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Abstract

Objective: The endothelial protein C-receptor (EPCR) is an endothelial transmembrane protein that binds protein C and
activated protein C (APC) with equal affinity, thereby facilitating APC formation. APC has anticoagulant, antiapoptotic and
antiinflammatory properties. Soluble EPCR, released by the endothelium, may bind activated neutrophils, thereby
modulating cell adhesion. EPCR is therefore considered as a possible link between the anticoagulant properties of protein C
and the inflammatory response of neutrophils. In the present study, we aimed to provide proof of concept for a direct
binding of EPCR to the b2 –integrin Mac-1 on monocytic cells under static and physiological flow conditions.

Measurements and Main Results: Under static conditions, human monocytes bind soluble EPCR in a concentration
dependent manner, as demonstrated by flow cytometry. Binding can be inhibited by specific antibodies (anti-EPCR and
anti-Mac-1). Specific binding was confirmed by a static adhesion assay, where a transfected Mac-1 expressing CHO cell line
(Mac-1+ cells) bound significantly more recombinant EPCR compared to Mac-1+ cells blocked by anti-Mac-1-antibody and
native CHO cells. Under physiological flow conditions, monocyte binding to the endothelium could be significantly blocked
by both, anti-EPCR and anti-Mac-1 antibodies in a dynamic adhesion assay at physiological flow conditions. Pre-treatment of
endothelial cells with APC (drotrecogin alfa) diminished monocyte adhesion significantly in a comparable extent to anti-
EPCR.

Conclusions: In the present study, we demonstrate a direct binding of Mac-1 on monocytes to the endothelial protein C
receptor under static and flow conditions. This binding suggests a link between the protein C anticoagulant pathway and
inflammation at the endothelium side, such as in acute vascular inflammation or septicaemia.
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Introduction

The endothelial protein C-receptor (EPCR) is an endothelial

transmembrane type 1 molecule [1] that is expressed primarily on

large blood vessels [2]. Protein C (PC) binding to EPCR facilitates

formation of activated protein C (APC), but EPCR binds PC and

APC with equal affinity [3]. The PC pathway plays a key role in

the regulation of blood coagulation by inhibiting thrombin

generation [4], but also in limiting inflammatory response [3]. It

is thought to decrease endothelial cell apoptosis in response to

inflammatory cytokines and ischemia, thereby linking inflamma-

tion and endothelium [3,5].

A soluble form of EPCR that can be released by the

endothelium into circulation retains full ligand-binding ability

[6]. Soluble EPCR (sEPCR) binds to activated neutrophils [7], and

increased levels of sEPCR were found in patients with sepsis or

systemic lupus erythematosus [8].

The slow inactivation of APC bound to EPCR by plasma

protease inhibitors allows APC to signal cells. APC has been

shown to have anticoagulant, anti-inflammatory and antiapoptotic

activity at the cellular level [9,10,11]. In detail the APC-EPCR

complex appears to be involved in cellular signalling mechanisms

that down-regulate inflammatory cytokine formation [3], and

APC has been demonstrated to block leukocyte adhesion in vivo,

thereby reducing ischemia-reperfusion–induced injury [12]. Pre-

viously, recombinant human APC (drotrecogin alfa) has been

shown to reduce the risk of death in patients with severe sepsis

[13].

Adhesion molecules play a crucial role in vascular biology by

mediating cell–cell and cell–matrix adhesion as well as by binding

soluble ligands. The b2-integrin Mac-1 (CD11b/CD18) is

expressed predominantly on monocytes, granulocytes and macro-

phages [14], and is known to interact with various ligands to serve

different biological functions [15,16,17,18,19]. Mac-1 is known to
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mediate leukocyte adhesion to the vascular wall by binding to

intercellular adhesion molecule-1 (ICAM-1) on endothelial cells,

which, for example, is a precondition for chemotaxis-induced

leukocyte extravasation [14,20].

It was previously found that sEPCR binds to activated

neutrophils via proteinase-3 and that this binding is partially

dependent on Mac-1, suggesting a link between the protein C

anticoagulant pathway and neutrophil functions [7]. Therefore, in

the present study, we aimed to show a direct binding of EPCR to

monocyte Mac-1 under static and physiological flow conditions, in

order to identify another, so far unknown, binding partner of Mac-

1. This interaction could be another link between vascular

inflammation and coagulation in vascular inflammatory diseases,

or in acute systemic inflammatory conditions such as septicaemia.

Materials and Methods

Cell culture of HUVECs
Human umbilical vein endothelial cells (HUVEC) were

obtained from PromocellTM (Heidelberg, Germany). The cells

were cultured in endothelial cell growth medium advanced

(Provitro, Berlin, Germany), containing 10% fetal calf serum

(FCS), Heparin (22,50 mg), human recombinant epidermal growth

factor (5 ng), human recombinant fibroblast growth factor (10 ng),

human recombinant vascular endothelial growth factor (0,5 ng),

human recombinant insulin-like growth factor-1 (20 ng), ascorbic

acid (1 mg), hydrocortisone (0,20 mg), gentamicin (50 mg), L-

glutamine (2 mmol) and cell culture plastic was from Nunc

(Rolkilde, Denmark). Cultures were kept at 37uC in a 5% CO2

humidified atmosphere.

Mac-1 transfected CHO cells. Chinese hamster ovary

(CHO) cell lines were generated expressing recombinant Mac-1

either in a native or a mutant form with a GFFKR deletion of the

a-subunit (CD11b), which leads to the constitutive activation of

Mac-1 and promotes ligand binding [21,22]. CHO cells were

maintained in modified Eagle medium (DMEM; Lonza, Verviers,

Belgium) with 10% FCS, 100 U/mL penicillin, 100 mg/mL

streptomycin, 1% L-glutamine, 1% non-essential amino acids,

700 mg/mL geneticin and 250 mg/mL zeocin [23].

Monocytes. After ethical approval from the ethics committee

of our institution (10015/12), monocytes were isolated from buffy

coat leukocytes or citrated human blood from healthy volunteers.

Participants provided verbal informed consent to participate in

this study. Monocytes were isolated by Ficoll (Biocoll Separating

Solution, Biochrom, Berlin, Germany) gradient centrifugation and

plastic adhesion.

Cells were mixed 1:1 (in case of blood separation) or 1:5 (in case

of buffy coat separation) with phosphate buffered saline (PBS;

Lonza, Veriers, Belgium). After centrifugation at 8006 g for

20 min at room temperature the intermediate layer of cells was

removed and washed with PBS.

Cells were maintained in RPMI medium (Invitrogen, Paisley,

UK) with 10% FCS, 1% non-essential aminoacids, 2 mmol L-

glutamine, 100 U/mL penicillin and 100 mg/mL streptomycin.

Antibodies and reagents
The following fluorescence-labelled antibodies were used: anti-

human CD11b-FITC from Becton Dickinson (San Jose, CA,

USA), anti-human CD201 (EPCR)-PE from BD Biosciences,

Pharmingen (Heidelberg, Germany) and anti-GST (26H1)-Alexa

Fluor 488 from Cell Signaling Technology (Frankfurt, Germany).

Mouse IgG1–FITC/PE (Beckman Coulter, Marseille, France)

served as isotypic control.

The unlabeled antibody anti-Mac-1 (LEAF TM purified anti-

Human CD11b, Clone ICRF44) was purchased from Biozol

(Eching, Germany) and unlabeled anti-human CD201 (EPCR)

from Becton Dickinson GmbH (Heidelberg, Germany). Vy-

brantTM carboxyfluorescein-diacetate (CFDA; Invitrogen, Darm-

stadt, Germany) was used for staining of monocytes in flow

chamber experiments. Recombinant soluble EPCR with N-

terminal GST-tag was obtained from Abnova (Biozol, Eching,

Germany), Phorbol 12-myristate 13-acetate (PMA) from Sigma

(Taufkirchen, Germany). Activated protein C (drotrecogin alfa –

XigrisTM) was a gift from Eli Lilly (RA Houten, Holland).

Flow cytometry
Flow cytometric analysis was performed on a three-color flow

cytometer (FACSCaliburTM, BD Biosciences) with individual

settings for each antibody utilizing Cell Quest ProTM software

Figure 1. Monocytes bind sEPCR in a concentration dependent
manner. Monocytes bind soluble, recombinant EPCR in a concentra-
tion dependent manner in flow cytometry analysis. GST tagged-EPCR
was detected with an Alexa Flour-labeled anti-GST antibody. Secondary
antibody and isotype IgG served as controls (black bars on the left and
second from left). (*** p,0.0001; # p,0.05 vs. controls).
doi:10.1371/journal.pone.0053103.g001

Figure 2. Blockade of sEPCR binding to monocytes by anti-
EPCR and anti-Mac-1 in flow cytometry. Binding of soluble,
recombinant EPCR to monocytes (black bar second from left) can be
blocked by anti-EPCR (dark grey bar), by anti-Mac-1 (light grey bar) and
by both antibodies (white bar) to an equal extend. Monocytes without
addition of sEPCR and isotype IgG served as negative controls (black
bars on the left and second from left). (*** p,0.0001; ** p,0.001; ##

p,0.005 vs. sEPCR+).
doi:10.1371/journal.pone.0053103.g002
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(BD Biosciences). The mean fluorescence indices were analyzed

employing the BD software.

Binding of sEPCR to monocytes and specific

blockade. Isolated monocytes obtained from healthy volunteers

were isolated as described above and, if necessary, stimulated with

PMA (200 ng/mL) for 10 min. After a washing step, the cells were

incubated with increasing concentrations of soluble recombinant,

GST-tagged EPCR (6 mg/mL, 12 mg/mL, 24 mg/mL) for 30 min

in the presence or absence of anti-EPCR (20 mL = 0.5 mg/mL),

or anti-Mac-1 (20 mL = 1 mg/mL) antibody was added and

incubated for 30 min. Bound sEPCR was detected by an Alexa

Fluor-labeled antibody against the GST-tag. After washing with

PBS and centrifugation with 500 rpm for 5 minutes, the pellet was

resuspended in 300 mL Cellfix (Becton Dickinson) and analyzed on

a FACScan (Becton Dickinson). Monocytes were identified on the

forward/sideward scatter. Isotype IgGs served as controls.

Static and Dynamic Adhesion Assays
Static adhesion assay. 96-well plates (Nunc ImmunoPlate,

MaxiSorTM) were coated with sEPCR (10 mg/ml) in PBS at 4uC
overnight, blocked with 1% BSA (Serva Electrophoresis GmbH,

Heidelberg, Germany) for 1 hour at room temperature, washed

with PBS three times, and incubated with native (CHO) or

transfected CHO cells with permanently activated Mac-1 (Mac-

1+) at a density of 16105/mL cells per well. Cells were allowed to

adhere for 45 min at 37uC, and adhesion was analyzed under

static conditions in the presence or absence of anti-Mac-1 antibody

(10 mg/mL). PBS was used to wash out unbound cells and washing

steps were repeated until the negative control did not contain any

more adhering cells. Analysis was performed by manually

counting adhering cells. Plates coated with 1% BSA served as

negative control, plates coated without blocking served as positive

control.

Dynamic Adhesion Assay and endothelial blocking by

activated protein C (APC). HUVECs were grown in 35 mm

dishes (Costar, Bethesda, MD), stimulated with TNFa (50 ng/mL)

for 12–24 hours and were subjected to flow chamber. The

Glycotech flow chamber (Gaithersburg, MD) was assembled with

the dish as the bottom of the resulting parallel flow chamber. The

chamber and tubes were filled with PBS prior to the experiment.

Subsequently, isolated human monocytes, with or without

stimulation with PMA (200 ng/mL) for 10 min, were applied

with a syringe and shear stress was induced with a syringe pump

(Harvard apparatus PHD2000, Holliston, MA) with a flow rate of

0.25 dyne/cm2 (venous flow) for a total of 10 min, and then with

15 dyne/cm2 (arterial flow) for 1 min. Monocytes were allowed to

adhere to the endothelial cell layer after either pre-treatment of

monocytes with anti-Mac-1 antibody (60 mg/16106 monocytes),

incubation of HUVECs with anti-EPCR (10 mg/mL cell medium

per dish), both antibodies, or without blocking antibody. In a

second approach, pre-treatment of HUVECs with drotrecogin alfa

in different concentrations (1 mg/mL, 5 mg/mL, 10 mg/mL) was

compared to anti-EPCR-blocking. Adherent cells were quantified

under the microscope and monocytes were visualized by CFDA

staining (500 mL CFDA per 70*10̂6 monocytes, incubated for

15 min at 37uC in a waterbath). Data from at least four different

experiments were analyzed.

Results

Binding of sEPCR to monocytes
First we addressed the direct binding of soluble, recombinant

sEPCR to freshly isolated human monocytes. In flow cytometric

analysis, monocytes are able to bind sEPCR in a concentration

dependent manner (Fig. 1).

Specific binding of a flag-tagged recombinant sEPCR to non-

stimulated and PMA-stimulated human monocytes was evaluated

by flow cytometry in the presence or absence of anti–Mac-1 and

anti-EPCR antibody. Binding blockade by anti-Mac-1 and anti-

EPCR antibodies inhibited this binding to an equal extend (Fig. 2).

Specific binding of Mac-1 to EPCR in static adhesion
assay

Specific binding and the functional relevance of the interaction

between EPCR and Mac-1 for monocyte adhesion was tested by a

static adhesion assay. To verify that Mac-1 can bind to sEPCR, we

used a transfected CHO cell line that provided clearly defined

states of Mac-1 affinity as well as control cells without any Mac-1

expression. Incubation of sEPCR-coated plates with native CHO

cells, or CHO cells transfected with permanently activated Mac-1

(Mac-1+) confirmed the findings obtained with monocytes. CHO

cells expressing the activated Mac-1 (Mac-1+) displayed signifi-

cantly enhanced adhesion to immobilized EPCR compared to

native CHO cells and this effect could be reversed by an anti–

Mac-1 antibody (Fig. 3).

Specific binding of Mac-1 to EPCR under flow conditions
In a second approach, we tested whether EPCR–Mac-1

interaction persists under flow conditions, similar to those in

human vessels. Under venous flow conditions, monocytes adhered

on HUVECs with a maximum after 10 min. Monocyte adhesion

was slightly attenuated but persisted under simulated arterial flow

conditions, suggesting tight binding of most of the monocytes.

Pre-treatment of monocytes with anti-Mac-1 antibody and

incubation of HUVECs with anti-EPCR antibody, both and each

antibody alone significantly attenuated monocyte adhesion at all

time points and even under arterial flow conditions (Fig. 4). These

data support the concept of direct EPCR–Mac-1 interaction that

mediates leukocyte adhesion (Fig. 4).

Blockade of monocyte-endothelial interaction by
activated protein C

Pre-treatment of HUVECs with increasing concentrations of

drotrecogin alfa diminished monocyte adhesion in a concentration

dependent manner with a maximum at 10 mg/mL (Fig. 5). APC

Figure 3. Specific binding of CHO cells expressing activated
Mac-1 to recombinant EPCR in static adhesion assay. Specific
binding of CHO cells transfected with permanently activated Mac-1
(Mac-1+ CHO cells; black bars) to soluble, recombinant EPCR in a static
adhesion assay (left). Blocking with an anti-Mac-1 antibody resulted in
loss of EPCR binding capacity of Mac-1+ CHO cells (right). Native CHO
cells without transfection of Mac-1 served as a negative control (light
grey bars). (### p,0.0005; ns = statistically not significant vs.native
CHO cells; *** p,0.0001).
doi:10.1371/journal.pone.0053103.g003
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inhibits monocyte adhesion on endothelial cells to a similar extent

as anti-EPCR, or anti-Mac-1 antibodies (Fig. 6).

Discussion

The current data demonstrate that Mac-1 on monocytes binds

directly to the endothelial protein C receptor. Direct binding was

identified by static adhesion assay and indirectly by blockade of the

binding partners by specific antibodies in flow cytometry, as well as

in a dynamic adhesion assay. Furthermore, activated protein C

diminished monocyte adhesion under flow conditions comparable

to the specific anti-EPCR antibody, suggesting a competitive

receptor blockade in this setting.

The protein C pathway serves as a major system for controlling

thrombosis, limiting inflammatory responses and potentially

decreasing endothelial cell apoptosis in response to inflammatory

cytokines and ischemia [3]. The essential components of the

pathway involve the EPCR, protein C, protein S, thrombin and

thrombomodulin [3]. EPCR is expressed constitutively on

endothelial cells and its soluble form has been found in medium

of cultured human endothelial cells [24]. Soluble EPCR is known

to bind to activated neutrophils and elevated levels of sEPCR were

also found in patients suffering from septicemia [8].

In our study, we could demonstrate that sEPCR binds to human

monocytes in a concentration-dependent manner. Since PMA-

stimulated monocytes express more Mac-1 (CD11b/CD18) on

their surface and are able to bind more sEPCR [8], one might

assume a direct interaction of these receptors.

Kurosawa et al. hypothesized that Mac-1 contributes to

sEPCR-binding towards activated neutrophils in a process that

involves binding directly to leukocyte-derived proteinase 3 [7].

Interaction of EPCR with leukocytes is in this context another

observation, linking the receptor to the regulation of the

inflammatory response [3]. Therefore, we aimed to proof this

direct binding in the present study. Under static conditions,

binding could already be assumed, since sEPCR-binding to

monocytes could be blocked by both, anti-EPCR- and anti-Mac-

1-antibodies. Proof of direct binding was performed by applying a

static adhesion assay. To evaluate the importance of this

interaction, we tested physiological flow conditions using a

dynamic adhesion assay. Accordingly, binding of monocytes to

the endothelium could be blocked by both, anti-EPCR- and anti-

Mac-1-antibodies, pointing out the relevance of the binding

characteristics in vivo. In contrast, Esmon et al. postulated, that

soluble EPCR may block tight attachment of leukocytes by

binding to Proteinase 3 and its complexes with Mac-1 on activated

neutrophils [3,7], but in our model we can only make a statement

of EPCR constitutively expressed on the endothelium.

APC limits leukocyte adhesion to the endothelium and

extravasation into tissues [12,25], inhibits the release of inflam-

matory cytokines [25,26] and other inflammatory events, such as

NF-kB nuclear translocation, or expression of adhesion molecules

in endothelial cells [10,27]. It is suggested to play a role as an

endothelial cell or microvascular modulator with properties in

opposition to proinflammatory cytokines [28]. Recombinant

human APC (drotrecogin alfa) has been shown to protect patients

with severe sepsis and was therapeutically effective in ameliorating

experimental colitis [29]. Accordingly, in the present study, we

could demonstrate blocking of monocyte adhesion to the

endothelium by drotrecogin alfa under physiological flow condi-

tions in a concentration dependent manner. Since our data

Figure 4. Blockade of monocyte binding to endothelial cells by
anti-EPCR and anti-Mac-1 under flow conditions. Monocyte
binding to HUVECs in a dynamic adhesion assay after 5 min (left) and
10 min venous flow (middle), and after 1 min arterial flow (right). When
EPCR was blocked on HUVECs (dark grey bars), Mac-1 on monocytes
(light grey bars), or both (white bars) monocyte binding could be
significantly diminished compared to native cells without antibody
treatment (black bars). (*** p,0.0001; ** p,0.001; ## p,0.005; #

p,0.05 vs. no blocking).
doi:10.1371/journal.pone.0053103.g004

Figure 5. Blockade of monocyte binding to endothelial cells by
APC in different concentrations under flow conditions. Mono-
cyte binding to HUVECs in dynamic adhesion assays after 5 min (left)
and 10 min venous flow (middle), and after 1 min arterial flow (right).
Pre-treatment of HUVECs with 10 mg/mL activated protein C (drotre-
cogin alfa) (dark grey bars) diminished monocyte adhesion compared
to 1 mg/mL (light grey bars) and 5 mg/mL (grey bars) drotrecogin alfa.
(## p,0.005; # p,0.05 vs. 1 mg/mL APC).
doi:10.1371/journal.pone.0053103.g005

Figure 6. Equal blocking of monocyte binding to endothelial
cells by anti-EPCR and APC under flow conditions. Monocyte
binding to HUVECs in dynamic adhesion assay after 5 min (left) and
10 min venous flow (middle), and after 1 min arterial flow (right). Pre-
treatment of HUVECs with anti-EPCR (dark grey bars), anti-Mac-1 (light
grey bars), or with activated protein C (drotrecogin alfa; crosshatched
bars) diminished monocyte adhesion to an equal extent compared to
control. (*** p,0.0001; ### p,0.0005; ## p,0.005; # p,0.05 vs. no
blocking; ns = statistically not signifiant).
doi:10.1371/journal.pone.0053103.g006
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demonstrate an equal blocking of monocyte adhesion to the

endothelium by APC and by anti-EPCR, we postulate that EPCR

itself plays a role in leukocyte adhesion to the endothelium,

probably in part via binding to Mac-1.

A limitation of the present study is the lack of in vivo data to

support the hypothesis that the interaction is indeed relevant.

Further studies are needed to test the effect of EPCR blockade,

or EPCR-deficiency with respect to endothelial-leukocyte inter-

action.

Conclusions

In this study we demonstrate a direct binding of monocyte

Mac-1 to the endothelial protein C receptor in human cells

under static and flow conditions. This interaction may play a role

in linking vascular inflammation and coagulation in acute

vascular inflammatory diseases or septicaemia. Therefore, inhi-

bition of this interaction (e.g. by administration of APC) may

have therapeutic implications that need to be addressed in

further studies.
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