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Abstract. A linear morphological stability of the solid-liquid interface
is analyzed for a binary alloy in the limit of low and high crystal growth
velocities. Using the result of this analysis, a diagram of morphologies is
derived for a whole range of solidification rates with indicating critical
growth velocities for the transitions planar front ⇔ cellular/dendritic
structure. It is specially noted that the speed of solute diffusion in
the bulk liquid limits the absolute chemical stability velocity from the
high-rate transition cells/dendrites ⇒ planar front.

1 Introduction

Originating of two-phase mushy zone, as a heterogeneous zone of phase transition
between liquid and solid [1,2], occurs as a response of crystallizing liquer/solution/
meltontheexistingundercooling for the fastestdecreaseof thisundercooling (seeFig.1).
Indeed, an intensive atoms attachment to the solid-liquid interface leads to the fast
decrease in the interface undercooling with the formation of crystalline ensemble of cel-
lular or dendritic morphology (see Refs. [4–6] and references therein). In appearance of
such morphologies a key role plays an establishing balance between destabilizing and
stabilizing forces which are competing at the interface leading it to the planar or cel-
lular/dendritic form. Therefore, the originating and development of two-phase mushy
zone are going through the stages of front perturbation on the microscopic spatial level
and formation of mesoscopic structures of cellular-dendritic morphology.

In the present work, we consider linear morphological stability of solidification
front for definition of its morphology for a given growth velocity. This problem takes
its origination from the classical works of Mullins and Secerka [7,8] as well as from
the works of Coriell et al. [9–12]. Later on, this morphological analysis has been
extended to the non-linear range by Davis [13] and generalized to the region of large
growth velocity by Trivedi and Kurz [14–16]. Extended analysis of morphological sta-
bility to the case of local non-equilibrium solidification [17] was necessary to explain
experimental results on crystallization of liquids undercooled up to 400−500 K and
solidifying with the velocities 1−100 m/s [18]. Therefore, we present analysis which
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Fig. 1. Dendritic structure within the two-phase mushy zone. This structure has been
obtained by decantation of a residual interdendritic melt upon primary solidification of
Pb-Sn alloy’s droplets [3].

allows us to construct the diagram of morphological stability from very small veloc-
ity of crystals growing at the near equilibrium conditions up to the high velocity at
which diffusionless (chemically partitionless) solidification may occur.

2 Criterion of the morphological stability

When a harmonic perturbation with the wavelength λ and the corresponding
frequency

ω = 2π/λ (1)

is applied to a moving planar interface, the resulting criterion of its marginal stability
is given by [17]

Γω2 +KLGLξL +KSGSξS −mvGCξC = 0, V < VD,

Γω2 +KLGLξL +KSGSξS = 0, V ≥ VD, (2)

where indices “L” and “S” are related to the liquid or solid, respectively, G is the
thermal gradient, K is the thermal conductivity, V the velocity of the interface, VD

is the solute diffusion speed in bulk liquid, Γ is the Gibbs-Thomson coefficient related
to the capillary of the perturbed interface, and mv is the velocity dependent slope
of the liquidus line (so-called “nonequilibrium liquidus in the kinetic diagram of a
phase state”). The stability functions ξ in equation (2) are described by

ξL =
ωL − V/aL

KLωL +KSωS
, (3)

ξS =
ωS + V/aS

KLωL +KSωS
, (4)

ξC =
ωC − V/[D(1− V 2/V 2

D)1/2]
ωC − (1− kv)V/[D(1− V 2/V 2

D)1/2]
, V < VD,
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ξC = 0, V ≥ VD, (5)

where a is the thermal diffusivity, D the diffusion constant and kv is the velocity
dependent solute partitioning function related to nonequilibrium redistribution of
atoms on the interface. Frequencies ω have the following form

ωL =
V

2aL
+

[(
V

2aL

)2

+ ω2

]1/2

, (6)

ωS = − V

2aS
+

[(
V

2aS

)2

+ ω2

]1/2

, (7)

ωC =
V

2D(1− V 2/V 2
D)1/2

+

[(
V

2D(1− V 2/V 2
D)1/2

)2

+ ω2

]1/2

. (8)

In the local equilibrium limit, VD → ∞, criterion (2) together with equations
(3)–(8) transforms into the criterion of marginal stability of Trivedi and Kurz [14].
The introduction of the finite diffusion speed, VD, into the model leads to the princi-
pal result, which is related to the transition to diffusionless (chemically partitionless)
solidification. It can be shown using analytical solution for the atomic redistribu-
tion around the interface. Indeed, one can obtain two solutions from the only diffu-
sion equation. These describe two different regimes: regime with atomic diffusion at
V < VD and regime with the absence of atomic diffusion at V ≥ VD. Particularly,
around the perturbed interface, the field of solute concentration is given by [17]

C − C∞ =
GCD(1− V 2/V 2

D)
V

[
1− exp

(
− V z

D(1− V 2/V 2
D)

)]

+(b−GC)δ(t) sin(ωx) exp
(
− ωCz

(1− V 2/V 2
D)1/2

)
, V < VD,

C − C∞ = 0, V ≥ VD, (9)

where C∞ is the nominal (initial) concentration of a binary system which is considered
as far-field concentration. Solution (9) shows that with the finite interface velocity
V ≥ VD, the solute diffusion ahead of the rapid interface is absent. From this it follows
that the destabilizing contribution due to concentration gradient GC in equation (2)
is absent at V ≥ VD. In such a case, the balance for morphological stability is defined
by the relation of the stabilizing force Γω2, due to surface energy, and the contribution
KLGLξL+KSGSξS of temperature gradients, GL > 0 and GS > 0, which are positive
in the case of directional solidification.

3 Analysis of the stability function

We are interested in the analysis of the concurrence of contribution of the surface
energy and destabilizing concentration gradient which is true for V < VD. Therefore,
consider the first equation from the criterion (2). For this equation, one can introduce
the following stability function (see, for details, Ref. [12]):

S(ω2) = −Γω2 −KLGLξL −KSGSξS +mGCξC . (10)

Taking the stability functions from equations (3) and (4) we assume equal coefficients
of thermal diffusivity and of thermal conductivity in both phases, i.e., aL = aS = a
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and KL = KS = KT . Then we get

KLGLξL +KSGSξS =
GL +GS

2
+
GS −GL

2
V

2a
1√

(V/2a)2 + ω2
. (11)

As a result, the function (10) can be re-written as

S(ω2) = −Γω2 − GL +GS

2
− GS −GL

2
V

2a
1√

(V/2a)2 + ω2
+mGCξC(ω2). (12)

This function has two limiting cases: ω2 = 0 and ω2 → ∞. First, at ω2 = 0 one has
ξC = 0, and for the positive temperature gradients, GL > 0 and GS > 0, we have
from equation (12) the following function

S(ω2) = −GL +GS

2
− GS −GL

2
< 0. (13)

Second, at ω2 →∞, one gets from equation (12) that S(ω2)→ −∞.
Now let us analyze extremal points of the function S(ω2) given by equation (12).

With this aim we write the derivative ∂S(ω2)/∂ω2 as follows

∂S(ω2)
∂ω2

= −Γ +
GS −GL

2
V

2a
1/2(

(V/2a)2 + ω2
)3/2

+
mGC

2
1((

V/
(
2D
√

1− V 2/V 2
D

))2

+ ω2

)1/2

×
kV/

(
D
√

1− V 2/V 2
D

)(
ωC − (1− k)V/

(
D
√

1− V 2/V 2
D

))2 · (14)

From this derivative one can find both asymptotic regimes for rapid solidification
and slow solidification.

3.1 The first asymptotic: a case of rapid solidification

It can be seen from equation (14), that the derivative ∂S(ω2)/∂ω2 is a monotonically
diminishing function of ω2. Accordingly, if ∂S(ω2)/∂ω2 < 0 at ω2 = 0, then we
get ∂S(ω2)/∂ω2 < 0 for any ω2. In such a case, the function S(ω2) has not extremal
points and it is the negative function, S(ω2) < 0, for any ω2 in a positive temperature
gradient [see Eq. (13)]. Thus, for this case, the planar interface is morphologically
stable.

For the zero frequency, i.e., ω2 = 0, we get the following condition

∂S(ω2)
∂ω2

= −Γ +
GS −GL

4

(
2a
V

)2

+
mvGCD

2
(
1− V 2/V 2

D

)
kvV 2

< 0. (15)

Omitting the terms with temperature gradients, one can get the stability condition
in the following form

Γ >
mvGCD

2
(
1− V 2/V 2

D

)
kvV 2

· (16)
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From this it follows that the solidification planar front is stable if the contribu-
tion from the interfacial energy (proportional to Γ) is greater than the destabilizing
contribution (proportional to the concentration gradient GC).

Now, taking into account expression for the concentration gradient GC at the
unperturbed interface [19]

GC = − (1− kv)V C∞
kvD(1− V 2/V 2

D)
, V < VD,

GC = 0, V ≥ VD, (17)

and using equation (16), one can obtain the following inequality

k2
vΓ

mv(kv − 1)C∞
>
D

V
· (18)

This stability condition has the following meaning [20]. As soon as the characteristic
diffusion lengthD/V becomes smaller thanthecharacteristic scalek2

vΓ/(mv(kv−1)C∞)
of interfacial capillary, the planar interface becomes morphologically stable in rapid
solidification regime.

The balance between the stabilizing and destabilizing actions [see Eq. (16)] or
equality of the two lengths [see Eq. (18)] can be re-written in the following convenient
form

VA =
mvD(kv − 1)C∞

Γk2
v

≡ D∆Tv

kvΓ
< VD, (19)

where
∆Tv = mv

kv − 1
kv

C∞

is the velocity dependent interval of solidification (in the kinetic phase diagram). This
is the velocity VA for absolute chemical stability above which the planar interface
becomes stable. The form of equation (19) coincides with the expression given for
the case of local equilibrium solute diffusion transport at VD → ∞ [14]. However, a
final form of the function VA(C∞) is defined by the functions of solute partitioning,
kv, and the slope, mv, of liquidus line in the kinetic phase diagram. The behavior
of theses functions is rather different for the cases of local equilibrium and local
non-equilibrium solute diffusion [17,19,21,22].

3.2 The second asymptotic: a case of slow solidification

To predict condition of stability for the slowly moving planar interface, we consider
small solidification velocity. With this aim, one can neglect quadratic terms by veloc-
ity V and use the expression GS −GL ∼ V in equation (14). Also, for the slow-rate
solidification regime, one can assume that the velocity dependent functions kv and
mv merely have their own equilibrium constants ke and me, respectively. Therefore,
equation for extrema of the function S(ω2) is described by

∂S(ω2)
∂ω2

= −Γ +
mGC

2
1√

(V/2D)2 + ω2

keV/D(
ωC − (1− ke)V/D

)2 = 0, (20)

where the frequency ωC is given by (see Eq. (8) with neglecting quadratic terms by
velocity V )

ωC =
V

2D
+

√(
V

2D

)2

+ ω2. (21)
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Using the new variable r defined by

r2 =
(
1 + (2Dω/V )2

)1/2
, (22)

equation (20) takes the following form

−Γ +
mGC

2
· 1

(V/2D)r2
· keV/D

((V/2D)(r2 + 2ke − 1))2
= 0. (23)

This equation can be easily re-written as follows

r3 + (2ke − 1)r − (2ke/A
1/2) = 0, (24)

where the parameter A is given by

A =
keΓV 2

meGCD2
· (25)

Cubic polynomial (24) has been analyzed in details by Sekerka and Coriell in ref-
erences [9,10]. In particular, defining G = G/(meGC), where G = (GL +GS)/2 is the
weighted temperature gradient, and using equation (10), the following relationship
at the onset of instability is found [9]:

G = 1− 3
2
rA1/2 +

A

4ke
[1− (1− 2ke)r2], (26)

where r is the one real root greater than unity of equation (24). For slow solidification,
the parameter A given by equation (25) is small compared to unity. Consequently,
equation (26) leads to the following criterion [11]:

G = 1, (27)

which is known as the modified constitutional supercooling criterion [12] equals to

G = meGC ≡ mC∞
ke − 1
ke

V

D
, (28)

where equation (17) has been taken into account for small velocity, V << VD.
Equation (28) shows that the liquid ahead of the interface is constitutionally

supercooled if G < meGC that is leading to morphological instability of the planar
solidification front. Neglecting the thermal gradient in solid and using G = GL, one
can get from equation (28) the constitutional supercooling criterion in its classical
form given by Ivantsov and Tiller et al. [23,24].

4 Model with the deviations from local equilibrium
at the interface and in solute diffusion field

For computation of the morphological stability diagram we assume that characteristic
size of pattern upon instability of the planar solidification interface is defined by the
marginal stability hypothesis given by the analysis of Langer and Müller-Krumbhaar
[25]. Following this hypothesis, the size R of pattern is equal to the critical wavelength
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λ of equation (1). Therefore, using, criterion (2), for a given velocity V < VD and
temperature gradients GL and GS , the pattern size R is defined by

R =
(

Γ/σ
mvGCξc − 1

2 (GLξL +GSξS)

)1/2

, (29)

where σ = (4π2)−1 is a parameter of marginal stability giving relation between R
and a wavelength of interfacial perturbation.

For the case of local non-equilibrium solute diffusion, the gradient GC is defined
as follows [26]

GC = −V
D

(1− kv)C∞
(1− V 2/V 2

D)(1− (1− kv)Iv(PC))
, V > VD,

GC = 0, V ≥ VD, (30)

where PC = V R/2D is the solutal Peclet number. The Ivantsov-function Iv(P ) is
defined by:

Iv(P ) = (πP )1/2 exp(P )erfc(P 1/2), for 2D,

Iv(P ) = P exp(P )Ei(P ), for 3D, (31)

where Ei(P ) =
∫∞

P
s−1 exp(−s)ds is the exponential integral function. The stability

functions ξ can be obtained from equations (3)–(5) as follows [17]

ξL = 1− 1(
1 +

1
σP 2

T

)1/2
, (32)

ξS = 1 +
1(

1 +
1

σP 2
T

)1/2
, (33)

ξC = 1 +
2kv

1− 2kv −
(

1 +
1− V 2/V 2

D

σP 2
C

)1/2
, V < VD,

ξC = 0, V ≥ VD, (34)

where PT = V R/2a is the thermal Peclet number.
The slope mv of the nonequilibrium liquidus is described by [21]:

mv =
me

1− ke

{
1− kv + ln

(
kv

ke

)
+ (1− kv)2

V

VD

}
, V < VD,

mv =
me ln ke

ke − 1
, V ≥ VD. (35)

The solute distribution function kv at the interface defines the solute trapping and
it is described by [27]:

kv =
(1− V 2/V 2

D)[ke + (1− ke)C∞] + V/VDI

1− V 2/V 2
D + V/VDI

, V < VD,
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Table 1. Physical parameters of Si–Sn alloy used in calculations of the morphological
stability diagrams.

Parameter Notation Dimension Values Reference
Thermal conductivity KL W/K/m 140 [30]
Heat capacity cp J/K/m3 2.5× 106 [30]
Diffusion coefficient D m2/s 2.5× 10−8 [31]
Partition coefficient ke — 0.016 [31]
Liquidus slope me K/at.% −4.6 [31]
Gibbs-Thomson coefficient Γ K m 1.3× 10−7 [31]
Interface diffusion speed VDI m/s 17 [31]
Diffusion speed in bulk liquid VD m/s 17.5 [17]

kv = 1, V ≥ VD, (36)

where VDI is the interfacial diffusion speed [28,29] which is usually assumed to be
VDI < VD.

As a result, equations (29)–(36) generalize the model of Kurz, Giovanola, and
Trivedi (KGT-model) [15] for the case of deviation from local equilibrium in bulk
liquid (i.e., in the solute diffusion field). The KGT-model itself directly follows from
equations (30)–(36) in the limits VD →∞.

5 Morphological stability diagram

For the further analysis, we assume that (i) the solidification proceeds in the positive
temperature gradient in the liquid and one can neglect the gradient in the solid,
so that GL > 0 and GS = 0 and (ii) all calculations will be made for material
parameters of Si–Sn alloy summarized in Table 1.

5.1 Critical values of parameters

With a given velocity V and for various gradients GL, equation (29) may have the
only solution, two solutions, or no any solutions. These three situations are shown in
Figure 2 using the dashed-dotted line, dashed line, and dotted line, respectively. If
GL is smaller than some critical value G∗(V ), then equation (29) has two roots the
minima of which give the selected size of crystalline microstructure. As the temper-
ature gradient increases up to the critical value G∗(V ), equation (29) has the only
root which gives the maximal characteristic size of the microstructure at a given
interface velocity V . Further increasing the gradient GL leads to the absence of any
solution for equation (29) that gives a stability of the planar interface with R→∞.
Thus, a curve for the critical temperature gradient G∗(V ) defines V and GL at which
the transition from planar front to cells and dendrites or vice versa may occur in a
binary alloy.

5.2 The complete diagram of morphology

Figure 3 presents morphological stability diagram which is known as “nose-like dia-
gram of interfacial stability” [32,33]. The diagram shows regions of planar front sta-
bility and of cells/dendrites existence for given nominal concentration and interface
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Fig. 2. Dependence of left hand side (solid line) and right hand side (dotted, dashed and
dashed-dotted) of equation (29) on characteristic size R of microstructure. The curves are
plotted for given velocity V and various gradients GL. The size R is scaled by the diffusion
length hD = D/VD.

Fig. 3. The complete morphological stability diagram in a form of critical concentration,
C∞(V ), above which planar interface is unstable (solid line) for a given temperature gradient
GL = 105 K/m. The limiting velocity VC is given by equation (28) and the limiting velocity
VA is given by equations (19), (35) and (36). Dashed-dotted line, V = VD, represents the
limiting velocity for the absolute interface stability.

velocity V . The most important issue that the diagram predicts critical value for
the transitions between growing structures in steady state crystalline solidification
obtained by the constitutional criterion (28) at small V and absolute chemical sta-
bility condition (19), (35) and (36) given by the high V -limit. In addition to the
structure diagram calculated in reference [17] the diagram in Figure 3 represents the
whole range of the front velocities from its low to high values at which morphological
transitions may occur at the corresponding values of the critical concentration.

5.3 High velocity limit and dependence on temperature gradient

The high V -limit given in the complete diagram principally differs from the previously
obtained in references [32]. Indeed, as Figure 4 shows (which is zoom of Fig. 3 for the
region of high growth velocity), the model with the deviation from local equilibrium
only at the interface predicts gradual increasing of concentration with no sensetive
to the bulk diffusion speed (dashed line). By contrast, the model with deviation



362 The European Physical Journal Special Topics

Fig. 4. A part of the morphological stability diagram for high solidification rates given by
equations (19), (35) and (36).

Fig. 5. Dependence of the morphological stability from the temperature gradient as pre-
dicted by equations (19), (35) and (36). The curves are computed for various temperature
gradients: solid line is given by GL = 105 K/m, and dashed line is given by GL = 106 K/m.
Dashed-dotted line, V = VD, represents the limiting velocity for the absolute interface
stability.

from local equilibrium at the interface and in bulk diffusion field is limited by the
diffusion speed in bulk liquid and one gets VA < VD. As a result the curve of critical
concentration (solid line in Fig. 4) essentially deviates from that one given by the
model with the deviation from local equilibrium only at the interface (i.e. from the
dashed line in Fig. 4). Such deviation around V = VA gradually increases and leads
to essential difference inpredictions of the growth kinetics of dendrites [18]. One can
note that for the diffusion coefficient D, equilibrium partition coefficient ke and the
liquidus line slope me we have used in calculations their constant values independent
on temperature and concentration (see Tab. 1). In a wide range of undercooling
and for a dilute and concentrated alloys these material parameters should be taken
as functions of temperature and concentration that is, of course, may correct the
morphological diagram shown in Figures 3 and 5.

Finally, one has to note that the temperature gradient GL mainly influences the
critical concentration for the morphology transition at small growth velocity. Figure 5
shows that the increase in GL > 0 leads to the increase in the region for the planar
front stability at small velocity V . This fact follows from the criterion of constitutional
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undercooling (28) if it can be rewritten in the form

C∞ =
ke

me(ke − 1)
· DGL

2V
, where G = GL/2, (37)

which predicts that the nominal concentration C∞ should be increased as the tem-
perature gradient GL increases for a given interface velocity V . By contrast, the high
velocity limit does not strongly depend on the gradient GL. It appears due to def-
inition of absolute chemical stability: the criterion (19) is the result of competition
and balance of the capillary length and solute diffusion length that does not depend
of the imposed temperature gradient directly.

6 Conclusions

Using the criterion of marginal stability we found the conditions of constitutional
undercooling, which acts at small solidification rates, and the absolute chemical sta-
bility as a result of the competition between contributions of surface energy and
destabilizing concentration gradient. These conditions are related to general solidi-
fication regimes existing at very small and very high solid-liquid interface velocity,
which occur under deviation from local equilibrium at the interface and in the dif-
fusion profile in bulk liquid. As well as these conditions present in asymptotic cases
of the complete regimes obtained from the diagram of morphologies computed using
the formulated model of dendritic/cellular growth.

The constructed morphology diagram predicts critical values of concentration and
interface velocity dividing the region of planar solidification front stability and the
region of cellular/dendritic structures growing in a positive temperature gradient
during slow, intermediate and rapid directional solidification of binary alloys. Com-
binations of the full diagram of structures and dynamic conditions of the existence
of stationary or non-stationary modes of solidification complement the interpretation
of experimental results [34].
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