xi + xjgji�
2 +

τijgij2

�xj + xigij�
2�  

τij =
gij − gjj

RT
  τji =

gji − gii
RT

 

gij = exp(−αijτij)     gji = exp(−αjiτji)   αij = αji = 0.3 
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Table 9-6 Activity coefficient models continued 

Table 9-6. Molecule volume parameters r, area parameters q and Z parameter for the 
UNIQUAC Model 

Table 9-7. Water-MDEA binary interaction parameters 

Wilson 

lnγi = − ln�xi + Aijxj� + xj �
Aij

xi + xjAij
−

Aji

xj + xiAji
�  

Aij =
Vj
Vi

exp �−
gij − gjj

RT
� 

Vi =
RTci
Pci

Zci
τi     τi = 1 + �1 −

T
Tci
�
2
7

  

UNIQUAC 

lnγi = ln �
ϕi
xi
� + �

Z
2
� qi ln �

θi
ϕi
� + ϕj �li −

ri
rj

lj� − qi ln�θi + θjτji�

+ θjqi �
τji

θi + θjτji
−

τij
θj + θiτij

� 

li = �
Z
2
� (ri − qi) − (ri − 1) 

θi =
xiqi

xiqi + xjqj
     ϕi =

xiri
xiri + xjrj

 

τij = exp �−
gij − gjj

RT
�     τji = exp �−

gji − gii
RT

� 

Chemical r q Z 

Water 0.92[308, 315] 1.40[308, 315] 

10[131, 315] MEG 2.4080[131, 312] 2.248[131, 312] 

MDEA 4.94410[131, 308] 4.268[131, 308] 

System Water-MDEA 
Pressure 40 kPa 20 kPa 10 kPa 

NRTL 

gij − gjj/J. mol−1 84.37 -135.34 98.10 

gji − gii/J. mol−1 -197.94 -119.53 -919.05 

Wilson 

gij − gjj/J. mol−1 4856.33 4880.69 4378.64 

gji − gii/J. mol−1 -4289.02 -4872.10 -4998.23 

UNIQUAC 

gij − gjj/J. mol−1 332.95 169.77 -332.11 

gji − gii/J. mol−1 594.60 527.19 357.00 
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Table 9-8. MEG-MDEA binary interaction parameters 
 

 

9.3.1 Thermodynamic Consistency 

The experimental VLE data was analysed using the semiempirical thermodynamic 

consistency test for isobaric binary VLE data proposed by Herington [316]. For isobaric VLE data, 

experimental data can be considered thermodynamically consistent when (D-J) is less than 10 
[131, 316, 317]. The variables D and J were evaluated using Equations (9-6) and (9-7) respectively 

where the values of “area+” and “area-“ are calculated from the 𝑥𝑥1-ln (𝛾𝛾1/𝛾𝛾2) graph. The 

calculated D and J values for each system are summarised in Table 9-9 confirming 

thermodynamic consistency. 

 
D = �

(area +) − (area −)
(area +) + (area −)� . 100 (9-6) 

 J = 150.
Tmax − Tmin 

Tmin
 (9-7) 

Table 9-9. Herrington thermodynamic consistency test 

System Pressure (kPa) D-J 

Water-MDEA 
40 -31.62 
20 -26.59 
10 -27.91 

MEG-MDEA 
20 -4.01 
10 -4.38 
5 -5.12 

Furthermore, the thermodynamic consistency test proposed by Van Ness [310] was also 

applied by comparing the predictions of the non-random two liquid (NRTL)[314], Wilson[318] and 

Universal Quasichemical (UNIQUAC)[315] models to the experimental data. The model residuals 

were plotted against the liquid-phase composition, 𝑥𝑥1 to determine if the deviations scatter 

uniformly about zero [132].  If the VLE data is thermodynamically consistent, the residual plots 

System MEG-MDEA 

Pressure 20 kPa 10 kPa 5 kPa 

NRTL 
gij − gjj/J. mol−1 -921.85 -566.61 -545.48 

gji − gii/J. mol−1 -338.24 -662.28 -371.01 

Wilson 
gij − gjj/J. mol−1 -783.00 -743.31 -654.29 

gji − gii/J. mol−1 1894.99 1547.58 1757.05 

UNIQUAC 
gij − gjj/J. mol−1 40.15 50.24 40.00 

gji − gii/J. mol−1 72.33 70.65 65.11 
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should show no clear trend else systemic errors may by be present [132]. The residual plots of 𝛿𝛿𝛿𝛿, 

𝛿𝛿𝑦𝑦1 and 𝛿𝛿ln(𝛾𝛾1/𝛾𝛾2) for the MEG-MDEA system is illustrated by Figures 9-9 to 9-11 showing the 

experimental data is thermodynamically consistent. The water-MDEA system showed similar 

consistency. 

Figure 9-3. VLE data for water-MDEA at 40 kPa 

Figure 9-4. VLE data for water-MDEA at 20 kPa 
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Figure 9-5. VLE data for water-MDEA at 10 kPa 

Figure 9-6. VLE data for MEG-MDEA at 20 kPa 
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Figure 9-7. VLE data for MEG-MDEA at 10 kPa 

Figure 9-8. VLE data for MEG-MDEA at 5 kPa 
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Figure 9-9. MEG-MDEA δT residual 

Figure 9-10. MEG-MDEA 𝛿𝛿𝑦𝑦1 residual 
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Figure 9-11. MEG-MDEA δ(𝛾𝛾1/𝛾𝛾2) residual 

9.3.2 Analysis of Model Accuracy 

To assess the accuracy of the regressed binary parameters and corresponding model fit, 

the root-mean-square (RMS) deviations 𝛿𝛿𝛿𝛿, 𝛿𝛿𝑦𝑦1 𝛿𝛿𝛿𝛿𝛿𝛿(𝛾𝛾1/𝛾𝛾2) were calculated  via Equation 

(9-8)[132]. The respective RMS and are presented in Tables 9-10 and 9-11 for the water and MEG 

MDEA systems. Comparative RMS values to the work of Kim [132] and Wang [319] were 

calculated in terms of 𝛿𝛿𝑦𝑦1-𝛿𝛿ln(𝛾𝛾1/𝛾𝛾2) and 𝛿𝛿𝛿𝛿- 𝛿𝛿𝑦𝑦1 respectively. The UNIQUAC model was found on 

average to give a higher RMS value, particularly in terms of 𝛿𝛿𝛿𝛿/𝐾𝐾 suggesting the NRTL and 

Wilson models provide a better fit. The lower accuracy of the UNIQUAC model may be a result 

of the two regressed parameters being insufficient to accurately model the experimental data 
[320].  

To further assess the validity of the model fits, the VLE analysis method suggested by 

Mathias [321] was applied. Figures 9-12 to 9-14 compare the relative volatility calculated via the 

reported experimental MEG-MDEA VLE data and those calculated through the respective 

activity coefficient models. The deviation of the modelled results in comparison to experimental 
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data appears to be greatest at the lower MDEA concentration region as suggested by Mathias 

[321]. This is primarily due to the low concentration of MDEA within the vapour phase (y2 < 

0.01) where the reported measurement uncertainty (u(x,y) = 0.005) can lead to a significant 

change in calculated relative volatility.  

The percentage error in modelled MDEA K-values with respect to the experimental data is 

illustrated by Figure 9-15 where good agreement between experimental and NRTL and Wilson 

models was found. The absolute error for the NRTL and Wilson models was typically below 2%. 

Similar agreement was also found for the reported water-MDEA experimental data within the 

higher vapour-MDEA concentration regions (x2 > 0.4) (Figure 9-16). However, the effect of the 

measurement uncertainty was found to be more pronounced for the water-MDEA system at low 

vapour MDEA concentrations. Although a significant fraction of MDEA was present within the 

liquid phase only minimal amounts were present within the vapour due to the extremely high 

relative volatility of water to MDEA. The resulting low concentration of MDEA, coupled with the 

relatively high measurement uncertainty at such low concentrations lead to the large error in 

calculated K-values. 

Table 9-10. Water-MDEA RMS error for model fitting 

System Water-MDEA 

Pressure 40 kPa 20 kPa 10 kPa 

NRTL 

RMS 𝛿𝛿𝛿𝛿/𝐾𝐾 0.829 0.810 0.990 

RMS 𝛿𝛿𝑦𝑦1 0.024 0.021 0.036 

RMS 𝛿𝛿ln (𝛾𝛾1/𝛾𝛾2) 0.155 0.160 0.259 

Wilson 

RMS 𝛿𝛿𝛿𝛿/𝐾𝐾 0.719 0.812 0.899 

RMS 𝛿𝛿𝑦𝑦1 0.037 0.029 0.036 

RMS 𝛿𝛿ln (𝛾𝛾1/𝛾𝛾2) 0.190 0.170 0.259 

UNIQUAC 

RMS 𝛿𝛿𝛿𝛿/𝐾𝐾 1.298 1.301 1.354 

RMS 𝛿𝛿𝑦𝑦1 0.053 0.050 0.064 

RMS 𝛿𝛿ln (𝛾𝛾1/𝛾𝛾2) 0.251 0.260 0.373 



CHAPTER NINE:   Experimental VLE Data for Binary MEG-MDEA and Water-MDEA Systems 

155 

Table 9-11. MDEA-MDEA RMS error for model fitting 

System MEG-MDEA 

Pressure 40 kPa 20 kPa 10 kPa 

NRTL 

RMS 𝛿𝛿𝛿𝛿/𝐾𝐾 0.178 0.272 0.265 

RMS 𝛿𝛿𝑦𝑦1 0.003 0.006 0.006 

RMS 𝛿𝛿ln(𝛾𝛾1/𝛾𝛾2) 0.034 0.069 0.045 

Wilson 

RMS 𝛿𝛿𝛿𝛿/𝐾𝐾 0.203 0.338 0.336 

RMS 𝛿𝛿𝑦𝑦1 0.006 0.004 0.007 

RMS 𝛿𝛿ln(𝛾𝛾1/𝛾𝛾2) 0.054 0.046 0.056 

UNIQUAC 

RMS 𝛿𝛿𝛿𝛿/𝐾𝐾 0.345 0.478 0.463 

RMS 𝛿𝛿𝑦𝑦1 0.017 0.016 0.014 

RMS 𝛿𝛿ln(𝛾𝛾1/𝛾𝛾2) 0.072 0.111 0.109 

Figure 9-12. Comparison of experimental to modelled relative volatility for MEG-MDEA at 20 
kPa 
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Figure 9-13. Comparison of experimental to modelled relative volatility for MEG-MDEA at 10 
kPa 

Figure 9-14. Comparison of experimental to modelled relative volatility for MEG-MDEA at 5 
kPa 
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Figure 9-15. Percentage error in model K-values in comparison to experimental data for MEG-
MDEA 

Figure 9-16. Percentage error in model K-values in comparison to experimental data for Water-
MDEA 
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9.4 Conclusion 

VLE for the water-MDEA and MEG-MDEA binary systems has been generated 

experimentally under low pressure conditions (40-5) kPa. Activity coefficients and binary 

interaction parameters for the binary systems were subsequently fit to the NRTL, Wilson and 

UNIQUAC models. The experimental data was analysed using the Herington [316] and Van Ness 

[310] thermodynamic consistency tests and found to be consistent. Comparison was also made 

to the limited MDEA VLE data reported by Voutsas [308], Yang [131] and Barreau [309] with 

good agreement found. The VLE data generated within this study is applicable for low pressure 

separation of MDEA from water and MEG solutions such as vacuum reclamation during 

industrial MEG regeneration. 
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10.0 CONCLUSION: SUMMARY, RELEVANCE OF WORK TO INDUSTRY AND 
RECOMMENDATIONS FOR FUTURE WORKS 

The use of MEG injection to prevent the formation of gas hydrates is an important aspect 

of continued flow assurance for many recent and future natural gas developments. As such, 

improved understanding of chemical and physical behaviour within MEG systems, improved 

corrosion inhibition strategies and solutions to issues arising during MEG regeneration can have 

significant implications on industrial MEG usage. The primary objectives of this research were to 

identify, through consultation with industry, various operational issues and uncertainties faced 

within major MEG regeneration systems including the largest MEG regeneration system 

operating in Western Australia. Through this, several areas were identified including; the 

optimisation of process chemistry, optimisation of separation processes, optimisation of 

production chemical performance and the identification of potentially undesirable process 

conditions (corrosion risks). In light of these objectives, several studies were conducted looking 

at various aspects of the MEG regeneration process and associated corrosion inhibition 

strategies including: 

• Optimisation of process contaminant removal including organic acids and MDEA post 

formation water breakthrough 

• Evaluating the potential switchover from MDEA to FFCIs to provide continued 

corrosion inhibition post formation water breakthrough 

• Potential corrosion risks arising from MDEA during potential MDEA to FFCI switchover 

• Diagnosing of routine settlement problems within industrial rich glycol settlement 

systems 

• Determination of chemical and physical data relating to the MEG regeneration process 

to supplement the aforementioned research.  

• Effect of organic acids on production chemical performance including sulphite-based 

oxygen scavengers 

The proceeding chapter outlines the general conclusions and recommendations derived 

from the individual chapters of this study, overall relevance of the conducted work to industry 

and recommendations for potential future work. 



CHAPTER TEN:                                                                                                   Summary and Conclusion  

160 

10.1 Optimisation of Organic Acid Removal to Prevent Long-Term 
Accumulation 

The level of organic acids within closed-loop MEG systems is often controlled via vacuum 

reclamation systems through the formation of non-volatile organic salt products allowing their 

separation from the evaporated MEG/water phase. However, if a reclamation system is 

unavailable, or operated at low pH, organic acids will ultimately accumulate within the MEG 

loop. The accumulation of organic acids within a MEG loop can have several detrimental impacts 

including aggravated CO2 corrosion rates [69-72], Top-of-the-Line-Corrosion (TLC) [17, 63, 72-76], loss 

of production chemical efficacy and deposition of organic salts. As such, continued control of 

organic acid levels within MEG loops is critical for continued long-term operation. 

The presented research studies the removal of organic acids (acetic) under a wide range of 

pH and salinity conditions during the MEG regeneration and reclamation processes. Based on 

the experimental results generated, the removal efficiency of acetic acid over an entire 

regeneration cycle has been modelled in conjunction with estimated pH rises across the 

distillation system as a function of dissolved CO2 content and initial pH. Through the developed 

model, the plant wide acetic acid removal efficiency can be predicted to identify current removal 

levels, or if required, what conditions are necessary to prevent accumulation and subsequent 

production issues. The work further illustrates the large impact insufficient reclamation slip-

streams rate have on the ability to prevent organic acid accumulation. Where the slip-stream 

rate is low or a low pH maintained during reclamation (such as during MDEA to FFCI transition), 

the majority of organic acid removal is generated through the regeneration column through the 

produced water product. Under such circumstances it may be advantageous to operate with a 

low pH within the regeneration column to ensure sufficient removal of organic acids occur and 

accumulation avoided. 

10.2 Corrosion Inhibition Switchover from MDEA to FFCI 

The transition from pH stabilisation using MDEA to FFCIs may provide an attractive method 

to extend the life span of high CO2 containing natural gas fields producing formation water 

where the risk of scaling cannot be otherwise controlled by production reallocation or scale 

inhibitor injection. Although the switchover from pH stabilisation using hydroxides to FFCIs has 

been performed previously, a similar scenario using MDEA as the pH stabiliser is unique. In such 

systems, due to the chemistry of MDEA and the significantly greater dosage rate required during 

pH stabilisation, its complete removal from the MEG loop is considerably more difficult. 

Furthermore, when formation water is produced, increased concentrations of organic acids 

including acetic can be expected within MEG regeneration systems and can impose a corrosion 
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risk together with carbon dioxide [69-72]. Due to the opposing pH conditions required to remove 

both MDEA and organic acids during vacuum reclamation, the removal of MDEA during the 

switchover to FFCI will ultimately lead to organic acid accumulation with the closed loop MEG 

system. The removal of organic acids through the distillation system as discussed previously may 

be the only viable option to prevent organic acid accumulation during the MDEA to FFCI 

transition process. 

 As such, a case study was performed to evaluate the potential simultaneous removal of 

organic acids and MDEA/alkalinity during the switch over from pH stabilisation to FFCIs. It was 

found that by target a pH of 6 within the rich glycol feed to the MRU, sufficient boil-off of organic 

acids could be achieved during distillation to prevent accumulation within the MEG regeneration 

loop and subsequent corrosion issues. Simultaneously, removal of MDEA and reduction of lean 

glycol alkalinity was achieved through the reclamation system to facilitate FFCI switchover more 

rapidly than a comparative industrial operational methodology. Under the proposed method, 

the target alkalinity to reduce the risk of down-stream scaling was reached within 5-6 

regeneration cycles compared to 12 of the comparative industrial operational methodology. 

However, due to the vacuum reclamation slip-stream rate utilised (11% - based off an industrial 

MEG system), complete removal of MDEA from the loop required 10-11 MEG regeneration 

cycles (compared to 25-30 cycles under the industry method). Ultimately, the prolonged 

presence of MDEA within the MEG loop represents a significant operational expense due to 

increased acid/base dosages required to perform pH adjustments and increased regeneration 

requirements. Therefore, performing a MDEA to FFCI switchover post formation water 

breakthrough whilst possible, may be problematic and costly if an insufficient reclamation slip-

stream rate is utilised and unable to be increased due to system operational and design 

constraints. 

10.3 Potential Corrosion Issues arising from MDEA and MDEA-to-FFCI 
Switchover 

Although the transition from MDEA to FFCI may provide an innovative method to extend 

the life span of a formation water producing well, the potential effect of such dramatic changes 

in system chemistry must be evaluated. In particular, while MDEA is utilised to prevent corrosion 

in the primary wet gas pipeline through pH control, its presence within the MEG regeneration 

system coupled with changes in system chemistry may inadvertently pose a significant corrosion 

risk to systems manufactured from carbon steel. Due to the effect of temperature on the 

dissociation constant of MDEA, any increase in temperature will favour its undissociated form 

leading to the release of hydrogen ions as the acid-base equilibrium of MDEA shifts. The 
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subsequent release of hydrogen ions will therefore facilitate corrosion through the cathodic 

reduction of hydrogen ions at metal surfaces. Systems manufactured from carbon steel 

operating at high temperatures within the regeneration column including the reboiler shell, 

heating bundles and process piping are most at risk of this form of corrosion.  

The evaluation of carbon steel corrosion in the presence of 80% wt. lean MEG containing 

500mM MDEA under regeneration conditions including 140°C and 180°C (a potential reboiler 

skin temperature) found significant risk of corrosion with corrosion rates in excess of 1 mm/year 

measured. Under the conditions recommended for transition between MDEA to FFCIs (pH25°C = 

7, within the reboiler) a corrosion rate of 1.96 mm/year was observed. Ultimately, if low to 

moderate pH levels are maintained within the regeneration column to facilitate corrosion 

inhibition switchover, the high temperature conditions will generate extensive corrosion of 

carbon steel components if MDEA/MDEAH+ is present. Furthermore, several FFCIs potentially 

applied in natural gas systems were found to provide insufficient corrosion protection under the 

high temperature test conditions. As such, if a corrosion inhibition switchover from MDEA to 

FFCIs is to be performed, proper selection of corrosion resistant materials such as stainless steels 

for the reboiler system is essential.  

10.4 Diagnosing Routine Settlement Problems in MEG Regeneration Systems 

Through consultation with major liquid natural gas producer, the poor settlement of quartz 

and iron carbonate particles was identified as a major issue affecting the performance of a MEG 

regeneration system resulting in excessive blockage and replacement of in-line filters. A study 

was therefore undertaken to diagnose the routine settling problems faced within the third-party 

oil and gas companies’ rich MEG settlement system. Two primary issues were identified 

including; a) low particle size (<53 µm) resulting in poor settlement within high viscosity MEG 

solution and b) exposure to hydrocarbon condensate constituents causing modification of 

particle surface properties through oil-wetting of the particle surface. Analysis of oil-wetted 

quartz and iron carbonate settlement behaviour found a greater tendency to remain suspended 

in the solution and be removed in the rich MEG effluent stream or to strongly float and 

accumulate at the liquid-vapour interface in comparison to naturally water-wetted particles. 

Carboxylics and long-chain fatty acids were suspected to be the primary cause of particles 

becoming oil-wetted after exposure to the condensate phase of the primary pipeline. 

Furthermore, if surfactant-based film forming corrosion inhibitors are injected into the pipeline 

to provide corrosion control, their effect on the chemical properties of solid surfaces may also 

provide another avenue in which solid particles are rendered oil-wetted. Overall, the exposure 
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of solid particles, namely iron carbonate and quartz to the condensate phase and/or FFCIs within 

the primary natural gas pipeline may result in poor settlement of suspended particles with 

downstream MEG regeneration systems, leading to increase filtration requirements.  The effect 

of oil-wetting on particle settlement was successfully managed through application of a cationic 

surfactants, including cetrimonium bromide (CTAB), to transition the initially oil-wetted surface 

to water-wetted. Cationic surfactants were found to be most suitable due to the negative 

surface charge of mineral particles at pH levels typical of MEG regeneration system pre-

treatment systems (pH > 8). 

10.5 Generation of Chemical and Physical Data Relevant to Industrial MEG 
System Operation and Design 

Due to the recent adoption of MEG for natural gas hydrate inhibition coupled with limited 

academic research into MEG systems, there is limited literature data available regarding 

chemical and physical data in MEG systems. In particular, MEG as a solvent can have significant 

impact on the speciation behaviour of weak acids and bases of which ultimately influences pH 

driven separation processes (i.e. reclamation for organic acid and/or MDEA removal). To 

generate a better understanding of how various factors in MEG systems influence the speciation 

behaviour of common organic acids and MDEA, their respective dissociation constants have 

been measured at varying MEG concentrations, temperatures and salinities. Within industrial 

MEG systems, these factors are highly variable and as such, models have been proposed to 

calculate the acid dissociation constant of acetic acid and MDEA from 0-100% wt. MEG, 25-80°C 

and 0-0.5 M ionic strength. Furthermore, the thermodynamic properties of the dissociation 

process including Gibbs free energy (∆G° kJ. mol−1) standard enthalpy (∆H° kJ. mol−1) and 

entropy (∆S° kJ. mol−1. K−1 ) were calculated at 25°C using the van’t Hoff Equation. The 

experimental dissociation data generated as part of this study can help better model and 

estimate the removal of both organic acids and MDEA during distillation (organic acids) and 

vacuum reclamation. 

Likewise, experimental data was generated to study the vapour-liquid equilibrium 

behaviour of MDEA within MEG and water solutions under vacuum conditions to simulate its 

behaviour during MEG reclamation. Isobaric vapour-liquid equilibrium data for the binary MEG-

MDEA system was measured at (20, 10 and 5) kPa and water-MDEA system at (40, 20, 10) kPa. 

The generated experimental VLE data was subsequently correlated to the UNIQUAC, NRTL and 

Wilson activity coefficient models and the respective binary parameters regressed. The 

measurement of VLE data under such conditions for MDEA-MEG and MDEA-water systems can 
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help improve the development of process simulation models for the design of industrial MEG 

reclamation units where MDEA is present. 

10.6 Optimisation of Sulphite Based Oxygen Scavenger Performance in MEG 
Systems 

The presence of dissolved oxygen within regenerated lean MEG poses a significant 

corrosion risk to subsea MEG injection systems with those manufactured from corrosion 

resistant alloys also susceptible. To reduce the risk of oxygen-based corrosion, the injection of 

oxygen scavengers into the produced lean MEG may be required if sufficiently pure nitrogen is 

unavailable or too costly to implement such as on offshore platforms where space is limited. 

Sulphite based oxygen scavengers represent one of the most widely used chemical based oxygen 

removal methods in both water systems and more recently MEG injection systems. However, 

the wide range of process conditions, contaminates present within MEG regeneration systems 

and the inhibitory effect of MEG itself has meant that the application of sulphite in MEG systems 

has been troublesome.   

As such, to generate a better understanding of sulphite-based oxygen scavenger behaviour 

within MEG systems, a commercially available metabisulphite scavenger was evaluated under a 

wide range of pH, salt and organic acid levels. The ultimate goal of the research was to develop 

a defined operating pH range for known organic acid and salt concentrations (NaCl) for direct 

application for field use. The presence of organic acid conjugate bases including acetate were 

found to be the primary factor reducing the performance of the sulphite oxygen scavenging 

mechanism at pHs between 7-10 with a pH greater than 10.5 required to achieve good oxygen 

removal. In contrast, the presence of sodium and chloride ions had only a minor impact on 

oxygen removal performance of sulphite with strong removal achieved up to 50 g/L NaCl at a 

lean glycol pH of 11. Based on the experimental results presented, a simple guide for field-

operators has been proposed detailing the operating pHs required to achieve below 20 ppb 

oxygen content within four hours based on known organic acid concentrations and salinities. 

10.7 Relevance of Work to Industry 

Several of the combined studies within this thesis provide a better understanding of MDEA 

as pH stabiliser and its chemical and physical behaviour within MEG systems. This work has 

significant implications for industrial MEG regeneration and natural gas systems utilising MDEA 

as pH stabiliser including those operating with high CO2 partial pressures where traditional salt-

based pH stabilisers would be otherwise unsuitable. Improved knowledge of MDEAs behaviour 

within MEG, potential methods to transition to FFCIs, and the identification of potentially 
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corrosive conditions associated with the use of MDEA, ultimately increases its viability in pH 

stabilisation applications for industry use for corrosion control. Furthermore, improved 

understanding of organic acid behaviour within MEG systems and recommendations to improve 

organic acid removal may help to reduce the risk of corrosion associated with long-term organic 

acid accumulation. All of these studies and the recommendations and conclusions drawn from 

them, can help industry operators of MEG systems reduce long-term corrosion risks as well as 

operational costs associated with corrosion inhibition and the operation of MEG systems. 

Finally, the two studies conducted based off of current issues faced within an industrial 

MEG system have direct implications to all MEG systems due to the common nature of the 

problems and wide spread use of the impacted production chemicals. Sulphite based oxygen 

scavengers are widely used in industry including MEG systems for oxygen removal and were 

found to, in the presented work, to be detrimentally impacted by their interaction with organic 

acids. As such, their application to MEG systems where organic acids are widely experienced, is 

problematic with several operational recommendations that can be directly implemented in 

industry made to alleviate potential poor performance and minimise associated corrosion risks. 

Conversely, the settlement behaviour of solid particles entering into a regeneration system was 

found to be drastically impacted by their exposure to condensate constituents. Said exposure 

ultimately lead to poor settlement and excessive down-stream filtration requirements, of which 

could however, be successfully alleviated by cationic surfactants through modification of particle 

surface properties. Improved solid behaviour in MEG systems, and recommendations to 

improve settlement behaviour through chemical application can help significantly reduce filter 

change out requirements, reducing operational costs and system downtime.  

10.8 Recommendations for Future Work 

With several long-term natural gas production systems in Australia utilising MEG for 

hydrate inhibition and with numerous new developments planned, continued research into 

MEG optimisation and various problems experienced in the field is important. For natural gas 

systems utilising MDEA for pH stabilisation, further research into optimising the switchover 

process to FFCIs post formation water breakthrough can significantly improve the viability of the 

process. Some examples of potential MDEA research in MEG systems include: 

• MDEA behaviour during MEG regeneration 

- Further study upon the effect of MDEA on corrosion in MEG regeneration 

systems 

- Potential degradation under high temperature regeneration conditions 
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• Optimisation of MDEA removal from closed loop MEG systems 

- Optimisation of pH conditions for MDEA removal during reclamation 

- Identification of potential effects of MDEA removal conditions on system wide 

chemistry (i.e. reduced organic acid removal).  

Furthermore, continued development of experimental data relating to the chemical and 

physical behaviour in MEG systems can aid in the design and operation of future MEG 

regeneration systems. Several examples include: 

• Effects of long-term degradation of MEG over multiple regeneration cycles on hydrate 

inhibition performance 

• Measurement of weak acid/base dissociation data at higher temperatures to better 

model high temperature separation processes 

• Low pressure VLE data in tertiary MEG/water/MDEA solutions and VLE data with 

dissolved salts to better model reclamation of MDEA containing MEG solutions 

• Experimental measurement of salt solubility limits in MEG solutions to better model salt 

removal during reclamation including: 

- Organic acid salts 

- MDEA tertiary amine salts 
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Appendix A: MEG Regeneration Flow-Scheme Utilising Pre-Treatment and Slip-Stream Reclamation 
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Appendix B: Curtin Corrosion Centre’s MEG Regeneration Pilot Plant 
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Appendix C: Supplementary Particle Wettability Results – Chapter Seven 

Quartz (10-32µm) FeCO3 (10-32µm)  

 

Figure C-1. Behaviour of oil-wetted solid particles at MEG-air interface 

   

T = 0 T = 20 seconds T = 2 minutes 

Figure C-2. Oil-wetted quartz particle attraction at MEG-air interface 
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Figure C-3. Behaviour of solid particles at MEG-condensate interface 
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T = 10 seconds T = 30 seconds 

Figure C-4. Settlement of water/MEG-wetted FeCO₃ (>63 µm) in 50% wt. MEG solution 

32-63 μm Water/MEG Wetted Quartz 32-63 μm Oil-Wetted Quartz 

  

T = 0 seconds 
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T = 10 seconds 

T = 30 seconds T = 60 seconds 

Figure C-5. Comparison of water/MEG-wetted and oil-wetted quartz (>63 µm) in 50% wt. MEG 
solution 
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Table C-1. Industrial rich MEG solution compositions. 

Component (ppmw) System 1 System 2 

Na  994 4679 
K  13 106 

Ca  4 70 
Mg  1.2 9 
Fe  0.12 0.31 
Sr  0.34 10 
Ba  2.4 19 
Li  0.26 2.5 
Cl  1532 7216 

HCO3  440 828 
SO4  4 6.2 

Acetic acid  721 500 
Propanoic acid  63 55 
Butanoic acid  15 4.6 

Pentanoic acid  22 2.3 
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Appendix D: Supplementary Acid Dissociation Experimental Data – Chapter 
Eight 

Table D-1. Effect of MEG concentration, temperature and ionic strength on acetic acid pKₐa 

MEG 
Concentration 

(wt. %) 

Temperature 
(°C) 

Ionic 
Strength 
(mol/L) 

pKₐ 
MEG 

Concentration 
(wt. %) 

Temperature 
(°C) 

Ionic 
Strength 
(mol/L) 

pKₐ 

30 25 0.000 4.961 30 60 0 5.010 
30 25 0.011 4.960 30 60 0.011 5.008 
30 25 0.023 4.959 30 60 0.023 5.005 
30 25 0.046 4.956 30 60 0.046 5.002 
30 25 0.092 4.952 30 60 0.092 4.999 
30 25 0.229 4.943 30 60 0.229 4.992 
30 25 0.459 4.930 30 60 0.459 4.972 
30 40 0 4.970 30 70 0 5.038 
30 40 0.011 4.968 30 70 0.011 5.035 
30 40 0.023 4.966 30 70 0.023 5.035 
30 40 0.046 4.964 30 70 0.046 5.030 
30 40 0.092 4.961 30 70 0.092 5.026 
30 40 0.229 4.949 30 70 0.229 5.013 
30 40 0.459 4.929 30 70 0.459 5.001 
30 50 0 4.986 30 80 0 5.081 
30 50 0.011 4.984 30 80 0.011 5.076 
30 50 0.023 4.981 30 80 0.023 5.078 
30 50 0.046 4.979 30 80 0.046 5.076 
30 50 0.092 4.967 30 80 0.092 5.072 
30 50 0.229 4.964 30 80 0.229 5.060 
30 50 0.459 4.952 30 80 0.459 5.039 
50 25 0.000 5.220 50 60 0 5.271 
50 25 0.011 5.219 50 60 0.011 5.269 
50 25 0.023 5.218 50 60 0.023 5.268 
50 25 0.046 5.216 50 60 0.046 5.266 
50 25 0.092 5.212 50 60 0.092 5.263 
50 25 0.229 5.202 50 60 0.229 5.251 
50 25 0.459 5.189 50 60 0.459 5.236 
50 40 0 5.240 50 70 0 5.300 
50 40 0.011 5.238 50 70 0.011 5.299 
50 40 0.023 5.236 50 70 0.023 5.295 
50 40 0.046 5.231 50 70 0.046 5.291 
50 40 0.092 5.231 50 70 0.092 5.291 
50 40 0.229 5.220 50 70 0.229 5.282 
50 40 0.459 5.205 50 70 0.459 5.269 
50 50 0 5.251 50 80 0 5.347 
50 50 0.011 5.247 50 80 0.011 5.345 
50 50 0.023 5.248 50 80 0.023 5.344 
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50 50 0.046 5.245 50 80 0.046 5.342 
50 50 0.092 5.244 50 80 0.092 5.339 
50 50 0.229 5.230 50 80 0.229 5.327 
50 50 0.459 5.215 50 80 0.459 5.314 
80 25 0.000 5.928 80 60 0 5.986 
80 25 0.011 5.927 80 60 0.011 5.985 
80 25 0.023 5.926 80 60 0.023 5.984 
80 25 0.046 5.924 80 60 0.046 5.981 
80 25 0.092 5.920 80 60 0.092 5.977 
80 25 0.229 5.910 80 60 0.229 5.968 
80 25 0.459 5.896 80 60 0.459 5.941 
80 40 0 5.940 80 70 0 6.020 
80 40 0.011 5.938 80 70 0.011 6.018 
80 40 0.023 5.937 80 70 0.023 6.018 
80 40 0.046 5.935 80 70 0.046 6.015 
80 40 0.092 5.931 80 70 0.092 6.011 
80 40 0.229 5.922 80 70 0.229 5.998 
80 40 0.459 5.906 80 70 0.459 5.993 
80 50 0 5.958 80 80 0 6.073 
80 50 0.011 5.955 80 80 0.011 6.068 
80 50 0.023 5.956 80 80 0.023 6.070 
80 50 0.046 5.953 80 80 0.046 6.067 
80 50 0.092 5.940 80 80 0.092 6.063 
80 50 0.229 5.940 80 80 0.229 6.053 
80 50 0.459 5.926 80 80 0.459 6.032 

aStandard uncertainties: u(T) = 0.01°C, u(𝑀𝑀𝑀𝑀𝑀𝑀 %) = 0.2, u(pKₐ) = 0.04, u(Ionic Strength) = 0.001 
mol/L 

Table D-2. Effect of MEG concentration, temperature and ionic strength on MDEA pKₐa 

MEG 
Concentration 

(wt. %) 

Temperature 
(°C) 

Ionic 
Strength 
(mol/L) 

pKₐ 
MEG 

Concentration 
(wt. %) 

Temperature 
(°C) 

Ionic 
Strength 
(mol/L) 

pKₐ 

30 25 0.000 8.532 30 60 0 7.871 
30 25 0.011 8.535 30 60 0.011 7.875 
30 25 0.023 8.539 30 60 0.023 7.877 
30 25 0.046 8.548 30 60 0.046 7.885 
30 25 0.092 8.563 30 60 0.092 7.898 
30 25 0.229 8.602 30 60 0.229 7.941 
30 25 0.459 8.677 30 60 0.459 8.016 
30 40 0 8.221 30 70 0 7.691 
30 40 0.011 8.231 30 70 0.011 7.697 
30 40 0.023 8.237 30 70 0.023 7.701 
30 40 0.046 8.242 30 70 0.046 7.708 
30 40 0.092 8.290 30 70 0.092 7.720 
30 40 0.229 8.375 30 70 0.229 7.760 
30 40 0.459 8.396 30 70 0.459 7.835 
30 50 0 8.033 30 80 0 7.548 
30 50 0.011 8.039 30 80 0.011 7.540 



Appendix D: Supplementary Acid Dissociation Data 

193 

30 50 0.023 8.047 30 80 0.023 7.548 
30 50 0.046 8.055 30 80 0.046 7.551 
30 50 0.092 8.079 30 80 0.092 7.590 
30 50 0.229 8.146 30 80 0.229 7.642 
30 50 0.459 8.224 30 80 0.459 7.695 
50 25 0.000 8.472 50 60 0 7.822 
50 25 0.011 8.475 50 60 0.011 7.817 
50 25 0.023 8.479 50 60 0.023 7.837 
50 25 0.046 8.488 50 60 0.046 7.829 
50 25 0.092 8.504 50 60 0.092 7.858 
50 25 0.229 8.545 50 60 0.229 7.896 
50 25 0.459 8.620 50 60 0.459 7.940 
50 40 0 8.160 50 70 0 7.630 
50 40 0.011 8.172 50 70 0.011 7.635 
50 40 0.023 8.168 50 70 0.023 7.637 
50 40 0.046 8.184 50 70 0.046 7.645 
50 40 0.092 8.194 50 70 0.092 7.664 
50 40 0.229 8.237 50 70 0.229 7.709 
50 40 0.459 8.317 50 70 0.459 7.775 
50 50 0 7.985 50 80 0 7.475 
50 50 0.011 7.994 50 80 0.011 7.479 
50 50 0.023 7.997 50 80 0.023 7.483 
50 50 0.046 8.010 50 80 0.046 7.492 
50 50 0.092 8.020 50 80 0.092 7.507 
50 50 0.229 8.060 50 80 0.229 7.541 
50 50 0.459 8.174 50 80 0.459 7.656 
80 25 0.000 8.320 80 60 0 7.640 
80 25 0.011 8.324 80 60 0.011 7.645 
80 25 0.023 8.329 80 60 0.023 7.647 
80 25 0.046 8.337 80 60 0.046 7.658 
80 25 0.092 8.352 80 60 0.092 7.679 
80 25 0.229 8.395 80 60 0.229 7.735 
80 25 0.459 8.472 80 60 0.459 7.852 
80 40 0 8.010 80 70 0 7.462 
80 40 0.011 8.017 80 70 0.011 7.475 
80 40 0.023 8.025 80 70 0.023 7.474 
80 40 0.046 8.027 80 70 0.046 7.479 
80 40 0.092 8.052 80 70 0.092 7.498 
80 40 0.229 8.099 80 70 0.229 7.530 
80 40 0.459 8.151 80 70 0.459 7.627 
80 50 0 7.820 80 80 0 7.290 
80 50 0.011 7.826 80 80 0.011 7.295 
80 50 0.023 7.828 80 80 0.023 7.298 
80 50 0.046 7.838 80 80 0.046 7.309 
80 50 0.092 7.858 80 80 0.092 7.329 
80 50 0.229 7.888 80 80 0.229 7.369 
80 50 0.459 7.998 80 80 0.459 7.435 

aStandard uncertainties: u(T) = 0.01°C, u(𝑀𝑀𝑀𝑀𝑀𝑀 %) = 0.2, u(pKₐ) = 0.04, u(Ionic Strength) = 0.001 
mol/L 
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Appendix E: Effect of Organic Acids upon Sulphite Oxygen Scavenger 
Performance within Mono-Ethylene Glycol Injection Systems 

1.0 Introduction 

Mono-Ethylene Glycol (MEG) is commonly injected into natural gas transportation 

pipelines to prevent the formation of gas hydrate blockages during well re-start and well testing 

operations, or in some instances even continuously during gas production [1, 5, 7, 32, 40]. These ‘ice-

like’ blockages form when water molecules surround a gas molecule creating a solid material at 

the low temperatures and high pressures typically encountered in off-shore hydrocarbon 

production flow lines [5, 220, 322]. Under the right conditions, a hydrate blockage can occur rapidly 

in such flow lines and may result in restricted or ceased production. The removal of a hydrate 

plug can take days or weeks which can give rise to significant production losses as well as 

creating major safety risks for the asset. MEG is typically injected at high rates with ratios of 1:1 

with produced water being typical for most operating assets. In fields with high water 

production, this level of injection equates to a significant volumetric flow rate in the production 

system. In one Australian system, where continuous MEG injection is required, the MEG 

injection rates equate to nearly 2500 m3/day during maximum forecasted water production.  

Alongside hydrate inhibition, the prevention of corrosion in natural gas pipelines is of 

critical importance to continued flow assurance. The prevention of CO2 based corrosion, the 

primary form of corrosion in natural gas systems [7, 15, 95, 223], can be achieved via two primary 

methods including pH stabilisation using basic chemicals or application of film forming corrosion 

inhibitors (FFCIs) [2, 4, 7, 9, 116]. However, the presence of even low levels of oxygen dissolved in 

MEG prior to reinjection has also been shown to present a corrosion risk for natural gas systems 

– particularly those manufactured from the Corrosion Resistant Alloys (CRAs) commonly used in 

sub-sea systems [8, 81, 82, 84, 110-113]. 

The presence of dissolved oxygen can directly result in pitting corrosion of metal surfaces 
[8, 84] and may negatively influence the stability and corrosion mitigating properties of passivating 

iron carbonate films formed during corrosion inhibition by pH stabilisation [81, 111]. To minimise 

the risk of corrosion via oxygen, it is common practice to reduce the total dissolved oxygen 

content in the lean MEG to below 20 ppb prior to injection [8, 83, 113, 114]. The oxygen content within 

industrial MEG systems is often minimised via blanketing of storage vessels with nitrogen. 

However, if impure nitrogen is used, which is often the case, the required <20 ppb oxygen 

content will not be achieved by blanketing alone [84]. As such, to ensure adequate oxygen levels 
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nitrogen blanketing is often performed in combination with chemical oxygen scavengers to 

achieve the desired sub 20 ppb oxygen content. 

Through previous studies, the presence of organic acids has been hypothesized to 

negatively influence the performance of sulphite-based oxygen scavengers via interaction with 

the transition metal catalysts typically used in the scavenger formulation [19, 201, 202]. Organic acid 

ions such as acetate may result in the formation of metal complexes reducing the availability of 

the metal ion to catalyse the oxygen removal reaction. Alternative studies indicate that organic 

acid ions such as acetate may inhibit the oxygen scavenging reaction of sulphites through 

scavenging of the radical intermediate products of the sulphite-oxygen chain reaction 

mechanism [323]. Organic acids are commonly present in hydrocarbon reservoirs and will enter 

the closed MEG loop via the condensed water [7-9, 63]. Organic acids common within MEG 

regeneration systems include acetic, propanoic and butanoic acids [7-10, 63, 105, 199, 324] with acetic 

acid composing 50-90% of organic acids [64]. The presence of organic acids may also arise from 

thermal degradation of the MEG [5, 7, 12, 199], or by back-production of well drilling/completion 

fluids following new well start-ups. Another common group of contaminants are mineral salts 

which may enter the MEG stream following formation water breakthrough and/or also from well 

drilling and completion fluids. 

An improved understanding of how common containments including organic acids and 

mineral salt ions impact the oxygen scavenging mechanism of sulphite can help to better define 

the safe operating limits for MEG treated with these chemicals and help minimise the risk of 

oxygen-based corrosion. As such, a comprehensive analysis of how organic acids and salinity 

influences the performance of sulphite-based oxygen scavengers at varying pH levels was 

performed. The objective of this study was to identify a suitable operating pH range for given 

organic acid and salt contents where the sulphite-based oxygen scavenger would be effective in 

minimising the risk of oxygen-based corrosion of subsea systems. 

2.0 Review of Sulphite Based Oxygen Scavengers 

The application of sulphite compounds as oxygen scavengers has seen extensive use in 

water-based applications such as water boilers, seawater injection systems and more recently 

hydrocarbon systems to prevent oxygen-based corrosion. The most common sulphite based 

oxygen scavengers used in a wide range of industries including oilfield and natural gas 

production include sulphite (M2SO3), bisulphite (MHSO3) and metabisulphite (M2S2O5) 

sodium or ammonium salts [325]. The use of sulphite-based oxygen scavengers in water 

applications has a proven track record with extensive prior research conducted to evaluate 

sulphite-oxygen reaction mechanisms and kinetics [19, 119-123]. A comprehensive review of 
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bisulphite-sulphite oxygen scavenger performance has also been performed by Salasi [19] to 

evaluate the effects of various solution parameters including temperature, pH and MEG 

concentration in MEG solutions. 

The ability of sulphite-based oxygen scavengers to provide effective oxygen removal stems 

from the ability of the sulphite ion to directly react with molecular oxygen dissolved within 

solution. The addition of sulphite/(meta)bisulphite sodium salts to water will dissociate 

according to Equations (E-1 to E-3) to form sulphite ions that will subsequently react with 

dissolved oxygen to form sulphate ions. The reaction of sulphite ions with oxygen follows the 

reaction defined by Equation (E-4) with the extent of the sulphite-oxygen reaction being highly 

dependent on the concentration of the free sulphite ion SO3
2− and hence pH [8, 19, 325]. HSO3

− must 

first dissociate to SO3
2− before oxygen removal can take place and will be more likely to occur at 

higher pHs. The speciation distribution of sulphite species as a function of pH has been reported 

by various authors including Salasi [19] and Shen [119] indicating that SO3
2− begins to form at 

pHs greater than 5-6. 

 Na2SO3 + H2O → 2Na+ + SO3
2− (E-1) 

 Na2S2O5 + H2O → 2Na+ + 2HSO3
− (E-2) 

 HSO3
− ↔ SO3

2− + H+ (E-3) 

 2SO3
2− + O2 ↔ 2SO4

2− (E-4) 

Although the reaction of sulphite species with oxygen appears simple, the oxidation of 

sulphite actually occurs in a multi-step process involving multiple free radical reactions. One of 

the earliest proposed free radical reaction pathways for sulphite species with oxygen was 

proposed by Backstrom [326] where the reaction is initiated following the radicalization of 

sulphite ions by a metal catalyst. The multi-step reaction mechanism of sulphite with oxygen 

suggested by is given by Equations (E-5) to (E-10) where ‘M’ is a transition metal. The free radical 

oxidation reaction mechanism of sulphite has been extensively reviewed by various authors 

including Ermakov [327], Connick and Zhang [328], Zhang and Millero [329], Hobson [330] and 

Snavely [331]. 

 Initiation Mn+ + SO3
2− → M(n−1)+ + · SO3

−  (E-5) 

  Propagation · SO3
− + O2 → · SO5

−  (E-6) 

   · SO5
− + SO3

2− → SO5
− + · SO3

−  (E-7) 

  Oxidation SO5
− + SO3

− → 2SO4
2−  (E-8) 
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Termination SO5
− + SO3

− → S2O6
2− + O2 (E-9) 

SO5
− + SO5

− → S2O6
2− + 2O2 (E-10) 

The use of transition metals in combination with sulphite for oxygen removal has been well 

documented for their ability to act as a catalyst [113, 120, 202, 328, 332-336]. The most common transition 

metals used for catalysation of the sulphite-oxygen reaction listed in terms of reducing 

effectiveness include Fe(II), Mn(II), Co(II) and Ni(II) [332]. However, the addition of Fe(II) is often 

undesirable due to its ability to directly react with oxygen to form rust. Likewise, the use of 

cobalt as a catalyst may be undesirable to its potential to act as a carcinogen in humans and 

poor performance compared to the safer alternative of manganese. As per Equation (E-5), the 

first step in sulphite oxygen removal occurs through the reaction of sulphite ions with the 

transition metal catalyst to produce free radical sulphite, alternatively, recent studies including 

that by Grgić and Berčič [334] suggest the first step involves the formation of a metal-sulphite 

complex through Equation (E-11). The metal-sulphite complexes then undergo decomposition 

to form the reduced metal ions and sulphite radicals. 

Mn+ + SO3
2−/HSO3

− ↔ [MSO3](n−2)+/[MHSO3](n−1)+ (E-11) 

The performance of sulphite-based oxygen scavengers has been shown to be inhibited by 

the presence of alcohols such as MEG. Salasi [332] suggested that the inhibitory effect of MEG 

upon the performance of sulphite as an oxygen scavenger stems from alcohols promoting free 

radical sulphites to undergo the termination reactions. They further suggest that the chain 

termination reactions may possibly be prevented by reaction of the free radical sulphite ions 

with transition metals. This is consistent with the findings of Braga [114] who states that the 

presence of alcohols decrease oxygen scavenging rates by directly influencing the controlling 

chain termination process, particularly at the high concentrations required for hydrate 

prevention in MEG systems. The performance of sulphite oxygen scavengers was also evaluated 

by Wang [337] in the presence of ethanol. The findings of this study suggest that ethanol acts as 

an inhibitor by reacting with the free radical · SO3
2−. Through experimental testing it has been 

shown that in comparison to water, to achieve appreciable oxygen removal with alcohols a much 

larger dosage of oxygen scavenger is required [332]. 

3.0 Experimental System and Methodology 

3.1 Experimental Apparatus 

Oxygen scavenger evaluation was conducted utilising four 1-Litre glass test cells fitted with 

a custom-made lid to provide an air tight seal as depicted by Figure E-1. Each testing cell was 

fitted with individual InPro 4800i pH probe and InPro 6850i polarographic dissolved oxygen (DO) 
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sensors supplied by Mettler Toledo. The InPro 6850i DO sensor has an oxygen detection range 

of 6 ppb to saturation within an accuracy of ±1%. The pH and DO sensors were directly 

connected to two M800 Process 4-Channel Mettler Toledo measurement systems to both 

monitor system conditions as well as transmit experimental data to a connected computer for 

recording. 

The oxygen scavenger solution was introduced into the test cell via an injection port fitted 

with a rubber seal to minimise oxygen intrusion using a syringe. To further prevent oxygen 

ingress each test cell was fitted with a retractable nitrogen inlet to provide continuous sparging 

of ultra-high purity nitrogen (>99.999 mol%) into the headspace of the cell. The retractable 

nitrogen inlet also provided the ability to directly sparge the test solution with air or nitrogen as 

required to adjust the starting oxygen content of the solution. An outlet tube connected to a gas 

wash bottle was included to prevent pressure build-up within the cell whilst also preventing flow 

reversal of air back into the cell. 

 
Figure E-1. Experimental apparatus 

3.2 Experimental Methodology 

The experimental matrix outlined in Table E-1 was used to evaluate the effect of organic 

acids (acetic) and salinity on the performance of the sulphite oxygen scavenger. All 

experimentation was conducted within 85% wt. MEG solution (commonly termed ‘Lean MEG’) 

prepared using distilled water (resistivity 18.2 MΩ.cm) and pure MEG supplied by Chem Supply 

at a temperature of 20°C. Prior to testing, the test solution was sparged using nitrogen to achieve 

a starting concentration of 1000 ppb oxygen representing typical industrial oxygen content due 

to impure nitrogen sparging and/or oxygen intrusion [15, 84, 118]. The pH of the solution was then 

adjusted to the desired starting pH using potassium hydroxide.  
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To commence oxygen scavenger evaluation, the oxygen scavenger was injected through 

the rubber injection port using a 25 cm long needle and syringe at the dosage concentration 

recommended by the supplier (500 ppm total oxygen scavenger solution, yielding ≈200 ppm 

metabisulphite ion). Once injected, the pH and oxygen content of the MEG solution was 

monitored using the M800 systems with experimental data recorded to a computer. Sparging of 

ultra-high purity nitrogen into the headspace of the cell was maintained throughout the 

experiment to prevent oxygen ingress from the external atmosphere. Each experiment was 

continued until the oxygen content within the cell reached below 20 ppb or until complete 

stabilisation of oxygen content occurred. For the field of interest to this study, the target oxygen 

concentration was identified as <20 ppb oxygen within a four-hour time frame. 

Table E-1. Experimental matrix 

pH: 9, 10, and 11 
NaCl (g/L) 

0 0.25 1 2 4 6 20 50 

Acetic 
Acid 

(mg/L) 

0       

pH 11 

100       

250       

500       

1000       

pH: 9.5, 10.5 and 12 
NaCl (g/L) 

0 0.25 1 2 4 6 20 50 

Acetic 
Acid 

(mg/L) 

0   

 

 

 

 

 

100     

250     

500     

1000     

4.0 Experimental Results and Discussion 

4.1 Effect of Organic Acids on Sulphite Oxygen Scavenger Performance 

The presence of organic acids within MEG regeneration systems can arise over prolonged 

periods of time due the thermal degradation of recycled MEG during the regeneration process 

and organic acids present in the condensed water phase  [3, 5, 7, 39, 63, 199]. Furthermore, upon the 

breakthrough of formation water, greater concentrations of organic acids including acetic, 

propanoic and butanoic acids may be experienced during MEG regeneration [7-9, 199]. Several 

literature sources state that the catalysis reaction necessary for rapid removal of oxygen by 

sulphite-based oxygen scavengers is inhibited by the presence of organic acids [19, 201, 202]. The 

presence of organic acid ions, including acetate can result in the formation of metal complexes 

directly reducing the availability of the metal ions for the catalysis of the sulphite reaction [202, 
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323]. However, Kotronarou and Sigg [323] also suggest that the presence of acetate can inhibit 

the sulphite-oxygen reaction at high pHs through scavenging of the radical intermediates 

outlined by Equations (8-5 to 8-10.) The work of Al Helal [113] showed no impact of organic acids 

on the performance of an erythorbic acid based oxygen scavenger using manganese as a 

catalyst. This result indicates that there is minimal interaction between manganese and organic 

acids and the reduction in sulphite oxygen scavenger performance most likely occurs through 

termination of the sulphite chain reaction. 

To verify the impact of organic acids upon the sulphite oxygen scavenging mechanism, 

testing was performed using 85% wt. lean MEG with increasing amounts of acetic acid with an 

initial pH of 9 with no mineral salts present. A pH of 9 was selected for testing to ensure sufficient 

neutralization of the acetic acid to acetate had occurred without using an excessive pH that 

would otherwise increase performance drastically. Figure E-2 illustrates the effect of acetic acid, 

the primary organic acid found in MEG systems, upon the performance of the proprietary 

sulphite oxygen scavenger at the 500 ppm dosage. A clear reduction in performance was 

observed with increasing acetic acid concentration suggesting that the acetate has a large 

impact on sulphite oxygen scavenger performance through either undesirable interaction with 

the catalyst or side reactions with intermediate products. Therefore, within lean MEG where 

organic acids are present, reduced performance of sulphite oxygen scavengers as per Figure E-

2 should be expected at this pH level. In contrast, the effects of acetic acid upon oxygen 

scavenger performance at pH 11 are illustrated by Figure E-3 showing essentially no impact up 

to an acetic acid concentration of 10000 ppm at the same oxygen scavenger concentration.  

 
Figure E-2. Effect of acetic acid concentration on sulphite oxygen scavenger performance at pH 9 
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Figure E-3. Effect of acetic acid concentration on sulphite oxygen scavenger performance at pH 
11 

4.2 Effect of Salt Content (NaCl) on Sulphite Oxygen Scavenger Performance 

The ingress of ionic species whether through dosage of process chemicals including salt-
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extended beyond the original design limits, specifically to this study, the salt concentration that 

can be allowed before the oxygen scavenger performance is deteriorated. Prior studies suggest 

that hypochlorite and chlorine may react preferentially with sulphite at high pH (Equation E-12 

and E-13), effectively competing with the desired oxidation reaction and hence reducing oxygen 

scavenger performance [114]. The effect of salt concentration (NaCl) upon the performance of the 

sulphite oxygen scavenger has hence been evaluated to identify potential salt content limits 

before oxygen removal performance is detrimentally reduced. 
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From Figure E-4, it is clear that the initial oxygen removal rate at varying salt concentrations 

at pH 11 does not appear to differ significantly. Instead, the primary reduction in performance 

due to the presence of salts occurs within the low oxygen concentration region (<100-200 ppb 

oxygen) where the presence of salt molecules may impair the ability of the oxygen scavenger to 

physical react with the oxygen. Figures E-5 and E-6 illustrate the variation in oxygen scavenger 

performance within varying salt and organic acid concentration lean MEG solutions. Again from 

Figure E-6, it is highly evident the oxygen removal in the low oxygen region is reduced in 

comparison to solutions with lower salt content. Although a reduction in performance has 

occurred, the oxygen scavenger was found to be capable of reaching the desired 20 ppb oxygen 

content within a reasonable timeframe (<100 minutes) indicating that significantly less frequent 

replacement of MEG (due to presence of dissolved salt) is required as long as a sufficiently high 

pH is maintained in the lean MEG solution prior to oxygen scavenger dosing. However, 

maintaining a lean glycol pH of 11 and above may pose a significant subsea scaling risk in the 

event of sudden formation water onset and should be closely monitored or controlled via 

injection of scale inhibitors.  

 

 

Figure E-4. Performance of sulphite oxygen scavenger at pH 11 within 50 g/L NaCl lean MEG 
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Figure E-5. Effect of salt content (NaCl) on oxygen removal performance at varying acetic acid 
concentration (pH 11) 

Figure E-6. Effect of salt content (NaCl) on oxygen removal performance at varying acetic acid 
concentration (<200 ppb oxygen region) (pH 11) 
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At an initial lean MEG pH of 9-10, the presence of NaCl appeared to have a noticeable 

impact on oxygen scavenger performance, as illustrated by Figure E-7, although, no direct 

reaction of sodium or chloride with the oxygen scavenger or catalyst should occur, a reduction 

in performance was nevertheless observed. It was further observed that with increasing sodium 

chloride concentration the final lean MEG pH produced following oxygen scavenger dosage was 

greater than corresponding low NaCl concentrations at equal acetic acid content (refer to Table 

E-2). At the initial solution pH of 9, the majority of acetic acid is present as acetate, where 

following dosage of the acidic oxygen scavenger a conversion of acetate back to acetic acid 

occurs. The presence of NaCl had essentially resulted in a lower conversion of acetate back to 

acetic acid. The resultant greater concentration of acetate was again found to be the primary 

factor reducing oxygen scavenger performance. 

Table E-2. Effect of NaCl on final lean MEG pH 

Initial pH Acetic Acid (ppm) NaCl (g/L) 
Final pH after OS 

Dosage 

9 

0 

0 5.65 
1 5.76 
2 5.90 
4 6.23 
6 6.37 

100 

0 5.88 
1 5.95 
2 6.02 
4 6.52 
6 6.68 

250 

0 6.10 
1 6.40 
2 6.53 
4 6.95 
6 7.20 

5.0 Identification of Optimal Operating Window for Oxygen Removal at 
Varying Salt and Organic Acid Concentrations 

The development of a defined operating window allows field operators to be certain that 

suitable operating conditions are maintained to ensure sufficient oxygen removal is achieved to 

prevent corrosion. The experimental matrix defined by Table E-1 was used to identify suitable 

initial lean MEG pH conditions for known organic acid and salt concentrations. Figure E-8, 

illustrates the effect of initial pH, acetic acid content and salinity in the form of NaCl on the 

performance of the sulphite oxygen scavenger at initial pHs of 10 to 12. The time taken to reach 

below 20 ppb oxygen concentration was used to quantify the effect of the three parameters. It 

is clear that the performance of sulphite oxygen scavenger suffered greatly when transitioning 
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between a pH of 10.5 to 10, in particular, during cases where 500 ppm and greater acetic acid 

were present. The worst performance of oxygen scavenger at pH 10 was found to occur when 

acetic acid was matched with low salt concentrations. In contrast, at pH 10.5 and greater, the 

presence of acetic acid had minimal impact on oxygen scavenger’s performance.  

 
Figure E-7. Effect of acetic acid and NaCl on oxygen removal rate at pH 9 (0, 1 and 4 g/L NaCl) 

 
Figure E-8. Effect of pH, salinity (NaCl) and acetic acid on oxygen scavenger performance 
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The increase in oxygen scavenger performance at and above a pH of 10.5 can be attributed 

to the presence of excess hydroxide alkalinity. The presence of hydroxide alkalinity effectively 

provides a buffer against the pH change induced by the acidic metabisulphite allowing a greater 

conversion of bisulphite to sulphite and a final pH where greater oxygen removal can be 

achieved. The impact of acetic acid appears to be a function of both total concentrations and 

the relative speciation of the organic acid to its conjugate base. This effect was most pronounced 

in lean MEG solutions between pH 7-9.5 where the acetic acid present was fully dissociated to 

acetate resulting in significant reduction in oxygen scavenger performance. Figure E-9 illustrates 

the speciation of acetic acid – acetate with respect to pH overlapped with final lean MEG pHs 

were reduced oxygen scavenger performance was observed experimentally.  

 
Figure E-9. Speciation of acetic acid in 85% MEG Solution [199] and effect on oxygen scavenger 

performance 
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emphasizing the significant effect of acetate on the performance of the sulphite oxygen 

scavenger.  

6.0 Effect of Sulphite Oxygen Scavenger on Lean MEG pH 

Due to the acidic nature of the bisulphite molecules formed by the dissociation of 

metabisulphite in water, a reduction in solution pH is expected upon injection (Equation (8-3)). 

Figure E-10 illustrates the change in pH caused by the metabisulphite within lean MEG at varying 

initial pHs, acetic acid and NaCl concentrations. The greatest drop in lean MEG pH occurred 

within solutions with low organic acid and salt content at pHs 9-10 due to the low buffer capacity 

of the solution. The resulting pH reduction (𝑝𝑝𝐻𝐻𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 < 7) occurring under such conditions may 

pose an acidic corrosion risk and should be avoided. As the organic acid content increases, a 

greater buffer capacity to oppose the pH change is produced (between pHinitial ≈6-8.5, Figure 

E-9) however this should not be relied upon to ensure a safe final lean MEG pH is maintained.

Lean MEG solutions initially above a pH of 10 had sufficient hydroxide alkalinity to oppose the

pH change induced by the oxygen scavenger at the dosed concentration (500 ppm), resulting in

a final lean glycol pH within the optimal pH range indicated by Figure E-9.

Figure E-10. Effect of oxygen scavenger on lean MEG pH 
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7.0 Conclusion 

Due to the limited prior industrial use of sulphite oxygen scavengers within lean MEG 

solutions, the impact of various contaminants found within closed loop MEG systems are poorly 

understood. The effect of pH and two of the primary contaminants found during continuous 

MEG recycling, mineral salts and salts of organic acids, have hence been investigated to optimise 

oxygen scavenger performance within lean MEG. The experiments performed clearly 

demonstrate that significant reduction in sulphite oxygen scavenger performance can be 

expected within systems containing organic acids at pHs where the conjugate base is formed. 

A significant reduction in oxygen scavenger performance can be expected at lean MEG pHs 

of 10 and below due to the presence of organic acids. It is therefore recommended that the lean 

MEG be maintained at a pH above 10.5 prior to oxygen scavenger dosage to ensure that 

sufficient hydroxide alkalinity is present to ensure a) full transition of bisulphite to sulphite and 

b) to avoid the negative impact of acetate and other organic acid conjugate bases. Table E-3 

summarizes the recommended operating pH ranges based on known organic acid and salinities 

to achieve 20 ppb oxygen content within suitable time frames. Operating conditions highlighted 

in red are inadvisable either due to low final MEG pH posing a corrosion risk or sufficient oxygen 

removal occurring in greater than three hours or not at all. Conditions marked as orange 

successfully reached the target 20 ppb oxygen content, however, unexpected shifts in either 

organic acid or salt content may result in either a detrimental reduction in oxygen scavenger 

performance or an undesirably low final lean MEG pH and should be avoided. It should also be 

noted that operation of lean glycol systems above pH 11 may pose a significant scaling risk upon 

the sudden onset of formation water and should be considered during selection of suitable 

operating pH for oxygen scavenger usage. 
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Table E-3. Operating envelope for use of sulphite oxygen scavenger in lean MEG solutions 

Acetic Acid (mg/L) 
0 100 250 500 1000 

pH 

9 
pH 

(NaCl all) 

pH 

(NaCl all) 

pH 

(NaCl all) 

pH 

(NaCl 0-2g/L) 

pH 

(NaCl 0-
0.25g/L) 

O2

(NaCl 4-6 g/L) 

O2

(NaCl 4-6 g/L) 

9.5 

pH 

(NaCl 0-
0.25g/L) 

O2

(NaCl all) 

O2

(NaCl all) 

O2

(NaCl all) 

O2

(NaCl all) 

10 

pH 

(NaCl 0g/L) 
O2

(NaCl 0-
0.25g/L) 

O2

(NaCl 0-1g/L) 

O2

(NaCl 0-4g/L) O2

(NaCl all) 

pH 

(NaCl 0.25g/L) 

(NaCl 0.25-
6g/L) 

O2

(NaCl 1-6g/L) 

O2

(NaCl 4-6g/L) 

10.5 

11 
Up to 50g/L 

NaCl* 
Up to 50g/L 

NaCl* 
Up to 50g/L 

NaCl* 
Up to 50g/L 

NaCl* 
Up to 50g/L 

NaCl* 

12 

O2: >180 minutes 

pHfinal: <7

O2: 180-120 minutes 

pHfinal: 7-8 
O2: <120 minutes 

*maximum NaCl concentration tested
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