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Abstract

Background: The knowledge of miRNAs regulating the expression of sets of mRNAs has led to novel insights into
numerous and diverse cellular mechanisms. While a single miRNA may regulate many genes, one gene can be
regulated by multiple miRNAs, presenting a complex relationship to model for accurate predictions.

Results: Here, we introduce miREM, a program that couples an expectation-maximization (EM) algorithm to the
common approach of hypergeometric probability (HP), which improves the prediction and prioritization of miRNAs
from gene-sets of interest. miREM has been made available through a web-server (https://bioinfo-csi.nus.edu.sg/
mirem2/) that can be accessed through an intuitive graphical user interface. The program incorporates a large
compendium of human/mouse miRNA-target prediction databases to enhance prediction. Users may upload their
genes of interest in various formats as an input and select whether to consider non-conserved miRNAs, amongst
filtering options. Results are reported in a rich graphical interface that allows users to: (i) prioritize predicted miRNAs
through a scatterplot of HP p-values and EM scores; (ii) visualize the predicted miRNAs and corresponding genes
through a heatmap; and (iii) identify and filter homologous or duplicated predictions by clustering them according to
their seed sequences.

Conclusion: We tested miREM using RNAseq datasets from two single “spiked” knock-in miRNA experiments and two
double knock-out miRNA experiments. miREM predicted these manipulated miRNAs as having high EM scores from
the gene set signatures (i.e. top predictions for single knock-in and double knock-out miRNA experiments). Finally, we
have demonstrated that miREM predictions are either similar or better than results provided by existing programs.
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Background
microRNAs (miRNAs) are important modulators of gene
expression in various biological systems, including devel-
opment [1], carcinogenesis [2] and virus-host crosstalk
[3]. Most mRNAs can be repressed by more than one
miRNA and conversely, most miRNAs have many known
and predicted mRNA targets. This direct impact of
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miRNAs on a large number of mRNA species makes
it a powerful biological regulator and therefore a prime
candidate for studying diseases such as cancer, where
miRNAs can act either as oncogenes (oncomiRs) or
tumour-suppressors [4]. Gene repression by miRNAs is
generally achieved by pairing between the 5’ end of
miRNAs, from the second to the seventh nucleotide
(called the seed region), and the 3’ untranslated region
(UTR) of the gene target [5]. The strong effects of
miRNAs on mRNAs regulation could, in theory, mean
that specific miRNA-signatures are linked to certain
gene expression patterns. Several databases predicting
miRNA’s targets based on various algorithms have been
launched. Although the lack of specificity in miRNA’s
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target predictions is a known fact [6], by taking advan-
tage of these existing miRNA-target databases, numerous
programs succeeded in highlighting the most relevant
miRNAs affecting a gene expression pattern [7–10].
Indeed, since a miRNA can target several mRNAs, it is
possible to compute the statistical significance of the over-
representation of miRNA’s targets within a gene-set. Most
of the aforementioned programs use a standard hyperge-
ometric probability (HP) to predict miRNAs involved in
a biological process based on a compendium of miRNA-
target databases. This strategy is in line with other tools
used to compute the significance of functional annota-
tions from gene-lists. However, when applied to searching
miRNA-signatures from gene-lists, there is a considerable
overlapping of gene targets between miRNAs leading to
a number of significant signatures, including numerous
potential false positive predictions [6, 11]. The source of
false positives may result from miRNAs sharing a similar
seed region. Consequently, it is important that programs
and algorithms used are able to highlight the true posi-
tives. In contrast to current methods based on HP only,
we introduce a novel strategy in complement to HP, which
(i) ’weigh-down’ the contribution from overlapping target
genes when calculating the significance of each miRNA-
signature using an expectation-maximization (EM) algo-
rithm, a general probabilistic framework that can be
used for this purpose [12]; and (ii) cluster all predicted
miRNAs according to their seed region sequences for
identifying “synonymous” predictions. To increase the
specificity of our prediction, we also build a large com-
pendium of miRNA’s target predictions based on the
most used databases. To our knowledge, the application
of EM-algorithm as a probability measurement for sig-
nificance in functional annotation tools has yet to be
explored.

Implementation
miREMworkflow
The miREM workflow is composed of the following five
steps (Fig. 1):

1 miREM takes a list of differentially expressed genes
(DEG) derived from either RNA-seq or the latest
microarray platforms as input. Since the input DEG
list is obtained from whole transcriptome level,
miREM is inapplicable to the results derived from
targeted sequencing technologies or microarray
platforms targeting a specific gene panel. After
receiving a gene list, miREM associates each
transcript to its targeted miRNA(s) using the selected
prediction databases, thus to create a list of
potentially repressive miRNAs.

2 The hypergeometric p-value (and corrected p-value
according to Benjamini-Hochberg) is determined for

each unique miRNA so as to identify its enrichment
significance.

3 If only one miRNA is found to have a significant
p-value, the program stops and identifies only this
significant miRNA as having an influence on the
DEG.

4 If more than one miRNA can be identified, the
program then selects miRNAs with corrected
p-values below the specified threshold and subjects
them to the EM-algorithm to establish the likelihood
probability of each miRNA. miRNAs with the highest
likelihood probabilities are most likely to have an
influence on the DEG. Along with tab-delimited files,
miREM results are available through a clustered
heatmap of miRNA-gene interactions to ease
visualization of the genes targeted by predicted
miRNAs. This visualization also enables users to
intuitively infer the kind of co-repression activity
these predicted miRNAs play in the system.

5 Finally, predicted miRNAs are clustered according to
their seed sequences in order to identify duplicated
predictions (miRNAs sharing similar sequences).

This unique workflow, coupled with a rich combination
of features (Table 1), makes miREM a better alternative
when compared to existing softwares.

miREM’s miRNA-target interactions database
Multiple features characterized in the miRNA-target
interaction mechanism have been exploited for devel-
oping strategies to predict miRNA target genes, includ-
ing (i) the seed complementarity between miRNA and
mRNA strands; (ii) the free energy of the miRNA:mRNA
duplex; (iii) the target site accessibility; (iv) the contri-
bution of multiple binding sites and (v) the evolution-
ary conservation [13]. Many databases exploit one or
several prediction strategies to provide miRNA-mRNA
interaction information. In order to build a comprehen-
sive resource to predict a miRNA-signature, we com-
piled those up-to-date information pooled from the
latest releases of Diana [14], Miranda [15], mirDB [16],
Pictar [17], PITA [18], RNA22 [19] and TargetScan [20]
(Additional file 1: Table S1).

Querying miREM’s database
miREM accepts Refseq, Ensembl, UCSC IDs or official
gene names as input and uses Ensembl Biomart [21]
to unify gene IDs. The miREM analysis interface allows
interrogation of the reference databases in a flexible way,
enabling users to select one or more preferred reference
databases. If more than one database is selected, the user
can opt to use only the miRNA-target interactions that are
found to be common to all (intersections). Alternatively,
users can select miRNA-target interactions that appear in
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Fig. 1miREM Workflow. a The gene-list and setup parameters are entered into the input page. b Each transcript is associated to its targeted
miRNA(s) using the selected prediction databases. miRNAs are selected only if their respective HP p-values reach a pre-defined enrichment level.
Then, these selected miRNAs are subjected to the EM-algorithm to establish the likelihood probability of each miRNA. miRNAs with the highest
likelihood probabilities are the most likely to have an influence on the DEG. Afterwards, predicted miRNAs are clustered according to their seed
region sequences in order to identify duplicated predictions. c Subsequently, results are displayed in a dynamic graphical interface allowing an easy
data interpretation. d Finally, a dendrogram of miRNA seed sequences is generated to help in identifying duplicated predictions (miRNAs sharing
similar sequences)
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Table 1 Feature comparisons of five miRNA predicting tools

miREM CORNA Geneset2miRNA ChemiRs Sylamer

Platform Web-based R package Web-based Web-based Web-based

standalone

Installation required No Yes No No Optional

GUI Yes No Yes Yes Yes

Software last update 2017 2013 2009 2015 Unspecified

Organisms supported Human, mouse 22 species including 6 species including Human 7 species including
human and mouse human and mouse human and mouse

Reference databases Diana, Miranda mirDB, Diana, Unspecified

Miranda, Pictar, Miranda,

mirDB, PITA, mirDB,

Pictar, TargetScan miRWalk,

PITA, RNA22,

RNA22, RNAhybrid,

TargetScan Pictar(4way),

Pictar(5way),

PITA,

TargetScan

Mirbase version 21 (June 2014) 10.0 (August 2007) 11 (April 2008) 21 (June 2014) Unspecified

Ability to specify Yes No No Yes No
database(s)

Database last updated 2017 2007 2008 2015 Unspecified

Cross-database query Yes No No Yes No

Conserved/ nonconserved Yes No No No No

miRNA
distinction

Input format List of DEG: List of DEG: List of DEG: List of DEG: Full gene list

text file, Ensembl text file, text file, ranked by fold

Gene Symbol, Gene Symbol, Gene Symbol, change

RefSeq, RefSeq Protein ID, Ensembl

Ensembl, RefSeq Transcript ID,

UCSC Ensembl,

UniGene,

Entrez Gene ID,

UniProt/Swiss-Prot,

Output formats Tab-delimited file R list CSV CSV jnlp

Scatterplot

Heatmap

Phylogenetic miRNA

classification

Show target gene list Yes No Yes No No

Algorithm Hypergeometric Hypergeometric Hypergeometirc Hypergeometirc Hypergeometirc

Expectation Fisher’s exact test

Maximization

Chi-square

Detection of Yes No No No No
duplicated predictions
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one (union of all databases) ormore of the seven databases
(intersections from 2 to 7 -all- reference databases). More-
over, for Targetscan and Miranda reference databases,
queries can be restricted to evolutionary conserved miR-
NAs. Reference databases are complementary as a large
portion of predicted targets are unique to each database
(Additional file 2: Figure S1). The flexibility in querying
reference databases provides users a leverage to adjust for
prediction specificity and sensitivity.

EM algorithm formulation
Assuming we have N genes and K miRNAs, let us define
an N × K matrix Z, where zik = 1 if gene i is repressed
by miRNA k; otherwise, zik = 0. We are interested in
estimating the proportion of genes repressed by the kth
miRNA, pk , k = 1, . . . ,K . By observing matrix Z, in other
words, we are certain which of the genes are repressed for
each miRNA, then the probabilities pk ’s can be estimated
by counting the number of genes repressed by the miRNA
and dividing this by the total number of genes,

p̂k =
∑N

i=1 zik
N

(1)

However, in reality, we do not directly observe Z. Instead,
through miRNA-target prediction databases, we observe
matrix Y = (yik), i = 1, . . . ,N ; k = 1, . . . ,K , where
yik = 1 if the kth miRNA is predicted to target the ith gene,
otherwise yik = 0. We indicate the parameter of interest θ

as (p1, . . . , pK ). The likelihood of the complete data (Y ,Z)

can be written as,

L(θ |Y ,Z) =
N∏

i=1

K∏

k=1

(
pzikk (1 − pk)1−zik

)yik (2)

Note that the above likelihood function implicates a logi-
cal assumption that P(zik = 0 | yik = 0), i.e., gene i cannot
be targeted by miRNA k if the prediction database does
not predict this.
The log-likelihood of the complete data is taken as the

logarithm of the likelihood and is given by,

�(θ |Y ,Z) =
N∑

i=1

K∑

k=1
yik

[
zik log pk + (1 − zik) log(1 − pk)

]

(3)

To estimate θ , we will use EM algorithm that con-
sists of two iterative steps: an E-step where we evalu-
ate the expected value of complete data log-likelihood,
Q(θ |Y ,Z) = E[�(θ |Y ,Z)]; and an M-step where we
update the parameter estimates using a current estimate
Q(θ |Y ,Z). The algorithm starts from an initial estimate
θ(0) =

(
p(0)
k , k = 1, . . . ,K

)
, where p(0)

k = 1
K . In iteration

m, we update θ(m) in two steps:

• E-step:We update the current estimate of matrix Z as,

ẑ(m)

ik = E
[
zik|Yi, θ(m−1)

]
= Pr

(
zik = 1|Yi, θ(m−1)

)

(4)

= yikp(m−1)
k

∑K
k=1 yikp

(m−1)
k

,∀i, k (5)

• M-step: We update the estimate of θ , θ̂m by updating
each of its component,

p̂(m)

k =
∑N

i=1 ẑmik
N

,∀k (6)

Intuitively, in the E-step, each kth miRNA with yik = 1 is
assigned a fraction of gene i in proportion to p(m−1)

k , and
this fraction is ẑ(m)

ik while theM-step updates the probabil-
ity of each miRNA by averaging the number of genes that
are predicted to be repressed by the miRNAs. The algo-
rithm reaches convergence in a few iterations and return
the parameter estimates p̂k , which is used to calculate the
EM scores.

Using HP as a filtering step for EM-algorithm inputs
A non-negligible constraint of the EM algorithm is
the running-time performance. Indeed, this algorithm is
based on multiple iterations with a linear complexity.
Therefore, its performance decreases with increments in
the input data. Hence, we attempted to limit the num-
ber of miRNAs involved in the computation to those
that are more likely to be truly significant. To achieve
this, we have implemented HP as an initial filtering cri-
terion. Here, the HP is applied to each miRNA, in order
to test whether the number of predicted miRNA’s targets
are over-represented within the gene-set. Based on the
user HP p-value threshold, miREM selects only significant
miRNAs and proceeds to the EM step. Where only one
miRNA signature is significantly predicted by the HP, no
EM is involved.

Classification of miRNA predictions
miRNAs that share similar seed regions are likely to tar-
get similar genes. As such, these miRNAs are likely to
be co-predicted. In order to identify duplicated predic-
tions, we have implemented a module to cluster miRNAs
according to their levels of homology. This classification
is done by multiple alignments of miRNA seed sequences
using Muscle [22], followed by the generation of a den-
drogram computed by PhyML [23] and displayed by
jsPhyloSVG [24].
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Availability and requirements
miREM webportal is freely available and can be accessed
online at https://bioinfo-csi.nus.edu.sg/mirem2/.

Results
We have developed miREM, an HP-EM-based pro-
gram designed to predict miRNA activities from a
gene list. miREM’s web server incorporates a large
compendium of human/mouse miRNA-target predic-
tion databases and provides rich output results facil-
itating prioritization and interpretation of predicted
results.
To test miREM performance, we benchmarked miREM

predictions against CORNA [7], GeneSet2MiRNA [8],
ChemiRs [9], and Sylamer [10] results using several
datasets with known miRNA activities. These are detailed
in three case studies as follows:

Case study 1: knock-in miRNA experiments
We used two RNAseq expression datasets from miR-155
and miR-1 knock-in experiments in U2OS cells, respec-
tively [25]. In these experiments, we used a gene-set of
repressed genes as input (Additional file 3: Table S2)
and ran miREM, CORNA, GeneSet2MiRNA and
ChemiRs (Table 2 and Additional file 4: Table S3; for
Sylamer, whole gene list ranked by fold change was
input). miREM has predicted involving miRNAs cor-
rectly, with hsa-miR-155-5p and hsa-miR-1-3p ranked
at the first and third positions respectively. Similarly,
other four tools, namely CORNA, GeneSet2MiRNA,

ChemiRs and Sylamer, showed satisfactory predicting
performances whereby both miRNAs involved in the
experiments were accurately identified (Table 2 and
Additional file 4: Table S3).

Case study 2: double knock-out miRNA experiment
In addition, we analyzed a microarray dataset derived
from a miRNA double knock-out experiment [26]. Up-
regulated genes from CD71+/Ter119+/FSChigh bone mar-
row cells in miR-144/451−/−mice in comparison with
wild-type controls (Additional file 3: Table S2) were input
into miREM, CORNA and GeneSet2MiRNA (ChemiRs
was excluded from this test as it provides only human
miRNA-target databases; for Sylamer, the input gene list
was whole gene list ranked by fold change). miREM
ranked mmu-miR-144-3p and mmu-miR-451a in the first
and second positions respectively. However, no prediction
results were available for CORNA and GeneSet2MiRNA
when p-value threshold was set as 0.01; even if less
stringent p-value filtering was applied (p-value threshold
equals to 0.05), only mmu-miR-144 was predicted for
both tools (Table 2 and Additional file 4: Table S3). For
Sylamer, only mmu-miR-144 was in the result (Table 2 and
Additional file 4: Table S3).

Case study 3: double knock-out miRNA experiment
Finally, we compared miREM’s prediciton performance
in a miR-181a1/181b1 double knock-out experiment [27]
with other tools. In miREM, loose criterion in HP fil-
tering step (p-value threshold = 0.01) resulted in a

Table 2 Performance of five miRNA prediction tools using two single miRNA knock-in and one miR-144/451 double knock-out
experiments

Input data Predictions

Datasets
miRNA DEG miREM (based

ChemiRsc GeneSet2MiRNAc CORNAc Sylamerd
involved a on EM)b

Cytoplasmic hsa-miR-155 647 hsa-miR-155-5p hsa-miR- HSA-MIR-155 hsa-mir-155 has-miR-155

RNA-seq in knock in (1/160) 155-5p (1/23) (1/2)

U2OS cells (1/118)

Cytoplasmic hsa-miR-1 743 hsa-miR-1-3p hsa-miR-1- HSA-MIR-1 (1/6) hsa-mir-1 has-miR-1

RNA-seq in knock in (3/9) 3p (1/65) (2/4)

U2OS cells

Microarray in miR-144/451 396 mmu-miR-144- Not mmu-mir-144 mmu-mir-144 mmu-miR-

mice knock out 3p (1/2) Applicablee (3/3) * (2/4) * 144

mmu-miR-451a

(2/2)

aDEG list not applicable for Sylamer where a full gene list ranked by fold change was input
bSettings: p-value threshold = 0.01, EM convergence parameter = 0.001, common mappings from 3 or more databases and nonconserved miRNAs not included
cSettings: p-value threshold = 0.01 (for ChemiRs, the minimum number of databases is 5 out of 10)
dRanking number / full prediction result number is not available in Sylamer
eMouse databases are not provided
*P-value threshold = 0.05 (no result with p-value threshold = 0.01)

https://bioinfo-csi.nus.edu.sg/mirem2/
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Table 3 Performance of five miRNA prediction tools using a miR-181a1/b1 double knock-out experiment

Input data Predictions

Datasets miRNA involved Gene list miREM (based on EM) * ChemiRs GeneSet2MiRNA ** CORNA# Sylamer

mmu-miR-181a-5p MMU-MIR-181B

(rank 4 out of 4) (rank 1 out of 9)

RNA-seq in mice miR-181a/b knock out 243 Not applicable No result No result

mmu-miR-181b-5p

(rank 1 out of 4)

*Settings: p-value threshold = 0.0001, EM convergence parameter = 0.001, common mappings from 4 or more databases and non-conserved miRNAs not included
**p-value threshold = 0.01
#p-value threshold = 0.05

long list of miRNA candidates. Hence, a more stringent
screening setting was applied in HP step (p-value thresh-
old = 0.0001). Again, miREM is the only tool which
is able to predict both involving miRNAs, with mmu-
miR-181b-5p and mmu-miR-181a-5p ranked in first and
fourth positions out of total four predictions respec-
tively. Nonetheless, only mmu-miR-181b was predicted by
GeneSet2MiRNAwhile no results were obtained for CORNA
and Sylamer (Table 3 and Additional file 4: Table S3).

Impact of miRNA databases vs algorithms
Integration of EM algorithm with HP test contributes
to miREM’s better prediction performance. In order to
test the algorithm implemented in miREM while ruling
out database bias, we compared the performances of
miREM and CORNA (the rest of the test programs
were web-server based and could not be modified)
on miR-144/451 double knock-out assay using same
miRNA-mRNA interaction database (miRanda mouse
conservedmiRNA database August 2010 release). miREM
ranked miR-144 and miR-451 as first and second pre-
dictions respectively in its result, whereas 17 miRNAs
were predicted by CORNA, among which miR-144 was
ranked first while miR-451 ranked 5th (Additional file 5:
Table S4). Hence, introduction of EM intomiRNA prediction
allowed us to better rank candidate miRNAs. Furthermore,
the prediction result by miREM was relatively robust. We
tested miREM’s performances using different HP p-value
thresholds and EM convergence parameters given the down-
regulated gene list from hsa-miR-155 knock-in experiment.
hsa-miR-155-5p remained the first-ranked candidate in
various prediction settings (Additional file 6: Table S5).

Conclusion
The combination of HP and EM algorithm coupled
with a large miRNA-target compendium of databases
makes miREM a tool of choice to predict and prior-
itize miRNAs from a given gene list. Programs like
miREM rely on miRNA databases, which can be a
source of bias, particularly for uncommon miRNAs
processed by the Ago2 endonuclease [28] , an alternative

mechanism independent to Dicer. Therefore, there is
still room for improving target predictions by a better
characerization of miRNA targets. Overall, we have
demonstrated that miREM’s prediction performance
is either similar or better than existing programs
such as CORNA, GeneSet2MiRNA, ChemiRs and
Sylamer.
Finally, the versatility of the miREM web server makes

it accessible to a large panel of users including non-
bioinformaticians, by facilitating result exploration and
interpretation through numerous representations and a
dynamic graphical interface.
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Additional file 1: Table S1. Release notes of human and mouse miRNA
reference databases in miREM. (XLSX 35 kb)

Additional file 2: Figure S1. Overlap of miRNA-mRNA predicted
interactions across human and mouse reference databases. (PDF 833 kb)

Additional file 3: Table S2. List of genes differentially expressed used in
the case studies. (XLSX 75 kb)

Additional file 4: Table S3. Full predicted results for four tested
experiments. (XLSX 514 kb)

Additional file 5: Table S4. Predicted results of miREM and CORNA with
same database. (XLSX 47 kb)

Additional file 6: Table S5. Predicted results of miREM using different HP
p-values and EM parameters. (XLSX 115 kb)
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