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0. Abstract 

A family of complementarity problems are defined as extensions of 
the well known Linear Complementarity Problem (LCP). These are 

(i.) Second Linear Complementarity Problem (SLCP) which is an 
LCP extended by introducing further equality restrictions 
and unrestricted variables, 

(ii.) Minimum Linear Complementarity Problem (MLCP) which is an 
LCP with additional variables not required to be complementary 
and with a linear objective function which is to be minimized, 

(iii.) Second Minimum Linear Complementarity Problem (SMLCP) which is 
an MLCP but the nonnegative restriction on one of each pair of 
complementary variables is relaxed so that it is allowed to be 
unrestricted in value. 

A number of well known mathematical programming problems, namely 
quadratic programming (convex, nonconvex, pseudoconvex nonconvex), 
bilinear programming, game theory, zero-one integer programming, the 
fixed charge problem, absolute value programming, variable separable 
programming are reformulated as members of this family of four 
complementarity problems. 



1. Introduction 

Linear Complementarity Problems may be defined as that of solving 
systems of linear equations in the variables z and w traditionally 
required to be nonnegative and satisfying a complementarity relation- 
ship. Some of these problems have in addition a linear objective 
function to be minimized. In this paper four linear complementarity 
problems are distinguished. These are stated below: 

(i) Linear Complementarity Problem (LCP) 

 
w = q + Mz, z ≥ 0, w ≥ 0, zT w = 0, z,wε Rn .                                   (1) 

(ii) Second Linear Complementarity Problem (SLCP) 
w = q + Mz + Nu, 
 
0 = p + Rz + Su, 

z ≥ 0, w ≥ 0, zT w = 0, -∞ < u < +∞, z,wεRn , p,uεRm.                    (2) 

(iii) Minimum Linear Complementarity Problem (MLCP) 
Minimize pTz + qTw + rTu, 

Pz + Qw + Ru = b, 
z ≥ 0, w ≥ 0, zTw - 0, z,wεRn, bεRm, uεRℓ,                                        (3) 

and the u-variables may be unrestricted or nonnegative. 

(iv) Second Minimum Linear Complementarity Problem (SMLCP) 

 
Minimize pTz + q T w  +  r T u ,  

Pz + Qw + Ru = b,                                                                                 (4) 
                            z ≥ 0, -∞ < w < +∞, zi  wi = 0, i - 1, ...,n, z,wRn , uεRℓ , bεRm 

and the u-variables may be unrestricted or nonnegative. 

To date only the LCP has been considered in any detail as a mathematical 
programming problem. This problem was first proposed by Lemke as an 
unified approach to solve the bimatrix game and the convex quadratic 
programming problem ([1,2]). Since then it has been studied 
extensively both in theoretical and computational aspects ([3,4,5]). 
Some problems in engineering applications [6,7] and the bimatrix and 
polymatrix games [8,9] have been studied as LCPs. However the most 
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Important application of the LCP is to solve convex quadratic 
programming problems. Portfolio selection problems [10,11,7] and 
problems involving variational inequalities [12,13,14] reduce to 
convex quadratic programming problems and have been sited as examples 
of LCP applications. If some equality constraints and unrestricted 
variables are introduced in the convex quadratic program then this 
problem is no longer equivalent to an LCP but can be reduced to an 
SLCP. The SLCP was proposed precisely for this purpose. 

The MLCP was first introduced by Ibaraki [l5] as an alternative method 
of solving the 0-1 integer programming problem. In this paper it is 
shown that a number of other discrete optimization problems may also 
be reduced to the MLCP. This underlies the importance of the MLCP 
and the need to find efficient methods for solving this problem. 
Concentrating for the moment on each component of the complementarity 
condition 

ziwi. =0, zi ≥ 0, wi. ≥ 0 

there is an implied either/or relationship which is comparable to a 
boolean 0-1 variable. In certain reformulations of optimization 
problems as linear complementarity problems this relationship is 
still required but because of the nature of the problem some of 
the variables are not restricted in sign. This is the basis of the 
SMLCP where the above relationship appears as 

zi.wi. = 0, zi. ≥ 0, —∞ < wi < +∞. 

In section 2 of this paper it is shown that a linear programming 
problem in the general form and its dual are compactly restated 
as an SLCP. In section 3 it is shown that convex, nonconvex, and 
pseudoconvex nonconvex quadratic programming problems may be 
reformulated as an LCP, an SLCP or an MLCP- Reformulation of the 
bilinear programming problem section 4, matrix games section 5, 
absolute value programming section 6 and zero—one integer programming 
section 7 are already reported in the literature. These are presented 
here for the purpose of completeness. In section 8 a new compact 
reformulation of the fixed—change problem which uses the linear 
complementarity relation is presented. In section 9 the latter approach 
is extended to show that the separable programming problem can be 
reformulated as an SMLCP. In section 10 solution methods for processing 
the Linear Complementarity Problems are discussed. Experience of solving 
a number of test problems taken from different sources is reported 



5 
elsewhere in [16]. 
2. Linear Programming 
Consider the general linear programming problem 

T T 
Minimize {f(x,y) = cT x + dT y, (x,y)ε Kℓp } ,                                                          (5 )  

where 
Kℓp = {(x,y) : Ax + By = b, Ex + Fy≥ g, x≥0, -∞ < y < +∞}        (6 )  

Its dual may be stated as ( [17,  page 154]) 
 

Maximize {h(π,u) = b T Π + g T u, (π,u) ε Kdℓp} ,                                                         (7 )  
where 

Kdℓp = {(π, μ : A T Π  +  E T Π ,  BT Π + F T μ = d, μ ≥ 0, -∞< π < + ∞}  (8 )  
Suppose that ( x , y ) is an optimal solution of the linear program (5). 
By the Fundamental Duality theorem of linear programming ([17, page 159]) 
the dual (7) also has an optimal solution ( π , μ ) . Furthermore the 
complementarity slackness property ([I7, page 165]) concerning the 
nonnegative variables x  and μ  and the slack variables v  and γ  
corresponding to the inequalities in the dual (7) and primal (5) 
holds. Hence ( v , γ , x , μ , y , π ) is a solution of the following SLCP 
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v ≥ 0, Y≥ 0, X ≥ 0, μ ≥ 0, -∞ < y <  +∞ ,  -∞ < π < + ∞, vT x + γ Tμ =0. 
 
Conversely if ( )π,y,μ,x,γ,v(  is a solution of the SLCP (9) then 
both the constraint sets Kℓp and K d ℓp are nonempty and 
 
 )πBμ(Fy)πA μEv(xydxc)y,xf( TTTTTTTT ++++=+=  
 

 
)π,μh(bπgμγμvxbπ)γ(gμvx
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Hence by the Fundamental  theorem of  dual i ty  (x ,y)  Is  an opt imal  
solut ion of  the l inear  program (5)  and (μ ,π )  is  an opt imal  solut ion 
of  the dual  (7) .  Therefore  the fol lowing theorem holds:  

Theorem 1 There is a one-to-one correspondence between the solutions 
of the linear program (5) and the SLCP (.9). 

In (5) set A = B = F = 0 and d = b = 0 and thereby the correspondence 
between the canonical linear program and the LCP given in [18] is 
obtained. It  may be noted that the existence of the complementarity 
condition is due to inequalities in the constraint set Kℓp  and that 
a linear program in which all  constraints are equalities and all  the 
variables are unrestricted in sign is equivalent to a system of 
equations. 

3. Quadratic Programming 

Consider the general quadratic programming problem 

(10) 

(x,y) ЄKqp = {(x,y) : Ax+By=b , Ex+Fy ≥ g ,  x  ≥ 0  , - ∞  <  y  <  +∞}, 

where P and Q are symmetric matrices.  The first  theorem of this section 
is a generalisation for the quadratic program (10) of a result  given 
by Murty ([l7,  page 491]).  

Theorem 2 If ),( yx  is an optimal solution of the quadratic program (10) 
then ),( yx  is also an optimal solution of the linear program 

Minimize }ky)(x,y,)yQxR(dx)yRxP{(c qp
TTT ∈+++++  (11) 

Proof By writing 
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the programs(10) and (11 )  can be written respectively in the forms 

Minimize {q T z + 
2
1  z T Dz, z ЄKqp } , 

Minimize {(q + D z )T z, zЄKqp } , 
 

The same proof of Murty's result can now be used to establish the 
theorem. 

The dual of the linear program (11) takes the form 

Maximize {b T π + gT � : (π.µ) ЄKd pa} ,                                              (13) l

where 

,yRxPcEπA:μ){(π(K TT
pad ++≤+=l  

                               . }   +∞<+ <∞−   ,       ≥   , + + =  + π 0μyQxRdµF  πB ΤΤT  

Therefore Theorem 3 follows from the theorems 1 and 2 and is stated 

below. 
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v≥ 0, y≥0, x ≥ 0, � ≥ 0, -∞ < y <  +∞ ,  - ∞  <  π < + ∞, vT x + γTµ=0. 

The conditions(14) are usually called the Kuhn-Tucker conditions 
(19). The converse of this theorem is not in general true. However, 
if  the matrixes positive semi-definite the converse does hold as 
set out in the following theorem. 



              8 

Theorem 4 If the matrix D as in ( 12 )  is positive semi-definite 
there is a one-to-one correspondence between the optimal solution 

)y,x(  of the quadratic program (10) and the solution )γ,v,µ,π,y,x(  
of the SLCP (14). 

Proof Because of the last theorem it is only necessary to prove 
that f(z) ≥ f'  for any z Є Kqp . But )z(

 - (q + )zD T, (z - )z  + 1 (z - )z TD (z - )z  (15) f(z) - f )z(

Since (q + )zD  T (z - )z  a ≥ by theorem 2 and the second term of the 

right-hand side of (15) is nonnegative (D is positive semi-definite) and 
the result follows, 

A quadratic program whose matrix is positive semi-definite is called 
a Convex Quadratic Program ([20, chapter 9]). The equivalence 
of a convex quadratic program whose constraints are all inequalities 
to an LCP ([l8]) follows from theorem 4 by setting 
F=A=B=R=Q=0 and d = b - 0. It also follows that a convex quadratic 
program with only equality constraints and all variables 
unrestricted in sign is equivalent to a system of equations. 

For the case in which all the variables of (10) are required to 
be nonnegative, that is, R=Q=B=F=0and d = 0, it can be 
shown ([20, page 132], [21], [22]) that theorem 4 also holds if 
the positive semi-definiteness condition is replaced by 

  and has a unique negative eigenvalue and c ǂ 0 (16) 0
0

≤⎥
⎦

⎤
⎢
⎣

⎡
Tc

cP

In this case the quadratic program is called a Pseudoconvex 
Nonconvex Quadratic Program ([20, chapter 9]) .  

If neither the matrix D is positive semi-definite nor the condition 
(16) holds the quadratic program is no longer equivalent to an SLCP. 
However, any optimal solution ),( yx  of the quadratic program (10) 
has to satisfy the conditions (14) .  If this happens, then 
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by theorem 2. Hence any nonconvex quadratic program with a finite 

optimal solution is equivalent to the following MLCP 

Minimize { ½ (c T x + d T y+b T Π + gT µ) , (x,y ,π,µ, v,y) Є Kmlcp } (17) 

where 

Kmlcp= {(x,y,π ,v, γ)  :  (x,  y,  π ,  µ,  v,  y) satisfies (14)} 

If all the constraints are equalities and all the variables are 
unrestricted then the nonconvex quadratic program (10) is equivalent 
to a linear program with the same characteristics. Therefore this 
quadratic program is equivalent to a system of equations (it is 
assumed that the quadratic program has a finite optimal solution). 

So in almost all cases any quadratic programming problem is 
equivalent to a linear complementarity problem or to a system of 
equations. All the different cases are summarized below. 

(i) Convex Quadratic Program - is equivalent to 
(a) an LCP if all the constraints are inequalities, 
(b) an SLCP if some constraints are equalities, 
(c) a system of equations if there are no inequalities 

among the constraints. 
(ii) Pseudoconvex Nonconvex Qaudratic Program - is equivalent to 

(a) an LCP if all the constraints are inequalities, 
(b) an SLCP if there are some equality constraints. 

(iii) Nonconvex Quadratic Program - if the quadratic program has a 
finite optimal solution it is equivalent to 
(a) an MLCP if there are some inequalities among the constraints , 
(b) a system of equations if there are no inequalities. 
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Obviously the nonnegative restrictions on the variables are considered 
as inequalities in this summary. Note that a quadratic program has a 
finite optimal solution if and only if its nonempty constraint set 
Kqp (Kqp ≠ Φ ) is bounded or the function is bounded from below over 
Kqp. ([23, 24]). 

4. Bilinear Programming 

The Bilinear Programming problem [25 , 26] is another well known problem 
of mathematical programming which consists of minimizing a bilinear 
form subject to linear constraints. It can then be stated as 
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Note that (19) is a nonconvex quadratic program, since its matrix is 
not positive semi-definite [16]. Therefore the bilinear program (18) 
is equivalent to an MLCP, if Kqbℓ is bounded or the function f(x,y) 
is bounded from below over Kqbℓ . However it is possible to reduce 
it directly to a more compact MLCP than that obtained by using the 
quadratic program (19) .  

The bilinear program (18)  can be written in the form: 

Minimize {h(x) + g(x), x ∈  Kbℓy },                          (20) 
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Now if the linear program min {i(y) , y∈  Kbℓy , } has a finite optimal 
solution then 

g(x) = min { i (y ) ,y∈ Kbℓy } = - min {-j(u),u∈ Kbℓy ,y∈ Kbℓy ,2Tu1 =wTy1 =0} 

where z and w are the slack, variables corresponding to the inequalities 
of the primal and the dual problems respectively. Note that the linear 
program min {i(y) ,  y ∈ Kbℓy } has a finite optimal solution if Kbℓy ≠θ is 
bounded ([31 , page 17] ) .  Therefore if Kbℓy is bounded the bilinear 
program (18) is equivalent to the following MLCP 

Minimize (p1)T x1 +(p2)xTx 2 + bT u1 +dT  u 2  ,  
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x1 ≥ 0, - ∞ < x 2 < + ∞ ,  y1 ≥ 0,-∞ < y2 < +∞, u1 ≥ 0, -∞ < u2 < ∞, w ≥ 0, z ≥ 0, 

v ≥ 0, wT y1 + zTu1 =0 . 

As before if all the constraints are equalities and all the variables 
are unrestricted the bilinear program (18) is equivalent to a system 
of equations. Finally let (m,n) and ( m , n ) denote the numbers of rows 
and columns of the MLCPs obtained by using the quadratic program (19), 
and the direct approach (22) respectively. Then m  = m-(m1.+m2) and 
n = n - (r1 + r2) where r1. and r2 are the number of rows of A1.and C1. 
and illustrate the advantage of this formulation.. 

5, Matrix Games 

A Bimatrix Game [8] is a game in which two players with loss matrices 
A and B (A ∈  R mxn, B Є R mxn) try to reduce their losses as much as possible. 
The Row Player has m pure strategies which are identified with the rows 
of A and the Column Player has n pure strategies which correspond to the 
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columns of B. If the Row Player uses its ith pure strategy and 
the Column Player uses its jth pure strategy then their respective 
losses are given by a i  j . ,  and b i  j . Using mixed strategies 

 x=(x1,…..,xm)T, y =(y1,…..,yn)T,    (23) ,1
1

∑
=

=
m

i
ix ,1

1
∑

=

=
m

i
iy .0,0 ≥≥ yx

their respectively losses are x T Ay and xT By. Therefore a bimatrix game 
),( BAΓ  seeks a pair of strategies ),( yx  such that 

 

(23), satisfyingy  straregies allfor  ByxyBx

(23), satisfying x straregies allfor yAxyAx
TT

TT

≤

≤
          (24) 

 
A pair ),( yx  satisfying (24) is called an Equilibrium Point of the 
Bimatrix Game T(A,B) .  The problem of finding an equilibrium point 
is equivalent to an LCP as stated below. 

 

 
Theorem 5 ),( yx  is an equilibrium point of T(A,B) if and only if 

),,,( vuyx  is a solution of the LCP 

0
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x

v
u
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u TT
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⎢
⎣

⎡
   (25) 

n},1,....,jm,1,.....,i|,b||,a{|maxθ  E,θ-BBE,θAA where ijji000 ==>=+=

E = (ei j) with ei j =1 for all i = 1, . . . ,m and j =1, . . . ,n and em and en 
are vectors of order m and n whose components are all ones. 
 
This theorem is due to Eaves [27] and note that 0A >  0B <  Lemke and 
Howson [8] previously established a similar result but with 0A >  and 

0B >  The advantage of Eaves' formulation is discussed later. 
 
In [26] Konno defines a Constrained Bimatrix Game Γ ’(A,B) which is a 
bimatrix game in which the choice of the mixed strategies x and y are 
subject to more general constraints, that is, the sets of mixed strategies 
are defined as  

 kbgx = {x∈ R m : Px ≥  p ,  Qx=q,  (em )T x = 1, x≥0} 
 Kbgy= { y ∈Rn: Ry ≥ r, Sy=s, (en)T y=l, y≥ 0}                 (26) 

Hence a pair of strategies (x,y) ∈ K b g x  x K b g y  is called an Equilibrium 
Point of the constrained bimatrix gamer T(A,B) if and only if 

 
}KyyBxminyBx   x,yA{xmin      yAx bgy

TT
b

TT
gx ∈ {   =  , } Κ ∈=                 (27) 
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Two linear programs are set out in (27) .  Hence considering their 
duals and applying theorem 1 the following result is obtained. 
Theorem 6 ( x , y ) is an equilibrium point of T ' ( A , B )  if and only 
if ( x , y ) is a solution of the SLCP 
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x ≥0, y≥0, a≥0, B ≥ 0 ,  u ≥ 0 ,  v ≥ 0 ,  z ≥ 0 ,  w ≥ 0 ,  -∞ < 6 < +∞ ,  -∞< y<+∞, 

xTu + aTv + yT z + ßT w == 0, -°°< a0 < +∞0, -∞< ß0 < -∞ . 

The Two Person Zero Sum Game is the most celebrated problem in game 
theory. In this game there are two players but unlike the bimatrix 
game only one matrix A∈Rmxn is considered. The Row Player (RP) 
has m pure strategies which are the rows of A and the Column Player 
(CP) n pure strategies identified with the n columns of A. In the 
matrix, called the Payoff matrix, the element a.. represents the 
payment made by (CP) to (RP) when (RP) chooses its ith pure 
strategy and (CP) uses its jth pure strategy. Using the mixed 
strategies given by (23) (or by (26) in case of a constrained zero—sum 
game) the expected gain of (RP) is equal to the loss of (CP). Therefore 
the zero-sum game seeks a pair of strategies ( x , y ) which maximizes 
the gain of (RP) and minimizes the loss of (CP). Such a pair is called 
a Saddle-Point and satisfies 

xT A y  ≤ xT A y  ≤ x T Ay for all mixed strategies 
( x , y ), (x,y) satisfying (23) or (26).  (29) 
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The value x T A y  is called the Value of the Game Γ (A). Any zero—sum 
game can be transformed into a bimatrix game Γ  (—A,A) . Since (29) 
can be rewritten as 
  AyxyAx,yA)(xyA)(x TTTT ≤−≤−  
it follows that any saddle—point of Γ(A) is an equilibrium point of 
Γ(-A,A) . Hence the problem of finding a saddle—point of a zero—sum 
game (constrained zero—sum game) is equivalent to the LCP (25) 
(SLCP (28)) where B is replaced by A, 
 
Two less known games can also be reduced to linear complementarity 
problems . These are the Polymatrix Game and the Two Move Game 
with Perfect Information. The first was introduced by Howson [9] 
who also proved its equivalence to an LCP. The second was 
introduced by Dantzig [28] and Konno [26] showed its equivalence 
toa bilinear program of the form (18) without the unrestricted 
variables and the equality constraints. Therefore this game is 
equivalent to an MLCP (if Kb y is bounded). l
 
6 Absolute Value Programming 

This problem is stated as ( [ 1 7 ] ,  page 15) 

,}Kx,xcMinimize{ absjj

n

1j
∈∑

=

 

                                                                                                                         (30) 
and Kabs = {x: Ax≥b, x.∈ Rn} . 

 
│xj │ is the absolute value of xj , that is 

⎪⎩

⎪
⎨
⎧

≥−

≥
=

0xifx

0xifx
x

jj

jj
j           (31)

Since x. is an unrestricted variable then it can be written as 
xj = uj - vj where uj ≥ 0 and vj ≥ 0. If the complementarity 
condition ujvj = 0 is added then │xj│ = uj + vj satisfies the 
relationship of (31). The problem may therefore be stated as an 
equivalent MLCP 

Minimize c T u + cT v                                                                  (32) 
Au - Av≥b u≥ 0, v≥0 and uT v = 0 
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7 Zero-one Integer Programming 

Zero—one (mixed) integer programming problems are now well 
established as perhaps the most important mathematical optimization 
problem. This is mainly because both nonlinear optimization problems 
and combinatorial optimization problems may be restated as a zero-one 
(mixed) integer programming problem [29] . A zero-one (mixed) integer 
programming problem may be stated as 

 
Minimize {cT x + d T u, (x,u)∈ K0 1 } (33) 

where K01 = {(x,u):  Ax + Bu≥a, u≥0, x j =  0 or 1 for allj } 
 
If there are no u—variables the problem is known as a zero—one pure 
integer program. Following Ibaraki [15] since any variable xj can only 
take one of the values 0 or 1 it has to satisfy xj. + yj =1, 
xj ≥ 0, yj ≥ 0, xjyj. = 0 and conversely. Therefore any zero-one (mixed) 
integer program (33) is equivalent to the MLCP 

Minimize cT x + d T u, 

,
u
x

BA
0I

a
e

z
y

tosubject ⎥
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⎤
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⎡
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⎤
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⎡
−

=⎥
⎦

⎤
⎢
⎣

⎡
 

x≥ 0, y ≥ 0, z ≥ 0, u≥ 0, xTy = 0 (34) 

Finally note that the presence of equality constraints or unrestricted 
variables does not introduce any relevant modification to the 
equivalent MLCP. 

8 The Fixed Charge Problem 

It is perhaps one of the most frequently occurring discrete programming 
problem and may be defined as 

           (35) 
⎭
⎬
⎫

⎩
⎨
⎧

∈∑
=

n

1j
fcjj Kx),(xφMinimize

where Kfc = {x ∈  Rn : Ax ≥ a, x ≥ 0} and 
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⎪⎩

⎪
⎨
⎧

≥≥>+

=
=φ

0.p0,r0,xifrxp

0xif0
)(x

jjjjjj

j

jj          (36) 

The function j(xj) is illustrated in Figure 1. φ

y
j slope pj. 

rj 

xj

Figure 1.

 
This problem is usually reformulated as a 0—1 Integer Program [29], 
and hence from the equivalence shown in the last section it can be 
reduced to an MLCP. However, it is possible to reformulate it as 
an MLCP without this intermediate step of a zero-one integer program. 
The advantage of this direct reduction is that the MLCP obtained is of 
lower dimension than by the other method. 

Consider for any j = 1,2,...,n the set valued function ψ j(xj) 
defined by 

ψ j(xj) = [0,rj] if x. = 0, ψ j ( x j )  = p j x j  + rj if xj < 0 (37) 

A theorem connecting. φj and j is stated and proved below. ψ

Theorem 7 

⎭
⎬
⎫

⎩
⎨
⎧

≥ψ==
⎭
⎬
⎫

⎩
⎨
⎧

≥φ ∑∑
==

0x),x(Minimum0x),x(Minimum j

n

1j
jj

n

1j
j

Proof For xj > 0, ψ j (x j)  = φ j (xj ) and for xj = 0, φ j (xj) = 0 and
ψ j ( x j )  = [0,rj ] . Since 0 ≤ rj the result follows.
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Let yj = j( X j) ,  Then ψ

y j ,  x j≥  0 ,  y j  ≤  P j x j +r j ,  [ (P j X j  +  r j ) -y j ]  x j  =  0 ,  : j  =  l ,  2 , . . . ,n ,  (38)  

Introducing the variables zj = ( p jx j + rj) - yj , j = 1 ,2,...,n and the 
vectors y = (yl.,..yn )T , z = ( z l , . . , z n ) T  the fixed-charge problem (35) 
is equivalent to the MLCP 

Minimize e T y, 
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      x≥0,   y≥0,    z≥0,    w≥0,   zTx = 0  .       (39) 
 
In (39) P is a diagonal matrix whose diagonal elements are 
Pj , j = l,2...,n, r - (rl....,.rn )T and w is the vector of slack 
variables for the inequalities of Kfc . Obviously the existence 
of equality constraints does not introduce any relevant modification 
to the MLCP. 

9 Variable Separable Programming. 

Variable Separable Programming is the most popular nonlinear programming 
extension of the linear programming methodology. A function 
f(xl ,. ,.,xn ) is said to be Variable Separable if it can be expressed 
as a sum of n functions of one argument, that is, if f(xl,....xn ) = 

∑
=

n

1j
jj )(xφ . A Variable Separable Program may be stated in the 

following form 

⎭
⎬
⎫

⎩
⎨
⎧

∈φ∑
=

vspj

n

1j
j Kx),(xMinimize      (40) 

where 

  [ ]
⎭
⎬
⎫

⎩
⎨
⎧

∈=≥ψ∈= ∑
=

jjjj

n

1j
j

n
vsp d,cxm,1,...,,b)(x:RxK lll

If the properties of j and φlj . are such that (40) is a convex φ
programming problem then the Variable Separable Program can be 
reduced to a linear program ([17, pages 11—13])- In the nonconvex 
case either the zero-one mixed integer formulation [29] or the special 
order set approach [30] may be exploited to investigate the global 
solution. 
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In this section it is shown that this problem (40) can also be trans- 
formed to an MLCP. As in other approaches discussed above piecewise 
linear approximations of the functions φ j (xj) and ψ lj (xj) in the 
intervals [cj,dj] are used. 
 
Let ψ (xj) be any one of these functions and [cj,dj] be the corresponding 
interval. Consider the decomposition of this interval defined by k 
discrete points cj.= μ1 < μ2 <...< μκ−1 < μκ = dj and the corresponding 
values ni= (μι), i=l,2,..,k. The function ψ ψ (xj) can be 
represented by a piecewise linear approximation defined by connecting 
the set of n points Ai(μι.,ni) as shown in Figure 2. 

yj 

A
j 

 

Any xj. ∈  [cj,dj] can be written as a convex combination of 

μι, i = 1 ................ ,k as stated below 

,1,
2

1

1

1

1
=+= ∑∑∑

=

−

=

−

=

k

i
i

k

i
i

k

i
ij

zx βα       (41) 

z i=α iµi+ßi + 1µi + 1 ,  α i≥0, ßi + 1≥0, i=1,….,k-1 

Two cases (A) and (B) are considered. 

cj = μ1 μ2 μ3 μ4 μκ = dj xj μκ−1 

Figure 2 
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(A)     cj > 0 In this case zi > 0 for any i = 1 , .. .,k-l, since 
μι > 0. Let yj=ai xj+ bi be the equation of the straight 
line Ai Ai+1. ., i =1, . . . . ,k—1 . These latter equations together 
with those set out in (41) constitute a valid representation 
for the sequence of 1ine segments 1,k1,....,i,AA

1ii
−=

+
 

if for any (xj,yj) there exists an i such that xj€[μ.,ui+1] 
and yj=aj xj + bi . 
 

Consider the (k-1) variables wi.= yj- (aixj+bi). The following 
theorem shows that complementarity conditions may be added to the 
set of equations stated above in order to obtain a valid represent- 
ation for the line segments .AA

1ii +

Theorem 8 - Suppose that the following two conditions hold: 
Property 1 
                       zs ws = 0 for s = 1, ... . ,k- 1 , 
 
Property 2 
                       if wi.=wt = 0 and │ i-t │ > │ then zi = 0 or zt = 0. 

 
In this case for any ( x j , y j )  there is an i such xj  € [ui .,ui - 1 ] 
and yj  = ai  xj . + bi  

 
Proof: For any ( x j , y j )  there must exist an i such that wi. =0. In 
fact if ws ≠ 0 for all s 1, . . . ,k-l then by Property 1 zs = 0 for 
all s = 1 , . . . ,k—1 , which is impossible since cj > 0. Hence there is 
an i such that wi. = 0 and yj = aixj + b i .  There are two cases as 
stated below. 
 
(i) If z i .  =0 then Property 1 and Property 2 imply that 

zs  = 0 for any s such that │  s—i │> 1 .  If xj  = ui  or 
xj .  =μι + 1  ,  the theorem is proved. Otherwise wi _ 1  ≠  0 
and wi + 1.≠  0,  whence zi - 1  =  zi + 1 = 0 by Property 1 .  
Hence Xj =zi .=ai  ßi + 1  μι  +  1 ,  a i  + ßi + 1 = 1, 
α i  ≥  0,  Bi + 1  ≥  0 Therefore xj  ε  [μι ,μ ι + 1] and the 
theorem is proved. 
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(ii)  I f  z i .  =  0  and s ince c j  >  0  there  must  exis t  a  t  
such that  z t  >  0.  Then wt  = 0 by property 1  and 
case ( i )  i s  obtained i f  the  index i  i s  replaced by 
the index t .  

By this theorem any occurrence of φ(XJ) in a variable separable 
program can be replaced by y. and the conditions: 
   

       xj=  1ßα,z
k

2i
i

1k

1i
i

1k

1i
i

=+ ∑∑∑
=

−

=

−

=

zj  = ai  µi  + Bi  + 1  µi + 1 ,            (42) 
 
wi.  = yj  -  (a i  x j  + bi  ) ,  
 
α j ≥ 0, ßi+1 ≥ 0, zi ≥ 0 ,  z i w i  = 0, i. = 1,. .. ,k-l 
 

and 
-∞ < wi < + ∞ , i = 1 , . . . ,k- 1 , and Property 2, that is, if wi = wt =0 
and │ i-t │ > 1 then zi = 0 or zt = 0. (43) 

If ψ  (xj ) is convex over [cj , dj ] then the condition 
wt ≥ 0, t =1.............. k-1 (44) 

can replace (43) as  is shown below. If (44) holds and wi. = 0 
then (by the convexity property of φ) ws > 0 for any s such that 
|s—i| > 1. Hence Property 2 is satisfied by default 

A similar argument can be used to show that if ψ (xj) is concave over 
[cj,dj] then the condition (44) can replace conditions (43) if wt

are redefined as wt = at xj + bt - yj , t = 1 , . . ,k— 1 . 

(B)      cj ≤ 0 In this case there exists an e>0 such that 
cj + ε j > 0 and by a change of variable x. = x.+ εj 
case (A) is at hand. 
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The properties referred above show that any variable separable program 
can be restarted as an MLCP or an SMLCP with special conditions. These 
two cases are summarized below. 

(i) All the functions j(xj) and lj(x.) are either φ ψ
convex or concave over their intervals [cj,dj] and 
therefore the variable separable programming problem is 
equivalent to an MLCP. 

(ii)     At least one of the functions φ j(xj) or ψ l j (xj) is 
neither convex nor concave over its interval - the 
variable separable programming problem is equivalent 
to an SMLCP with further restrictions stated as 
Property 2 for a valid representation of any function 
ψ (Xj) which is neither convex nor concave over its 
interval. 

In [l6] it is shown that a simple modification of the algorithms 
for the MLCP makes it possible to find the solution of the variable 
separable programming problem by exploring the underlying SMLCP. 

10 Discussions 

The range of problems which may be reformulated as one of a family 
of the LCP's is found to be quite wide. Some problems can be 
highly nonlinear as in section 9 or difficult from a combinatorial 
point of view as in sections 3, 7, 8. The authors are of the opinion 
that only tree search based methods can be computationally successful 
for such a wide variety of problems. 

A number of tree search methods for solving the general LCP (that 
is making no assumption concerning the nature of the M-matrix (i)) 
SLCP, MLCP and SMLCP have been developed and these are reported in 
[16]. A set of quadratic programming, bilinear programming, zero-one 
integer programming, fixed charge and nonlinear variable separable 
programming problems taken from known sources have been reformulated 
as appropriate LCP's. The results of investigating these problems by the 
tree search methods and the boundedness property of some of these problems 
are also presented in [16]. 



23 

1 1 Acknowledgements 

Dr. J. Judice was supported by a NATO scholarship during his period 
of stay at Brunel University. The authors would also like to thank 
Professor R. Sargent of Imperial College who found an error in an 
earlier version of the reformulation of the variable separable 
programming problem as an SMLCP. 



24 

REFERENCES 

1. LEMKE, C.E., Bimatrix equilibrium points and mathematical 

programming, Management Science, 11, 1965, PP 681-689. 

2. LEMKE, C.E., On complementary pivot theory, in Mathematics of 
decision sciences, Part 1, edited by G.B. Dantzig and 
A.F. Veinott Jr., American Mathematical Society, 1968, 
pp 95-114. 

3. COTTLE, R.W. , Fundamentals of quadratic programming and linear 
complementarity, Technical Report SOL 77-21, Department 
of Operations Research, Stanford University, 1977. 

4.        COTTLE, R.W., Some recent developments in linear complementarity 
theory, in Variational inequalities and complementarity 
problems, theory and applications, edited by R.W. Cottle, 
F. Giannessi and J.L. Lions, John Wiley & Sons, 1980, 
pp 97-104. 

5. LEMKE, C.E., A survey of complementary theory, in Variational 
inequalities and complementarity problems - theory and 
application, edited by R.W. Cottle, F. Giannessi and J.L.Lions, 
John Wiley and Sons, 1980, pp 213-239. 

6. INGLETOW, A.W. , A problem in linear inequalities, Proceedings 
London Mathematical Society, 16, 1966, pp 519-536. 

7.        PANG, J.S., KANEKO, I. and HALLMM, W.P. , On the solution of some 
(parametric) linear complementarity problems with applications 
to portfolio analysis, structural engineering and graduation, 
Mathematical Programming, 16, 1979, pp 325-347. 

8.        LEMKE, C.E. and H0WS0K, J .T. ,  Equilibrium points of bimatrix games, 
Journal of S.I.A.M.,  12, 1964, pp 413-423- 

9.        H0WS0N, J.T., Equilibria for polymatrix games, Management Science, 
17, 1972, pp 312-318. 



25 

10. PANG, J.S., A new and efficient algorithm for a class of portfolio 
selection problems, Operations Research, 28, 1980, 

PP 754-767. 

11. PANG, J.S. A parametric linear complementarity technique for 
optimal portfolio selection with a risk-free asset, 
Operations Research 28, 1980, pp 927-941. 

12. COTTLE, R.W. , Complementarity and variational problems, 

Symposia Mathematica, 19, 1974, PP 177-208. 

13. ECKHARDT, U. , Semidefinite lineare Komplementar probleme, 

Habilitationschrift RWTH Aaachen, 1978. 

14.     GLOWINSKI, R. , Finite elements and variational inequalities, MRC 
Technical Summary Report 1885 , University of Wisconsin- 
Madison, 1978. 

15.     IBARAK1, T. , Complementary programming, Operations Research, 19, 
1971, PP 1523-1528. 

16. JUDICE, J., A Study of the Linear Complementarity Problems, 
Ph.D. thesis, Department of Mathematics and Statistics, 
Brunel University, 1982. 

17. MURTY, K. , Linear and combinatorial programming, Wiley, 1976. 

18. COTTLE, R.W., and DANTZIG, G.B. , Complementarity pivot theory of 
mathematical programming, in Mathematics of decision 
sciences, edited by G.B. Dantzig and A.F. Veinott Jr., 
American Mathematical Society, 1968, pp 115-135. 

19. KUHN, H. and TUCKER, A.W. , Nonlinear programming, in Second 
Bekerley Symposium in Mathematical Statistics and Probability, 
edited by J. Neyman, University of California Press, 
California, 1951, pp 80-90. 

20.       MARTOS, B., Nonlinear programming: theory and methods, 
North Holland, 1975. 



26 

21. COTTLE, R.W. and FERLAND, J.A. , Matrix-theory criteria for the 
quasi-convexity and pseudo-convexity of quadratic functions, 
Linear Algebra and its Applications, 5, 1972, pp 123 - 136. 

22. COTTLE, R.W. , and FERIAND, J.A. , On pseudo-convex functions of 
nonnegative variables, Mathematical Programming 1, 1971, 
pp 95-101, 

23.      EAVES, B.C., On quadratic programming, Management Science, 17, 
1961, pp 698-711. 

24.      FRANK, M. and WOLFE, P. , An algorithm for quadratic programming, 
Naval Research Logistics Quarterly, 3, 1956, pp 95-110. 

25.      KONNO, H., An algorithm for solving bilinear programs. 
Mathematical Programming, 11, 1976, pp 14-27. 

26.      KONNO, H., Bilinear Programming, Part II: Applications of 
bilinear programming, Technical Report 71-10, Operations 
Research Department, Stanford University, 1971. 

27.      EAVES, B.B. , The linear complementarity problem, Management 
Science 17, 1971, pp 612-634. 

28.       DANTZIG, G.B., Solving two-move games with perfect information, 
            Rand Report P-1459, Santa Monica, Princeton, California, 1958, 

29.        MITRA, G. , Theory and applications of mathematical programming, 
Academic Press, 1976. 

30. BEALE, E. and FORREST, J.J.H., Global optimization using special 
ordered sets, Mathematical Programming, 10, 1976, pp 52-69. 

31. COLLATZ, L. and WETTERLING, W., Optimization problems, 

Springer Verlag, 1975. 
 


	By 
	                           J.J. Judice and G. Mitra 
	                               J.J. Judice 

	                               G. Mitra 
	Consider the general linear programming problem 
	      x≥0,   y≥0,    z≥0,    w≥0,   zTx = 0  .       (39) 
	In (39) P is a diagonal matrix whose diagonal elements are 




