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Abstract

We study how changes in the steady-state real interest rate affect the optimal inflation target in a

New Keynesian DSGE model with trend inflation and a lower bound on the nominal interest rate. In

this setup, a lower steady-state real interest rate increases the probability of hitting the lower bound.

That effect can be counteracted by an increase in the inflation target, but the resulting higher steady-

state inflation has a welfare cost in and of itself. We use an estimated DSGE model to quantify that

trade-off and determine the implied optimal inflation target, conditional on the monetary policy rule in

place before the financial crisis. The relation between the steady-state real interest rate and the optimal

inflation target is downward sloping. While the increase in the optimal inflation rate is in general smaller

than the decline in the steady-state real interest rate, in the currently empirically relevant region the slope

of the relation is found to be close to −1. That slope is robust to allowing for parameter uncertainty.

Under “make-up” strategies such as price level targeting, the required increase in the optimal inflation

target under lower steady-state real interest rate is, however, much smaller.
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1 Introduction

A recent but sizable literature has pointed to a permanent –or, at least very persistent– decline in the

“natural” rate of interest in advanced economies (Holston et al., 2017, Laubach and Williams, 2016). Various

likely sources of that decline have been discussed, including a lower trend growth rate of productivity

(Gordon, 2015), demographic factors (Eggertsson et al., 2017), or an enhanced preference for safe and liquid

assets (Caballero and Farhi, 2015, Del Negro et al., 2017, Summers, 2014).

A lower steady-state real interest rate matters for monetary policy. Given average inflation, a lower

steady-state real rate will cause the nominal interest rate to hit its zero lower bound (ZLB) more frequently,

hampering the ability of monetary policy to stabilize the economy, bringing about more frequent (and

potentially protracted) episodes of recession and below-target inflation. The low interest rate environment

is a key factor behind the Federal Reserve’s current review of its monetary policy framework (see Clarida

2019, Fuhrer et al. 2018).1

In the face of that risk several prominent economists have forcefully argued in favor of raising the

inflation target (see, among others, Ball 2014, Blanchard et al. 2010, and, with qualifications, Williams

2016). Since a lower natural rate of interest is conducive to a higher ZLB incidence, one would expect a

higher inflation target to be desirable as, other things equal, a higher inflation target increases the steady-

state nominal interest rate and reduces the ZLB incidence. But the answer to the practical question of by

how much should the target be increased is not obvious. Indeed, the benefit of providing a better hedge

against hitting the ZLB, which is an infrequent event, comes at a cost of higher steady-state inflation which

induces permanent costs, as recently argued by Bernanke (2016) among others. The answer to this question

thus requires to assess how the tradeoff between the incidence of the ZLB and the welfare cost induced

by steady-state inflation is modified when the natural rate of interest decreases. While the decrease in

the natural rate of interest has been emphasized in the recent literature, such assessment has received

surprisingly little attention.

The present paper contributes to this debate by asking four questions. First, to what extent does a lower

steady-state real interest rate (r?) call for a higher optimal inflation target (π?)? Second, does the source

of decline in r? matter? Third, how does parameter uncertainty affect the (r?, π?) curve? Fourth, to what

extent does the strategy and rules followed by the central bank alter the relation between r? and π?? We

focus on the US economy but the issues we investigate equally apply to other advanced economies –in

particular the euro-area – because the decline in r? appears to be a global phenomenon (see Brand et al.

2019, Del Negro et al. 2018, Rachel and Summers 2019).2

We provide answers to these questions using a structural, empirically estimated, macroeconomic model.

Our main findings can be summarized as follows: (i) The relation between r? and π? is downward sloping,

1Note that the numerical value of the inflation target is not part of that review.
2We provide a comparable analysis for the euro area in a work in progress.
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but not necessarily, in general, one-for-one; (ii) in the vicinity of the pre-crisis values for r?, the slope of the

(r?, π?) locus is close to −1, though slightly below in absolute value ; the relation is largely robust to the

underlying source of variation in r? for a plausible range of r? values; (iii) the slope of the (r?, π?) locus

remains close to −1 when the central bank is uncertain about the parameters of the model characterizing

the economy, including r?; (iv) the slope of the curve is also robust to various alteration of the monetary

policy rule, albeit not to considering rules such as price level targeting, which consist in committing to

making-up for past deviations from the inflation target.

Our results are obtained from extensive simulations of a New Keynesian DSGE model estimated for the

US over a Great Moderation sample.3 The framework features: (i) price stickiness and partial indexation

of prices to trend inflation, (ii) wage stickiness and partial indexation of wages to both inflation and pro-

ductivity, and (iii) a ZLB constraint on the nominal interest rate. The first two features imply the presence

of potentially substantial costs associated with non-zero steady-state inflation. The third feature warrants

a strictly positive inflation rate, in order to mitigate the incidence and adverse effects of the ZLB. To our

knowledge, these three features have not been jointly taken into account in previous analyses of optimal

inflation.

Our analysis focuses on the trade-off between the costs attached to the probability of hitting the ZLB

and the costs induced by a positive steady-state inflation rate for a given monetary policy strategy. In the

baseline, monetary policy follows an inertial interest rate rule estimated using pre-crisis data. Importantly,

the specification of the policy rule allows for interest rates to remain “low for long” after the end of a ZLB

episode.

According to our simulations, the optimal inflation target obtained when the policymaker is assumed

to know the economy’s parameters with certainty (and taken to correspond to the mean of the posterior

distribution) is around 2% (in annual terms). This result is obtained in an environment with a relatively

low 6% probability of hitting the ZLB when the target for the inflation rate is set at the historical mean of

inflation, and given the size of the shocks estimated on our Great Moderation sample. Our simulations

also show that a 100 basis point drop of r? from its estimated 2.5% pre-crisis level will almost double the

probability of hitting the ZLB if the monetary authority keeps its inflation target unchanged. The optimal

reaction of the central bank is to increase the inflation target by 99 basis points. This optimal reaction

mitigates the increase in the probability of hitting the ZLB. We also consider structural shocks with higher

variance, and alternative markups in the goods and labor market . Strikingly, while the level of the locus

can be significantly affected by those changes, overall the slope of the (r?, π?) relation remains close to −1

in the vicinity of the pre-crisis parameter region.

A noticeable feature of our approach is that we perform a full-blown Bayesian estimation of the model.

This allows us not only to assess the uncertainty surrounding π?, but also to derive an optimal inflation

target taking into account the parameter uncertainty facing the policy maker, including uncertainty with

3In a work in progress, we show that very similar results obtain in a model estimated with euro area data
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regard to the determinants of the steady-state real interest rate. When that parameter uncertainty is allowed

for, the optimal inflation target value increases significantly, to 2.40%. The higher optimal target under

parameter uncertainty reflects the fact that the loss function is asymmetric, so that choosing an inflation

target that is lower than the optimal one is more costly than choosing an inflation target that is above. In

spite of the higher level, it remains true that a Bayesian-theoretic optimal inflation target rises by about 90

basis points in response to a downward shift of the distribution in r? by 100 basis points.

Finally, we study how potential changes in the monetary policy rule or strategy affect the (r?, π?) rela-

tion. We consider a number of different cases: (i) defining the inflation target in terms of average realized

inflation as opposed to a parameter in the rule; (ii) a central bank constrained by an effective lower bound

on the policy rate that can be below zero; (iii) a central bank with a lower or higher smoothing parameter in

the interest-rate policy rule; (iv) a central bank with a smoothing component that involves the lagged actual

policy rate instead of the lagged shadow rate; and (v) a central bank targeting the price level rather than

the inflation rate. All these changes have an impact on the level of π? for any given level of r?. Yet, only in

the case of a higher interest rate smoothing and price level targeting do we find a noticeable change in the

slope of the (r?, π?) relation. In these two cases, the relation is much less steep, illustrating the strength of

“make up” strategies to overturn the ZLB, under the assumption of full credibility.

The remainder of the paper is organized as follows. Section 2 describes our baseline model. Section 3

discusses how the model is estimated and simulated, as well as how the welfare-based optimal inflation

target is computed. Section 4 is devoted to the analysis of the (r?, π?) relation under the baseline estimates

as well as for a set of alternative parameters. Section 5 presents and discusses this locus under parame-

ter uncertainty. Section 6 investigates the (r?, π?) under alternative monetary policy rules and strategies.

Finally Section 7 summarizes and concludes.

1.1 Related Literature

To our knowledge no paper has systematically investigated the (r?, π?) relation. Coibion et al. (2012) (and

its follow-up Dordal-i-Carreras et al. (2016)) and Kiley and Roberts (2017) are the papers most closely re-

lated to ours, as they study optimal inflation in quantitative set-ups that account for the ZLB. However, the

analyses in Coibion et al. (2012) assume a constant steady-state natural rate of interest, so a key difference

is our focus on eliciting the relation between the steady-state real interest rate and optimal inflation. Other

differences are (i) we estimate, rather than calibrate, the model, and (ii) we allow for wage rigidity in the

form of infrequent, staggered, wage adjustments. A distinctive feature with respect to Kiley and Roberts

(2017) is that we use a model-consistent, micro-founded loss function to compute optimal inflation.

A series of papers assessed the probability that the US economy hit the ZLB for a given inflation target.

Interestingly, our own assessment of this pre-crisis ZLB incidence falls in the ballpark of available estimates,

e.g., Chung et al. (2012). As we show, when the inflation target is not adjusted, but allowing for post-Great
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Moderation shocks, we also get “post-crisis” probability of hitting the ZLB that are comparable to the ones

obtained in recent related studies such as Chung et al. (2019).

We also emphasize that a change in the monetary policy strategy as an alternative to a higher inflation

target in the face of a lower r? helps better alleviate more frequent zero lower bound episodes as in e.g.

Kiley and Roberts (2017) and Bernanke et al. (2019). As in these studies, our analysis does not explicitly

consider alternative instruments –such as active balance sheet or fiscal policies– that policymakers also

used to mitigate the ZLB constraint. While Chung et al. (2019), Debortoli et al. (2019), Eberly et al. (2019),

Swanson (2018) have documented how such policies helped overcome that constraint, there is so far no

consensus on the extent to which that was the case.

Our paper is also connected to the voluminous literature on monetary policy under uncertainty, al-

though to our knowledge this literature has not investigated the impact of uncertainty on the determina-

tion of the optimal inflation target.4

Other relevant references, albeit ones that put little or no emphasis on the ZLB, are the following. An

early literature focuses on sticky prices and monetary frictions. In such a context, as shown by Khan

et al. (2003) and Schmitt-Grohé and Uribe (2010), the optimal rate of inflation should be slightly negative.

Similarly, a negative optimal inflation would result from an environment with trend productivity growth

and prices and wages both sticky, as shown by Amano et al. (2009). In this kind of environment, moving

from a 2% to a 4% inflation target would be extremely costly, as suggested by Ascari et al. (2018). By

contrast, adding search and matching frictions to the setup, Carlsson and Westermark (2016) show that

optimal inflation can be positive. Bilbiie et al. (2014) find positive optimal inflation can be an outcome in

a sticky-price model with endogenous entry and product variety. Somewhat related, Adam and Weber

(2019) show that, even without any ZLB concern, optimal inflation might be positive in the context of

a model with heterogeneous firms and systematic firm-level productivity trends. Finally, Lepetit (2018)

shows that optimal inflation can be different from zero when profits and utility flows are discounted at

different rates, as is generally the case in overlapping-generation models. In a parameterized example of

the latter he shows the optimal steady-state inflation is significantly above zero.

Our assessment of the (welfare) cost of inflation critically relies on our assumptions of a Calvo mecha-

nism for price and wage setting. Among the recent papers with ZLB, Blanco (2016) studies optimal inflation

in a state-dependent pricing model, i.e. a “menu cost” model. In this setup, optimal inflation is typically

positive, and higher than with time-dependent pricing. Indeed, as in our analysis, positive inflation edges

the economy against detrimental effects of ZLB.5 In addition, as shown by Nakamura et al. (2018), the pres-

ence of state-dependent pricing weakens considerably the positive relationship between inflation and price

dispersion, thus reducing the costs of inflation. Nakamura et al. (2018) further argue that menu costs are a

4Prominent references to this literature are listed in e.g. in Williams (2013).
5By contrast, see Burstein and Hellwig (2008) for a similar exercise under menu costs without ZLB, which leads to negative

optimal inflation rate.
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more plausible mecanism for pricing frictions.6 Two points are however worth making. First, in the range

of values for the inflation target that we consider, the difference between the welfare cost in a Calvo model

and in a menu cost model is less dramatic than with a 10 percent or higher inflation rate, as documented

e.g. by Nakamura et al. (2018). Second, most recent empirical analyses of price-setting show that there

is a mass of small price changes in the data that cannot be rationalized by a menu cost model. To fit the

micro data, much of this recent literature typically introduce a random opportunity of price change, hence

a Calvo component, in the menu cost model (see e.g. Alvarez et al. 2016). In such an augmented menu cost

model, the distinction with the assessment taken from Calvo model is bound to be attenuated.

2 The Model

We use a relatively standard medium-scale New Keynesian model as a framework of reference. Crucially,

the model features elements that generate a cost to inflation: (1) nominal rigidities, in the form of staggered

price and wage setting; (2) less than perfect price (and wage) indexation to past or trend inflation; and (3)

trend productivity growth, to which wages are imperfectly indexed.

As is well known, staggered price setting generates a positive relation between deviations from zero in-

flation and price dispersion (with the resulting inefficient allocation of resources). Also, and ceteris paribus,

price inflation induces (nominal) wage inflation, which in turn triggers inefficient wage dispersion in the

presence of staggered wage setting. Partial indexation also magnifies the costs of non-zero price (or wage)

inflation as compared to a set-up where price and wages mechanically catch up with trend inflation (Ascari

and Sbordone 2014). Finally the lack of a systematic indexation of wages to productivity also induces an

inefficient wage dispersion.

At the same time, there are benefits associated to a positive inflation rate, as interest rates are subject to

a ZLB constraint. In particular, and given the steady-state real interest rate, the incidence of binding ZLB

episodes and the associated macroeconomic volatiity should decline with the average rate of inflation.

Overall, the model we use, and the implied trade-off between costs and benefits of steady-state infla-

tion, are close to those considered by Coibion et al. (2012). However we assume Calvo-style sticky wages,

in addition to sticky prices.7

6They document that the cross-sector dispersion in the size of price changes is similar in the current, low inflation, period as

in the high inflation period of the late 1970’s. If Calvo was the relevant pricing frictions, the dispersion in size of price changes

should have been much larger in the high inflation period than today.
7In their robustness analysis, Coibion et al. (2012) consider downward nominal wage rigidity, which entails different mecha-

nisms than with Calvo-style rigidities.
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2.1 Households

The economy is inhabited by a continuum of measure one of infinitely-lived, identical households. The

representative household is composed of a continuum of workers, each specialized in a particular labor

type indexed by h ∈ [0, 1]. The representative household’s objective is to maximize an intertemporal

welfare function

Et

∞

∑
s=0

βs
{

eζg,t+s log(Ct+s − ηCt+s−1)−
χ

1 + ν

∫ 1

0
Nt+s(h)1+νdh

}
, (1)

where β ≡ e−ρ is the discount factor (ρ being the discount rate), Et{·} is the expectation operator con-

ditional on information available at time t, Ct is consumption and Nt(h) is the supply of labor of type h.

The utility function features habit formation, with degree of habits η. The inverse Frisch elasticity of labor

supply is ν and χ is a scale parameter for labor disutility. The utility derived from consumption is subject

to a preference shock ζg,t.

The representative household maximizes (1) subject to the sequence of constraints

PtCt + eζq,t QtBt ≤
∫ 1

0
Wt(h)Nt(h)dh + Bt−1 − Tt + Dt (2)

where Pt is the aggregate price level, Wt(h) is the nominal wage rate associated with labor of type h, eζq,t Qt

is the price at t of a one-period nominal bond paying one unit of currency in the next period, where ζq,t is

a “risk-premium” shock, Bt is the quantity of such bonds acquired at t, Tt denotes lump-sum taxes, and Dt

stands for the dividends rebated to the households by monopolistic firms.

2.2 Firms and Price Setting

The final good is produced by perfectly competitive firms according to the Dixit-Stiglitz production func-

tion

Yt =

(∫ 1

0
Yt( f )(θp−1)/θp d f

)θp/(θp−1)

,

where Yt is the quantity of final good produced at t, Yt( f ) is the input of intermediate good f , and θp the

elasticity of substitution between any two intermediate goods. The zero-profit condition yields the relation

Pt =

(∫ 1

0
Pt( f )1−θp d f

)1/(1−θp)

.

Intermediate goods are produced by monopolistic firms, each specialized in a particular good f ∈ [0, 1].

Firm f has technology

Yt( f ) = ZtLt( f )1/φ

where Lt( f ) is the input of aggregate labor, 1/φ is the elasticity of production with respect to aggregate

labor, and Zt is an index of aggregate productivity. The latter evolves according to

Zt = Zt−1eµz+ζz,t
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where µz is the average growth rate of productivity. Thus, technology is characterized by a unit root in the

model.

Intermediate goods producers are subject to nominal rigidities à la Calvo. Formally, firms face a con-

stant probability αp of not being able to re-optimize prices. In the event that firm f is not drawn to re-

optimize at t, it re-scales its price according to the indexation rule

Pt( f ) = (Πt−1)
γp Pt−1( f )

where Πt ≡ Pt/Pt−1, Π is the associated steady-state value and 0 ≤ γp < 1. Thus, in case firm f is

not drawn to re-optimize, it mechanically re-scales its price by past inflation. Importantly, however, we

assume that the degree of indexation is less than perfect since γp < 1. One obvious drawback of the Calvo

set-up is that the probability of price reoptimization is assumed to be invariant, inter alia to the long run

inflation rate. Drawing from the logic of menu cost models, the Calvo parameter of price stickiness could

be expected to endogenously decrease when trend inflation rises. However, in the range of values for trend

inflation that we will consider, available micro economic evidence, such as that summarized in Golosov

and Lucas (2007), suggests there is no significant correlation between the frequency of price change and

trend inflation.

If drawn to re-optimize in period t, a firms chooses P?
t in order to maximize

Et

∞

∑
s=0

(βαp)
sΛt+s

{
(1 + τp,t+s)

Vp
t,t+sP?

t

Pt+s
Yt,t+s −

Wt+s

Pt+s

(
Yt,t+s

Zt+s

)φ
}

,

where Λt denotes the marginal utility of wealth, τp,t is a sales subsidy paid to firms and financed via a

lump-sum tax on households, and Yt,t+s is the demand function that a monopolist who last revised its

price at t faces at t + s; it obeys

Yt,t+s =

(
Vp

t,t+sP?
t

Pt+s

)−θp

Yt+s

where Vp
t,t+s reflects the compounded effects of price indexation to past inflation

Vp
t,t+s =

t+s−1

∏
j=t

(Πj)
γp .

We further assume that

1 + τp,t = (1 + τp)e−ζu,t ,

with ζu,t appearing in the system as a cost-push shock. Furthermore, we set τp so as to neutralize the

steady-state distortion induced by price markups.
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2.3 Aggregate Labor and Wage Setting

There is a continuum of perfectly competitive labor aggregating firms that mix the specialized labor types

according to the CES technology

Nt =

(∫ 1

0
Nt(h)(θw−1)/θw dh

)θw/(θw−1)

,

where Nt is the quantity of aggregate labor and Nt(h) is the input of labor of type h, and where θw denotes

the elasticity of substitution between any two labor types. Aggregate labor Nt is then used as an input in

the production of intermediate goods. Equilibrium in the labor market thus requires

Nt =
∫ 1

0
Lt( f )d f .

Here, it is important to notice the difference between Lt( f ), the demand for aggregate labor emanating

from firm f , and Nt(h), the supply of labor of type h by the representative household.

The zero-profit condition yields the relation

Wt =

(∫ 1

0
Wt(h)1−θw dh

)1/(1−θw)

,

where Wt is the nominal wage paid to aggregate labor while Wt(h) is the nominal wage paid to labor of

type h.

Mirroring prices, we assume that wages are subject to nominal rigidities, à la Calvo, in the manner of

Erceg et al. (2000). Formally, unions face a constant probability αw of not being able to re-optimize wages.

In the event that union h is not drawn to re-optimize at t, it re-scales its wage according to the indexation

rule

Wt(h) = eγzµz(Πt−1)
γwWt−1(h)

where, as before, wages are indexed to past inflation. However, we assume that the degree of indexation is

here too less than perfect by imposing 0 ≤ γw < 1. In addition, nominal wages are also indexed to average

productivity growth with indexation degree 0 ≤ γz < 1.

If drawn to re-optimize in period t, a union chooses W?
t in order to maximize

Et

∞

∑
s=0

(βαw)
s

{
(1 + τw)Λt+s

Vw
t,t+sW

?
t

Pt+s
Nt,t+s −

χ

1 + ν
N1+v

t,t+s

}
where the demand function at t + s facing a union who last revised its wage at t obeys

Nt,t+s =

(
Vw

t,t+sW
?
t

Wt+s

)−θw

Nt+s

and where Vw
t,t+s reflects the compounded effects of wage indexation to past inflation and average produc-

tivity growth

Vw
t,t+s = eγzµz(t+s)

t+s−1

∏
j=t

(Πj)
γw .

Furthermore, we set τw so as to neutralize the steady-state distortion induced by wage markups.
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2.4 Monetary Policy and the ZLB

Monetary policy in "normal times" is assumed to be given by an inertial Taylor-like interest rate rule

ı̂t = ρi ı̂t−1 + (1− ρi)
(
aππ̂t + ay x̂t

)
+ ζR,t (3)

where it ≡ − log(Qt), with ı̂t denoting the associated deviation from steady state i.e, ı̂t ≡ it − i. Also,

πt ≡ log Πt, π̂t ≡ πt − π is the gap between inflation and its target, and x̂t ≡ log(Yt/Yn
t ) where Yn

t is

the efficient level of output, defined as the level of output that would prevail in an economy with flexible

prices and wages and no cost-push shocks. Finally, ζR,t is a monetary policy shock.

Importantly, we interpret π as the central bank target for change in the price index. An annual inflation

target of 2% would thus imply π = 2/400 = 0.005 as the model will be parameterized and estimated with

quarterly data. Note that the inflation target thus defined may differ from average inflation.

Crucially for our purposes, the nominal interest rate it is subject to a ZLB constraint:

it ≥ 0

The steady-state level of the real interest rate is defined by r? ≡ i − π. Given logarithmic utility, it is

related to technology and preference parameters according to r? = ρ + µz. Combining these elements, it is

convenient to write the ZLB constraint in terms of deviations from steady state

ı̂t ≥ −(µz + ρ + π) (4)

The rule effectively implemented is given by:

ı̂t = max{ı̂n
t , −(µz + ρ + π)}, (5)

where

ı̂n
t = ρi ı̂n

t−1 + (1− ρi)
(
aππ̂t + ay x̂t

)
+ ζR,t, (6)

with in
t denoting the shadow or notional rate, i.e. the one that would be effective in the absence of the ZLB

constraint. Thus the lagged rate that matters is the lagged notional interest rate, rather than the lagged

actual rate. In making that assumption we follow Coibion et al. (2012) and a large share of the recent

literature.

Before proceeding, several remarks are in order. First note that realized inflation might be on average

below the target π as a consequence of ZLB episodes, i.e. E{πt} < π. In such instances of ZLB, monetary

policy fails to deliver the appropriate degree of accommodation, resulting in a more severe recession and

lower inflation than in an economy with no ZLB constraint.8

8For convenience, Table A.1 in the Appendix summarizes the various notions of optimal inflation and long-run or target

inflation considered in this paper.
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Second, we assume the central bank policy is characterized by simple interest rate rule rather than a

Ramsey-type fully optimal policy of the type studied by e.g. Khan et al. (2003) or Schmitt-Grohé and Uribe

(2010). Such rules have been shown to be a good empirical characterization of the behavior of central banks

in the last decades. Moreover two features in our set-up, the inertia in the monetary policy rule, as well as

the use of a lagged notional rate rather than a lagged actual rate, render the policy more persistent and thus

closer to a Ramsey-like fully optimal interest rate rule. In particular the dependence on the lagged notional

rate ı̂n
t results in the nominal interest rate ı̂t being “lower for longer” in the aftermath of ZLB episodes (as

ı̂n
t will stay negative for a protracted period). In Section 6, we study how alternative strategies of “lower

for longer” affect the (r?, π?) relation.

As equation (4) makes clear, µz, ρ, π enter symmetrically in the ZLB constraint. Put another way, for

given structural parameters and a given process for ı̂t, the probability of hitting the ZLB would remain

unchanged if productivity growth or the discount rate decline by one percent and the inflation target is

increased by a commensurate amount at the same time. Based on these observations, one may be tempted

to argue that in response to a permanent decline in µz or ρ, the optimal inflation target π∗ must necessarily

change by the same amount (with a negative sign).

The previous conjecture is, however, incorrect. The reasons for this are twofold. First, any change

in µz (or ρ) also translates into a change in the coefficients of the equilibrium dynamic system. It turns

out that this effect is non-negligible since, as our later results imply, after a one percentage point decline

in r∗ the inflation target has to be raised by more than one percent in order to keep the probability of

hitting the ZLB unchanged. Second, because there are welfare costs associated with increasing the inflation

target, the policy maker would also have to balance the benefits of keeping the incidence of ZLB episodes

constant with the additional costs in terms of extra price dispersion and inefficient resource allocation.

These costs can be substantial and may more than offset the benefits of holding the probability of ZLB

constant. Assessing these forces is precisely this paper’s endeavor.

3 Estimation and Simulations

3.1 Estimation without a Lower Bound on Nominal Interest Rates

We estimate the model using data for a pre-crisis period over which the ZLB constraint is not binding. This

enables us to use the linear version of the model.9

Estimation Procedure. Because the model has a stochastic trend, we first induce stationarity by dividing

trending variables by Zt. The resulting system is then log-linearized in the neighborhood of its determin-

istic steady state.10 We append to the system a set of equations describing the dynamics of the structural

9See Gust et al. (2017) and Lindé et al. (2017) for alternative methods which deal with the ZLB constraint at the estimatin stage.
10See the appendix for further details.
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shocks, namely

ζk,t = ρkζk,t−1 + σkεk,t, εk,t ∼ N(0, 1)

for k ∈ {R, g, u, q, z}.

Absent the ZLB constraint, the model can be solved and cast into the usual linear transition and obser-

vation equations:

st = T (θ)st−1 +R(θ)εt, xt =M(θ) +H(θ)st,

with st a vector collecting the model’s state variables, xt a vector of observable variables and εt a vector of

innovations to the shock processes εt = (εR,t, εg,t, εu,t, εq,t, εz,t)′. The solution coefficients are regrouped in

the conformable matrices T (θ), R(θ),M(θ), and H(θ) which depend on the vector of structural parame-

ters θ.

The sample of observable variables is XT ≡ {xt}T
t=1 with

xt = [∆ log(GDPt), ∆ log(GDP Deflatort), ∆ log(Wagest), Short Term Interest Ratet]
′

where the short term nominal interest rate is the effective Fed Funds Rate. We use a sample of quarterly

data covering the period 1985Q2-2008Q3.11 This choice is guided by two objectives. First, this sample

strikes a balance between size and the concern of having a homogeneous monetary policy regime over

the period considered. The sample covers the Volcker and post-Volcker period, arguably one of relative

homogeneity of monetary policy. Second, we use a sample that coincides more or less with the so-called

Great Moderation. Over the latter, as has been argued in the literature, we expect smaller shocks to hit the

economy. In principle, this will lead to a conservative assessment of the effects of the more stringent ZLB

constraint due to lower real interest rates.

The parameters φ, θp, and θw are calibrated prior to estimation. The parameter θp is set to 6, resulting

in a steady-state price markup of 20%. Similarly, the parameter θw is set to 3, resulting in a wage markup

of 50%. These numbers fall into the arguably large ballpark of available values used in the literature. In a

robustness section, we investigate the sensitivity of our results to these parameters. The parameter φ is set

to 1/0.7. Given the assumed subsidy correcting the steady-state price markup distortion, this results in a

steady-state labor share of 70%.

We rely on a full-system Bayesian estimation approach to estimate the remaining model parameters.

After having cast the dynamic system in the state-space representation for the set of observable variables,

we use the Kalman filter to measure the likelihood of the observed variables. We then form the joint

posterior distribution of the structural parameters by combining the likelihood function p(XT|θ) with a

joint density characterizing some prior beliefs p(θ). The joint posterior distribution thus obeys

p(θ|XT) ∝ p(XT|θ)p(θ),

11The data are obtained from the Fred database. GDP is expressed in per capita terms.
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Table 1: Estimation Results

Parameter Prior Shape Prior Mean Priod std Post. Mean Post. std Low High

ρ Normal 0.20 0.05 0.19 0.05 0.11 0.27

µz Normal 0.44 0.05 0.43 0.04 0.36 0.50

π? Normal 0.61 0.05 0.62 0.05 0.54 0.69

αp Beta 0.66 0.05 0.67 0.03 0.61 0.73

αw Beta 0.66 0.05 0.50 0.05 0.43 0.58

γp Beta 0.50 0.15 0.20 0.07 0.08 0.32

γw Beta 0.50 0.15 0.44 0.16 0.21 0.68

γz Beta 0.50 0.15 0.50 0.18 0.26 0.75

η Beta 0.70 0.15 0.80 0.03 0.75 0.85

ν Gamma 1.00 0.20 0.73 0.15 0.47 0.97

aπ Gamma 2.00 0.15 2.13 0.15 1.89 2.38

ay Gamma 0.50 0.05 0.50 0.05 0.42 0.58

ρTR Beta 0.85 0.10 0.85 0.02 0.82 0.89

σz Inverse Gamma 0.25 1.00 1.06 0.22 0.74 1.38

σR Inverse Gamma 0.25 1.00 0.10 0.01 0.09 0.11

σq Inverse Gamma 0.25 1.00 0.39 0.11 0.16 0.61

σg Inverse Gamma 0.25 1.00 0.23 0.04 0.16 0.29

σu Inverse Gamma 0.25 1.00 0.24 0.05 0.06 0.46

ρR Beta 0.25 0.10 0.51 0.06 0.41 0.61

ρz Beta 0.25 0.10 0.27 0.13 0.09 0.45

ρg Beta 0.85 0.10 0.98 0.01 0.97 1.00

ρq Beta 0.85 0.10 0.88 0.04 0.80 0.95

ρu Beta 0.80 0.10 0.80 0.10 0.65 0.96

Note: ’std’ stands for Standard Deviation, ’Post.’ stands for Posterior, and ’Low’ and ’High’ denote the bounds of the 90%
probability interval for the posterior distribution.

Given the specification of the model, the joint posterior distribution cannot be recovered analytically

but may be computed numerically, using a Monte-Carlo Markov Chain (MCMC) sampling approach. More

specifically, we rely on the Metropolis-Hastings algorithm to obtain a random draw of size 1,000,000 from

the joint posterior distribution of the parameters.

Estimation Results. Table 1 reports the parameter’s postulated priors (type of distribution, mean, and

standard error) and estimation results, i.e., the posterior mean and standard deviation, together with the

bounds of the 90% probability interval for each parameter.

For the parameters π, µz and ρ, we impose Gaussian prior distributions. The parameters governing the

latter are chosen so that the model steady-state values match the mean values of inflation, real per capita

GDP growth, and the real interest rate in our US sample. Our choice of priors for the other parameters are

standard. In particular, we use Beta distributions for parameters in [0, 1], Gamma distributions for positive

parameters, and Inverse Gamma distributions for the standard error of the structural shocks.

Most of our estimated parameters are in line with the calibration adopted by Coibion et al. (2012), with

important qualifications. First, we obtain a slightly higher degree of price rigidity than theirs (0.67 versus

0.55). Second, our specification of monetary policy is different from theirs. In particular, they allow for

two lags of the nominal interest rate in the monetary policy rule while we only have one lag. However,

we can compare the overall degree of interest rate smoothing in the two setups. To this end, abstracting

from the other elements of the rule, we simply focus on the sum of autoregressive coefficients. It amounts
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to 0.92 in their calibration while the degree of smoothing in our setup has a mean posterior value of 0.85.

While this might not seem to be a striking difference, it is useful to cast these figures in terms of half-life of

convergence in the context of autoregressive model of order 1. Our value implies twice as small a half-life

than theirs. Third, our monetary policy shock and our shocks to demand have approximately twice as small

an unconditional standard deviation as theirs. Finally, we estimate the degree of indexation to past inflation

rather than setting it to zero as in Coibion et al. (2012). We find small though non-zero degrees of indexation

to past inflation. This will translate into a higher tolerance for inflation in our subsequent analysis of the

optimal inflation target. This is because a higher indexation helps to mitigate the distortions induced by a

higher inflation target. However, it turns out that, given these estimates, this effect is quantitatively small.

Properties of the estimated model, such as e.g. the response to a monetary policy shock, are standard

(see the Appendix, section B. The appendix also illustrates the “lower for longer” property embedded in

the policy rule).

3.2 Computing the Optimal Inflation Target

Simulations with a ZLB constraint. The model becomes non-linear when one allows the ZLB constraint

to bind. The solution method we implement follows the approach developed by Bodenstein et al. (2009)

and Guerrieri and Iacoviello (2015). The approach can be described as follows. There are two regimes: the

no-ZLB regime k = n and the ZLB regime k = e and the canonical representation of the system in each

regime is

Et{A(k)st+1 + B(k)st + C(k)st−1 +D(k)εt}+ f (k) = 0

where st is a vector collecting all the model’s variables, A(k), B(k), C(k), and D(k) are conformable matrices

and f (k) is a vector of constants. In the no-ZLB regime, the vector f (n) is filled with zeros. In the ZLB

regime, the row of f (e) associated with it is equal to µz + ρ + π. Similarly, the rows of the system matrices

associated with it in the no-ZLB regime correspond to the coefficients of the Taylor rule while in the ZLB

regime, the coefficient associated with it is equal to 1 and all the other coefficients are set to zero.

In each period t, given an initial state vector st−1 and vector stochastic innovations εt, we simulate

the model under perfect foresight (i.e., assuming that no further shocks hit the economy) over the next N

periods, for N sufficiently large. In case this particular draw is not conducive to a ZLB episode, we find

st using the linear solution stated above. In contrast, if this draw leads to a ZLB episode, we postulate

integers Ne < N and Nx < N such that the ZLB is reached at time t + Ne and left at time t + Nx. In this

case, we solve the model by backward induction. We obtain the time varying solution

st+q = dt+q + Tt+qst+q−1 +Rt+qεt+q

where, for q ∈ {Ne, ..., Nx − 1}

Tt+q = −
(
A(e)Tt+q+1 + B(e)

)−1
C(e), Rt+q = −

(
A(e)Tt+q+1 + B(e)

)−1
D(e),
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dt+q = −
(
A(e)Tt+q+1 + B(e)

)−1(
A(e)dt+q+1 + f (e)

)
and, for q ∈ {0, ..., Ne − 1}

Tt+q = −
(
A(n)Tt+q+1 + B(n)

)−1
C(n), Rt+q = −

(
A(n)Tt+q+1 + B(n)

)−1
D(n),

dt+q = −
(
A(n)Tt+q+1 + B(n)

)−1(
A(n)dt+q+1 + f (n)

)
,

using Tt+Nx = T , Rt+Nx = R, and dt+Nx set to a column filled with zeros as initial conditions of the

backward recursion.

We then check that given the obtained solution, the system hits the ZLB at t + Ne and leaves the ZLB at

t + Nx. Otherwise, we shift Ne and/or Nx forward or backward by one period and start all over again until

convergence. Once convergence has been reached, we use the resulting matrices to compute st and repeat

the process for all the simulation periods.

Our approach is thus similar to the one used by Coibion et al. (2012) in their study of the optimal

inflation target in a New Keynesian setup.12 A shortcoming of this approach is that the agents in the model

are assumed to believe that the ZLB will not bind again in the future, once the current ZLB episode comes to

an end. This may bias estimates, as explained by in Gust et al. (2017), even when, as in our case, estimation

is performed on a pre-ZLB period. The scope of this concern is however dampened by the fact that in the

pre crisis environment there is evidence that even experts severely underestimated the probability of the

ZLB occuring, see Chung et al. (2012).13

A welfare-based optimal inflation target. A second-order approximation of the household expected util-

ity derived from the structural model is used to quantify welfare, in a similar manner as in Woodford

(2003), assuming a small steady-state inflation rate. As detailed in the Technical Appendix this second

order approximation is given by:

U0 = −1
2

1− βη

1− η
E0

∞

∑
t=0

βt
{

λy[x̂t − δx̂t−1 + (1− δ)x̄]2 + λp[(1− γp)π + π̂t − γpπ̂t−1]
2

+ λw[(1− γz)µz + (1− γw)π + π̂w,t − γwπ̂t−1]
2
}
+ t.i.p +O(||ζ, π||3),

12In practice we combine the implementation of the Bodenstein et al. (2009) algorithm developed by Coibion et al. (2012) with

the solution algorithm and the parser from Dynare. Our implementation is in the spirit of Guerrieri and Iacoviello (2015), resulting

in a less user-friendly yet faster suite of programs.
13Global solution methods, such as advocated and implemented by Gust et al. (2017) are in principle more accurate. However,

given the size of our model, and the large set of inflation targets and real interest rates that we need to consider (and given

that these have to be considered for each and every parameter configuration in our simulations), a global solution would be

computationally prohibitive.
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where t.i.p collects terms that are independent of monetary policy and O(||ζ, π||3) denotes residual terms

of order 3, with ||ζ, π|| denoting a bound on the amplitude of exogenous shocks and the inflation target.

Parameters λy λp, λw are effectively weights on an output gap term, a price inflation term, and a wage

inflation term. Parameter δ fulfills 0 ≤ δ ≤ 1. The parameter x̄ is the log ratio of steady-state output to

efficient output. x̄ is zero either when trend inflation and trend productivity growth are zero, or when

indexation is full, and negative otherwise (in which case, output is inefficiently low). Finally, λy λp, λw, δ,

and x̄ are function of the structural parameters θ.

We let W (π; θ) denote this welfare criterion, to emphasize that welfare depends on the inflation target π

together with the rest of the structural parameters θ. Two cases are considered concerning the latter. In the

baseline case, the structural parameters θ are fixed at reference values and taken to be known with certainty

by the policy maker. In an alternative exercise, the policy maker maximizes welfare while recognizing the

uncertainty associated with the model’s parameters.

The optimal inflation target associated with a given vector of parameters θ, π?(θ) is approximated

via numerical simulations of the model allowing for an occasionally binding ZLB constraint, using the

algorithm outlined above.14 The optimal inflation rate associated to a given vector of parameters θ is then

obtained as the one maximizing the welfare function, that is:

π?(θ) ≡ arg max
π

W (π; θ).

Given parameter estimates at posterior mean we can compute the weight on output and wage inflation

relative to inflation, i.e. λy/λp and λw/λp). These relative weights are respectively equal to 0.22 and 0.10.15

Note these values are in the ballpark of values obtained in analyses of optimal inflation based on welfare

criteria.

3.3 Some Properties of Loss Function and the Optimal Inflation Target in the Estimated Model

This section presents selected properties of the model related to the optimal inflation target. Figure 1

displays the welfare function – expressed as losses relative to the maximum social welfare – associated

with three natural benchmarks for the parameter vector θ: the posterior mean (dark blue line), the median

(light blue line), and the mode (lighter blue line). For convenience, the peak of each welfare function is

identified with a dot of the same color. Also, to facilitate interpretations, the inflation targets are expressed

in annualized percentage rates.

14More precisely, a sample of size T = 100000 of innovations {εt}T
t=1 is drawn from a Gaussian distribution (we also allow for

a burn in sample of 200 points that we later discard). We use these shocks to simulate the model for given parameter vector θ.

The welfare function W (π; θ) is approximated by replacing expectations with sample averages. The procedure is repeated for

each of K = 51 inflation targets on the grid {π(k)}K
k=1 ranging from π = (0.5/4)% to π = (5/4)% (expressed in quarterly rates).

Importantly, we use the exact same sequence of shocks {εt}T
t=1 in each and every simulation over the inflation grid.

15The absolute value of λp is found to be 130.52.
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Figure 1: Welfare and the Inflation Target
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Note: Blue: parameters set at the posterior mean; light blue: parameters set at the posterior median; Lighter blue: parameters set
at the posterior mode. π? ≡ log(Π?). In all cases, the welfare functions are normalized so as to peak at 0.

As Figure 1 illustrates, the US optimal inflation target is close to 2% and varies between 1.85% and

2.21% depending on which indicator of central tendency (mean, mode, or median) is selected. This range

of values is consistent with the ones of Coibion et al. (2012) even though in the present paper it is derived

from an estimated model over a much shorter sample.16 Importantly, while the larger shocks in Coibion

et al. (2012) ceteris paribus induce larger inflation targets, the high degree of interest rate smoothing in

their analysis works in the other direction (as documented below in the last section) .

To complement on these illustrative results, Figure 2 displays the probability of reaching the ZLB as a

function of the annualized inflation target (again, with the parameter vector θ evaluated at the posterior

mean, median, and mode). For convenience, the circles in each curve mark the corresponding optimal

inflation target.

The probability of hitting the ZLB associated to these positive optimal inflation targets is relatively low,

at about 6%. This result, as anticipated above, is the mere reflection of our choice of a Great Moderation

sample. At the same time, our model is able to predict a fairly spread out distribution of ZLB episodes

durations, with a significant fraction of ZLB episodes lasting more than say five years (see figure in the

appendix D). Given the existence of a single ZLB episode in the recent history, we do not attempt here to

take a stand on what is a relevant distribution of ZLB episodes (see Dordal-i-Carreras et al. 2016 for further

16Coibion et al. (2012) calibrate their model on a post-WWII, pre-Great Recession US sample. By contrast, we use a Great

Moderation sample.
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Figure 2: Probability of ZLB
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Note: Blue: parameters set at the posterior mean; light blue: parameters set at the posterior median; Lighter blue: parameters set
at the posterior mode. π? ≡ log(Π?).

analysis in that direction).

4 The Optimal Inflation Target and the Steady State Real Interest Rate

The focus of this section is to investigate how the monetary authority should adjust its optimal inflation

target π? in response to changes in the steady-state real interest rate, r?.17 Intuitively, with a lower r? the

ZLB is bound to bind more often, so one would expect a higher inflation target should be desirable in

that case. But the answer to the practical question of by how much should the target be increased is not

obvious. Indeed, the benefit of providing a better hedge against hitting the ZLB, which is an infrequent

event, comes at a cost of higher steady-state inflation which induces permanent costs, as argued by, e.g.,

Bernanke (2016).

To start with, we compute the relation linking the optimal inflation target to the steady-state real interest

rate, based on simulations of the estimated model and ignoring parameter uncertainty. We show that the

link between π? and r? depends to some extent on the factor underlying a variation in r?, i.e. a change in the

discount rate ρ or a change in growth rate of technology µz. In our set-up the first scenario roughly captures

17Note our exercise here is different from assessing what would be the optimal response to a time-varying steady state – a

specification consistent with econometric work like that of Holston et al. (2017). Our exercise is arguably consistent with “secular

stagnation” understood as a permanently lower real rate of interest – while doing without having to assume a unit root process

in the real rate of interest.
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the “taste for safe asset” and “ageing population” rationale for secular stagnation, while the second one

captures the “decline in technological progress” rationale . Subsequently, we investigate how the relation

between the optimal inflation target and the steady-state real interest rate depends on various features of

the monetary policy framework, as well as on the size of shocks or on the steady-state price and wage

mark-ups.

4.1 The Baseline (r?, π?) Relation

To characterize the link between r? and π?, the following simulation exercise is conducted. The structural

parameter vector θ is fixed at its posterior mean, θ̄, with the exception of µz and ρ. These two parameters

are varied – each in turn, keeping the other parameter, µz or ρ, fixed at its baseline posterior mean value

(namely 0.76% and 1.72%, respectively, in annualized terms). For both µz and ρ, we consider values on

a grid ranging from 0.4% to 10% in annualized percentage terms. The model is then simulated for each

possible values of µz or ρ and various values of inflation targets π using the procedure as before.18 The

optimal value π? associated to each value of r? is obtained as the one maximizing the welfare criterion

W (π; θ).

We finally obtain two curves. The first one links the optimal inflation target π? to the steady-state real

interest rate r? for various growth rate of technology µz: π?(r?(µz)), where the notation r?(µz) highlights

that the steady-state real interest rate varies as µz varies. The second one links the optimal inflation target

π? to the steady-state real interest rate r? for various discount rates ρ: π?(r?(ρ)). Here, the notation r?(ρ)

highlights that the steady-state real interest rate varies as ρ varies.19

Figure 3 depicts the (r?, π?) relations thus obtained. The blue dots correspond to the case when the real

steady-state interest rate r? varies with µz. The red dots correspond to the case when the real steady-state

interest rate r? varies with ρ. For convenience, both the real interest rate and the associated optimal inflation

target are expressed in annualized percentage rates. The dashed grey lines indicate the benchmark result

corresponding to the optimal inflation target at the posterior mean of the structural parameter distribution.

These results are complemented with Figure 4 that shows the relation between r? and the probability

of hitting the ZLB, evaluated at the optimal inflation target. As with Figure 3, blue dots correspond to the case

when r? varies with µz, while red dots correspond to the case when it varies with ρ.20

As expected, the relations in Figure 3 is decreasing. However, the slope varies with the value of r?.

18In particular, we use the same sequence of shocks {εt}T
t=1 as used in the computation implemented in the baseline exercises

of Section 3.2. Here again, we start from the same grid of inflation targets for all the possible values of µz or ρ. Then, for each

value of µz or ρ, we refine the inflation grid over successive passes until the optimal inflation target associated with a particular

value of µz or ρ proves insensitive to the grid.
19Figures G.1 and G.2 report similar results at the posterior mode and at the posterior median. Figure H.1 documents the

relation in terms of “optimal nominal interest rate”.
20Figure H.1 in Appendix shows the relation between r? and the nominal interest rate when the inflation target is set at its

optimal value.
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Figure 3: (r?, π?) locus (at the posterior mean)
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Note: the blue dots correspond to the (r?, π?) locus when r? varies with µz; the red dots correspond to the (r?, π?) locus when r?

varies with ρ

The slope is relatively large in absolute value – although smaller than one – for moderate values of r? (say

below 4 percent). The slope declines in absolute value as r? increases: Lowering the inflation target to

compensate for an increase in r? becomes less and less desirable. This reflects the fact that, as r? increases,

the probability of hitting the ZLB becomes smaller and smaller. For very large r? values, the probability

becomes almost zero, as Figure 4 shows.

At some point, the optimal inflation target becomes insensitive to changes in r? when the latter originate

from changes in the discount rate ρ. In this case, the inflation target stabilizes at a slightly negative value,

in order to lower the nominal wage inflation rate required to support positive productivity growth, given

the imperfect indexation of nominal wages to productivity. At the steady state, the real wage must grow

at a rate of µz. It is optimal to obtain this steady-state growth as the result of a moderate nominal wage

increase and a moderate price decrease, rather than the result of a zero price inflation and a consequently

larger nominal wage inflation.21

The previous tension is even more apparent when r? varies with µz since, in this case, the effects of

21For very large r?, as a rough approximation, we can ignore the effects of shocks and assume that the ZLB is a zero-mass

event. Assuming also a negligible difference between steady-state and efficient outputs and letting λp and λw denote the weights

attached to price dispersion and wage dispersion, respectively, in the approximated welfare function, the optimal inflation obeys

π? ≈ −λw(1− γz)(1− γw)/[λp(1− γp)2 + λw(1− γw)2]µz. Given the low values of λw resulting from our estimation, it is not

surprising that π? is negative but close to zero. See Amano et al. (2009) for a similar point in the context of a model abstracting

from ZLB issues.
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Figure 4: Relation between probability of ZLB at optimal inflation and r? (at the posterior mean)
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Note: the blue dots correspond to the (r?, π?) locus when r? varies with µz; the red dots correspond to the (r?, π?) locus when r?

varies with ρ

imperfect indexation of wages to productivity are magnified given that a higher µz calls for a higher growth

in the real wage, which is optimally attained through greater price deflation, as well as a higher wage

inflation. Notice however that even in this case, the optimal inflation target becomes little sensitive to

changes in r? for very large values of r?, typically above 6%.

For low values of r∗, on the other hand, the slope of the curve is steeper. In particular, in the empirically

relevant region, the relation is not far from one-to-one. More precisely, it shows that, starting from the

posterior mean estimate of θ, a 100 basis points decline in r? should lead to a +99 basis points increase in

π?. Importantly, this increase in the optimal inflation target is virtually the same no matter the underlying

factor causing the change in r?: a drop in potential growth, µz, or a decrease in the discount factor, ρ.

At the same time, the ZLB incidence evaluated at the optimal inflation rate also increases when the real

rate decreases. At some point, the speed at which this probability increases slows down, reflecting that the

social planner would choose to increase the inflation target as needed so as to avoid a higher ZLB incidence.

Figure 5 shows how the probability of ZLB changes as a function of r?, holding the inflation target con-

stant. We first set the inflation target at its optimal baseline value (i.e., the value computed at the posterior

mean, 2.21%). This is reported as the brown dots. Similarly, we also compute an analog relation assuming,

this time, that the inflation target is held constant at the optimal value consistent with a steady-state real

interest rate one percentage point lower (thus, inflation is set to 3.20 ). Here again, the other parameters

are set at their posterior mean. This corresponds to the green dots in the figure. For convenience, we
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Figure 5: Relation between probability of ZLB and r? (at the posterior mean)
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Note: The blue dots correspond to the relation linking r? and the probability of ZLB, holding the optimal inflation target π? at the
baseline value. The red dots correspond the same relation when the optimal inflation target π? is set at the value consistent with a
steady-state real interest rate one percentage point lower. The pink dots correspond to the probability of ZLB obtained under the
optimal inflation target π? associated to a given value of r?.

also report the the probability of hitting the ZLB as a function of r? conditional on adjusting optimally the

inflation target, as in Figure 4. This corresponds to the blue dots.

Consider first the brown curve. At the level of the real interest rate prevailing before the permanent

decline, assuming that the Central Bank sets its target to the associated optimal level, the probability of

reaching the ZLB would be slightly below 6%. Imagine now that the real interest rates experiences a decline

of 100 basis points. Keeping the inflation target at the same level as prior to the shock, the probability of

reaching the ZLB would now climb up to approximately 11%. However, the change in the optimal inflation

target brings the probability of reaching the ZLB back to approximately 6%. Thus, the social planner would

almost neutralize the effects of the natural rate decline on the probability of hitting the ZLB.

Finally we investigate whether the trade-off analyzed above translates into meaningful welfare costs,

measured in terms of foregone per-period consumption. Results are reported in Appendix F. It turns out

that, under sufficiently low r? values, agents faced with a 1 pp decline in the steady-state real interest rates

would require up to a 1.5 percentage point increase in consumption to be as well-off under the former

optimal inflation target (i.e. 2.21%) as under the optimal target associated with the lower real interest rate

(3.20% in this case). In other words, the welfare costs of not adjusting the target in the face of a decline in

r? are substantial.
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4.2 Robustness to Alternatives Structural Assumptions

In this section, we investigate the robustness of the (r?, π?) relation to altering (or modifying) some struc-

tural features of the environment. We consider several relevant dimensions: the case of larger shocks, and

alternative calibrations for the steady-state price and wage mark-up, and changes in the degree of price

and wage indexation.22

Larger Shocks. As argued before, the model is estimated using data from the Great Moderation period.

One may legitimately argue that the decline in the real interest rate resulting from the secular stagnation

has come hand in hand with larger shocks, as the Great Recession suggests. To address this concern,

we simulate the model assuming that demand shocks have a standard deviation 30 percent larger than

estimated.

We conduct this exercise assuming that changes in average productivity growth µz are the only driver of

changes in the natural rate. Apart from σq and σg, which are re-scaled, all the other parameters are frozen at

their posterior mean. Given this setup, the optimal inflation target is 3.7% as opposed to 2.21% conditional

on the baseline value of r?. Also, under the alternative shock configuration, the probability of hitting

the ZLB is 5.3%, as opposed to 5.5% in the baseline. These probabilities may seem low, especially in the

case of large shocks which we argue capture Great Recession-like shocks . However they are particularly

low because the inflation target is chosen optimally in this set-up. In particular, in the larger shocks case,

the increase in the inflation target is large enough to offset the impact of larger shocks in terms of ZLB

incidence. When instead we keep the inflation target unchanged, the probability of hitting the ZLB rises to

18% in the face of a 1% decline in r?.23 In that case, these ZLB probabilities come close to the probabilities

reported by Kiley and Roberts (2017) in the case of their DSGE model (albeit they find a higher probability

of ZLB, of the order of 30% when using the FRS/US model), or by Chung et al. (2019). 24

Figure 6 reports the (r?, π?) relation under larger demand shocks (red dots) and compares the outcome

with the baseline relation (blue dots).25 Interestingly, the (r?, π?) locus has essentially the same slope in

the low r? region. Here again, we find a slope close to -1. However, the curve is somewhat steeper in the

high r? region and shifted up, compared to the baseline scenario. This reflects that under larger demand

shocks, even at very high levels of the natural rate, a drop in the latter is conducive to more frequent ZLB

episodes. The social planner is then willing to increase the inflation target at a higher pace than in the

baseline scenario and generically sets the inflation target at higher levels to hedge the economy against

22Robustness to altering the monetary policy rule is assessed further below.
23See Appendix Section I in which such counterfactual probabilities of ZLB are reported.
24In addition to per period probability of ZLB, these authors also put forward and emphasize the probability that a ZLB event

occurs in the next decade. By construction this number is a larger one, and the mapping between the two numbers is not fully

straightforward
25We obtain this figure using the same procedure as outlined before. Here again, we run several passes with successively refined

inflation grids.
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Figure 6: (r?, π?) relation with larger demand shocks
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Note: the blues dots correspond to the baseline scenario wherein all the structural parameters are set at their posterior mean θ̄.
The red dots correspond to the counterfactual simulation with σq and σg set to twice their baseline value.

ZLB episodes.

Alternative Mark-ups. The optimal level of inflation in our set-up depends on the elasticities of substitu-

tion among intermediate goods, θp and among labor types θw, since those parameters determine the extent

to which the price and wage dispersion induced by inflation is translated into an inefficient allocation of

resources. These parameters have been calibrated, as they cannot be identified from time-series data and a

log-linearized version of the model.

In our calibration, the baseline value for the elasticity of substitution θp is 6, leading to a steady-state

price mark-up of 20%. While this value is in line with common “textbook” parameterizations (see Galí,

2015), and is close to the baseline value obtained in Hall (2018) and in Christiano et al. (2005), there is con-

siderable uncertainty in the empirical literature about the level of mark-ups. For example, some estimates

in Basu and Fernald (1997) and Traina (2015) point to possibly much smaller values, while Autor et al.

(2017), De Loecker and Eeckhout (2017) and Farhi and Gourio (2018) suggest substantially larger figures.

To investigate the robustness of our results, we re-do our main simulation exercise, this time setting θp

to a value as large as 10 or as low as 3. These values largely encompass the range of available empirical

estimates.

Similarly, for the wage mark-up, there is arguably scarcer evidence, and in any case considerable un-

certainty around our baseline parameterization, given by θw set to 3. Here again, so as to cover a broad
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Figure 7: (r?, π?) relation with alternative θp
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Note: the blues dots correspond to the baseline scenario wherein all the structural parameters are set at their posterior mean
θ̄. The red dots correspond to the counterfactual simulation with θp set to 10. The green dots correspond to the counterfactual
simulation with θp set to 3.

range of plausible estimates, we run alternatives exercises, setting in turn θw to 8 and θw to 1.5. Results are

reported in Figure 7 in the case of robustness with respect to the price markup, and in Figure 8 with respect

to the wage markup.

The main takeaway from these figures is that our key result is by and large preserved. That is, in the

empirically relevant region (for levels of r? lower than, say, 4 percent), the slope of the (r?, π?) curve is only

very mildly affected when changing the elasticity of substitution of goods or labor types.

Another noticeable result of this robustness exercise is that, by contrast, in the region with high steady-

state real interest rates (say r? larger than 5 percent) the value of optimal inflation target, and the slope of the

curve of interest, are more sensitive to the value of θp or θw. To see why, first notice that, in this region, the

ZLB is essentially irrelevant so the standard welfare cost of inflation set-up applies. With less substitution

across goods, a given level of price dispersion induced by inflation leads to smaller output dispersion (as is

clear for instance in the polar case of complementary goods, that leads to no output dispersion across firms

at all). The effect of θp on output dispersion is apparent from the formulas in our appendix, or in textbook

derivations of output dispersion e.g. chapter 3 in Galí (2015). Thus, with a low substitution (i.e. a low

θp), the welfare loss due to inflation (or deflation) is smaller. Therefore a lower θp allows for an inflation

target farther away from zero, insofar as there are motives for a non-zero steady-state inflation. Such a

mechanism explains why in Figure 7 optimal inflation is more negative with lower substitution.

Interestingly, when we consider robustness with respect to parameter θw, the ranking of the correspond-
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Figure 8: (r?, π?) relation with alternative θw
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Note: the blues dots correspond to the baseline scenario wherein all the structural parameters are set at their posterior mean θ̄. The
red dots correspond to the counterfactual simulation with θw set to 8. The green dots correspond to the counterfactual simulation
with θw set to 1.5.

ing curves is reversed (see Figure 8). That is, a larger θw induces a larger inflation target in absolute value.

The reason is that, with a larger substitution across labor types, a given nominal wage growth generates

dispersion of quantities across types of labor that turns out to be particularly costly. In that case, it is op-

timal that the burden of adjustment of real wages to growth is borne not by nominal wages, but rather by

nominal prices (thus leading to a more pronounced deflation).26

Alternative degrees of indexation. The degree of indexation of price and wage is an important determi-

nant of the cost of inflation. In our empirical estimate the degrees of indexation are moderate : 0.22 for

prices and 0.44 for wages at the posterior mean. It is worthwhile examining the sensitivity of our results to

the degree of indexation. Indeed, some existing macro estimates find or impose a much larger degree of in-

dexation (Christiano et al. 2005). By contrast, existing micro studies hardly find any evidence of indexation.

In this robustness exercise, we consider in turn a “zero indexation” case, a high indexation case (setting

γp and γw to 0.7), and a very high indexation case (setting γp and γw to 0.9). The last two configurations

are arguably unrealistic. Results are presented in Figure 9. In the absence of indexation, results are similar

to those under our estimated indexation levels. For the high indexation case (γp and γw equal to 0.7), the

results differ from the baseline only for relatively large values of the steady-state real interest rate.

26 This can be illustrated again in the approximated welfare function, and ignoring the effects of shocks. Then the optimal

inflation obeys π? ≈ −(λw(1− γz)(1− γw)/[λp(1− γp)2 + λw(1− γw)2])µz. Inflation target is a decreasing function of λw, thus

of θw.

26



Figure 9: (r?, π?) relation with alternative indexation degrees
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Note: the blues dots correspond to the baseline scenario wherein all the structural parameters are set at their posterior mean θ̄.
The red dots correspond to the counterfactual simulation with γp = γw = 0 . The green dots correspond to the counterfactual
simulation with γp = γw = 0.7

In the very high indexation case, the position and shape of the curve are substantially affected: the

curve is indeed nearly a decreasing straight line. Indeed, for a very large indexation degree the welfare

cost of inflation (or deflation) is substantially reduced. As a result, it is optimal to allow for a sizeable trend

deflation when the natural rate is large as a result of a large productivity growth. However, we can note

that in the empirically relevant region, i.e. for r? below 2 percent, the local slope of the curve is similar

whatever the degree of indexation.

5 The Effect of Parameter Uncertainty

In this section we investigate the impact of parameter uncertainty on the relation between the optimal

inflation target and the steady-state real interest rate. Specifically, we analyse how a Bayesian-theoretic

optimal inflation target reacts to a downward shift in the distribution of the steady-state real interest rate.

A Bayesian-theoretic Optimal Inflation Target. The location of the loss function W (π; θ) evidently de-

pends on the vector of parameters θ describing the economy. As a result of estimation uncertainty around

of θ, the optimal inflation rate π?(θ) will be subject to uncertainty. Further, a policy maker may wish to

take into account the uncertainty surrounding θ when determining the optimal inflation target. A relevant

feature of the welfare functions in our set-up is that, in general, and as shown above, they are markedly
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asymmetric: adopting an inflation target 1 percentage point below the optimal value generates welfare

losses larger than setting it 1 percentage point above. As a result, the certainty-equivalence does not hold.

A policy maker maximizing expected welfare while recognizing the uncertainty, will choose an inflation

target differing from that corresponding to the case where θ is set to its expected value, and taken to be

known with certainty, as in our baseline analysis.

Formally, the estimated posterior distribution of parameters p(θ|XT) can be exploited to quantify the

impact of parameter uncertainty on the optimal inflation target and to compute a “Bayesian-theoretic opti-

mal inflation target”. We define the latter as the inflation target π?? which maximizes the expected welfare

not only over the realizations of shocks but also over the realizations of parameters27

π?? ≡ arg max
π

∫
θ
W (π; θ)p(θ|XT)dθ.

We interpret the spread between the optimal Bayesian inflation target and the “certainty-equivalent” op-

timal inflation target at the posterior mean θ̄ as a measure of how uncertainty about the parameter value

affects optimal inflation. Given the nature of the asymmetry in the welfare function, the spread will turn

out to be positive: a Bayesian policy maker will tend to choose a higher inflation target than a policy-

maker taking θ to be known and equal to the mean of its distribution. A higher inflation target indeed acts

as a buffer to hedge against particularly detrimental parameter values (either because they lead to more

frequent ZLB episodes or because they lead to particularly acute inflation distortions). We define

Spr(θ) ≡ π?? − π?(θ)

and assess below Spr(θ̄).

Results. According to the simulation exercise, π?? = 2.40%. This robust optimal inflation target is higher

than the value obtained with θ set at its central tendency. As expected, a Bayesian policy maker chooses

a higher inflation target to hedge against particularly harmful states of the world (i.e., parameter draws)

where the frequency of hitting the ZLB is high.28

Assessing how a change in r? affects π?? for every value of r? is not possible, due to the computational

cost involved. Such a reaction is thus investigated for a particular scenario: it is assumed that the economy

27This Bayesian inflation target is recovered from simulating the model under a ZLB constraint using the exact same sequence

of shocks {εt}T
t=1 with T = 100000 as in the previous subsection (together with the same burn-in sample) and combining it with

N draws of parameters {θj}N
j=1 from the estimated posterior distribution p(θ|XT), with N = 500. As in the previous section,

the social welfare function W (π; θ) is evaluated for each draw of θ over a grid inflation targets {π(k)}K
k=1. The Bayesian welfare

criterion is then computed as the average welfare across parameter draws. Here, we start with the same inflation grid as before

and then run several passes. In the first pass, we identify the inflation target maximizing the Bayesian welfare criterion. We then

set a finer grid of K = 51 inflation targets around this value. We repeat this process several times with successively finer grids

of inflation targets until the identified optimal inflation target proves insensitive to the grid. In this particular exercise, some

parameter draws for θ lead to convergence failure in the algorithm implementing the ZLB. These draws are discarded.
28Figure E.1 in Appendix illustrates this point, by showing that the posterior distribution of π?(θ) is broadly symmetric.
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Figure 10: Posterior distributions of r? and counterfactual r?

Annualized steady-state real interest rate
0 1 2 3 4 5

PD
F

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Note:: Plain curve: PDF of r?; dashed vertical line: mean value of r?.

starts from the posterior distribution of parameters p(θ|XT) and that, everything else being constant, the

mean of r? decreases by 100 basis points. Such a 1 percentage point decline is chosen mainly for illustrative

purposes. Yet, it is of a comparable order of magnitude, although somewhat smaller in absolute value,

than recent estimates of the drop of the natural rate after the crisis such as Laubach and Williams (2016)

and Holston et al. (2017). The counterfactual exercise considered can therefore be seen as a relatively con-

servative characterization of the shift in steady-state real interest rate. Figure 10 depicts the counterfactual

shift in the distribution of r? that is considered.

The Bayesian-theoretic optimal inflation target corresponding to the counterfactual lower distribution

of r? is obtained from a simulation exercise that relies on the same procedure as before.29 Given a draw in

the posterior of parameter vector θ, the value of the steady-state real interest rate is computed using the

expression implied by the postulated structural model r?(θ) = ρ(θ) + µz(θ). From this particular draw,

a counterfactual lower steady-state real interest rate, r?(θ∆), is obtained by shifting the long-run growth

component of the model µz downwards by 1 percentage point (in annualized terms). The welfare function

W (π; θ∆) is then evaluated. Since there are no other changes than this shift in the mean value of µz in the

distribution of the structural parameters, we can characterize the counterfactual distribution p(θ∆|XT) as

a simple transformation of the estimated posterior p(θ|XT). The counterfactual Bayesian-theoretic optimal

29Again, we use the same sequence of shocks and the same parameter draws as in section 3.2.
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Figure 11: Eθ(W (π, θ)) in baseline and counterfactual
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inflation target is then obtained as

π??
∆ ≡ arg max

π

∫
θ∆

W (π; θ∆)p(θ∆|XT)dθ∆.

Figure 11 illustrates the counterfactual change in optimal inflation target obtained when the mean of the

distibution of the steady-state real interest rate declines by 100 basis points. The simulation exercise returns

a value of π??
∆ = 3.30% i.e. 90 basis points higher than the optimal value under uncertainty obtained with

the posterior distribution of parameters in the pre-crisis sample π??
∆ = 2.40%.30

Thus, in our set-up, a monetary authority that is concerned about the uncertainty surrounding the pa-

rameters driving the costs and benefits of the inflation chooses a higher optimal inflation target. However,

the reaction of this optimal inflation target following a drop in the mean r? is hardly altered: a 100 basis

points decrease in the steady-state real interest rate calls for a roughly 90 basis point increase in the optimal

inflation target, in the vicinity of pre-crisis parameter estimates.

A Known Reaction Function. Here we study the consequences of the (plausible) assumption that the

central bank actually knows the coefficients of its interest rate rule with certainty. More specifically we

repeat the same simulation exercise as in the previous subsection but with parameters aπ, ay and ρi in the

reaction function (3) taken to be known with certainty. In practice we fix these three parameters at their

posterior mean, instead of sampling them from their posterior distribution. This is arguably the relevant

30Figure J.1 in Appendix shows how the posterior distribution of π? is shifted after the permanent decline in the mean of r?.
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Figure 12: Eθ(W (π, θ))

Annualized inflation rate
2 2.5 3 3.5 4 4.5 5

W
el

fa
re

 (
no

rm
al

iz
ed

)

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

4:?? = 2:24

4:?? = 3:16

Average welfare over posterior distribution of 3
Average welfare over perturbed posterior distribution of 3

Note:: Blue curve: Eθ(W (π, θ)); Red curve: Eθ(W (π, θ)) with lower r?. In each case, ρi, aπ , and ay are frozen at their posterior
mean values.

approach from the point of view of the policymaker.31 Note, however, that all the other parameters are

subject to uncertainty from the stand-point of the central bank.

Figure 12 presents the Bayesian-theoretic optimal inflation targets obtained when simulating the model

at the initial posteriors and after a -100 basis points level shift in the posterior distribution of the long-run

growth rate µz and, hence, the steady-state real rate r?. According to these simulations, the inflation target

should initially be π?? = 2.24%. After the counterfactual change in the distribution of r? considered, π??

should be increased to 3.16%, again in the ballpark of a 90 basis points increase in π? in response to a 100

basis points downward shift in the distribution of r?.

6 Alternative Monetary Policy Rules and Environments

In the present section we study the optimal adjustment of the inflation target in response to a change in

the steady-state real interest rate under five alternative assumptions regarding monetary policy: setting

the inflation target in terms of average realized inflation ; an effective lower bound on the policy rate that

can be below zero; alternative degrees of smoothing in the policy rule; a central bank with no “lower for

longer” strategy; and a price level targeting rule. For simplicity, throughout this section we ignore the role

31In practice, long-run inflation targets are seldom reconsidered while the rotation in monetary policy committees happens at a

higher frequency. From this viewpoint, our baseline assumption of uncertainty on all the monetary policy rule parameters is not

necessarily unwarranted.
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Figure 13: Average realized inflation and optimal inflation
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of uncertainty, and treat the model parameters as known.

Average vs Target Inflation. As emphasized in recent works (see, notably, Hills et al. 2016, Kiley and

Roberts 2017), when the probability of hitting the ZLB is non-negligible, realized inflation is on average

significantly lower than the inflation rate that the central bank targets in the interest rate rule (and which

would correspond to steady-state inflation in the absence of shocks or in a linear model). This results from

the fact that anytime the ZLB is binding (a recurrent event), the central bank effectively loses its ability to

stabilize inflation around the target. Knowing this, it may be relevant to assess the central banks outcomes

and set the corresponding target in terms of the effective average realized inflation. In this section, we

investigate whether measuring inflation target in this alternative way matter.

To this end, the analysis of the (r?, π?) relation of section 3.2 is complemented here with the analysis

of the relation between r? and the average realized inflation rate E{πt} obtained when simulating the

model for various values of r? and the associated optimal inflation target π?. In the interest of brevity, the

calculations are presented only in the case when the source of variation in the natural interest rate is the

change in average productivity growth µz.

Figure 13 illustrates the difference between the (r?, π?) curve (blue dots) and the (r?, E{πt}) curve (red

dots). The overall shape of the curve is unchanged. Unsurprisingly, both curves are identical when r? is

high enough. In this case, the ZLB is (almost) not binding and average realized inflation does not differ

much from π?. A spread between the two emerges for very low values of r?. There, for low values of the

natural rate, the ZLB incidence is higher and, as a result, average realized inflation becomes indeed lower
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Figure 14: Optimal inflation with a negative ELB
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than the optimal inflation target. However, that spread remains limited, less than 10 basis points. The

reason is that the implied optimal inflation target is sufficiently high to prevent the ZLB from binding too

frequently, thus limiting the extent to which average realized inflation and π? can differ.

Unreported simulation results show that the gap between π? and average realized inflation becomes

more substantial when the inflation target is below its optimal value. For instance, mean inflation is

roughly zero when the central bank adopts a 1% inflation target in an economy where the optimal inflation

target is π? = 2%.

A Negative Effective Lower Bound. The recent experience of many advanced economies (including the

euro area) points to an effective lower bound (ELB) for the nominal interest rate below zero. For instance,

the ECB’s deposit facility rate, which gears the overnight money market rate because of excess liquidity,

was set at a negative value of −10 basis points in June 2014 and has been further lowered down to −40

basis points in March 2016.

We use the estimated model to evaluate the implications of a negative ELB in the US. More precisely,

we set the lower bound on the nominal rate it so that

it ≥ e

and we set e to −40 basis points (in annual terms) instead of zero. Results are presented in Figure 14. As

expected, the (r?, π?) locus is shifted downwards, though by somewhat less than 40 basis points. Impor-
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tantly, its slope remains identical to the baseline case: around the baseline value for the real interest rate, a

100 basis points downward shift in the distribution of r? calls for around a 90 basis points increase in π?.

Alternative degrees of Interest Rate Smoothing. Our analysis is conditional on a specific reaction func-

tion of the central bank, described in our setup by the set of parameters aπ, ay and ρi. Among these

parameters, the smoothing parameter, ρi, has a key influence on the probability of being in a ZLB regime.

A higher smoothing has two effects in our model. The first effect is -through standard monetary policy

rule inertia- to reduce the speed at which interest rates are raised when the economy exits the lower bound

regime since the current rate inherits the past values of the effective nominal rate. The second effect comes

from the fact that the smoothing applies to the notional rate in
t that would prevail absent the lower bound

constraint (see equation 6) while the effective nominal interest rate is the maximum of zero and the no-

tional rate (see equation 5). Thus the interest rate inherits the past negative values of the notional nominal

rate. So, a higher smoothing results in maintaining the effective interest rate at zero for an extended pe-

riod of time beyond that implied by the macroeconomic shocks that initially brought the economy at the

zero lower bound constraint. Such a monetary policy strategy introduces history-dependence whereby,

in the instance of a ZLB episode, the central bank is committed to keep rates lower for longer. As this

reaction function is known to the agents in the model, this commitment to future accommodation, through

generating higher expected inflation and output, helps exiting the trap (or even not entering it).

Through both effects, a higher degree of smoothing thus reinforces the history-dependence of monetary

policy, and tends to shorten the length of ZLB episodes and the probability of hitting the ZLB constraint.

Everything else equal, one should therefore expect a lower optimal inflation rate for higher values of the

smoothing parameters. This property of the model is illustrated in Figure 15 which depicts the (r?, π?)

relation under three possible values of the smoothing parameter ρi. The value used under our baseline

scenario, i.e. posterior mean estimates, are 0.85. We also consider two alternative settings: A higher value

of ρi = .95 which is close to the inertia of the central bank reaction function in Coibion et al. (2012), and

a lower value of ρi = .8. These two values arguably encompass the existing empirical uncertainty on

the degree of smoothing, as they stand outside the 90 % probability interval of our posterior parameter

estimates.

The effect of a higher interest rate smoothing is to shift downward the (r?, π?) curve except for high

values of r? for which the probability of hitting the ZLB is close to zero and the optimal inflation target

is slightly negative. Under this strategy, the pre-crisis optimal inflation rate would be close to 0.5% in the

US.32 Conversely, a lower interest rate smoothing shifts the (r?, π?) curve upward, even for relatively high

values of r? – because the probability of being in a ZLB regime increases under this strategy. With a lower

32This is not inconsistent with the result in Coibion et al. (2012) who report an optimal inflation target of 1.5% under their

baseline calibration on US post WWII data. Indeed, the variance of their underlying shocks is higher than in our baseline which

is based on a Great-Moderation estimates. As discussed above, a higher variance of shocks induces more frequent ZLB episodes,

hence calls for a higher optimal inflation target.
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Figure 15: (r?, π?) relation with alternative ρi
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Note: The blues dots correspond to the baseline scenario wherein all the structural parameters are set at their posterior mean
θ̄. The red dots correspond to the counterfactual simulation with ρi set to 0.8. The green dots correspond to the counterfactual
simulation with ρi set to 0.95.

ρi, the pre-crisis optimal inflation rate would be close to 3.5%.

As for the slope of the (r?, π?) curve, in the empirically relevant region, it is much less affected than

the level of this locus. It is however more affected in this exercise than in other robustness experiments

considered above. A very large smoothing parameter, due to its effect outlined above on the probability

of ZLB, somewhat alleviates the extent to which an increase in the inflation target is needed. The slope is

indeed close to −.7 in that case. For a strategy associated with a low smoothing parameter, the slope is

close to −1, so closer to the benchmark case. For large values of r?, the degree of smoothing is irrelevant.

More traditional specifications of the policy rule. We also considered the case of a monetary policy rule

featuring no shadow rate (i.e. no “lower for longer” feature), as well as of a simple non intertial Taylor

rule. Results are reported in Figures 16 and 17. In the first case, the lagged interest rate is the lagged actual

rate. As soon as the lift-off occurs after a ZLB episode, interest rate follow a standard path, so monetary

policy does not “keep memory” that it has been constrained for some periods by the ZLB (unlike under

our baseline specification). In the second case, there is no inertia at all, but we use a 4-quarter inflation

rate as in the standard Taylor rule (and its implementation in Kiley and Roberts (2017)). In both cases,

the overall degree of monetary policy inertia decreases, and so the stabilization property of the policy rule

is weaker in our forward-looking model, materializing in more frequent ZLB episodes. As a result, the

optimal inflation rate is in both cases larger that in the baseline, for realistic values of the real interest rate.
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Figure 16: (r?, π?) relation with simple standard Taylor rule
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Note: The blues dots correspond to the baseline scenario . The green dots correspond to the counterfactual simulation with simple
standard Taylor rule used. Parameters of the rules on inflation and output gap are same as in the baseline, but there is no inertia
and 4-quarter inflation is used

Also the optimal inflation rate is positive for a wider range of values of r?. However, in both variants the

slope of the (r?, π?) is similar to that of our baseline curve around the sample value of r?.

A Price Level Targeting Rule. We finally consider that the rule effectively implemented by the central

bank reacts to deviations of the (log) price level p̂t = p̂t−1 + π̂t to a targeted path, instead of the gap π̂t

between the inflation rate and its optimal target. Formally, we assume that the central bank sets the policy

rate according to the following rule:

ı̂plt
t = ρi ı̂

plt
t−1 + (1− ρi)

(
ap p̂t + ay x̂t

)
+ ζR,t (7)

with ı̂t = max{ı̂plt
t , −(µz + ρ + π)}.

We perform the same exercices as before, focusing on the case in which average productivity growth

µz is the driver of changes in the natural rate. We consider two values for ap: .1 and .5. All the other

parameters of the model are set to their posterior mean.

Figure 18 reports the (r?, π?) relation obtained under these two alternative scenarios. A striking fea-

tures of that new curve is that the optimal inflation target lies then between 0% and 1% as opposed to 2.21%

in the baseline. Price level targeting makes the commitment to make-up for past inflation undershooting

(or overshooting) even stronger than what can be obtained when increasing the smoothing parameters in

a rule which targets inflation instead. This commitment stabilizes inflation expectations so that it reduces
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Figure 17: (r?, π?) relation with “‘no shadow rate” rule
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Note: The blues dots correspond to the baseline scenario . The red dots correspond to the counterfactual non inertial policy rule
used.

both the probability of hitting the zero lower bound and the average length of such episodes. As a conse-

quence, there is no incentive to bear the costs of a positive steady-state inflation and the optimal inflation

target is close to zero. This holds no matter whether the central bank react aggressively or not to deviation

of the price level to its targeted path.

Another striking result is that the (r?, π?) relation is much flatter in the vicinity of the pre-crisis level for

r? than under alternative inflation targeting monetary policy strategies. The slope is close to -0.3 instead of

the [-1, -0.7] range obtained previously. A price-level targeting strategy thus allows to keep the costs of the

ZLB small even if the natural rate of interest dropped by say 1% compared to the pre-crisis regime.

7 Summary and conclusions

In this paper, we have assessed how changes in the steady-state natural interest rate translate into changes

in the optimal inflation target in a model subject to the ZLB. Our main finding is that, starting from pre-

crisis values, a 1 percentage point decline in the natural rate should be accommodated by an increase in

the optimal inflation target of about 0.9 to 1 percentage point. For convenience, Table 2 recaps our results.

Overall, across the different concepts of optimal inflation considered in this paper, the level of optimal

inflation does vary. However it is a very robust finding that the slope of the (r?, π?) relation is close to -1

in the vicinity of the pre-crisis value of steady-state real interest rates.

37



Figure 18: (r?, π?) relation with price level targeting strategy
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Note: Simulations obtained under the price level targeting policy rule given in equation 7. The blues (red) dashes correspond to
the scenario wherein ap = .1 (.5). All the other structural parameters are set at their posterior mean θ̄.

Table 2: Effect of a decline in r? under alternative notions of optimal inflation

Baseline Lower r? ∆

Mean of π? 2.00 3.00 1.00

Median of π? 1.96 2.90 .94

π? at post. mean 2.21 3.20 .99

π? at post. median 2.12 3.11 .99

π?? 2.40 3.30 .90

π??, frozen MP 2.24 3.16 .92

Average realized inflation at post. mean 2.20 3.19 .99

π? at post. mean, ELB -40 bp 1.90 2.83 .93

Average realized inflation at post. mean, ELB -40 bp 1.86 2.77 .91

π? at post. mean, higher ρi 0.44 1.13 .69

π? at post. mean, price level targeting 0.06 0.32 .26

Note: all figures are in annualized percentage rate.

In our analysis, we have considered adjusting the inflation target as the only option at the policy-

maker’s disposal. This is not to say that this is the only option in their choice set. As a matter of fact,

recent discussions revolving around monetary policy in the new normal have suggested that the various
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non-conventional measures – forward guidance on interest rates and large scale asset purchases – used in

the aftermath of the Great Recession could feature permanently in the policy toolbox. In particular, uncon-

ventional monetary policies could represent useful second-best instruments when the ZLB is reached, as

advocated by Reifschneider (2016) or Sims and Wu (2019) (see also Eberly et al. 2019 and Chung et al. 2019

for recent work documenting the efficiency of such instruments). Beyond these monetary policy measures,

fiscal policies could also play a significant role, as emphasized by Correia et al. (2013). As a result, the ZLB

might be less stringent a constraint in a practical policy context than in our analysis as argued in Debortoli

et al. (2019) among others. However, the efficacy and the costs of these policies should also be part of the

analysis. The complete comparison of these policy trade-offs goes beyond the scope of the present paper.

An alternative would consist in a change of monetary policy strategies, e.g., adopting variants of the

price-level targeting strategy, as recently advocated by e.g. Williams (2016) or Bernanke et al. (2019). Our

exercises emphasizes that, when the central bank follows such a “making-up” strategy for past inflation

deviations from target, the case for increasing the inflation target is much reduced. Nevertheless, and

as with forward guidance policies, these results are obtained under the assumption that private agents

believe and understand the commitment of the central banker to deviate from its inflation target in order to

compensate for previous deviations, a debatable assumption as emphasized in e.g. Andrade et al. (2019a).

We have discussed the potential desirability of higher inflation target, abstracting from the challenges

of implementing an eventual transition to the new objective. In the current lowflation environment, in-

creasing the inflation target in reaction to a drop in the steady-state value of the real interest rate might

raise some credibility issues. However, a move towards make-up strategies would as well raise substantial

credibility issues, as these imply an arguably time-inconsistent commitment to deviate from the inflation

target once it has been reached.

Finally, our analysis has also abstracted from forces identified in the literature as warranting a small,

positive inflation target, irrespective of ZLB issues, as emphasized in e.g. Bernanke et al. (1999) and Kiley

et al. (2007). The first is grounded on measurement issues, following the finding from the 1996 Boskin

report that the consumer price index did probably over estimate inflation in the US by over 1 percentage

point in the early nineties. The second argument is rooted in downward nominal rigidities. In an economy

where there are such downward rigidities (e.g. in nominal wages) a positive inflation rate can help "grease

the wheel" of the labor market by facilitating relative price adjustments. Symmetrically, we also abstracted

from forces calling for lower inflation targets. The most obvious is the so-called Friedman (1969) rule,

according to which average inflation should be equal to minus the steady-state real interest rate, hence be

negative, in order to minimize loss of resources or utility and the distortionary wedge between cash and

credit goods (e.g. consumption and leisure) induced by a non-zero nominal interest rate. Presumably,

all those were taken into account when deciding the current inflation targets. It is not obvious, however,

that such considerations would alter our conclusions regarding how the optimal inflation target changes

in response to a downward shift in r?. A complete assessment is left for future research.
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Appendix

A Various long-run and optimal inflation rates considered

Table A.1: Various notions of long-run and optimal inflation in the model

π Any inflation target, used to define the “inflation gap” that enters the Taylor rule

E(πt) Average realized inflation, might differ from π due to ZLB

π?(θ) Inflation target that minimizes the loss function given a structural parameters θ

π?(θ̄) π? assuming parameters at post. mean

π?(median(θ)) π? assuming parameters at post. median

π̄? average of π?(θ) over the posterior distribution of θ, i.e.,
∫

θ π?(θ)p(θ|XT)dθ

Median(π?) Median of π?(θ) over the posterior distribution

π?? Inflation target that minimizes the average loss function over the posterior distribution of θ

B Illustrating model properties: moments, IRF to monetary policy shock

This section illustrate basic properties of the estimated baseline model.

Table B.1: Moments of key variables

Data 1985Q2-2008Q3

Variable Inflation 4-Quarter -Inflation Output gap Output growth Interest rate

Std. dev. 0.22 0.73 — 0.54 2.20

Simulated Model (with ZLB constraint)

Variable Inflation 4-Quarter -Inflation Output gap Output growth Interest rate

Std. dev. 0.43
(0.11)

1.53
(0.41)

0.58
(0.14)

0.99
(0.14)

2.15
(0.14)

Note: In percent. Inflation is quarterly inflation (not annualized). Interest rate is annualized. 4-Quarter
inflation is the year-on-year growth rate of the price index. The model moments are based on 1000
simulations at the posterior mean. At each simulation, shocks are drawn (with replacement) from the
historical shocks. The figures in parentheses are the standard deviation across bootstrap simulations.
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Figure B.1: Response to a monetary policy shock
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Note: Plain line : response to a monetary policy shoxk leading to -25 basis point cut in the nominal interest on impact. Inflation is
the annualized quarterly growth rate of the price index. Interest rate is annualized.
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C Illustrating the “lower for longer” property of the model policy rule

Figure C.1: Interest rate, inflation and output path in a recession with ELB scenario
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Note: Plain line : actual model policy rule. Dashed line: illustrative interest rule featuring actual rate lagged term rather than
lagged “notional rate” term. The latter rule has no feedback on the model.

In this section, we illustrate how the “lower for longer” property of the model policy rule works in

practice. To this end, we assume that the model starts in steady state and is hit by a series of unexpected

risk-premium shocks that drive the economy to the ZLB. Given the implied path for inflation π̂t, the output

gap x̂t, and the notional rate ı̂n
t , we reconstruct the path of an alternative interest rate ı̃t that would obey

ı̃n
t = ρi ı̃t−1 + (1− ρi)(aππ̂t + ay x̂t) + ζR,t

ı̃t = max{ı̃n
t ,−(µz + ρ + π)}.

In this alternative specification, the notional rate does not depend on its lagged value but rather on the

lagged value of the nominal interest rate. Away from the ZLB, this has no discernible effect. However,

when the economy hits the ZLB, ı̃n
t will mechanically increase sooner than ı̂n

t . Figure C.1 reports the out-

come of this simulation. The solid blue line shows the paht of ı̂t while the dashed line shows the implied

path for ı̃t.
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D The distribution of ZLB spells duration

Figure D.1: Distribution of ZLB spells duration at the posterior mean
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Note: Histograms are based on a simulated sample of 500,000 quarters. Simulations are carried out assuming in turn that the
inflation target is the estimated inflation target ; and then that the inflation target is the optimal inflation target obtained using the
mean of the posterior density of estimated parameters

E The distribution of optimal inflation targets

Figure E.1: Posterior Distribution of π?
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F The welfare cost of inflation

Following a standard approach when assessing alternative policies, we complement our characterization

of optimal inflation by providing measures of consumption-equivalent welfare gains/losses of choosing a

suboptimal inflation target.

Let W (π) denote welfare under the inflation target π. It is defined as

W (π) = E0

∞

∑
t=0

βt
[

eζg,t log(Ĉt(π)− ηĈt−1(π)e−ζz,t)− χ

1 + ν

∫ 1

0
Nt(π, h)1+νdh

]
+ Ψ0(µz, ζz).

Importantly, the welfare function is stated in terms of detrended consumption. The term Ψ0 captures the

part of welfare that depends exclusively on µz and ζz,t and is not affected by changes in the inflation target.

Let us now consider a deterministic economy in which labor supply is held constant at the undistorted

steady-state level Nn and in which agents consume the constant level of detrended consumption Ĉ(π). We

seek to find the Ĉ(π) such that this deterministic economy enjoys the same level of welfare as above. Thus

W (π) = E0

∞

∑
t=0

βt
[

log
(
(1− η)Ĉ(π)

)
− χ

1 + ν
N1+ν

n

]
+ Ψ0(µz, 0).

Direct manipulations thus yield

W (π) =
1

1− β

[
log
(
(1− η)Ĉ(π)

)
− χ

1 + ν
N1+ν

n

]
+ Ψ0(µz, 0)

Consider now an economy with π = π? and another one with π = π̃ 6= π?. Imagine that in the latter,

consumer are compensated in consumption units in such a way that they are as well off with π̃ as with π?.

Let 1 + ϕ(π) denote this percentage increase in consumption. Thus ϕ(π) is such that

W (π?) = E0

∞

∑
t=0

βt
[

log
(
(1 + ϕ)(1− η)Ĉ(π)

)
− χ

1 + ν
N1+ν

n

]
+ Ψ0(µz, 0)

=
log(1 + ϕ(π))

1− β
+W (π)

It then follows that

ϕ(π) = exp{(1− β)[W (π?)−W (π)]} − 1.

In practice, welfare is approximated to second order.

We compute ϕ(π) under two alternative steady-state interest rate scenarios. In the first scenario, we set

r? to the baseline estimated value, corresponding to the posterior mean of µz + ρ. In the second scenario,

we consider a downward shift in µz by one percentage point (in annual terms), resulting in a lower steady-

state real rate. The results are reported in Figure F.1. The blue lines show ϕ(π) in the first scenario and the

red lines show ϕ(π) under a lower real interest rate. For ease of interpretation, the dashed, vertical lines

indicate the optimal values of inflation under the two alternative interest rate scenarios.
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Figure F.1: Welfare cost of inflation at the posterior mean
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Note: The figure reports the welfare cost of inflation stated as a percentage of steady-state consumption in the optimal setting.

Figures F.1 suggests that in the baseline scenario, the welfare cost of raising or lowering the inflation

target by one percentage point is relatively mild. However, this conclusion is not robust to a lower real

interest rate. As the red line shows, with a one percentage rate lower r?, the welfare cost of inflation is

asymmetric. It would be much costlier to lower the inflation target than to raise it in the neighborhood of

the optimal target. In particular, keeping the inflation target unchanged when faced with a one-percentage

point decline in r? give rise to a 1.5% consumption loss.
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G Further illustrations of the (r?, π?) relation

G.1 When µz varies

Figure G.1: (r?, π?) locus when µz varies
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Note: Blue: parameters set at the posterior mean; light blue: parameters set at the posterior median; Lighter blue: parameters set
at the posterior mode. Memo: r? = ρ + µz. Range for µz: 0.4% to 10% (annualized) .

G.2 When ρ varies

Figure G.2: (r?, π?) locus when ρ varies
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Note: Blue: parameters set at the posterior mean; light blue: parameters set at the posterior median; Lighter blue: parameters set
at the posterior mode. Memo: r? = ρ + µz. Range for µz: 0.4% to 10% (annualized) .
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H Nominal and Real Interest Rates

Figure H.1: (r?, i?) locus (at the posterior mean)
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I The probability of ZLB under large shocks

Figure I.1: Relation between probability of ZLB at optimal inflation and r? (at the posterior mean)
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in the “large shocks” case; the green dots correspond to the (r?, π?) locus in the “large shocks” case when π? is left at its sample
inflation value.
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J Distribution of π? following a downward shift of the distribution of r?

Figure J.1: Counterfactual - US
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K Model Solution

K.1 Households

K.1.1 First Order Conditions

The Lagrangian associated with the program (1) under constraint (2) is

Lt = Et

∞

∑
s=0

βs
{

eζc,t+s log(Ct+s − η̂Ct+s−1)−
χ

1 + ν

∫ 1

0
eζh,t+s(Nt+s(h))1+νdh

− Λt+s

Pt+s

[
Pt+sCt+s + Qt+sBt+se−ζq,t+s + Pt+staxt+s −

∫ 1

0
Wt+s(h)Nt+s(h)dh− Bt+s−1 − Pt+sdivt+s

]}
,

The associated first-order condition with respect to bonds is

∂Lt

∂Bt
= 0⇔ ΛtQte−ζq,t = βEt

{
Λt+1

Πt+1

}
, (K.1)

and the first-order condition with respect to consumption is

∂Lt

∂Ct
= 0⇔ eζc,t

Ct − η̂Ct−1
− βη̂Et

{
eζc,t+1

Ct+1 − ηCt

}
= Λt. (K.2)

where Πt ≡ Pt/Pt−1 represents the (gross) inflation rate, and

We induce stationarity by normalizing trending variables by the level of technical progress. To this end,

we use the subscript z to refer to a normalized variable. For example, we define

Cz,t ≡
Ct

Zt
, Λz,t ≡ ΛtZt,

where it is recalled that

Zt = ezt

with

zt = µz + zt−1 + ζz,t.

We then rewrite the first order condition in terms of the normalized variables. Equation (K.2) thus

rewrites
eζc,t

Cz,t − ηCz,t−1e−ζz,t
− βηEt

{
e−ζz,t+1

eζc,t+1

Cz,t+1 − ηCz,te−ζz,t+1

}
= Λz,t, (K.3)

Similarly, equation (K.1) rewrites

Λz,tQte−ζq,t = βe−µz Et

{
e−ζz,t+1

Λz,t+1

Πt+1

}
, (K.4)

where we defined

η ≡ η̂e−µz .
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Let us define it ≡ − log(Qt) and for any generic variable Xt

xt ≡ log(Xt), x̂t ≡ xt − x

where x is the steady-state value of x. Using these definitions, log-linearizing equation (K.3) yields

ĝt + βηEt{ĉt+1} − (1 + βη2)ĉt + ηĉt−1 − η(ζz,t − βEt {ζz,t+1}) = ϕ−1λ̂t (K.5)

where we defined

ϕ−1 ≡ (1− βη)(1− η),

ĝt = (1− η)(ζc,t − βηEt{ζc,t+1}).

Similarly, log-linearizing equation (K.4) yields

λ̂t = ı̂t + Et{λ̂t+1 − π̂t+1 − ζz,t+1}+ ζq,t. (K.6)

K.2 Firms

Expressing the demand function in normalized terms yields

Yz,t( f ) =
(

Pt( f )
Pt

)−θp

Yz,t,

In the case of a firm not drawn to re-optimize, this equation specializes to (in log-linear terms)

ŷt,t+s( f )− ŷt+s = θp(π̂t,t+s − δ̂
p
t,t+s − p̂?t ( f )). (K.7)

K.2.1 Cost Minimization

The real cost of producing Yt( f ) units of good of f is

Wt

Pt
Lt( f ) =

Wt

Pt

(
Yt( f )

Zt

)φ

(K.8)

The associated real marginal cost is thus

St( f ) = φ
Wt

PtZt

(
Yt( f )

Zt

)φ−1

(K.9)

It is useful at this stage to restate the production function in log-linearized terms:

ŷz,t( f ) =
1
φ

n̂t( f ) (K.10)
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K.2.2 Price Setting of Intermediate Goods: Optimization

Firm f chooses P?
t ( f ) in order to maximize

Et

∞

∑
s=0

(βαp)
sΛt+s

{
(1 + τp,t+s)

Vp
t,t+sP?

t ( f )
Pt+s

Y?
t,t+s( f )− S (Yt,t+s( f ))

}
, (K.11)

subject to the demand function

Y?
t,t+s( f ) =

(
Vp

t,t+sP?
t ( f )

Pt+s

)−θp

Yt+s.

and the cost schedule (K.8), where Λt is the representative household’s marginal utility of wealth, and

Et{·} is the expectation operator conditional on information available as of time t. That Λt appears in the

above maximization program reflects the fact that the representative household is the ultimate owner of

firm f .

The associated first-order condition is

Et

∞

∑
s=0

(βαp)
sΛt+s


(

Vp
t,TP?

t ( f )
Pt+s

)1−θp

Yt+s −
µp

1 + τp
eζu,t+s

Wt+s

Pt+s
φ

(Vp
t,t+sP?

t ( f )
Pt+s

)−θp
Yt+s

Zt+s

φ = 0,

where

µp ≡
θp

θp − 1
.

This rewrites (
P?

t ( f )
Pt

)1+θp(φ−1)

=
µp

1 + τp

Kp,t

Fp,t

where

Kp,t = Et

∞

∑
s=0

(βαp)
sΛz,t+seζu,t+s

Wz,t+s

Pt+s
φ

( Vp
t,t+s

Πt,t+s

)−θp

Yz,t+s

φ

and

Fp,t = Et

∞

∑
s=0

(βαp)
sΛz,T

(
Vp

t,t+s

Πt,t+s

)1−θp

Yz,t+s,

where Πt,t+s ≡ Pt+s/Pt.

Notice that

Kp,t = φΛz,teζu,t
Wz,t

Pt
(Yz,t)

φ + βαpEt

(
(Πt))γp

Πt+1

)−φθp

Kp,t+1,

and

Fp,t = Λz,tYz,t + βαpEt

(
(Πt)γp

Πt+1

)1−θp

Fp,t+1.

With a slight abuse of notation, we obtain the steady-state relation(
P?

P

)1+θp(φ−1)

=
µp

1 + τp
φ

Wz

P
Yφ−1

z
1− βαp(Π)(1−γp)(θp−1)

1− βαp(Π)φθp(1−γp)
.
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Log-linearizing yields

[1 + θp(φ− 1)](p?t − pt) = k̂p,t − f̂p,t

k̂p,t = (1−ωK,p)[λ̂z,t + ω̂t + φŷz,t + ζu,t] + ωK,pEt{k̂p,t+1 + φθp(π̂t+1 − γpπ̂t)},

and

f̂p,t = (1−ωF,p)(λ̂z,t + ŷz,t) + ωF,pEt{ f̂p,t+1 + (θp − 1)(π̂t+1 − γpπ̂t)}.

where we defined the de-trended real wage

ωt ≡ wz,t − pt

and the auxiliary parameters

ωK,p ≡ βαp(Π)(1−γp)φθp

and

ωF,p ≡ βαp(Π)(1−γp)(θp−1).

Finally, notice that

P1−θp
t =

∫ 1

0
Pt( f )1−θp d f

= (1− αp)(P?
t )

1−θp + αp

∫ 1

0
[(Πt−1))

γp Pt−1( f )]1−θp d f .

Thus

1 = (1− αp)

(
P?

t
Pt

)1−θp

+ αp

[
(Πt−1)

γp

Πt

]1−θp

.

The steady-state relation is (
P?

P

)1−θp

=
1− αp(Π)(1−γp)(θp−1)

1− αp
.

Log-linearizing this yields

p̂?t =
ωF,p

β−ωF,p
(π̂t − γpπ̂t−1).

K.3 Unions

K.3.1 Wage Setting

Union h sets W?
t (h) so as to maximize

Et

∞

∑
s=0

(βαw)
s
{
(1 + τw)

Λt+s

Pt+s
eγzµzsVw

t,t+sW
?
t (h)Nt,t+s(h)−

χ

1 + ν
eζh,t+s(Nt,t+s(h))1+ν

}
,

where

Nt,t+s(h) =
(

eγzµzsVw
t,t+sW

?
t (h)

Wt+s

)−θw

Nt+s.
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The associated first-order condition is

Et

∞

∑
s=0

(βαw)
s

{
ΛT

Wt+s

Pt+s
ht+s

(
eγzµzsVw

t,T

Πw
t,t+s

W?
t (h)

Wt+s

)1−θw

− µw

1 + τw
χeζh,t+s

(
eγzµzsVw

t,t+s

Πw
t,t+s

W?
t (h)

Wt+s

)−(1+ν)θw

N1+ν
t+s

}
= 0,

where Πw
t,t+s = Wt+s/Wt.

Rearranging yields (
W?

t (h)
Wt

)1+θwν

=
µw

1 + τw

Kw,t

Fw,t
,

where

Kw,t = Et

∞

∑
s=0

(βαw)
s

χeζh,t+s

(
eγzµzsVw

t,t+s

Πw
t,t+s

)−(1+ν)θw

N1+ν
t+s

 ,

Fw,t = Et

∞

∑
s=0

(βαw)
s

Λt+s
Wt+s

Pt+s
Nt+s

(
eγzµzsVw

t,t+s

Πw
t,t+s

)1−θw
 ,

and where Πw
t,t+s ≡Wt+s/Wt.

Notice that

Kw,t = χeζh,t N1+ν
t + βαwEt

{(
eγzµz

(Πt)γw

Πw,t+1

)−(1+ν)θw

Kw,t+1

}
,

and

Fw,t = Λz,t
Wz,t

Pt
Nt + βαwEt

{(
eγzµz

(Πt)γw

Πw,t+1

)1−θw

Fw,t+1

}
.

The associated steady-state relations are(
W?

W

)1+θwν

=
µw

1 + τw

Kw

Fw
,

Kw =
χN1+ν

1− βαw[e(1−γz)µz(Π)1−γw ](1+ν)θw
,

Fw =
Λ Wz

P H
1− βαw[e(1−γz)µz(Π)1−γw ]θw−1

.

Log-linearizing the above equations finally yields

(1 + θwν)(w?
t − wt) = k̂w,t − f̂w,t,

k̂w,t = (1−ωK,w)[(1 + ν)n̂t + ζh,t] + ωK,wEt{k̂w,t+1 + (1 + ν)θw(π̂w,t+1 − γwπ̂t)},
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f̂w,t = (1−ωF,w)(λ̂z,t + ω̂t + n̂t) + ωF,wEt{ f̂w,t+1 + (θw − 1)(π̂w,t+1 − γwπ̂t)},

where we defined

ωK,w = βαw[e(1−γz)µz(Π)(1−γw)](1+ν)θw ,

ωF,w = βαw[e(1−γz)µz(Π)(1−γw)]θw−1.

To complete this section, notice that

1 = (1− αw)

(
W?

t
Wt

)1−θw

+ αw

(
eγzµz

[Πt−1]
γw

Πw,t

)1−θw

and

w?
t − wt =

ωF,w

β−ωF,w
(π̂w,t − γwπ̂t−1).

K.4 Market Clearing

The clearing on the labor market implies

Nt =

(
Yt

Zt

)φ ∫ 1

0

(
Pt( f )

Pt

)−φθp

d f .

Let us define

Ξp,t =

( ∫ 1

0

(
Pt( f )

Pt

)−φθp

d f

)−1/(φθp)

,

so that

Nt = (Yz,tΞ
−θp
p,t )φ.

Hence, expressed in log-linear terms, this equation reads

n̂t = φ(ŷz,t − θp ξ̂p,t).

Notice that

Ξ−φθp
p,t = (1− αp)

(
P?

t
Pt

)−φθp

+ αp

(
[Πt−1]

γp

Πt

)−φθp

Ξ−φθp
p,t−1.

The associated steady-state relation is

Ξ−φθp
p =

(1− αp)

1− αp(Π)(1−γp)φθp

(
P?

P

)−φθp

.

Log-linearizing the price dispersion yields

ξ̂p,t = (1−ωΞ)(p?t − pt) + ωΞ[ξ̂p,t−1 − (π̂t − γpπ̂t−1)]

where we defined

ωΞ = αp(Π)(1−γp)φθp .
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K.5 Natural Rate of Output

The natural rate of output is the level of production that would prevail in an economy without nominal

rigidities, i.e. αp = αw = 0 and without cost-push shocks (i.e., ζu,t = 0). Under such circumstances, the

dynamic system simplifies to

ŵn
z,t + (φ− 1)ŷn

z,t = 0,

νn̂n
t + ζh,t = λ̂n

z,t + ŵn
z,t,

n̂n
t = φŷn

z,t,

ĝt + βηEt{ŷn
z,t+1} − (1 + βη2)ŷn

z,t + ηŷn
z,t−1 − η(ζz,t − βEt{ζz,t+1}) = ϕ−1λ̂n

z,t,

where the superscript n stands for natural.

Combining these equations yields

[ϕ(1 + βη2) + ω]ŷn
z,t − ϕβηEt{ŷn

z,t+1} − ϕηŷn
z,t−1 = ϕĝt − ζh,t − ϕηζ∗z,t

where we defined

ω ≡ νφ + φ− 1,

and

ζ∗z,t = ζz,t − βEt{ζz,t+1}

K.6 Working Out the Steady State

The steady state is defined by the following set of equations

1− βη

(1− η)C
= Λz,

e−i = βe−µz Π−1,

(
P?

P

)1+θp(φ−1)

=
µp

1 + τp

Kp

Fp
,

Kp =
φΛz

Wz
P Yφ

z

1− βαp(Π)φθp(1−γp)
,
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Fp =
ΛzYz

1− βαp(Π)(1−γp)(θp−1)
,

(
P?

P

)1−θp

=
1− αp(Π)(1−γp)(θp−1)

1− αp
,

(
W?

W

)1+θwν

=
µw

1 + τw

Kw

Fw
,

Kw =
χN1+ν

1− βαw[e(1−γz)µz(Π)1−γw ](1+ν)θw
,

Fw =
Λz

Wz
P H

1− βαw[e(1−γz)µz(Π)1−γw ]θw−1
,

(
W?

W

)1−θw

=
1− αw[e(1−γz)µz(Π)(1−γw)]θw−1

1− αw
,

Πw = Πeµz

We can solve for i and Πw using

Πw = Πeµz

1 = βe−µz eiΠ−1,

Standard manipulations yield

1−ωK,p

1−ωF,p

(
β(1− αp)

β−ωF,p

) 1+θp(φ−1)
θp−1

=
µp

1 + τp
φ

Wz

P
Yφ−1

z ,

where we used

ωK,p = βαp(Π)(1−γp)φθp

ωF,p = βαp(Π)(1−γp)(θp−1)

Similar manipulations yield

1−ωK,w

1−ωF,w

(
β(1− αw)

β−ωF,w

) 1+θwν
θw−1

=
µw

1 + τw

χNν

Λz
Wz
P

,

where we used

ωK,w = βαw[e(1−γz)µz(Π)(1−γw)](1+ν)θw
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ωF,w = βαw[e(1−γz)µz(Π)(1−γw)]θw−1

Combining these conditions yields

1−ωK,w

1−ωF,w

(
β(1− αw)

β−ωF,w

) 1+θwν
θw−1 1−ωK,p

1−ωF,p

(
β(1− αp)

β−ωF,p

) 1+θp(φ−1)
θp−1

=
µw

1 + τw

µp

1 + τp

1− η

1− βη
φχNνYφ

z

Now, recall that

(YzΞ−θp
p )φ = N

Then, using

Ξ−φθp
p =

1− αp

1−ωΞ

(
P?

P

)−φθp

,

and (
P?

P

)−φθp

=

(
β(1− αp)

β−ωF,p

)−φ
θp

θp−1

we end up with

NνYφ
z =

 1− αp

1−ωΞ

(
β(1− αp)

β−ωF,p

)−φ
θp

θp−1

ν

Y(1+ν)φ
z ,

so that

Ω =
µw

1 + τw

µp

1 + τp

1− η

1− βη
φχY(1+ν)φ

z ,

where

Ω =
1−ωK,w

1−ωF,w

(
β(1− αw)

β−ωF,w

) 1+θwν
θw−1 1−ωK,p

1−ωF,p

(
β(1− αp)

β−ωF,p

) 1+θp [(1+ν)φ−1]
θp−1

(
1−ωΞ

1− αp

)ν

Recall that we defined the natural rate of output as the level of production that would prevail in an

economy without nominal rigidities, i.e. αp = αw = 0, and no cost-push shock. Under such circumstances,

the steady-state value of the (normalized) natural rate of output Yn
z obeys

1 =
µw

1 + τw

µp

1 + τp

1− η

1− βη
φχ(Yn

z )
φ(1+ν).

It follows that the steady-state distortion due to sticky prices and wages (and less than perfect indexa-

tion) is (
Yz

Yn
z

)φ(1+ν)

= Ω.

L Welfare

Let us define for any generic variable Xt

Xt − X
X

= x̂t +
1
2

x̂2
t +O(||ζ||3)
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Xt − Xn

Xn = x̃t +
1
2

x̃2
t +O(||ζ||3)

Below, we repeatedly use the following two lemmas:

Lemma 1. Let g(·) be a twice differentiable function and let X be a stationary random variable. Then

E{g(X)} = g(E{X}) + 1
2

g′′(E{X})V{X}+O(||X||3).

Lemma 2. Let g(·) be a twice differentiable function and let x be a stationary random variable. Then

V{g(X)} = [g′(E{X})]2V{X}+O(||X||3).

In the rest of this section, we take a second-order approximation of welfare, where we consider the

inflation rate as an expansion parameter. It follows that we consider the welfare effects of non-zero trend

inflation only up to second order.

L.1 Second-Order Approximation of Utility

Consider first the utility derived from consumption. For the sake of notational simplicity, define

U(Cz,t − ηCz,t−1e−ζz,t) = log(Cz,t − ηCz,t−1e−ζz,t)

We thus obtain

eζc,tU(Cz,t − ηCz,t−1e−ζz,t) =
1

1− η

[(
Cz,t − Cn

z
Cn

z

)
− η

(
Cz,t−1 − Cn

z
Cn

z

)

− 1
2

1
(1− η)

(
Cz,t − Cn

z
Cn

z

)2

+
η

(1− η)

(
Cz,t − Cn

z
Cn

z

)(
Cz,t−1 − Cn

z
Cn

z

)
− 1

2
η2

(1− η)

(
Cz,t−1 − Cn

z
Cn

z

)2

+ ζc,t

(
Cz,t − Cn

z
Cn

z

)
− ηζc,t

(
Cz,t−1 − Cn

z
Cn

z

)
− η

(1− η)
ζz,t

(
Cz,t − Cn

z
Cn

z

)
+

η

(1− η)
ζz,t

(
Cz,t−1 − Cn

z
Cn

z

)]
+ t.i.p +O(||ζ||3),

where t.i.p stands for terms independent of policy.

Then, using
Cz,t − Cn

z
Cn

z
= c̃z,t +

1
2

c̃2
z,t +O(||ζ||3)

we obtain

eζc,tU(Cz,t − ηCz,t−1e−ζz,t) =
1

1− η

[
c̃z,t − ηc̃z,t−1 +

1
2
(c̃2

z,t − ηc̃2
z,t−1)

− 1
2

1
1− η

c̃2
z,t +

η

1− η
c̃z,t c̃z,t−1 −

1
2

η2 1
1− η

c̃2
z,t−1

+ ζc,t(c̃z,t − ηc̃z,t−1)−
η

1− η
ζz,t(c̃z,t − c̃z,t−1)

]
+ t.i.p +O(||ζ||3),
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Using

ϕ−1 = (1− βη)(1− η)

we obtain

eζc,tU(Cz,t − ηCz,t−1e−ζz,t) =
1

1− η

[
ỹz,t − ηỹz,t−1 +

1
2
(ỹ2

z,t − ηỹ2
z,t−1)

− 1
2
(1− βη)ϕỹ2

z,t + η(1− βη)ϕỹz,tỹz,t−1 −
1
2

η2(1− βη)ϕỹ2
z,t−1

+ ζc,t(ỹz,t − ηỹz,t−1)− η(1− βη)ϕζz,t(ỹz,t − ỹz,t−1)

]
+ t.i.p +O(||ζ||3),

where we imposed the equilibrium condition on the goods market.

Similarly, taking a second-order approximation of labor disutility in the neighborhood of the natural

steady-state Nn yields

χ

1 + ν
eζh,t(Nt(h))1+ν = χ(Nn)1+ν

(
Nt(h)− Nn

Nn

)
+

1
2

χν(Nn)1+ν

(
Nt(h)− Nn

Nn

)2

+ χ(Nn)1+ν

(
Nt(h)− Nn

Nn

)
ζh,t + t.i.p +O(||ζ||3).

Now, using
Nt(h)− Nn

Nn = ñt(h) +
1
2

ñt(h)2 +O(||ζ||3)

we get

χ

1 + ν
eζh,t(Nt(h))1+ν = χ(Nn)1+ν

[
ñt(h) +

1
2
(1 + ν)ñt(h)2 + ñt(h)ζh,t

]
+ t.i.p +O(||ζ||3).

Integrating over the set of labor types, one gets∫ 1

0

χ

1 + ν
eζh,t(Nt(h))1+νdh = χ(Nn)1+ν

[
Eh{ñt(h)}+

1
2
(1+ ν)Eh{ñt(h)2}+Eh{ñt(h)}ζh,t

]
+ t.i.p+O(||ζ||3).

Now, since

Vh{ñt(h)} = Eh{ñt(h)2} −Eh{ñt(h)}2

the above relation rewrites

∫ 1

0

χ

1 + ν
eζh,t(Nt(h))1+νdh = χ(Nn)1+ν

[
Eh{ñt(h)}+

1
2
(1 + ν)(Vh{ñt(h)}+ Eh{ñt(h)}2)

+ Eh{ñt(h)}ζh,t

]
+ t.i.p +O(||ζ||3).

We need to express Eh{ñt(h)} and Vh{ñt(h)} in terms of the aggregate variables. To this end, we first

establish a series of results, on which we draw later on.

59



L.2 Aggregate Labor and Aggregate Output

Notice that
θw − 1

θw
ñt = log

(∫ 1

0

(
Nt(h)

Nn

)(θw−1)/θw

dh

)
.

Then, applying lemma 1, one obtains

ñt = Eh{ñt(h)}+
1
2

θw

θw − 1
Eh

{(
Nt(h)

Nn

) θw−1
θw

}−2

Vh

{(
Nt(h)

Nn

) θw−1
θw

}
+O(||ζ||3).

Then, notice that

Vh

{(
Nt(h)

Nn

) θw−1
θw

}
= Vh

{
exp

[
(1− θ−1

w ) log
(

Nt(h)
Nn

)]}
so that, by applying lemma 2, one obtains

Vh

{(
Nt(h)

Nn

) θw−1
θw

}
= (1− θ−1

w )2 exp
(
(1− θ−1

w )Eh{ñt(h)}
)2

Vh{ñt(h)}+O(||ζ||3).

Similarly

Eh

{(
Nt(h)

Nn

) θw−1
θw

}
= Eh

{
exp

[
(1− θ−1

w )ñt(h)
]}

so that, by applying lemma 1 once more, one obtains

Eh

{(
Nt(h)

Nn

) θw−1
θw

}
= exp

[
(1− θ−1

w )Eh{ñt(h)}
] (

1 +
1
2
(1− θ−1

w )2Vh{ñt(h)}
)
+O(||ξ||3).

Then combining the previous results

ñt = Eh{ñt(h)}+
1
2

1
1− θ−1

w

(1− θ−1
w )2Vh{ñt(h)}(

1 + 1
2 (1− θ−1

w )2Vh{ñt(h)}
)2 +O(||ζ||3).

It is convenient to define

∆h,t ≡ Vh{ñt(h)}

so that finally

ñt = Eh{ñt(h)}+ Q0,h +
1− θ−1

w
2

Q1,h(∆h,t − ∆n) +O(||ζ||3).

where we defined

Q0,h =
1−θ−1

w
2 ∆n[

1 + 1
2 (1− θ−1

w )2∆n

]2

and

Q1,h =
1− 1

2 (1− θ−1
w )2∆n[

1 + 1
2 (1− θ−1

w )2∆n

]3
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Applying the same logic on output and defining

∆y,t ≡ V f {ỹt( f )}

one gets

ỹz,t = E f {ỹz,t( f )}+ Q0,y +
1− θ−1

p

2
Q1,y(∆y,t − ∆y) +O(||ζ||3).

where we defined

Q0,y =

1−θ−1
p

2 ∆y[
1 + 1

2 (1− θ−1
p )2∆y

]2

and

Q1,y =
1− 1

2 (1− θ−1
p )2∆y[

1 + 1
2 (1− θ−1

p )2∆y

]3

Then recall that

Nt =
∫ 1

0
Lt( f )d f =

∫ 1

0
Yz,t( f )φd f

which implies
Nt

Nn =
∫ 1

0

(
Yz,t( f )

Yn
z

)φ

d f

where we used Nn = (Yn
z )

φ.

This relation rewrites

ñt = log

(∫ 1

0

(
Yz,t( f )

Yn
z

)φ

d f

)
This expression is of the form

ñt = log

(
E f

{(
Yz,t( f )

Yn
z

)φ
})

.

Using lemmas 1 and 2, we obtain the following three approximations

ñt = E f {φ(ỹz,t( f )− zt)}+
1
2

V f

{(
Yz,t( f )

Yn
z

)φ
}

(
E f

{(
Yz,t( f )

Yn
z

)φ
})2 +O(||ζ||3),

V f

{(
Yz,t( f )

Yn
z

)φ
}

= φ2 [exp [φE{ỹz,t( f )}]]2 V f {ỹz,t( f )}+O(||ζ||3),

E f

{(
yz,t( f )

yn
z

)φ
}

= exp [φE{ỹz,t( f )}]
(

1 +
1
2

φ2V f {ỹz,t( f )}
)
+O(||ζ||3).

Combining these expressions as before yields

ñt = φE f {ỹz,t( f )}+ 1
2

φ2 V f {ỹz,t( f )}(
1 + 1

2 φ2V f {ỹz,t( f )}
)2 +O(||ζ||3).
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We finally obtain

ñt = φE f {ỹz,t( f )}+ P0,y +
1
2

φ2P1,y(∆y,t − ∆y) +O(||ζ||3),

where we used

V f {ỹz,t( f )}(
1 + 1

2 φ2V f {ỹz,t( f )}
)2 =

∆y(
1 + 1

2 φ2∆y
)2 +

1− 1
2 φ2∆y(

1 + 1
2 φ2∆y

)3 (∆y,t − ∆y) +O(||ζ||3)

and defined

P0,y =
1
2 φ2∆y(

1 + 1
2 φ2∆y

)2

and

P1,y =
1− 1

2 φ2∆y(
1 + 1

2 φ2∆y
)3

L.3 Aggregate Price and Wage Levels

The aggregate price index is

P1−θp
t =

(∫ 1

0
Pt( f )1−θp d f

)
and the aggregate wage index is

W1−θw
t =

(∫ 1

0
Wt(h)1−θw dh

)
.

From lemma 1 and the definitions of Pt and Wt, we obtain

pt = E f {pt( f )}+ 1
2

1
1− θp

V f {Pt( f )1−θp}
E f {Pt( f )1−θp}2

+O(||ζ||3),

and

wt = Eh{wt(h)}+
1
2

1
1− θw

Vh{Wt(h)1−θw}
Eh{Wt(h)1−θw}2 +O(||ζ||3).

Then, from lemma 2, we obtain

V f {Pt( f )1−θp} = V f {exp[(1− θp)pt( f )]}

= (1− θp)
2 exp[(1− θp) p̄t]

2∆p,t +O(||ζ||3),

and

Vh{Wt(h)1−θw} = Vh{exp[(1− θw)wt(h)]}

= (1− θw)
2 exp[(1− θw)w̄t]

2∆w,t +O(||ζ||3),

where we defined

p̄t = E f {pt( f )}, w̄t = Eh{wt(h)},
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∆p,t = V f {pt( f )}, ∆w,t = Vh{wt(h)}.

Applying lemma 1 once again, we obtain

E f {Pt( f )1−θp} = E f {exp[(1− θp)pt( f )]}

= exp[(1− θp) p̄t]

(
1 +

1
2
(1− θp)

2∆p,t

)
and

Eh{Wt(h)1−θw} = Eh{exp[(1− θw)wt(h)]}

= exp[(1− θw)w̄t]

(
1 +

1
2
(1− θw)

2∆w,t

)
Combining these relations, we obtain

pt = p̄t +
1
2

(1− θp)∆p,t[
1 + 1

2 (1− θp)2∆p,t
]2 +O(||ζ||3),

and

wt = w̄t +
1
2

(1− θw)∆w,t[
1 + 1

2 (1− θw)2∆w,t
]2 +O(||ζ||3).

Thus

pt = p̄t + Q0,p +
1− θp

2
Q1,p(∆p,t − ∆p) +O(||ζ||3),

and

wt = w̄t + Q0,w +
1− θw

2
Q1,w(∆w,t − ∆w) +O(||ζ||3).

where we defined

Q0,p =

1−θp
2 ∆p[

1 + 1
2 (1− θp)2∆p

]2 , Q0,w =
1−θw

2 ∆w[
1 + 1

2 (1− θw)2∆w
]2

and

Q1,p =
1− 1

2 (1− θp)2∆p[
1 + 1

2 (1− θp)2∆p
]3 , Q1,w =

1− 1
2 (1− θw)2∆w[

1 + 1
2 (1− θw)2∆w

]3

Remark that the constant terms in the second-order approximation of the log-price index can be rewrit-

ten as

Q0,p −
1− θp

2
Q1,p∆p =

1
2

(1− θp)3∆2
p[

1 + 1
2 (1− θp)2∆p

]3 .

Finally, using the demand functions, one obtains

ỹz,t( f ) = −θp[pt( f )− pt] + ỹz,t,

ñt(h) = −θw[wt(h)− wt] + ñt,
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from which we deduce that

∆y,t = θ2
p∆p,t

and

∆h,t = θ2
w∆w,t.

L.4 Price and Wage Dispersions

We now derive the law of motion of price dispersion. Notice that

∆p,t = V f {pt( f )− p̄t−1}

Immediate manipulations of the definition of the cross-sectional mean of log-prices yield

p̄t − p̄t−1 = αpγpπt−1 + (1− αp)[p?t − p̄t−1]. (L.1)

Then, the classic variance formula yields

∆p,t = E f {[pt( f )− p̄t−1]
2} − [E f {pt( f )− p̄t−1}]2

Using this, we obtain

∆p,t = αpE f {[pt−1( f )− p̄t−1 + γpπt−1]
2}+ (1− αp)[p?t − p̄t−1]

2 − [ p̄t − p̄t−1]
2

Notice that

(1− αp)[p?t − p̄t−1]
2 − [ p̄t − p̄t−1]

2

= (1− αp)

[
1

1− αp
( p̄t − p̄t−1)−

αp

1− αp
γpπt)

]2

− [ p̄t − p̄t−1]
2

=
αp

1− αp
[ p̄t − p̄t−1 − γpπt]

2 − αp[γpπt]
2

Using this in the above equation yields

∆p,t = αpE f {[pt−1( f )− p̄t−1 + γpπt]
2} − αp[γpπt]

2 +
αp

1− αp
[ p̄t − p̄t−1 − γpπt]

2

Now, notice also that

αpE f {[pt−1( f )− p̄t−1]
2} = αpE f {[pt−1( f )− p̄t−1 + γpπt]

2} − αp[γpπt]
2

It then follows that

∆p,t = αpE f {[pt−1( f )− p̄t−1]
2}+

αp

1− αp
[ p̄t − p̄t−1 − γpπt]

2
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Hence

∆p,t = αp∆p,t−1 +
αp

1− αp
[ p̄t − p̄t−1 − γpπt]

2

Using

pt = p̄t + Q0,p +
1− θp

2
Q1,p(∆p,t − ∆p) +O(||ζ||3),

we obtain

p̄t − p̄t−1 = πt −
1− θp

2
Q1,p(∆p,t − ∆p,t−1) +O(||ζ||3).

Hence

∆p,t = αp∆p,t−1 +
αp

1− αp

[
πt −

1− θp

2
Q1,p(∆p,t − ∆p,t−1)− γpπt−1

]2

+O(||ζ||3).

The steady-state value of ∆p is thus

∆p =
(1− γp)2αp

(1− αp)2 π2

We obtain finally

∆p,t = αp∆p,t−1 +
αp

1− αp

[
(1− γp)π + π̂t − γpπ̂t−1 −

1− θp

2
Q1,p(∆p,t − ∆p,t−1)

]2
+O(||ζ||3).

For sufficiently small π, price dispersion ∆p,t is second-order.

We now derive the law of motion of wage dispersion. Following similar steps as for price dispersion,

notice that

∆w,t = Vh{wt(h)− w̄t−1}

Immediate manipulations of the definition of the cross-sectional mean of log-wages yield

w̄t − w̄t−1 = αw(γzµz + γwπt−1) + (1− αw)[w?
t − w̄t−1]. (L.2)

Then, the classic variance formula yields

∆w,t = Eh{[wt(h)− w̄t−1]
2} − [Eh{wt(h)− w̄t−1}]2

Using this, we obtain

∆w,t = αwEh{[wt−1(h)− w̄t−1 + γzµz + γwπt−1]
2}+ (1− αw)[w?

t − w̄t−1]
2 − [w̄t − w̄t−1]

2

Notice that

w?
t − w̄t−1 =

1
1− αw

(w̄t − w̄t−1)−
αw

1− αw
[γzµz + γwπt]
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so that

(1− αw)[w?
t − w̄t−1]

2 − [w̄t − w̄t−1]
2

= (1− αw)
[ 1

1− αw
(w̄t − w̄t−1)−

αw

1− αw
[γzµz + γwπt]

]2
− [w̄t − w̄t−1]

2

=
αw

1− αw

[
w̄t − w̄t−1 − [γzµz + γwπt]

]2
− αw[γzµz + γwπt]

2

Using this in the above equation yields

∆w,t = αwEh{[wt−1(h)− w̄t−1 + γzµz + γwπt]
2}

− αw[γw log(1 + πt)]
2 +

αw

1− αw

[
w̄t − w̄t−1 − [γzµz + γwπt]

]2

Now, notice also that

αwEh{[wt−1(h)− w̄t−1]
2} = αwEh{[wt−1(h)− w̄t−1 + γzµz + γwπt]

2} − αw[γzµz + γwπt]
2

It then follows that

∆w,t = αwEh{[wt−1(h)− w̄t−1]
2}+ αw

1− αw

[
w̄t − w̄t−1 − [γzµz + γpπt]

]2

Hence

∆w,t = αw∆w,t−1 +
αw

1− αw

[
w̄t − w̄t−1 − [γzµz + γwπt]

]2

which, in turn, implies

∆w,t = αw∆w,t−1 +
αw

1− αpw
[w̄t − w̄t−1 − γzµz − γwπt−1]

2 .

Using

wt = w̄t + Q0,w +
1− θw

2
Q1,w(∆w,t − ∆w) +O(||ζ||3),

we obtain

w̄t − w̄t−1 = πw,t −
1− θw

2
Q1,w(∆w,t − ∆w,t−1) +O(||ζ||3).

Hence

∆w,t = αw∆w,t−1 +
αw

1− αw

[
πw,t −

1− θw

2
Q1,w(∆w,t − ∆w,t−1)

− γzµz − γwπt−1

]2

+O(||ζ||3).

The steady-state value of ∆w is thus

∆w =
αw

(1− αw)2 [(1− γz)µz + (1− γw)π]2
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We obtain finally

∆w,t = αw∆w,t−1 +
αw

1− αw

[
(1− γz)µz + (1− γw)π + π̂w,t − γwπ̂t−1

− 1− θw

2
Q1,w(∆w,t − ∆w,t−1)

]2
+O(||ζ||3).

For sufficiently small π and µz, wage dispersion ∆w,t is second-order.

Because the steady-state value of ∆p is of second-order, many of the expressions previously derived

considerably simplify. In particular, we now obtain

pt = p̄t +
1− θp

2
∆p,t +O(||ζ, π||3),

wt = w̄t +
1− θw

2
∆w,t +O(||ζ, π||3), ).

Now, because ∆y and ∆n are proportional to ∆p and ∆w, respectively, and because ∆p and ∆w are both

proportional to π2, we also obtain

ñt = Eh{ñt(h)}+
1− θ−1

w
2

∆h,t +O(||ζ, π||3),

ñt = φ(E f {ỹz,t( f )} − zt) +
1
2

φ2∆y,t +O(||ζ, π||3),

ỹt = E f {ỹt( f )}+
1− θ−1

p

2
∆y,t +O(||ζ, π||3), ).

Thus, for sufficiently small inflation rates, we obtain formulas resembling those derived in Woodford

(2003).

Finally, price and wage dispersions rewrite

∆p,t = αp∆p,t−1 +
αp

1− αp

[
(1− γp)π + π̂t − γpπ̂t−1

]2
+O(||ζ, π||3), ).

∆w,t = αw∆w,t−1 +
αw

1− αw

[
(1− γz)µz + (1− γw)π + π̂w,t − γwπ̂t−1

]2
+O(||ζ, π||3), ).

L.5 Combining the Results

Combining the previous results, we obtain

∫ 1

0

χ

1 + ν
eζh,t(Nt(h))1+νdh = χ(Nn)1+ν

[
ñt +

1
2
(1 + ν)ñ2

t + ñtζh,t

+
1
2
(1 + νθw)θw∆w,t

]
+ t.i.p +O(||ζ, π||3), ).
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In turn, we have

ñt = φỹt +
1
2

φ[(φ− 1)θp + 1]θp∆p,t +O(||ζ, π||3),

so that

∫ 1

0

χ

1 + ν
eζh,t(Nt(h))1+νdh = φχ(Nn)1+ν

[
(ỹt − zt) +

1
2
(1 + ν)φỹ2

t + ỹtζh,t

+
1
2
[(φ− 1)θp + 1]θp∆p,t +

1
2
(1 + νθw)φ

−1θw∆w,t

]
+ t.i.p +O(||ζ, π||3), ).

Then, using

(1−Φ)
1− βη

1− η
= φχ(Nn)1+ν,

where we defined

1−Φ ≡ 1 + τw

µw

1 + τp

µp
,

we obtain

E0

∞

∑
t=0

βt
{∫ 1

0

χ

1 + ν
eζh,t(Nt(h))1+νdh

}
=

(1−Φ)
1− βη

1− η
E0

∞

∑
t=0

βt
[
ỹt +

1
2
(1 + ν)φỹ2

t + ỹtζh,t

+
1
2
[(φ− 1)θp + 1]θp∆p,t +

1
2
(1 + νθw)φ

−1θw∆w,t

]
+ t.i.p +O(||ζ, π||3), ).

Assuming the distortions are themselves negligible, this simplifies further to

E0

∞

∑
t=0

βt
{∫ 1

0

χ

1 + ν
eζh,t(Nt(h))1+νdh

}
=

1− βη

1− η
E0

∞

∑
t=0

βt
[
(1−Φ)ỹt +

1
2
(1 + ν)φỹ2

t + ỹtζh,t

+
1
2
[(φ− 1)θp + 1]θp∆p,t +

1
2
(1 + νθw)φ

−1θw∆w,t

]
+ t.i.p +O(||ζ, π||3), ).

We now deal with the first term in the utility function. To that end, notice that

∞

∑
t=0

βtat−1 = a−1 + β
∞

∑
t=0

βt−1at−1 = a−1 + β
∞

∑
t=0

βtat.

Using this trick, we obtain

E0

∞

∑
t=0

βteζc,t log(Cz,t − ηCz,t−1e−ζz,t) =
1− βη

1− η
E0

∞

∑
t=0

βt

[
ỹz,t −

1
2
[ϕ(1 + βη2)− 1]ỹ2

z,t + ηϕỹz,tỹz,t−1

+ ϕĝtỹz,t − ηϕζ∗z,tỹz,t

]
+ t.i.p +O(||ζ||3),
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where we defined

ϕ−1 ≡ (1− βη)(1− η),

ĝt = (1− η)(ζc,t − βηEt{ζc,t+1}),

so that

(1− βη)ϕĝt ≡ (ζc,t − βηEt{ζc,t+1}).

and

ζ∗z,t = ζz,t − βEt{ζz,t+1}

Combining terms, we obtain

U0 =
1− βη

1− η
E0

∞

∑
t=0

βt

[
Φỹz,t −

1
2
[ϕ(1 + βη2) + ω]ỹ2

z,t + ηϕỹz,tỹz,t−1

+ (ϕĝt − ζh,t − ϕηζ∗z,t)ỹz,t

− 1
2
[(φ− 1)θp + 1]θp∆p,t −

1
2
(1 + νθw)φ

−1θw∆w,t

]
+ t.i.p +O(||ζ||3),

where, as defined earlier

ω = (1 + ν)φ− 1

Now, recall that

[ϕ(1 + βη2) + ω]ŷn
z,t − ϕβηEt

{
ŷn

z,t+1
}
− ϕηŷn

z,t−1 = ϕĝt − ζh,t − ϕηζ∗z,t

Using this above yields

U0 =
1− βη

1− η
E0

∞

∑
t=0

βt

[
Φỹz,t −

1
2
[ϕ(1 + βη2) + ω]ỹ2

z,t + ηϕỹz,tỹz,t−1

+ [ϕ(1 + βη2) + ω]ŷn
z,tỹz,t − ϕβηŷn

z,t+1ỹz,t − ϕηŷn
z,t−1ỹz,t

− 1
2
[(φ− 1)θp + 1]θp∆p,t −

1
2
(1 + νθw)φ

−1θw∆w,t

]
+ t.i.p +O(||ζ||3),

U0 =
1− βη

1− η
E0

∞

∑
t=0

βt

[
Φỹt −

1
2
[ϕ(1 + βη2) + ω]ỹ2

t + ηϕỹtỹt−1

+ [ω + ϕ(1 + βη2)]ŷn
t ỹt − ϕβηŷn

t+1ỹt − ϕηŷn
t−1ỹt

− 1
2
[(φ− 1)θp + 1]θp∆p,t −

1
2
(1 + νθw)φ

−1θw∆w,t

]
+ t.i.p +O(||ξ, π||3)
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To simplify this expression, we seek constant terms δ0, δ and x? such that

E0

∞

∑
t=0

βt

{
− 1

2
δ0[(ỹt − ŷn

t )− δ(ỹt−1 − ŷn
t−1)− x?]2

}

= E0

∞

∑
t=0

βt

[
Φỹt −

1
2
[ϕ(1 + βη2) + ω]ỹ2

t + ηϕỹtỹt−1

+ [ω + ϕ(1 + βη2)]ỹtŷn
t − ϕβηỹtŷn

t+1 − ϕηỹtŷn
t−1

]
+ t.i.p

Developing yields

− δ0

2

[
(ỹt − ŷn

t )− δ(ỹt−1 − ŷn
t−1)− x∗

]2

= −1
2

δ0ỹ2
t + δ0ỹtŷn

t + δ0δỹtỹt−1 − δ0δỹtŷn
t−1 − δ0δỹt−1ŷn

t

− 1
2

δ0δ2ỹ2
t−1 + δ0δ2ỹt−1ŷn

t−1 + δ0(ỹt − δỹt−1)x̂∗ + t.i.p

Thus

E0

∞

∑
t=0

βt

{
− δ0

2
[(ỹt − ŷn

t )− δ(ỹt−1 − ŷn
t−1)− x∗]2

}

= E0

∞

∑
t=0

βt

{
δ0(1− βδ)x̂∗ỹt −

1
2

δ0(1 + βδ2)ỹ2
t + δ0δỹtỹt−1

+ δ0(1 + βδ2)ỹtŷn
t − δ0δỹtŷn

t−1 − δ0δβỹtŷn
t+1

}
+ t.i.p

Identifying term by term, we obtain

δ0(1− βδ)x∗ = Φ,

δ0(1 + βδ2) = [ω + ϕ(1 + βη2)],

δ0δ = ηϕ,

Recall that the steady-state subsidy rates τp and τw are chosen to neutralize markups. Then, it follows that

Φ = x∗ = 0.

Combining these relations, we obtain

ηδ2 − ω + ϕ)(1 + βη2)

βϕ
δ + ηβ−1 = 0,

or equivalently

P(κ) = β−1κ2 − χκ + η2 = 0,
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where

κ =
η

δ
,

χ =
ω + ϕ(1 + βη2)

βϕ
> 0.

Notice that

P(0) = η2 > 0,

P(1) = − ω

βϕ
< 0

so that the two roots of P(κ) = 0 obey

0 < κ1 < 1 < κ2.

In the sequel, we focus on the larger root and define

κ = κ2 =
β

2

(
χ +

√
χ2 − 4η2β−1

)
> 1.

Since δ = η/κ, we have

0 ≤ δ ≤ η < 1.

Thus, given the obtained value for κ, we can deduce δ from which we can compute δ0.

We thus obtain

U0 = −1− βη

1− η
E0

∞

∑
t=0

βt

{
δ0

2
[(ỹt − ŷn

t )− δ(ỹt−1 − ŷn
t−1)− x∗]2

+
1
2
[(φ− 1)θp + 1]θp∆p,t +

1
2
(1 + νθw)φ

−1θw∆w,t

}
+ t.i.p +O(||ζ, π||3), )

The last step consists in expressing price and wage dispersions in terms of squared price and wage

inflations.

Recall that

∆p,t = αp∆p,t−1 +
αp

1− αp

[
(1− γp)π + π̂t − γpπ̂t−1

]2
+O(||ζ, π||3), ).

Iterating backward on this formula yields

∆p,t =
αp

1− αp

t

∑
s=0

αt−s
p [(1− γp)π + π̂s − γpπ̂s−1]

2 + t.i.p +O(||ζ, π||3), ).

It follows that

∞

∑
t=0

βt∆p,t =
αp

(1− αp)(1− βαp)

∞

∑
t=0

βt[(1− γp)π + π̂t − γpπ̂t−1]
2 + t.i.p +O(||ζ, π||3), ).
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and by the same line of reasoning

∞

∑
t=0

βt∆w,t =
αw

(1− αw)(1− βαw)

∞

∑
t=0

βt[(1− γz)µz + (1− γw)π + π̂w,t − γwπ̂t−1]
2 + t.i.p +O(||ζ, π||3), ).

Thus, defining

λy ≡ δ0

λp ≡
αpθp[(φ− 1)θp + 1]
(1− αp)(1− βαp)

λw ≡
αwφ−1θw(1 + νθw)

(1− αw)(1− βαw)

Using this and recalling that x∗ = 0, the second order approximations to welfare rewrites

U0 = −1
2

1− βη

1− η
E0

∞

∑
t=0

βt
{

λy[x̂t − δx̂t−1 + (1− δ)x̄]2 + λp[(1− γp)π + π̂t − γpπ̂t−1]
2

+ λw[(1− γz)µz + (1− γw)π + π̂w,t − γwπ̂t−1]
2
}
+ t.i.p +O(||ζ, π||3),

where we defined

x̂t ≡ ŷt − ŷn
t

x̄ ≡ log
(

Yz

Yn
z

)
.

72



References

ADAM, K. AND H. WEBER (2019): “Optimal Trend Inflation,” American Economic Review, 109, 702–737.

ALVAREZ, F., H. LE BIHAN, AND F. LIPPI (2016): “The Real Effects of Monetary Shocks in Sticky Price

Models: A Sufficient Statistic Approach,” American Economic Review, 106, 2817–2851.

AMANO, R., K. MORAN, S. MURCHISON, AND A. RENNISON (2009): “Trend Inflation, Wage and Price

Rigidities, and Productivity Growth,” Journal of Monetary Economics, 56, 353–364.

ANDRADE, P., G. GABALLO, E. MENGUS, AND B. MOJON (2019a): “Forward Guidance and Heterogeneous

Beliefs,” American Economic Journal: Macroeconomics, 11, 1–29.

ANDRADE, P., J. GALÍ, H. LE BIHAN, AND J. MATHERON (2019b): “The Optimal Inflation Target and the

Natural Rate of Interest in the Euro Area,” mimeo.

ASCARI, G., L. PHANEUF, AND E. R. SIMS (2018): “On the Welfare and Cyclical Implications of Moderate

Trend Inflation,” Journal of Monetary Economics, 99, 56–71.

ASCARI, G. AND A. M. SBORDONE (2014): “The Macroeconomics of Trend Inflation,” Journal of Economic

Literature, 52, 679–739.

AUTOR, D., D. DORN, L. F. KATZ, C. PATTERSON, AND J. V. REENEN (2017): “The Fall of the Labor Share

and the Rise of Superstar Firms,” Working Paper 23396, NBER.

BALL, L. M. (2014): “The Case for a Long-Run Inflation Target of Four Percent,” Working Papers 14/92,

International Monetary Fund.

BASU, S. AND J. G. FERNALD (1997): “Returns to Scale in U.S. Production: Estimates and Implications,”

Journal of Political Economy, 105, 249–283.

BERNANKE, B. (2016): “Modifying the Fed’s Policy Framework: Does a Higher Inflation Target Beat Neg-

ative Interest Rates?” Blog post, September 13.

BERNANKE, B. S., M. T. KILEY, AND J. M. ROBERTS (2019): “Monetary Policy Strategies for a Low-Rate

Environment,” AEA Papers and Proceedings, 109, 421–426.

BERNANKE, B. S., T. LAUBACH, F. MISHKIN, AND A. POSEN (1999): Inflation Targeting. Lessons form the

international experience, Economics Books, Princeton University Press.

BILBIIE, F. O., I. FUJIWARA, AND F. GHIRONI (2014): “Optimal Monetary Policy with Endogenous Entry

and Product Variety,” Journal of Monetary Economics, 64, 1–20.

BLANCHARD, O., G. DELL’ARICCIA, AND P. MAURO (2010): “Rethinking Macroeconomic Policy,” Journal

of Money, Credit and Banking, 42, 199–215.

73



BLANCO, A. (2016): “Optimal Inflation Target in an Economy with Menu Costs and Zero Lower Bound,”

mimeo, University of Michigan.

BODENSTEIN, M., C. J. ERCEG, AND L. GUERRIERI (2009): “The Effects of Foreign Shocks when Inter-

est Rates are at Zero,” International Finance Discussion Papers 983, Board of Governors of the Federal

Reserve System (U.S.).

BRAND, C., M. BIELECKI, AND A. PENALVER (2019): “The Natural Rate of Interest: Estimates, Drivers,

and Challenges to Monetary Policy,” Occasional paper 217, ECB.

BURSTEIN, A. AND C. HELLWIG (2008): “Welfare Costs of Inflation in a Menu Cost Model,” American

Economic Review, 98, 438–43.

CABALLERO, R. AND E. FARHI (2015): “The Safety Trap,” Working paper, Harvard University Open-

Scholar.

CARLSSON, M. AND A. WESTERMARK (2016): “Labor Market Frictions and Optimal Steady-State Infla-

tion,” Journal of Monetary Economics, 78, 67–79.

CHRISTIANO, L. J., M. EICHENBAUM, AND C. L. EVANS (2005): “Nominal Rigidities and the Dynamic

Effects of a Shock to Monetary Policy,” Journal of Political Economy, 113, 1–45.

CHUNG, H., E. GAGNON, T. NAKATA, M. PAUSTIAN, B. SCHLUSCHE, J. TREVINO, D. VILAN, AND

W. ZHENG (2019): “Monetary Policy Options at the Effective Lower Bound : Assessing the Federal Re-

serve’s Current Policy Toolkit,” Finance and Economics Discussion Series 2019-003, Board of Governors

of the Federal Reserve System.

CHUNG, H., J.-P. LAFORTE, D. REIFSCHNEIDER, AND J. C. WILLIAMS (2012): “Have We Underestimated

the Likelihood and Severity of Zero Lower Bound Events?” Journal of Money, Credit and Banking, 44,

47–82.

CLARIDA, R. H. (2019): “The Federal Reserve’s Review of Its Monetary Policy Strategy, Tools, and Com-

munication Practices,” Speech at the 2019 U.S. Monetary Policy Forum, sponsored by the Initiative on

Global Markets at the University of Chicago Booth School of Business, New York.

COIBION, O., Y. GORODNICHENKO, AND J. WIELAND (2012): “The Optimal Inflation Rate in New Key-

nesian Models: Should Central Banks Raise Their Inflation Targets in Light of the Zero Lower Bound?”

Review of Economic Studies, 79, 1371–1406.

CORREIA, I., E. FARHI, J. P. NICOLINI, AND P. TELES (2013): “Unconventional Fiscal Policy at the Zero

Bound,” American Economic Review, 103, 1172–1211.

DE LOECKER, J. AND J. EECKHOUT (2017): “The Rise of Market Power and the Macroeconomic Implica-

tions,” Working Papers 23687, NBER.

74



DEBORTOLI, D., J. GALÍ, AND L. GAMBETTI (2019): “On the Empirical (Ir)Relevance of the Zero Lower

Bound Constraint,” in NBER Macroeconomics Annual 2019, vol. 34.

DEL NEGRO, M., D. GIANNONE, M. P. GIANNONI, AND A. TAMBALOTTI (2017): “Safety, Liquidity, and

the Natural Rate of Interest,” Brookings Papers on Economic Activity.

——— (2018): “Global Trends in Interest Rates,” Working Papers 25039, NBER.

DORDAL-I-CARRERAS, M., O. COIBION, Y. GORODNICHENKO, AND J. WIELAND (2016): “Infrequent but

Long-Lived Zero-Bound Episodes and the Optimal Rate of Inflation,” Working Papers 22510, NBER.

EBERLY, J. C., J. H. STOCK, AND J. H. WRIGHT (2019): “The Federal Reserve’s Current Framework for

Monetary Policy: A Review and Assessment,” Working Papers 26002, NBER.

EGGERTSSON, G. B., N. R. MEHROTRA, AND J. A. ROBBINS (2017): “A Model of Secular Stagnation:

Theory and Quantitative Evaluation,” Working Papers 23093, NBER.

ERCEG, C. J., D. W. HENDERSON, AND A. T. LEVIN (2000): “Optimal Monetary Policy with Staggered

Wage and Price Contracts,” Journal of Monetary Economics, 46, 281–313.

FARHI, E. AND F. GOURIO (2018): “Accounting for Macro-Finance Trends: Market Power, Intangibles, and

Risk Premia,” Working Papers 25282, NBER.

FRIEDMAN, M. (1969): The Optimum Quantity of Money and Other Essays, Chicago, IL: Aldine Press, chap.

The Optimum Quantity of Money.

FUHRER, J., G. OLIVEI, E. ROSENGREN, AND G. TOOTELL (2018): “Should the Fed Regularly Evaluate Its

Monetary Policy Framework?” Brookings Papers on Economic Activity.

GALÍ, J. (2015): Monetary Policy, Inflation, and the Business Cycle. An Introduction to the New Keynesian Frame-

work, Princeton, NJ: Princeton University Press, chap. 5, second ed.

GOLOSOV, M. AND R. E. J. LUCAS (2007): “Menu Costs and Phillips Curves,” Journal of Political Economy,

115, 171–199.

GORDON, R. J. (2015): “Secular Stagnation: A Supply-Side View,” American Economic Review, 105.

GUERRIERI, L. AND M. IACOVIELLO (2015): “OccBin: A Toolkit for Solving Dynamic Models with Occa-

sionally Binding Constraints Easily,” Journal of Monetary Economics, 70, 22–38.

GUST, C., E. HERBST, D. LÓPEZ-SALIDO, AND M. E. SMITH (2017): “The Empirical Implications of the

Interest-Rate Lower Bound,” American Economic Review, 107, 1971–2006.

HALL, R. E. (2018): “New Evidence on the Markup of prices over Marginal Costs and the Role of Mega-

Firms in the US Economy,” Working Paper 24574, NBER.

75



HILLS, T. S., T. NAKATA, AND S. SCHMIDT (2016): “The Risky Steady State and the Interest Rate Lower

Bound,” Finance and Economics Discussion Series 2016-9, Board of Governors of the Federal Reserve

System.

HOLSTON, K., T. LAUBACH, AND J. C. WILLIAMS (2017): “Measuring the Natural Rate of Interest: Inter-

national Trends and Determinants,” Journal of International Economics, 108, 59–75.

KHAN, A., R. G. KING, AND A. L. WOLMAN (2003): “Optimal Monetary Policy,” Review of Economic

Studies, 70, 825–860.

KILEY, M., E. MAUSKOPF, AND D. WILCOX (2007): “Issues Pertaining To The Specification of a Numerical

Price-Related Objective For Monetary Policy,” FOMC memo.

KILEY, M. T. AND J. M. ROBERTS (2017): “Monetary Policy in a Low Interest Rate World,” Brookings Papers

on Economic Activity, 48, 317–396.

LAUBACH, T. AND J. C. WILLIAMS (2016): “Measuring the Natural Rate of Interest Redux,” Finance and

Economics Discussion Series 2016-11, Board of Governors of the Federal Reserve System (U.S.).

LEPETIT, A. (2018): “The Optimal Inflation Rate with Discount Factor Heterogeneity,” Finance and Eco-

nomics Discussion Series 2018-086, Board of Governors of the Federal Reserve System (US).

LINDÉ, J., J. MAIH, AND R. WOUTERS (2017): “Estimation of Operational Macromodels at the Zero Lower

Bound,” Mimeo.

NAKAMURA, E., J. STEINSSON, P. SUN, AND D. VILLAR (2018): “The Elusive Costs of Inflation: Price

Dispersion during the U.S. Great Inflation,” The Quarterly Journal of Economics, 133, 1933–1980.

RACHEL, L. AND L. H. SUMMERS (2019): “On Falling Neutral Real Rates, Fiscal Policy, and the Risk of

Secular Stagnation,” Brookings Papers on Economic Activity.

REIFSCHNEIDER, D. L. (2016): “Gauging the Ability of the FOMC to Respond to Future Recessions,” Fi-

nance and Economics Discussion Series 2016-068, Board of Governors of the Federal Reserve System

(U.S.).

SCHMITT-GROHÉ, S. AND M. URIBE (2010): “The Optimal Rate of Inflation,” in Handbook of Monetary

Economics, ed. by B. M. Friedman and M. Woodford, Elsevier, vol. 3 of Handbook of Monetary Economics,

chap. 13, 653–722.

SIMS, E. AND C. WU (2019): “Evaluating Central Banks’ Tool Kit: Past, Present, and Future,” Working

Papers 26040, NBER.

SUMMERS, L. (2014): “U.S. Economic Prospects: Secular Stagnation, Hysteresis, and the Zero Lower

Bound,” Business Economics, 49, 65–73.

76



SWANSON, E. T. (2018): “The Federal Reserve Is Not Very Constrained by the Lower Bound on Nominal

Interest Rates,” Brookings Papers on Economic Activity.

TRAINA, J. (2015): “Is Aggregate Market power Increasing? Production Trends Using Financial State-

ments,” Working Paper 17, Chicago Booth, Stigler Center for the Study of the Economy and the State.

WILLIAMS, J. C. (2013): “A Defense of Moderation in Monetary Policy,” Working Paper Series 2013-15,

Federal Reserve Bank of San Francisco.

——— (2016): “Monetary Policy in a Low R-star World,” FRBSF Economic Letter.

WOODFORD, M. (2003): Interest and Prices, Princeton, NJ: Princeton University Press.

77


	0_CoverPage_emb_CHINA
	bpea 2019 draft final
	AGLBM_BPEA_August_2019_ConfDraft.pdf
	Introduction
	Related Literature

	The Model
	Households
	Firms and Price Setting
	Aggregate Labor and Wage Setting
	Monetary Policy and the ZLB

	Estimation and Simulations
	Estimation without a Lower Bound on Nominal Interest Rates
	Computing the Optimal Inflation Target
	Some Properties of Loss Function and the Optimal Inflation Target in the Estimated Model

	The Optimal Inflation Target and the Steady State Real Interest Rate
	The Baseline (r,) Relation
	Robustness to Alternatives Structural Assumptions

	The Effect of Parameter Uncertainty
	Alternative Monetary Policy Rules and Environments
	Summary and conclusions
	Various long-run and optimal inflation rates considered
	Illustrating model properties: moments, IRF to monetary policy shock 
	Illustrating the ``lower for longer'' property of the model policy rule
	The distribution of ZLB spells duration  
	The distribution of optimal inflation targets
	The welfare cost of inflation
	Further illustrations of the (r,) relation
	When z varies
	When  varies

	Nominal and Real Interest Rates
	The probability of ZLB under large shocks  
	Distribution of  following a downward shift of the distribution of r
	Model Solution
	Households
	First Order Conditions

	Firms
	Cost Minimization
	Price Setting of Intermediate Goods: Optimization

	Unions
	Wage Setting

	Market Clearing
	Natural Rate of Output
	Working Out the Steady State

	Welfare
	Second-Order Approximation of Utility
	Aggregate Labor and Aggregate Output
	Aggregate Price and Wage Levels
	Price and Wage Dispersions
	Combining the Results





