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Abstract

Background

The World Health Organization has yet to endorse deployment of topical repellents for

malaria prevention as part of public health campaigns. We aimed to quantify the effective-

ness of repellent distributed by the village health volunteer (VHV) network in the Greater

Mekong Subregion (GMS) in reducing malaria in order to advance regional malaria

elimination.

Methods and findings

Between April 2015 and June 2016, a 15-month stepped-wedge cluster randomised trial

was conducted in 116 villages in Myanmar (stepped monthly in blocks) to test the effective-

ness of 12% N,N-diethylbenzamide w/w cream distributed by VHVs, on Plasmodium spp.

infection. The median age of participants was 18 years, approximately half were female,

and the majority were either village residents (46%) or forest dwellers (40%). No adverse

events were reported during the study. Generalised linear mixed modelling estimated the

effect of repellent on infection detected by rapid diagnostic test (RDT) (primary outcome)

and polymerase chain reaction (PCR) (secondary outcome). Overall Plasmodium infection

detected by RDT was low (0.16%; 50/32,194), but infection detected by PCR was higher
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(3%; 419/13,157). There was no significant protection against RDT-detectable infection

(adjusted odds ratio [AOR] = 0.25, 95% CI 0.004–15.2, p = 0.512). In Plasmodium-species-

specific analyses, repellent protected against PCR-detectable P. falciparum (adjusted rela-

tive risk ratio [ARRR] = 0.67, 95% CI 0.47–0.95, p = 0.026), but not P. vivax infection (ARRR

= 1.41, 95% CI 0.80–2.47, p = 0.233). Repellent effects were similar when delayed effects

were modelled, across risk groups, and regardless of village-level and temporal heterogene-

ity in malaria prevalence. The incremental cost-effectiveness ratio was US$256 per PCR-

detectable infection averted. Study limitations were a lower than expected Plasmodium spp.

infection rate and potential geographic dilution of the intervention.

Conclusions

In this study, we observed apparent protection against new infections associated with the

large-scale distribution of repellent by VHVs. Incorporation of repellent into national strate-

gies, particularly in areas where bed nets are less effective, may contribute to the interrup-

tion of malaria transmission. Further studies are warranted across different transmission

settings and populations, from the GMS and beyond, to inform WHO public health policy on

the deployment of topical repellents for malaria prevention.

Trial registration

Australian and New Zealand Clinical Trials Registry (ACTRN12616001434482).

Author summary

Why was this study done?

• Despite there being strong evidence for efficacy of topical repellent in preventing mos-

quito bites, there is a paucity of high-quality evidence for the effectiveness of repellent in

reducing malaria.

• Topical repellents may be highly relevant in the Greater Mekong Subregion (GMS),

where malaria vectors bite outdoors and are not confined to biting at night (and thus

not covered by conventional vector control measures).

• We wanted to know whether distributing repellent through established village health

volunteer (VHV) networks in the GMS would prevent malaria infection.

What did the researchers do and find?

• We randomised 116 villages in Myanmar to receive repellent through VHV networks

using a stepped-wedge design and followed the villages up for 15 months to detect

malaria by rapid diagnostic test (RDT) and highly sensitive polymerase chain reaction

(PCR).

• We found that distribution of repellent through the VHV network did not reduce RDT-

detectable infection, but appeared to reduce the odds of PCR-detectable infection.
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• The apparent protective effect of repellent was consistent across risk groups (village resi-

dents, forest dwellers, and migrants) and villages, suggesting that repellent distributed

by VHVs may be an effective intervention across a range of transmission settings and

populations.

What do these findings mean?

• Distribution of topical repellent by the VHV network may be an effective supplementary

intervention for reducing malaria in the GMS.

• Incorporation of repellent into national malaria control programme national strategic

plans for malaria elimination may advance achieving GMS malaria elimination targets

of 2025 for P. falciparum and 2030 for all malaria species, particularly in the context of

limited effectiveness of traditional vector control interventions and spreading drug

resistance.

• Further studies are warranted across different transmission settings and populations,

from the GMS and beyond, to inform World Health Organization public health policy

on the deployment of topical repellents for malaria prevention.

Introduction

While there have been major gains in reducing the global burden of malaria since the turn of

the millennium, the progress in reducing malaria has recently stalled [1]. Vector control inter-

ventions, namely insecticide-treated bed nets (ITNs) and indoor residual spraying (IRS) have

contributed significantly to the reductions in malaria globally [1]. However, increasing rates of

insecticide resistance and changes in vector composition and behaviour (changing biting

hours and preference for outdoor biting) have reduced the effectiveness of these cornerstone

vector control interventions [2,3]. Evidence for additional tools that target residual transmis-

sion not covered by ITNs and IRS is needed in order to achieve malaria control and elimina-

tion goals.

Although there is strong evidence for topical repellents’ efficacy against mosquito biting

[4], and some evidence of repellent effectiveness against malaria in clinical trials [5], the World

Health Organization (WHO) has yet to endorse deployment of topical repellents for malaria

prevention as an intervention with public health value [6]; importantly, no trial to our knowl-

edge has investigated the effectiveness of the distribution of repellents in the context of large-

scale disease prevention programmes in order to establish real-world effectiveness. If proven

effective, incorporation of repellent into national strategies, particularly in areas where ITNs

and IRS are less effective, may interrupt and reduce malaria transmission.

In the Greater Mekong Subregion (GMS), the emergence and spread of artemisinin-resis-

tant malaria has accelerated the malaria elimination agenda, with GMS countries and WHO

committing to eliminating malaria in the region by 2030. The overall approach includes pro-

viding universal access to malaria testing and treatment, and universal coverage of all at-risk

populations with long-lasting insecticidal nets (LLINs) or IRS [7]. In GMS countries, village

health volunteer (VHV) networks have been established to provide these malaria services to
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many villages, particularly where limited or no services exist (e.g., hard-to-reach groups/areas,

conflict-affected/ceasefire areas). These national VHV networks provide important opportuni-

ties for implementing supplementary personal protection methods, such as repellents. Repel-

lents may be highly relevant in the GMS because many malaria vectors readily feed outdoors

and exhibit early biting behaviour [8], and groups that are at greater risk of exposure, namely

those residing in or near forested areas, mobile workers, and migrant populations, have a spe-

cific need for personal protection [7].

In order to inform the rollout of repellent as part of a national strategic plan for malaria

elimination, we conducted a stepped-wedge cluster randomised controlled trial to determine

the effectiveness of the addition of repellent into the malaria services package delivered by the

VHV network on reducing malaria infection in Myanmar. We examined the impact of repel-

lent distribution on Plasmodium falciparum and P. vivax infection detected by rapid diagnostic

test (RDT)—the routine method of malaria diagnosis in VHV networks in the GMS—as well

as by polymerase chain reaction (PCR) (which exhibits higher sensitivity), and explored the

moderating effect of intervention adherence and risk group on these associations. Among

other reasons (outlined below), the stepped-wedge trial design was chosen to permit seminal

analysis of the presence of delayed effects of repellent distribution as well as the impact of het-

erogeneity in malaria prevalence, at both a village and a temporal level, on the effectiveness of

repellent in reducing malaria. Finally, a cost-effectiveness analysis of repellent distribution in

the context of a large-scale malaria control and elimination programme was conducted in

order to inform policy.

Methods

Ethics

This trial is registered in the Australian New Zealand Clinical Trials Registry

(ACTRN12616001434482; approved retrospectively 14 October 2016) and was approved by

the Ethics Review Committee on Medical Research involving Human Subjects, Department of

Medical Research, Ministry of Health and Sports, Myanmar Government (#21/Ethics/2015;

extended approval #Ethics/DMR/2016/020), and the Alfred Hospital, Melbourne, Australia

(95/15). The ethics review committee of the Department of Medical Research, Ministry of

Health and Sports, requested that there be no commercial advantage for the product during

the trial. Consequently, the repellent was provided in plain unbranded tubes, and the investiga-

tors registered the trial after completion of fieldwork (but prior to the commencement of data

analysis) to minimise public disclosure. The study protocol has been published previously [9],

and the study is reported according to the CONSORT guidelines of reporting a stepped-wedge

cluster randomised trial (S1 CONSORT Checklist).

Trial design and randomisation

Between April 2015 and June 2016, a 15-month stepped-wedge cluster randomised trial was

conducted in Myanmar with a target sample of 116 villages (clusters). Originally, in order to

maximise power, we sought to confine data collection to the ‘rainy’ seasonal period only. How-

ever, due to logistical constraints in integrating research into implementation activities and in

order to model temporal effects of repellent distribution, we conducted the study continuously

through the ‘cool’, ‘hot’, and ‘rainy’ seasonal periods. Villages from 8 townships identified as

having malaria services gaps according to National Malaria Control Programme services data

were recruited, in Bago East (16 villages), Kayin (61 villages), and Kayah (39 villages) states

(for map see Fig 1). All villages participated in LLIN distribution immediately prior to the start

of the study. Using a computer-based block randomisation routine, the trial statistician
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randomised de-identified villages to respective ordered blocks to ensure the month at which

villages started receiving the intervention during the 15-month study period was randomly

determined. The design was such that after a minimum of 1 month without repellent distribu-

tion, blocks of 8 villages were sequentially stepped monthly (without transition period), from a

no repellent state (control) into community-based repellent distribution by VHVs (interven-

tion) until study end (12 villages transitioned in the final month, given the incomplete design).

A cluster stepped-wedge design was implemented given the intervention necessitated imple-

mentation at the village level, the statistical performance of the design in terms of power (both

within- and between-cluster variance is used), its capacity to model temporal effects, and the

advantage of being able to deliver the intervention to all villages.

Repellent intervention and implementation

The repellent distributed was 12% N,N-diethylbenzamide w/w cream because this product was

the only licensed repellent for use in Myanmar at the time of the study and was readily avail-

able in the market to the study population. Results of laboratory evaluation and field trials

showed no difference in percent protection against mosquito bites between 12% N,N-diethyl-

benzamide w/w cream and DEET cream (12% N, N-diethyl-3-methylbenzamide), a WHO-

recommended positive control for testing the effectiveness of mosquito repellents [11,12].

Field trials of 12% N,N-diethylbenzamide w/w cream at 10 mg/cm2 dose showed 100% protec-

tion against 4 Anopheles species for up to 11 hours [11].

Repellent was distributed in 2 stages. In the first stage, repellent was introduced and distrib-

uted to all villagers (village residents, forest dwellers, and migrants) at village-level community

meetings by VHVs and Karuna Mission Social Solidarity (KMSS) malaria officers (local field

implementation staff who liaise between VHVs and implementing partners). Any village

members absent from community meetings were identified by VHVs, and repellent was dis-

tributed to them individually, external to the meeting.

In the second stage, in order to establish and maintain consistent distribution, villagers

were asked to return any empty repellent tubes to the VHV for replacement (although this was

not a requirement for additional repellent distribution). The nature of the study and proper

application of repellent was explained verbally (using a hardcopy guideline information sheet;

Fig 1. Location of townships selected for topical repellent trial participation in Kayin, Kayah, and Bago East

states. Map was generated using the tmap package in R version 3.6.1 [10] with data from Natural Earth.

https://doi.org/10.1371/journal.pmed.1003177.g001
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S1 Text) to villagers by malaria officers during the initial community meeting and by VHVs in

the process of distributing repellent outside of community meetings. Villagers were provided

information regarding repellent composition, how repellent works to protect people from bit-

ing, proper application (including topics such as application sequencing, optimal amounts or

volume, optimal timing of application, storage, and application to infants), risks of use, and

contact information for reporting adverse effects and restocking supply. Villagers were asked

to inform the VHV immediately if allergy or ingestion occurred. The VHVs checked the

appropriate use of repellent by villagers when they returned to the VHV to replenish their

repellent. The VHVs were required to do at least 1 mass community health education session

per month, which was supervised by the malaria officers of KMSS. Repellent was provided in

plain, unbranded tubes.

In order to determine the number of repellent tubes required to supply a village across the

study, the respective village authority provided the village population size, and the number of

tubes needed to be stocked was estimated by the in-country study team (2 tubes per person ini-

tially and an additional 20%–30% of this total allocation for the VHV-led repellent replace-

ment). On a monthly basis, malaria officers communicated with VHVs regarding stock levels,

with stock typically kept at 20%–30% of the initial procurement. Repellent was delivered to vil-

lages between 1 and 2 months prior to the onset of the randomly allocated distribution start

month and stored in an appropriate secure location prior to commencement of the distribu-

tion process.

Household-level mapping was considered as a primary mode of repellent distribution; how-

ever, it was determined that village-level distribution through community meetings, with tar-

geted follow-up of non-attenders would be the most pragmatic and cost-effective method of

distribution.

Outcome measures

Primary outcome. The primary outcome was P. falciparum or P. vivax (or both, collec-

tively referred to as Plasmodium spp.) infection determined by SD Bioline P.f/P.v combo RDT,

measured monthly by VHVs. This RDT is routinely used by VHVs in the field for active and

passive case detection. Passive case detection refers to villagers presenting to VHVs for testing,

and active case detection refers to VHVs seeking out infection in their village (e.g., during

health education sessions or household visits) and performing a minimum number of tests set

by the programme.

Secondary outcomes. Secondary outcomes included symptomatic malaria, defined as

RDT positive plus fever and/or other malaria symptoms; PCR-detectable Plasmodium spp.

infections; molecular markers of artemisinin resistance; and antimalarial antibody levels in

individuals as determined by enzyme-linked immunosorbent assay [9]. In this paper we report

data on PCR-detectable infections. Quantitative PCR was used to detect low-density P. falcipa-
rum and P. vivax infection in dried blood spots (S2 Text). All individuals presenting for rou-

tine RDT were offered the opportunity to provide a dried blood spot sample; these samples

were collected by VHVs from individuals who provided written informed consent.

Power

Power estimation was based on the estimation of an intervention effect from a stepped-wedge

cluster randomised design assuming analysis by generalised linear mixed modelling (GLMM)

[13]. Given the design, an estimate of malaria incidence of 1% (by RDT, based on unpublished

data collected from villages during 2014), an expectation of testing approximately 20 partici-

pants for malaria using RDTs per month per village from 116 villages (over 15 months), and
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an estimate of between-village heterogeneity (intraclass correlation coefficient [ICC]) of 0.15,

we estimated the study was powered to detect a 50% reduction in malaria infections due to

topical repellent distribution with 90% power and 5% significance (2-sided) [9].

Statistical analysis

GLMM was performed on individual-level observations to estimate the effect of repellent on P.

falciparum or P. vivax (or both, (collectively referred to as Plasmodium spp.) infection (deter-

mined by RDT and PCR). Repellent was included as a binary variable that indicated a village’s

repellent distribution status as being either without (i.e., control state) or with repellent (inter-

vention state). This repellent variable was modelled as a time-varying (monotonic) variable

whereby the variable changed in value from control to intervention for each village at a specific

stage across the 15 months of the study. Models were generalised through use of a logit link

function and binomial distribution (see S3 Text). A crossed random effects (or non-nested)

framework was used to correctly account for dependencies in study participant probability of

infection (i.e., participants from the same village were tested at different periods [months] and

participants tested in a given period were from different villages), with random effects (i.e.,

intercepts) for both village (level 2) and month (level 2) crossed at the participant level (level

1). In addition to random effects for village and month (i.e., to model temporal clustering), the

repellent intervention was also modelled as a time-varying random effect at the village level

(specified a priori in the trial protocol). Inclusion of a random effect for repellent relaxes the

assumption of a fixed, common effect of repellent across all villages in the GLMM, was

achieved by estimating the effect of repellent at the village level (i.e., level 2) of the mixed

model (i.e., multilevel model), and assumes village-specific differences in the effect of repellent

(i.e., heterogeneity in effect caused by potential unmeasured factors such as adherence). In

terms of intervention effect estimation, as the intervention was time-varying, both between-

village (odds of malaria infection for villages in an intervention period compared to villages in

a control period) and within-village (odds of malaria infection in intervention periods com-

pared to control periods for a single village) effects are estimated in the GLMM, and the esti-

mator is the weighted average of the between- and within-village estimators, where the weight

for each estimator decreases as the standard error increases. The model also included fixed

terms for estimating the effect of time (linear) and season (hot [March to April], rainy [May to

October], and cool [November to February, reference group]) on malaria infection. Repellent

distribution was modelled as an instantaneous factor (i.e., assumed to have an immediate effect

at distribution) for the primary analysis and as a lagged factor in additional modelling (i.e.,

having a delayed effect of 1 and 2 months following distribution). This modelling framework

and the composition of models (i.e., fixed and random components) were specified a priori

and published in the study protocol (See S4 Text for the statistical analysis plan as described in

the protocol) [9].

To explore the extent to which any association between repellent distribution and PCR-

detectable infections varied across Plasmodium spp. (i.e., P. falciparum or P. vivax), generalised

structural equation modelling (GSEM) was used to apply crossed random effects multinomial

logit regression analyses. In this modelling, random effects for village and month were con-

strained to be equal across Plasmodium spp..

Given its direct impact on efficacy, we also performed an a priori specified additional analy-

sis of the frequency of repellent application at the village level as the principal indicator of

intervention implementation quality. At the end of the study, VHVs were asked to assess vil-

lage frequency of repellent application (question: “In your village, on average, how often do

you think community members used mosquito repellent cream?”) as occurring ‘never’,
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‘monthly’, ‘weekly’, or ‘daily’ on average, and this variable was modelled in per protocol analy-

sis. In addition, we explored the extent to which risk group membership (participant self-

reported village resident, forest dweller, or migrant status) might moderate repellent effective-

ness using a group by intervention fixed-effect interaction term in modelling.

ICCs were estimated for both village and temporal heterogeneity using estimated model

variance components. Given the correct specification of the GLMM, the effect estimates for

repellent distribution were unbiased in light of village attrition, assuming missing monthly

RDT and PCR data were missing at random (MAR) [14].

Stata version 15.1 was used for all statistical analyses, randomisation, and power estimation

[15].

Cost-effectiveness analysis

We calculated the additional costs associated with adding repellent distribution to malaria ser-

vices already programmatically funded and implemented by VHVs, excluding study-related

costs. All costs are reported in 2015 US dollars and are given in S5 Text, as are methods for the

cost-effectiveness analysis. The effectiveness outcome was PCR-detectable infections averted,

and a sensitivity analysis was conducted using the upper and lower limits of the 95% reference

range for village-specific malaria prevalence, which incorporated empirical Bayes random

intercept predictions from GLMM.

Results

Study population, surveillance, and malaria prevalence

One hundred sixteen villages across 8 townships with an estimated total population of 31,016

were randomised to receive repellent. Of the original sample of 116 villages, 4 villages (3.4%)

were excluded due to security concerns, with 2 villages substituted with alternate villages

selected randomly. A total of 32,194 RDTs were performed across 114 villages during the

15-month study period (Fig 2). The mean (SD) testing rate of RDTs was 20.5 (14.6) tests per

village per month, considering the mean (SD) number of months villages had observations for

was 13.8 (1.8) months. The median age of participants undergoing rapid diagnostic testing was

18 years, and approximately half were female. Rapid diagnostic testing was performed on vil-

lage residents (46%), forest dwellers (40%), and migrants (14%), with these risk groups simi-

larly distributed across the control and intervention periods. Plasmodium spp. infection

detected by RDT was lower than expected, with 50 infections (0.16%; 29 of which were symp-

tomatic) detected over the duration of the trial (34 P. vivaxmono-infections, 13 P. falciparum
mono-infections, and 3 mixed-species infections; Table 1). A total of 13,157 dried blood spot

samples were collected across 111 villages, with approximately 3% (419/13,157) of dried blood

spot samples testing positive by PCR for Plasmodium spp. infections (123 P. vivaxmono-infec-

tions, 207 P. falciparummono-infections, and 89 mixed-species infections; Table 1). The mean

(SD) testing rate of dried blood spot samples was 11.2 (7.9) per village per month, and the

mean (SD) number of months villages had observations for was 10.6 (3.0) months.

The instantaneous association between repellent distribution and RDT-

and PCR-detectable infections

Rapid diagnostic testing is the method of malaria diagnosis routinely employed at the commu-

nity level, and for RDT-detectable infections, we observed a non-significant reduction in the

odds of Plasmodium spp. infection after repellent distribution by VHVs, independent of time

and season (adjusted odds ratio [AOR] = 0.25, 95% CI 0.004–15.2, p = 0.512; Fig 3, Tables 2
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and S1). When PCR-detectable infections were examined, repellent distribution was associated

with an 18% reduction in the odds of any Plasmodium spp. infection (AOR = 0.82, 95% CI

0.62–1.09, p = 0.180) (Fig 3; Tables 2 and S2). Considering the impact of repellent distribution

on species-specific infections, there was a 33% reduction in odds of P. falciparum infections

(adjusted relative risk ratio [ARRR] = 0.67, 95% CI 0.47–0.95, p = 0.026) (Fig 3; Tables 2 and

Fig 2. Flowchart showing the number of villages and number of tests observed by intervention period by step. The

mean (SD) testing rate of RDTs was 20.5 (14.6) tests per village per month, and the mean (SD) number of months

villages had observations for was 13.8 (1.8) months. For PCR, the mean (SD) monthly testing rate per village was 11.2

(7.9) tests, and the mean (SD) number of months villages had observations for was 10.6 (3.0). Missing village data for
a9, b7, c4, d3, e5, f6, g8, h11, i1, and j12 villages including 2 villages that were enrolled and randomised into the trial but

were unable to participate due to security reasons. PCR, polymerase chain reaction; RDT, rapid diagnostic test.

https://doi.org/10.1371/journal.pmed.1003177.g002

PLOS MEDICINE Evaluation of topical repellent against malaria: a stepped-wedge cluster randomised trial

PLOS Medicine | https://doi.org/10.1371/journal.pmed.1003177 August 20, 2020 9 / 21

https://doi.org/10.1371/journal.pmed.1003177.g002
https://doi.org/10.1371/journal.pmed.1003177


S3). However, there was no significant impact on P. vivax infections (ARRR = 1.41, 95% CI

0.80–2.47, p = 0.233). The difference in the impact of repellent across the 2 species was statisti-

cally significant (Wald χ2[1] = 5.24, p = 0.022). Although there were some differences in the

impact of repellent on PCR-detectable infection across village residents, forest dwellers, and

migrants, these differences were not statistically significant (Plasmodium spp. infection—resi-

dent: AOR = 0.65, 95% CI 0.44–0.96; forest dweller: AOR = 0.90, 95% CI 0.63–1.29; migrant:

AOR = 1.13, 95% CI 0.62–2.06; Wald χ2[2] = 3.39, p = 0.183, estimated from the linear combi-

nation of the main effect of repellent distribution and the interaction between repellent distribu-

tion and resident status, see S4 Table; P. falciparum—resident: AOR = 0.58, 95% CI 0.38–0.88;

forest dweller: AOR = 0.74, 95% CI 0.45–1.22; migrant: AOR = 0.77, 95% CI 0.35–1.72; P. vivax
infection—resident: AOR = 1.17, 95% CI 0.58–2.36; forest dweller: AOR = 1.49, 95% CI 0.79–

2.82; migrant: AOR = 2.05, 95% CI 0.70–5.95; joint Wald χ2[4] = 2.03, p = 0.730; See S5 Table).

Heterogeneity in Plasmodium spp. infection and the impact of repellent

distribution

To determine whether the apparent effectiveness of repellent was influenced by variation in

the level of infection in villages and over time, and to describe trial results graphically, post hoc

Table 1. Participant characteristics and Plasmodium spp. infection status by control/intervention periods (n =
32,194 RDTs).

Participant characteristic Control period

(n = 18,385)

Intervention period

(n = 13,809)

Age, years,median [p25, p75] 18 [9, 32] 18 [9, 33]

Female, n (%) 9,045 (49.2) 7,033 (50.9)

Pregnancy, n (%) 62 (0.69) 54 (0.77)

Season, n (%)
Cool 2,869 (15.6) 4,277 (31.0)

Hot 3,260 (17.7) 2,462 (17.8)

Rainy 12,256 (66.7) 7,070 (51.2)

Residential status, n (%)�

Migrant 2,817 (15.3) 1,598 (11.6)

Resident 8,733 (47.5) 6,050 (43.8)

Forest dweller 6,833 (37.2) 6,160 (44.6)

Infection status, n (%)
RDT

No infection 18,351 (99.8) 13,793 (99.9)

P. falciparum 9 (0.05) 4 (0.03)

P. vivax 23 (0.13) 11 (0.08)

Mixed species 2 (0.01) 1 (0.01)

Total infections 34 (0.18) 16 (0.12)

PCR (n = 13,157)
No infection 6,390 (96.1) 6,348 (97.5)

P. falciparum 116 (1.7) 91 (1.4)

P. vivax 76 (1.1) 47 (0.7)

Mixed species 67 (1.0) 22 (0.3)

Total infections 259 (3.9) 160 (2.5)

�Three study participants missing residential status data.

p25, 25th percentile; p75, 75th percentile; PCR, polymerase chain reaction; RDT, rapid diagnostic test.

https://doi.org/10.1371/journal.pmed.1003177.t001
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estimates of the probability of infection detected by RDT (Fig 4A) and PCR (Fig 4B) at the vil-

lage level (which include random effects), as well as the estimated average probability for inter-

vention and control periods, were produced from the GLMM. For RDT-detectable

Plasmodium spp. infection, there was marked heterogeneity (as indicated by the estimated

probabilities that include village- and time-specific random effects in Fig 4A): In several vil-

lages the risk of Plasmodium spp. infection was significantly higher than in the majority, and

the risk of infection greater during intervention (ICC = 0.75) compared to control periods

(ICC = 0.42) (see S1 and S2 Tables and S6 Text for information regarding ICCs and tests of

inference for random terms). We observed very little temporal (i.e., between-month) heteroge-

neity in Plasmodium spp. infection detected by RDT (ICC = 0.003). However, we did observe

higher temporal heterogeneity in the probability of Plasmodium spp. infection detected by

Fig 3. Forest plot showing the instantaneous association between village repellent distribution and Plasmodium
spp. infection detected by RDT and PCR, including PCR species-specific analyses. Red circles indicate adjusted

odds ratios; blue diamonds indicate adjusted relative risk ratios.

https://doi.org/10.1371/journal.pmed.1003177.g003

Table 2. The instantaneous association between village repellent distribution and Plasmodium spp. infection detected by RDT and PCR.

Factor RDT PCR

All species�

(n = 32,194)

All species

(n = 13,157)

P. falciparum†

(n = 13,068)

P. vivax†

(n = 13,068)

AOR 95% CI p-Value AOR 95% CI p-Value ARRR 95% CI p-Value ARRR 95% CI p-Value

Intervention
No repellent Ref. — — Ref. — — Ref. — — Ref. — —

Repellent 0.25 0.004, 15.2 0.512 0.82 0.62, 1.09 0.180 0.67 0.47, 0.95 0.026 1.41 0.80, 2.47 0.233

Time (month) 0.87 0.72, 0.97 0.013 0.97 0.89, 1.07 0.582 1.02 0.95, 1.11 0.523 0.95 0.87, 1.04 0.247

Season
Cool Ref. — — Ref. — — Ref. — — Ref. — —

Hot 3.64 0.89, 14.8 0.072 1.10 0.35, 3.44 0.871 0.81 0.27, 2.40 0.700 11.2 2.23, 56.2 0.003

Rainy 3.15 0.89, 11.1 0.074 1.17 0.45, 3.02 0.747 0.46 0.17, 1.21 0.115 20.5 4.84, 86.6 <0.001

Instantaneous treatment effect comparisons: AORs and ARRRs, 95% CIs, and p-values from generalised linear mixed modelling (GLMM) using generalised structural

equation modelling (GSEM).

�All-species estimates from crossed random effects generalised (logit) linear mixed model with random effects for cross-sectional (month) and village-specific

heterogeneity in infection, and village-specific heterogeneity in effect of repellent distribution.
†Species-specific (ARRR) estimates from crossed random effects generalised (multinomial) linear mixed model with random effects for cross-sectional (month) and

village-specific heterogeneity in infection. No infection was the reference group for the outcome.

AOR, adjusted odds ratio; ARRR, adjusted relative risk ratio; PCR, polymerase chain reaction; RDT, rapid diagnostic test.

https://doi.org/10.1371/journal.pmed.1003177.t002
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PCR (ICC = 0.13) (Fig 4B). For PCR-detectable Plasmodium spp. infection, there was a lower

level of village-specific heterogeneity (ICC = 0.03) and no village-specific differences in the

association between repellent and infection (Fig 4B; S6 Text). The low heterogeneity of the

effect of repellent on PCR-detectable infections between villages suggests that repellent as an

intervention to reduce malaria is likely to be applicable across a range of transmission settings.

Fig 4. Overall and village-specific probabilities of Plasmodium spp. infection detected by RDT and PCR by

month, season, and repellent status. Plasmodium spp. infection detected by (A) RDT and (B) PCR. Figure shows

differences in probability (i.e., model-based prevalence) of Plasmodium spp. infection by time, season, and

intervention status from generalised linear mixed modelling (GLMM) on average (lines). In addition, it shows Bayes

random effect predictions of village-specific probabilities of infection (dots) by the same factors. In terms of

heterogeneity, the figure demonstrates the higher level of heterogeneity in infection between villages on average

(dispersion of red and black dots considered together) and when in the intervention phase as compared to the control

phase (dispersion of red dots versus black dots), for infections detected by RDT compared to PCR. PCR, polymerase

chain reaction; RDT, rapid diagnostic test.

https://doi.org/10.1371/journal.pmed.1003177.g004
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The delayed association between repellent distribution and RDT- and

PCR-detectable infections

To explore the extent to which the effect of the rollout of repellent on Plasmodium spp. infec-

tion was time-dependent, we modelled the impact of repellent distribution on Plasmodium
spp. infection delayed by 1 and 2 months after distribution (Tables 3, S1, S2 and S6; S1 Fig).

For RDT-detectable infections, delayed effects were estimated to be markedly stronger (1

month: AOR = 0.14, 95% CI 0.003–7.74, p = 0.336; 2 months: AOR = 0.01, 95% CI 0.0001–

0.77, p = 0.038) than when assuming that the impact of repellent distribution occurred instan-

taneously (Table 3). Although not as marked as for Plasmodium spp. infection detected by

RDT, analyses of time dependence for PCR-detectable infections showed apparent delayed

effects that were estimated to be stronger than assuming an instantaneous effect (1 month:

AOR = 0.77, 95% CI 0.58–1.03, p = 0.080; 2 months: AOR = 0.75, 95% CI 0.55–1.01, p =
0.062). The time dependence of the effect of repellent distribution was less consistent for spe-

cies-specific analyses (Tables 3 and S6; S1 Fig) than when assuming an instantaneous impact.

Analysis of adherence to intervention (per protocol analysis)

During the study there were no reports of allergy or ingestion of the repellent, which was a

publicly available and locally approved product for which efficacy and adverse outcomes had

Table 3. The delayed impact of village repellent distribution on Plasmodium spp. infection detected by RDT and PCR.

Factor RDT PCR

All species�

(n = 32,194)

All species

(n = 13,157)

P. falciparum†

(n = 13,068)

P. vivax†

(n = 13,068)

AOR 95% CI p-Value AOR 95% CI p-Value ARRR 95% CI p-Value ARRR 95% CI p-Value

1-month delay
Intervention

No repellent Ref. — — Ref. — — Ref. — — Ref. — —

Repellent 0.14 0.003, 7.74 0.336 0.77 0.58, 1.03 0.080 0.77 0.53, 1.11 0.163 0.97 0.57, 1.65 0.910

Time (month) 0.84 0.76, 0.94 0.003 0.98 0.89, 1.07 0.631 1.01 0.92, 1.12 0.785 0.97 0.89, 1.06 0.511

Season
Cool Ref. — — Ref. — — Ref. — — Ref. — —

Hot 3.80 0.96, 15.1 0.058 1.11 0.36, 3.47 0.856 0.81 0.29, 2.26 0.688 11.0 3.44, 35.5 <0.001

Rainy 3.49 1.00, 12.1 0.049 1.18 0.46, 3.03 0.738 0.46 0.22, 0.96 0.039 20.2 8.56, 47.5 <0.001

2-month delay
Intervention

No repellent Ref. — — Ref. — — Ref. — — Ref. — —

Repellent 0.01 0.0001, 0.77 0.038 0.75 0.55, 1.01 0.062 0.81 0.55, 1.17 0.252 0.77 0.40, 1.50 0.444

Time (month) 0.87 0.77, 0.97 0.016 0.98 0.89, 1.07 0.634 1.01 0.92, 1.11 0.846 0.99 0.88, 1.10 0.796

Season
Cool Ref. — — Ref. — — Ref. — — Ref. — —

Hot 3.72 0.93, 14.9 0.064 1.12 0.36, 3.49 0.850 0.81 0.24, 2.70 0.732 11.2 2.1, 60.8 <0.001

Rainy 3.89 1.09, 13.9 0.036 1.18 0.46, 3.05 0.731 0.46 0.17, 1.22 0.120 20.3 4.74, 86.9 <0.001

Delayed treatment effect comparisons: AORs and ARRRs, 95% CIs, and p-values from generalised linear mixed modelling (GLMM).

�All-species estimates from crossed random effects generalised (logit) linear mixed model with random effects for cross-sectional (month) and village-specific

heterogeneity in infection, and village-specific heterogeneity in effect of repellent distribution.
†Species-specific (ARRR) estimates from crossed random effects generalised (multinomial) linear mixed model with random effects for cross-sectional (month) and

village-specific heterogeneity in infection. No infection was the reference group for the outcome.

AOR, adjusted odds ratio; ARRR, adjusted relative risk ratio; PCR, polymerase chain reaction; RDT, rapid diagnostic test.

https://doi.org/10.1371/journal.pmed.1003177.t003
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been previously established. To examine the impact of frequency of repellent application on

repellent effectiveness, VHVs determined the frequency of repellent use in their village. Com-

plete adherence to the intervention varied; just over half of the VHVs (56%, 55/98) reported

that, on average, study participants applied repellent ‘daily’ and that the majority (67%, 68/

102) also applied the repellent as per instructions. Six villages (6%, 6/102) experienced repel-

lent stock-out periods. In these analyses, the intervention was measured as an ordinal time-

varying exposure, where villages could be in either a control or an intervention state, which

was marked by ‘monthly’, ‘weekly’, or ‘daily’ average use. Although these analyses (S7 Table)

showed that overall exposure to the repellent intervention was not statistically significant (joint

Wald χ2[3] = 3.45, p = 0.328), there was a descriptive pattern of lower risk of Plasmodium spp.

infection detected by RDT with higher levels of VHV-reported frequency of repellent use (repel-

lent used monthly: AOR = 1.54, 95% CI 0.14–16.7; repellent used weekly: AOR = 0.33, 95% CI

0.01–22.2; repellent used daily: AOR = 0.05, 95% CI 0.002–10.3). A similar descriptive pattern

was observed for malaria infection detected by PCR across levels of exposure, but again this was

not statistically significant (joint Wald χ2[3] = 4.7, p = 0.195) (S8 Table).

Cost-effectiveness of repellent

The total cost of the intervention during the study was US$76,138 (tubes of repellent, US

$28,139; staff costs, US$45,172; rent, US$1,257; distribution, US$1,524; meetings, US$47). In

total, repellent was provided for 237,701 person-months, or 19,808 person-years, resulting in a

cost of approximately US$3.8 per person per year. The control provision (i.e., usual care) was

provided for a total of 215,675 person-months, or 17,973 person-years.

Cost-effectiveness analysis based on the overall infection prevalence observed during the

study (Table 4) found that the anticipated costs for a cohort of 10,000 people would be

$US38,437 per year while averting 150 infections detected by PCR. This resulted in an incre-

mental cost-effectiveness ratio (ICER) of US$256 per PCR-detected infection averted from

repellent distribution. The sensitivity analysis applying the 95% reference range for village-spe-

cific malaria prevalence resulted in 182 cases averted for the upper and 46 cases averted for the

lower PCR limits, corresponding to ICERs of $US212 and US$832, respectively.

Discussion

The results from this trial demonstrated that, although incorporation of repellent delivery into

VHV-delivered malaria services did not reduce RDT-detected Plasmodium spp. infections,

apparent protection was observed against PCR-detected P. falciparum, but not P. vivax, infec-

tion. Importantly, for PCR-detectable infections, there was low heterogeneity of this protective

effect between villages, and the effect was similar between village residents and migrants/forest

workers, suggesting that repellent as an intervention to reduce malaria is likely to be applicable

Table 4. Cost-effectiveness results for a population of 10,000 people over 1 year (costs are in US dollars).

Measure Intervention

Usual care Usual care + repellent

Incremental costs — US$38,437

Cases detected by PCR 400 250

PCR infections averted — 150

ICER per PCR-detected infection averted — US$256

ICER, incremental cost-effectiveness ratio; PCR, polymerase chain reaction.

https://doi.org/10.1371/journal.pmed.1003177.t004

PLOS MEDICINE Evaluation of topical repellent against malaria: a stepped-wedge cluster randomised trial

PLOS Medicine | https://doi.org/10.1371/journal.pmed.1003177 August 20, 2020 14 / 21

https://doi.org/10.1371/journal.pmed.1003177.t004
https://doi.org/10.1371/journal.pmed.1003177


across a range of transmission settings and populations. Large-scale distribution of repellent

delivered through VHVs, or similar providers, as part of malaria control and elimination pro-

grammes may be an effective public health strategy to target residual malaria transmission not

covered by conventional vector control measures in Myanmar and the GMS more broadly.

One of the barriers to including or recommending repellents for malaria prevention is the

lack of evidence on implementation strategies that are effective. To our knowledge, this trial is

the first to evaluate topical repellent distribution as part of a broader public health campaign,

establishing evidence for the effectiveness of repellent distributed by the network of VHVs

who deliver endorsed malaria interventions in Myanmar and the GMS more broadly. Our

findings suggest that implementation using the VHV network model, or similar infrastruc-

tures, could be a mechanism for providing repellents for malaria prevention at the required

scale. We found that the impact of repellent was species-specific; repellent distribution signifi-

cantly reduced PCR-detectable P. falciparum, but not P. vivax, infections, and this could be

seen as providing discriminant validity for repellent effectiveness. The limited effect on P.

vivax is most likely explained by the large proportion of P. vivax infections that are caused by

relapses from dormant liver stages, rather than being new infections acquired from mosquito

bites, whereas P. falciparum does not have a dormant liver stage. This strengthens the internal

validity of our study because it suggests that repellent can specifically protect against new Plas-
modium spp. infections. Whether the density of a new Plasmodium spp. infection reaches the

detection limits of routine RDTs or PCR is dependent on the level of naturally acquired immu-

nity, which controls parasitaemia. RDT-negative, PCR-detectable infections are important in

malaria elimination settings because they often go undetected and untreated and can contrib-

ute to ongoing malaria transmission [16]. This is particularly important in the GMS, where

there is an urgent need to interrupt the transmission of artemisinin-resistant P. falciparum.

Studies in the GMS have shown that PCR-detectable infections can harbour transmissible

gametocytes, and increases in PCR-detectable infections also increase the entomological inoc-

ulation rate [16–18]. Furthermore, the density of PCR-detectable infections can change over

time, and such infections eventually become detectable by less sensitive conventional diagnos-

tics such as RDTs [19,20]. Therefore, the finding that repellent may also reduce the infectious

reservoir strengthens the use of this intervention in malaria elimination settings in the GMS.

Interpretation of the effectiveness of repellent from trials in low transmission areas is chal-

lenging because insufficient power may result from low event rates, compounded by the low

sensitivity of conventional malaria parasite detection methods. Previous trials in low transmis-

sion areas (<1% and<10% by RDT and microscopy, respectively), which did not integrate

repellent into established health systems, reported that repellents were not associated with

reductions in RDT-detectable infections (hazard ratio = 1.00, 95% CI 0.99–1.02) [21], but

could reduce microscopically detectable P. falciparum infections by 28% to 82%, with varying

degrees of statistical significance [22–25]. Only 1 other trial, also conducted in the GMS, has

examined the effect of repellent distribution on PCR-detectable P. falciparum infections (<5%

prevalence), and the researchers determined that their study was underpowered to detect the

magnitude of effect observed, but confidence intervals did contain the magnitude of the appar-

ent protective effect we observed (AOR = 0.83, 95% CI 0.44–1.56) [26]. Our trial was also lim-

ited by the lower than expected number of infections observed during the study period, which

adversely affected the power to reliably provide inference with respect to the study’s a priori

hypothesised effect of repellent distribution on Plasmodium spp. infection detected by RDT,

the routine method of malaria diagnosis in the GMS. Despite this, the greater sensitivity of the

secondary outcome measure of Plasmodium spp. infection detected by PCR, which yielded 8

times the number of events, combined with our study design and analytical approach,
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permitted effect estimation for repellent distribution with markedly greater accuracy in terms

of inference.

A strength of our trial, compared to previous trials, was the stepped-wedge design, whereby

village Plasmodium spp. infections are observed repeatedly and frequently in both the control

and intervention states (as opposed to serial cross-sectional surveys). This repeat sampling fre-

quency allowed us to explore delayed effects of repellent distribution—no delayed effect was

found for PCR-detectable infections, but a 2-month delayed effect for RDT-detectable infec-

tions was present—and permitted both within- and between-village differences to be incorpo-

rated into statistical modelling. The estimation of crossed random effects (in addition to

explicitly controlling for time and seasonality through fixed effects) permitted more effective

partitioning of any variance in risk of infection from unmeasured factors impacting at both

temporal and village-specific levels, resulting in increased precision of the average independent

effect of repellent distribution. In addition, it enabled the quantification of heterogeneity in

both village-specific baseline and time-specific risk of infection, as well as village-specific het-

erogeneity in the treatment effect. Interestingly, the effect of repellent on reducing PCR-detect-

able infections was consistent across villages, suggesting that repellent distributed by VHVs

may be an effective intervention across a range of transmission settings and populations. Fur-

ther studies are warranted across different transmission settings and populations, from the

GMS and beyond, in order to inform WHO public health policy on the deployment of topical

repellents for malaria prevention [6].

As an effectiveness trial, this study applied a principally ‘intention to treat’ approach by

design, measuring the effect of repellent distribution by VHVs on malaria at a village level.

Participants were not obliged to use repellent, and, given the population size, compliance and

the usage of repellent by individuals was not strictly monitored. However, analysis based on

VHVs’ estimates of the average frequency of repellent use in their village indicated lower risk

of Plasmodium spp. infection where daily or weekly use (compared to monthly) was observed

—but it should be noted the effect here was not statistically significant. Differences in compli-

ance rates may explain the poor effectiveness of repellents when translated into field settings—

possibly indicated by heterogeneity in levels of effectiveness across trials [5]. Whether the

apparent protective effect of repellent observed in our trial was due to higher uptake and com-

pliance is unknown; reported details of repellent messaging are limited in other trials under-

taken in the GMS [21,25,26]. Nonetheless incorporation of repellent into public health

programmes should be coupled with specific messaging pertaining to the importance of

proper and consistent use of this preventive treatment.

There were limitations to the findings of this study. As mentioned previously, inference for

the primary outcome of our study (the a priori hypothesised effect of repellent distribution on

Plasmodium spp. infection detected by RDT) was limited by the lower than expected number

of infections observed during the study period. Despite this, the greater sensitivity of the sec-

ondary outcome measure (Plasmodium spp. infection detected by PCR) and the subsequent

higher number of events permitted modelling with increased precision for the estimate of the

intervention effect. The geographical proximity of some villages may have resulted in contami-

nation of some villages with repellent while in the control state. If this did occur, then this

would bias results towards the null, meaning that the true protective effect of repellent may be

larger than we observed. In the village, repellent was made available to high-risk groups

(migrants and forest dwellers) as well as village residents, and we found that these groups were

balanced in control and intervention periods and that the protective effect of repellent was

similar across these groups. More targeted distribution campaigns for high-risk groups in

areas where high-risk groups harbour the vast majority of infections may be beneficial because

individuals in these high-risk groups are less likely to use ITNs or LLINs than the general
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population [27]. Different repellents should also be investigated. In our trial we used the only

repellent available for use in Myanmar, but as additional products become available/endorsed

by WHO they will also require assessment. The study design employed in this trial, together

with reported ICCs, provides an important framework for designing and testing other malaria

interventions in the GMS.

In our trial it cost US$3.8 per person per year to distribute repellent, and there was an ICER

of US$256 to avert a PCR-detectable infection. The cost estimate is conservative because many

households would still have had supplies when the study period ended and the cost savings

due to reductions in healthcare use were not included. As areas move towards malaria elimina-

tion, the ICER for all malaria interventions will increase. Accordingly, we provided ICERs for

the range of village-specific malaria prevalences observed in our study. These figures can

inform the allocative-efficiency analyses of national malaria control programmes, maximising

the impact of malaria interventions to achieve malaria elimination goals.

Establishing the effectiveness of repellents and distribution models for their implementa-

tion is essential in order to inform the broadening toolbox for the malaria elimination agenda,

particularly in regions where other vector control interventions are losing efficacy. The find-

ings of this stepped-wedge cluster randomised controlled trial, where the design and statistical

modelling advance on previous research, suggest that integrating repellent into the package of

malaria services provided by the VHV network may be an effective supplementary interven-

tion for reducing new Plasmodium spp. infections in hard-to-reach villages of the GMS. Incor-

poration of repellent into national malaria control programme national strategic plans for

malaria elimination may advance achieving GMS malaria elimination targets of 2025 for P. fal-
ciparum and 2030 for all malaria species. Furthermore, this strategy for repellent implementa-

tion could be suitable in other malaria-endemic settings globally.
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