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Abstract

In locally advanced lung cancer, established baseline clinical variables show limited prog-

nostic accuracy and 18F-fluorodeoxyglucose positron emission tomography (FDG PET)

radiomics features may increase accuracy for optimal treatment selection. Their robustness

and added value relative to current clinical factors are unknown. Hence, we identify robust

and independent PET radiomics features that may have complementary value in predicting

survival endpoints. A 4D PET dataset (n = 70) was used for assessing the repeatability

(Bland-Altman analysis) and independence of PET radiomics features (Spearman rank:

|ρ|<0.5). Two 3D PET datasets combined (n = 252) were used for training and validation of

an elastic net regularized generalized logistic regression model (GLM) based on a selection

of clinical and robust independent PET radiomics features (GLMall). The fitted model perfor-

mance was externally validated (n = 40). The performance of GLMall (measured with area

under the receiver operating characteristic curve, AUC) was highest in predicting 2-year

overall survival (0.66±0.07). No significant improvement was observed for GLMall compared

to a model containing only PET radiomics features or only clinical variables for any clinical

endpoint. External validation of GLMall led to AUC values no higher than 0.55 for any clinical

endpoint. In this study, robust independent FDG PET radiomics features did not have com-

plementary value in predicting survival endpoints in lung cancer patients. Improving risk

stratification and clinical decision making based on clinical variables and PET radiomics fea-

tures has still been proven difficult in locally advanced lung cancer patients.

Introduction

Despite the emergence of new technologies and treatment options such as tyrosine kinase

inhibitors targeted towards mutations, and immune checkpoint inhibitors, the global survival
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of lung cancer patients has improved only gradually in the last decades [1–4]. Locally advanced

non-small cell lung cancer (NSCLC) is a highly heterogeneous disease where only modest

improvements in survival have been observed, with the exception of chemoradiotherapy

(CRT) patients treated with the anti-PD-L1 antibody Durvalumab whose overall and progres-

sion-free survival significantly improved compared to those receiving CRT alone [5]. New

approaches are urgently needed for the selection of treatment strategies for NSCLC patients,

which are currently determined mainly by TNM staging [6, 7]. In addition to TNM staging,

other well-established, reproducible, independent prognostic factors are used to guide clini-

cians in making treatment decisions, such as Eastern Cooperative Oncology Group (ECOG)

performance status [8, 9], weight loss [10], and gender [11]. Numerous other biomarkers have

been investigated, although less reproducible, such as histology [12], age [13], serum blood lev-

els [14, 15], mutation status [16], and protein expression levels [17, 18]. In locally advanced

NSCLC, treatment selection based on TNM staging and other clinical variables may not be

accurate enough for survival probability prediction [19, 20]. Therefore, the search for more

accurate reproducible independent prognostic factors is warranted in the context of personal-

ized medicine.

A current field of interest is the assessment of quantitative image features and its comple-

mentary value to well-established clinical prognostic models. Radiomics has been introduced

as a sophisticated way to extract and mine a large number of quantitative image features, pri-

marily using anatomical CT information [21]. The basic assumption of radiomics is that

underlying tumour biology could be captured [22]. This information may actually be better

characterized with functional imaging such as 18F-fluorodeoxyglucose Positron Emission

Tomography (FDG PET), the gold standard in NSCLC diagnosis and staging, which is able to

characterize molecular heterogeneity in lung cancer [23, 24]. It is therefore worthwhile to

investigate the prognostic performance of radiomics features from functional imaging such as

PET.

Basic PET radiomics features have provided clinically relevant prognostic information for

NSCLC patients. Examples include standardized uptake value (SUV) based metrics like maxi-

mum, peak, and mean SUV (SUVmax, SUVpeak, and SUVmean, respectively), metabolic tumour

volume (MTV), and total lesion glycolysis (TLG) [25–32]. The more advanced PET texture

features employed for quantification of tumour heterogeneity, have also been reported to be of

prognostic value [33–41]. However, the variable nature of PET imaging makes it difficult to

reproduce these results [42, 43].

Furthermore, PET texture features can also be subject to differences in reconstruction set-

tings and delineation methods [44], SUV binning methods [45, 46], and feature calculation

methods [47]. It is not yet clear which PET radiomics features are insensitive to all of these fac-

tors, and also to what degree.

Regardless of the issues with variability, complementary PET radiomics features should be

independent from well-known prognostic SUV metrics, such as MTV and SUVmax. Some

investigators reported specific PET texture features that were associated with MTV [37, 39, 47,

48, 49]. In these cases, prognostic texture features would rather act as a surrogate than as an

independent variable. Such an association is also not warranted for clinical variables. Hence,

the relationship of PET texture features with well-known prognostic factors has to be thor-

oughly studied too.

With all the confounding factors described above, in combination with the high number of

possible radiomics features, it is not surprising that false discovery rates are high amongst

FDG PET and CT studies on texture features [50]. Without proven, robust, and independent

prognostic PET texture features, it will be challenging to move further in the field. Therefore,

this study aims to investigate the repeatability of PET radiomics features, and also assesses the
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relationship with well-known prognostic factors in PET, such as MTV and SUVmax. The ratio-

nale is to identify a group of radiomics features derived from pre-treatment PET imaging that

are robust, independent, and prognostic, with possible additional value to current clinical

prognostic variables.

Materials and methods

Patient data

Three NSCLC patient cohorts from the Netherlands Cancer Institute (NKI) and one from the

Peter MacCallum Cancer Centre (PMCC) were included in this study to develop and validate

a radiomics signature. Peter MacCallum Cancer Centre Ethics and Clinical Research Commit-

tees approval was granted and all research was performed in accordance with relevant guide-

lines/regulations. Patient’s written, informed consent was obtained. An overview of the

datasets is given in Table 1. Patients were excluded if the primary tumour was smaller than 10

cc or if the patient had stage IV NSCLC at baseline. To detect brain metastases at baseline, the

NKI patients were scanned with MR imaging and the PMCC performed FLT baseline scans

before treatment.

The repeatability and independence of PET radiomics features was assessed using a 4D

PET/CT dataset (4D PET lung) consisting of 70 stage III NSCLC patients. No clinical data was

collected for these patients. The second cohort (NKI lung 1) contained 228 patients treated

with concurrent chemoradiotherapy (CCRT) for stage IA-IIIC NSCLC in the NKI between

2007 and 2011 as described earlier [51]. The third cohort, also from the NKI (NKI lung 2),

consisted of 24 patients with stage IIB-IIIC NSCLC treated between 2013 and 2016, similar as

NKI lung 1. The fourth cohort was from the PMCC (PMCC lung 1) and involved 40 stage

IB-IIIC NSCLC patients treated with CCRT as previously reported [32].

Clinical endpoints for prognostic model

The primary endpoint used for the prognostic model was two-year overall survival (2-year

OS). Overall survival was defined as the time between the start of treatment and date of death.

In addition, two-year progression-free survival (2-year PFS), one-year PFS (1-year PFS), one-

year local recurrence-free survival (1-year LRS), and one-year distant metastases-free survival

(1-year DMS) were also studied. Progression was defined as growth of tumour cells in the pri-

mary tumour or involved lymph nodes, or metastases to other organs, or death. LRS was

defined as progression in the primary tumour and/or involved lymph nodes as assessed on fol-

low-up scans. DMS was described according to the 8th edition of the TNM classification for

NSCLC [52] as evaluated on follow-up scans.

Data acquisition and image reconstruction

Patients from the NKI lung 1 and 2 dataset both underwent a whole-body FDG PET/CT using

a Gemini TF or Gemini TF Big Bore scanner (Philips Medical Systems, Cleveland, OH). The

reconstruction voxel size of the PET data was 4 × 4 × 4 mm3. Patients fasted for at least 8 h to

ensure low levels of serum glucose. Patients with a Body Mass Index (BMI)�28 were intrave-

nously injected with 190 MBq 18F-FDG, or 240 MBq in case of a BMI>28. Patients were

scanned 60 minutes after injection of 18F-FDG. The acquisition time of the PET/CT scanner

was 2 minutes per bed position.

In the PMCC lung 1 cohort, whole-body FDG PET/CT scans were acquired on a GE STE

(GE Medical Systems, Milwaukee, WI) or Biograph (Siemens Medical Solutions, Erlangen,

Germany) scanner. The reconstructed voxel size of the PET data was 4.3 × 4.3 × 3.3 mm3 for
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the GE STE scanner, and 4.1 × 4.1 × 3.0 mm3 for the Siemens Biograph scanner. Patients fasted

for more than 6 hours before 18F-FDG scans. Patients were intravenously injected with 4.2

MBq/kg 18F-FDG. Baseline emission scans were initiated 60 minutes after injection. The

acquisition time of the PET/CT scanner was 3 minutes per bed position.

For the 4D PET lung dataset, scans were acquired on a Gemini TF scanner (Philips Medical

Systems, Cleveland, OH). The reconstruction voxel size of the PET data was 4 × 4 × 4 mm3.

Table 1. Overview of the four patient cohorts used in the study. Unless otherwise stated, values represent the median with the range in parentheses. MTV2.5 = metabolic

tumour volume obtained using a SUV threshold of 2.5, MTV40 = metabolic tumour volume obtained using a threshold of 40% of the maximum intensity, SUVmax = maxi-

mum SUV uptake, OS = overall survival, PFS = progression-free survival, LRS = local recurrence-free survival, DMS = distant metastases-free survival. Nos = not otherwise

specified.

4D PET lung NKI lung 1 NKI lung 2 PMCC lung 1

No. of patients 70 228 24 40

Age (year) n/a 64 (36–87) 63 (39–82) 68 (53–86)

Gender n/a

Male 142 13 29

Female 86 11 11

Disease stage n/a IA-IIIC IIB-IIIC IB-IIIC

IA 1 0 0

IB 4 0 1

IIA 0 0 3

IIB 16 2 5

IIIA 102 7 15

IIIB 82 13 12

IIIC 23 2 4

T stage n/a

1 6 1 5

2 78 4 24

3 63 7 9

4 81 12 2

N stage n/a

0 42 4 5

1 20 2 5

2 130 13 17

3 36 5 13

Histology n/a

Adeno 80 12 16

Squamous cell 83 7 13

Large cell 8 1 5

Nos or other 57 4 6

GTV (cc) n/a 118 (15–906) 84 (10–351) 49 (12–544)

MTV2.5 (cc) 62 cc (10–545) 72 (10–693) 91 (11–337) 51 (8–478)

MTV40 (cc) 27 cc (4–169) 31 (3–394) 34 (5–289) 31 (4–378)

SUVmax 11.5 (4.3–55.1) 14.6 (5.9–44.8) 15.7 (6.9–28.3) 16.5 (6.3–33.2)

Median follow-up time (months) n/a 17 22 24

2-year OS n/a 40% 46% 54%

2-year PFS n/a 29% 21% 20%

1-year PFS n/a 50% 54% 35%

1-year LRS n/a 58% 71% 47%

1-year DMS n/a 54% 54% 45%

https://doi.org/10.1371/journal.pone.0228793.t001
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The 4D PET/CT data were reconstructed in 10 phases, and the attenuation in each frame of

the 4D PET data was corrected with the corresponding 4D CT frame. The acquisition time of

the 4D PET was kept the same as that used for 3D PET [52].

Mid-position scans from 4D PET lung dataset for repeatability testing

The 4D PET/CT data were reconstructed in 10 phases, and from these phases two new mid-

position scans were derived [53]. The first mid-position scan was created from the even phases

(0, 2, 4, 6, and 8) and is named ‘Mid-P even’, and the odd phases (1, 3, 5, 7, and 9) were used to

create the second mid-position scan ‘Mid-P odd’. The even and odd number of frames were

selected to keep the amount of tumour motion balanced in both scans. Fig 1 gives an overview

of the workflow.

The source of variability was different in these two mid-position scans compared to a test–

retest setting, since the biological tumour variability has been eliminated. In this case, the vari-

ability was mostly caused by minor differences in noise-levels and tumour motion, hence

robust quantitative features should not differ substantially in outcome.

Tumour segmentation

For each patient in the NKI lung 1, NKI lung 2, and PMCC lung 1 cohort, a volume-of-interest

(VOI) enveloping the primary tumour was manually drawn by radiation oncologists using

information from both PET and CT imaging. From this VOI, the MTV was auto-segmented

Fig 1. Workflow of the PET mid-position scans. A 4D PET scan was loaded for each patient consisting of 10 frames, where the odd or even

number of frames were selected. A 4D deformation vector field (DVF) was applied to these frames to deform them to the mid-position.

Lastly, the mean of the 5 deformed frames was calculated to obtain the PET mid-position scan. For comparison, the PET mid-position scan

obtained from 10 frames has been included in the image too. Mid-P = PET mid-position scan.

https://doi.org/10.1371/journal.pone.0228793.g001
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on the FDG PET scan. Two auto-segmentation methods were applied: a metabolic tumour

region delineation that included all voxel intensities above 2.5 (SUV2.5), and a high intensity

delineation that included all voxel intensities that were at least 40% of the SUVmax (SUV40).

Auto-segmentation was performed with in-house developed software named Match42 (ver-

sion 1.0.0) using a Python plug-in. The metabolic tumour volume obtained from SUV2.5 and

SUV40 were named MTV2.5 and MTV40, respectively. In the 4D PET lung dataset, a VOI was

manually drawn around the primary tumour in one PET mid-position scan, and copied to the

second PET mid-position scan. The auto-segmentation was performed on both PET mid-posi-

tion scans independently.

PET radiomics features

The Pyradiomics toolkit was used for radiomics feature extraction [54]. With this toolkit a

total of 105 features were available for feature calculations. These were divided into 18 first-

order features, 13 shape features (including metabolic tumour volume), and 74 texture features

describing the spatial distribution of voxel intensities. The texture features were derived from

the gray level co-occurrence matrix (GLCM; 23 features) [55], gray level run-length matrix

(GLRLM; 16 features) [56], gray level size-zone matrix (GLSZM; 16 features) [57], gray level

dependence matrix (GLDM; 14 features) [58], and neighbourhood gray tone difference matrix

(NGTDM; 5 features) [59]. The mathematical definitions of these features were in compliance

with feature definitions as described by the Imaging Biomarker Standardization Initiative

(IBSI) [60].

SUV discretization and matrix calculation

Before texture features were extracted, pre-processing steps were required in the form of SUV

binning and matrix definition. SUV discretization is an intensity-resampling step, before

building the texture matrices on which texture features rely. SUV discretization or binning

was applied with the fixed bin count method (e.g. 64 bins) and an alternative method using a

fixed bin width (e.g. 0.25 SUV). All texture features were calculated from a single matrix taking

into account all 13 directions simultaneously. A more detailed description on SUV binning

and matrix calculation can be found in S1 File, respectively.

Repeatability

The repeatability assessment was performed within the same patient comparing two different

PET mid-position scans. For each patient, the PET mid-position scan obtained from the even

numbered frames (Mid-P even) was compared with the PET mid-position scan from the odd

numbered frames (Mid-P odd). This resulted in four comparisons: 2 SUV binning methods

and 2 thresholding methods were applied.

The repeatability of each PET radiomics feature was assessed with the Coefficient of Repeat-

ability (CR) [61]. See S1 File for more details. The CR was reported as a percentage:

100%� CR
mean, where mean is the average of the PET radiomics feature value within the patient

cohort. The threshold for poor repeatability was set to a value of 30%, corresponding to PET

Response Criteria in Solid Tumours (PERCIST) [62].

Independence testing

To determine whether the features were correlated with the two commonly reported prognos-

tic PET features MTV and SUVmax, the Spearman’s rank correlation coefficient (ρ) was calcu-

lated on one of the Mid-P scans, using the same set-up as for the repeatability testing. PET
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radiomics features that had a |ρ|�0.5 were considered to have a correlation with MTV or

SUVmax, and were discarded from further analysis. The choice of |ρ|<0.5 as limit for indepen-

dent features was validated with the ‘elbow method’ using hierarchical clustering [63].

An overview of the radiomics workflow and feature selection procedure is given in Fig 2.

Model training

An elastic net regularized generalized logistic regression model (GLM) was built with PET

radiomics features derived from pre-treatment PET imaging (GLMrad). To increase the sample

size in the training and test sets, for the purpose of building a GLM, NKI lung 1 and lung 2

were combined. In this study, 80% of the NKI data was used for training the model, and 20%

for validation. Different ratios of training/validation were also tested, but were not reported as

there was no major differences seen in the results. Elastic net regression analysis using the R

package ‘glmnet’ was performed on the training set [64]. With 20-fold cross validation (CV),

the most optimal fitted GLMrad with minimal CV error was determined and selected for

model validation.

Model validation

To validate the fitted model of the training set, the area under the receiver operating character-

istic curve (AUC) was calculated between the predicted outcome and the observed outcome in

the validation set. To reduce randomness introduced by selecting a random subset of the com-

plete data for training and validation, the procedure for model training and validation was

Fig 2. Radiomics feature selection workflow: From PET image segmentation to selected features. Features from MTV2.5 and MTV40 were

seen as a separate set of features, doubling the amount of features in the analysis. This also counts for features calculated with fixed bin width and

fixed bin count, except for most intensity and shape features that were not affected by SUV discretization. An exception was observed for first-

order features Uniformity and Entropy. A total of 360 PET radiomics features were entered into the analysis, including SUVmax, MTV2.5, and

MTV40. PET radiomics features were selected for further analysis when two criteria were met: high repeatability and low association with MTV

and SUVmax. SUV2.5 = SUV threshold of 2.5; SUV40 = SUV threshold of 40% of maximum SUV; MTV2.5 = metabolic tumour volume obtained

from use of SUV2.5; MTV40 = metabolic tumour volume obtained from use of SUV40. GLCM = gray level co-occurrence matrix; GLRLM = gray

level run-length matrix; GLSZM = gray level size-zone matrix; GLDM = gray level dependence matrix; NGTDM = neighbourhood gray tone

difference matrix; CR = coefficient of repeatability.

https://doi.org/10.1371/journal.pone.0228793.g002
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repeated 100 times. This yields a better estimate of the true validation set performance by ran-

domly simulating many scenarios with varying training and validation set compositions [65].

From the 100-times-repeated training/validation procedure, results were averaged, and the

best performing GLMrad was externally validated for each clinical endpoint on PMCC lung 1.

During 100-times-repeated training/validation procedure, per iteration, the fitted model

was stored to keep track of the PET radiomics features that were selected by elastic net in the

fitted model [66]. PET radiomics features and clinical variables were ranked based on the fre-

quency of inclusion in the fitted model.

Model comparison

Clinical variables such as PET/CT-based GTV, TNM staging, histology, gender, and age were

also introduced into the radiomics signature to create a prognostic model containing PET

radiomics features and clinical variables (GLMall). In addition, a model based on only the clini-

cal variables was calculated using elastic net regression (GLMclin). To assess the complemen-

tary value of PET radiomics features with clinical variables, the mean AUC was calculated

from 100 iterations for each model and compared. The Mann Whitney U Test was used to

assess any significant differences between the predictive performance of GLMall, GLMclin, and

GLMrad, and p-values below 0.05 were seen as significant.

Results

Repeatability

Results of the repeatability test were based on the 4D PET lung dataset and an overview of

notable PET radiomics features and their corresponding CR is given in Table 2. All first-order

features were repeatable when extracted from MTV2.5 irrespective of SUV binning method. In

contrast, 13 out of 18 first-order features were repeatable when extracted from MTV40. Fur-

thermore, around 50 texture features were repeatable when extracted from MTV2.5 regardless

of SUV discretization method, versus 28 repeatable texture features extracted from MTV40.

With regards to shape features, only MTV40 was not repeatable.

Amongst the four comparisons, 211 out of 360 PET radiomics features were repeatable. An

overview of all PET radiomics features and their corresponding CR is given in S1 File. The

impact of large delineation inaccuracies on repeatability was studied between contours gener-

ated by the two different SUV thresholds, though only reported as supplementary data

(S1 File).

Relationship of PET radiomics features with MTV and SUVmax

The Spearman’s Rank correlation coefficient was calculated to assess the relationship of 211

repeatable PET radiomics features with MTV and SUVmax. Four assessments were performed

in total on one of the mid-position scans, with groups consisting of a combination of either

one of the SUV binning methods and one of the tumour volumes (MTV2.5 or MTV40). Not all

repeatable PET radiomics features were found to be independent from MTV and SUVmax.

From the first-order features, only Kurtosis and Skewness extracted from MTV2.5 were inde-

pendent from MTV and SUVmax. There were no independent repeatable first-order features

for MTV40. Regarding the fixed bin count method, 17 out of 50 texture features extracted from

MTV2.5 were not strongly associated with MTV and SUVmax. This also counted for 5 texture

features extracted from MTV40. With regards to the fixed bin width method, there were no

texture features independent from either SUVmax or MTV. Elongation, Flatness, and Spheric-

ity were the only independent shape features when extracted from MTV2.5, though only
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Elongation and Flatness remained independent for MTV40. A complete overview of indepen-

dence testing for all PET radiomics features is given in S1 File.

An overview of correlations amongst the selected robust independent PET radiomics fea-

tures and clinical variables is given in Fig 3. More details on robust and independent PET

radiomics features can be viewed in S1 File. The robust independent PET radiomics features

did not show any strong correlation with the other clinical variables, such as age, ECOG PS,

gender, histology, and TNM stage. However, there were associations present amongst the PET

texture features.

Building the radiomics signature

Based on the feature selection criteria, 31 PET radiomics features were selected for the next

steps (see Fig 3). Three elastic net regularized GLMs were built per endpoint: GLMrad, GLMclin,

and GLMall. Results of the model performances are shown in Fig 4, showing that GLMrad does

not significantly outperform GLMclin for any clinical endpoints. The GLMclin has a signifi-

cantly better predictive performance compared to GLMrad in 2-year OS (p<0.0001), and in

1-year LRS (p<0.001). GLMall did not show a significantly better performance to both GLMrad

and GLMclin simultaneously in any endpoint. External validation of GLMall led to AUC values

ranging from 0.51 to 0.59 for any clinical endpoint. When GLMclin was externally validated,

the highest predictive performance was 0.60 for 2 year OS. For GLMrad, the highest predictive

performance was 0.71 for 2-year PFS.

Table 2. An overview of categorized notable PET radiomics features that are commonly reported in literature with their coefficient of repeatability (CR, %). The

asterisk (�) represents features that were repeatable in all four different settings. Per category, the total number of PET radiomics features that met the study repeatability

criterion is added.

CR (%) Fixed bin width Fixed bin count

Notable features MTV2.5 MTV40 MTV2.5 MTV40

First-order features 18/18 13/18 18/18 13/18

Entropy� 3.4 5.5 3.8 6.0

Kurtosis 26.8 34.7 26.8 34.8

Skewness 23.1 50.4 23.1 51.3

SUVmax� 13.2 13.2 13.2 13.2

SUVmean� 6.0 12.9 6.0 12.7

Uniformity 17.9 41.9 21.1 37.0

Texture features 49/74 28/74 50/74 28/74

GLCM Contrast� 23.2 28.1 28.8 29.9

GLCM Correlation� 2.6 11.9 2.7 11.2

GLCM DifferenceAverage� 9.9 13.1 14.1 17.2

GLCM JointEntropy� 2.8 4.5 3.3 5.7

GLCM SumEntropy� 2.7 4.5 2.8 4.2

GLRLM GrayLevelNonUniformity 13.7 59.1 18.7 55.4

NGTDM Busyness 75.5 91.3 33.0 81.9

NGTDM Coarseness 12.0 41.5 16.8 35.2

NGTDM Contrast 23.3 68.5 31.9 64.9

Shape features 13/13 12/13 13/13 12/13

Elongation� 4.7 10.8 4.7 10.7

Flatness� 7.1 15.0 7.1 13.7

MetabolicTumourVolume 5.9 45.5 5.9 45.3

Sphericity� 3.2 8.9 3.2 8.7

https://doi.org/10.1371/journal.pone.0228793.t002
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Promising features

Table 3 shows selected features for each fitted GLM, and how frequent these features were cho-

sen in the fitted model over 100 iterations. The feature shape Sphericity was present in 100% of

the iterations for 2-year OS. From the 100 repetitions, GLCM ClusterTendency was selected in

more than 95% for predicting 1-year PFS and 1-year DMS. Clinical variables such as age and

GTV were prominent in predicting 2-year OS and 1-year LRS, next to shape Sphericity. As can

be seen in Table 3, age, shape Sphericity, and GLCM ClusterTendency are present amongst

the most selected features for all clinical endpoints.

Discussion

The rationale of this study was to identify a group of FDG PET radiomics features for NSCLC

patients that are robust, independent, prognostic, and complementary to well-established clin-

ical variables. We found PET radiomics features that met the study criteria of robustness and

independence, and that also exhibited prognostic value. However, results demonstrated that

PET radiomics features are not complementary to clinical variables for predicting clinical

Fig 3. Correlation coefficients of the robust independent PET radiomics features and clinical variables. Positive correlation

coefficients are displayed in blue and negative correlation coefficients in red color. Color intensity and the size of the circle are

proportional to the correlation coefficients. A distinction was made between features calculated from MTV2.5 and MTV40.

https://doi.org/10.1371/journal.pone.0228793.g003
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endpoints in NSCLC patients that were treated with CCRT. This indicates that clinical vari-

ables provide more prognostic information than robust independent PET radiomics features,

and that the prognostic value in PET radiomics features is minimal. This study did take into

account shortcomings of other studies on PET radiomics features [50] with the use of a feature

selection method that reduces overfitting and external validation of results.

Feature selection based on the repeatability of PET radiomics features was feasible with the

use of different phases from 4D PET imaging, in the absence of test-retest data. Larue et al.

showed that in 4D CT, the majority of the features have a high agreement between radiomics

feature stability based on 4D CT and test–retest data in lung cancer [67]. It was therefore

hypothesized that 4D PET scans could also be used for repeatability testing. To determine

robust PET radiomics features, a CR of 30% was chosen as limit for repeatability, based on

PERCIST. However, a limitation of using 4D PET for repeatability testing is the absence of bio-

logical tumour variability, and PERCIST takes this variability into account. Hence, the use of a

30%-limit could be seen as too tolerant, and 15%, as commonly used in phantom studies,

could be more appropriate. Even under these stricter circumstances, 12 first-order features, 24

out of 74 texture features, and all shape features would still meet that criterion as can be seen

in S1 File. Besides that, the most prominent PET radiomics features in the fitted GLMs were

SUVmax (CR = 13.2%), shape Sphericity (CR = 3.2%), GLCM ClusterTendency (CR = 21.9%),

GLRLM GrayLevelNonUniformityNormalized (CR = 18.4%), and MTV2.5 (CR = 5.9%) as

seen in Table 3. This shows that repeatable PET radiomics features with a CR>15% are also

Fig 4. Model performance for the PET radiomics model (GLMrad), the model containing clinical variables (GLMclin), and a

combination of radiomics and clinical variables (GLMall). The median AUC values from 100-times-repeated training/validation

are depicted per model, per clinical endpoint. The lower and upper hinges correspond to the 25th and 75th percentiles. The whiskers

depict the 1.5�IQR from the lower and upper hinge. Data beyond the end of the whiskers are shown as outlier points. AUC values

corresponding to the external validation set are shown as a black diamond. Significance levels, ��p<0.001, ���p<0.0001.

https://doi.org/10.1371/journal.pone.0228793.g004
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Table 3. The most selected features in the model by elastic net, ranked by the number of times selected in the generalized linear model. Only the top 10 most selected

PET radiomics are shown. The features written in italic bold are present in all endpoints.

Endpoint GLMall selected features by elastic net Frequency

2-year OS Age 100

GTV 100

Shape_Sphericity 100

MTV2.5 78

glcm_ClusterTendency 56

SUVmax 39

Gender 34

glcm_JointEntropy 34

glrlm_GrayLevelNonUniformityNormalized 33

glrlm_GrayLevelVariance 29

2-year PFS Age 50

SUVmax 50

glrlm_GrayLevelNonUniformityNormalized 49

shape_Sphericity 47

Histology 42

MTV2.5 38

glcm_ClusterTendency 30

N_status 28

T_status 25

shape_Elongation_MTV40 20

1-year PFS GTV 99

glcm_ClusterTendency 95

shape_Sphericity 76

Age 63

T_status 49

MTV2.5 40

glcm_SumEntropy_MTV40 39

shape_Elongation 37

SUVmax 31

Histology 29

1-year LRS GTV 83

Age 82

glcm_ClusterTendency 65

glcm_SumEntropy_MTV40 63

shape_Sphericity 57

Gender 48

gldm_GrayLevelVariance 47

N_status 27

Stage 25

glrlm_GrayLevelVariance 24

1-year DMS GTV 99

glcm_ClusterTendency 96

shape_Sphericity 57

MTV2.5 52

Histology 34

T_status 33

Age 32

glcm_SumEntropy_MTV40 32

shape_Elongation 29

SUVmax 23

https://doi.org/10.1371/journal.pone.0228793.t003
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frequently present in the fitted models. Even though there is literature reporting on stability of

PET radiomics features in a test-retest setting [45, 46], there is no objective limit for the level

of repeatability for each PET radiomics feature. Determining such an objective limit is only rel-

evant if the studied PET radiomics feature contains clinically useful information. Hence, in the

absence of an objective limit for each PET radiomics feature, the 30%-limit of PERCIST was

applied to all.

It was observed that the repeatability for features from MTV2.5 is better compared to

MTV40 and this is due to two important factors:

1. From the 13 shape features, only MTV40 had a CR>30% when comparing the MTV40

between two mid-position scans. This variance, of course, has already a great impact on

PET radiomics features calculated from MTV40 as it is known that differences in delinea-

tion have an impact on feature outcome [44].

2. Radiomics features are calculated on matrices which dimensions are dependent on the

SUV range. With MTV2.5 matrix dimensions are more standardized than MTV40, which

is dependent on the maximum SUV (CR = 13.2%).

In this case, the use of MTV2.5 for GTV delineation may be advised over MTV40 in PET

radiomics analysis.

Another step of the feature selection procedure was to assess the independence of PET

radiomics features, to identify possible prognostic features that could complement basic SUV

metrics and volumetric features. In this context, changes in PET radiomics features would be

independent from changes in basic SUV metrics and volume, increasing their utility in longi-

tudinal studies. Therefore, the use of a fixed bin width for SUV binning should be avoided as

this method resulted in PET radiomics features that were all strongly correlated to either maxi-

mum SUV or MTV. While the choice of |ρ|<0.5 for independence testing may seem arbitrary,

a |ρ|<0.7 was also studied and did not improve results (see S1 File for more details). Indepen-

dence testing had the most impact in the feature pre-selection procedure as it resulted in a sub-

stantial decrease of PET radiomics features. Unfortunately, results demonstrated that

independence testing could not guarantee that remaining robust independent PET radiomics

features exhibited complementary value next to clinical variables. Even so, we strongly advise

assessing the relationship of radiomics features with current established prognostic factors in

any study considering PET radiomics features for prognostication as this is the first important

step in showing their potential added value in the clinic.

A final selection of features in the GLM was performed by elastic net regression, robust to

collinearity amongst features [66]. More feature selection/classification methods exist [68],

though comparing multiple methods was beyond the scope of this study. However, in litera-

ture, elastic net regression yielded one of the highest discriminative performances in chemora-

diotherapy outcome prediction in 12 patient datasets containing in total 1053 lung cancer

patients [65]. Interestingly, elastic net regression could also be used as a standalone feature

selection method. A comparison of the feature selection method based on repeatability, inde-

pendence, and elastic net regression (GLMall), and a method using only elastic net regression

(GLMelnet) was performed, see S1 File. Pre-selection of PET radiomics features is worthwhile,

because the number of PET radiomics features in GLMelnet was often high (>20 features) and

many were highly correlated to volume or SUVmax. In contrast, the average number of features

in GLMall was 9. Even so, it was observed that elastic net tends to keep all of the correlated and

presumably prognostic features in the fitted model or shrinks all to zero, whereby increasing

the number of (correlated) features resulted in a decrease of the predictive performance. This

decrease of predictive performance seen in the validation set suggests that overfitting, although

Robust independent prognostic FDG PET radiomics features in NSCLC—Are there any?

PLOS ONE | https://doi.org/10.1371/journal.pone.0228793 February 25, 2020 13 / 20

https://doi.org/10.1371/journal.pone.0228793


reduced, may still be present. This shows the value of dimensionality reduction in order to

optimize predictive performance in rather small sample sizes.

The predictive performance of PET texture features in NSCLC has been studied widely, but

clear evidence that PET texture features are complementary to clinical variables is lacking [69].

This study has extensively studied PET texture features and did not find any evidence for

added value next to current clinical variables. S1 File provides a complete overview of all

assessed model performances, including additional investigations with TLG. In literature, typi-

cally, only one or two PET texture features have been significantly associated with predicting

various survival endpoints [39–41, 47, 70–72]. However, of all the prognostic PET texture fea-

tures from those studies, such as GLCM Joint Entropy, Correlation, Contrast, Dissimilarity (or

Difference Average), NGTDM Coarseness, Busyness, and Contrast, only GLCM Joint Entropy

was both repeatable and independent from SUVmax or volume in our dataset. In this study,

GLCM Joint Entropy was selected 34 times out of 100 by elastic net regression for predicting

2-year OS, and its value in overall survival was also previously shown [47]. Nonetheless, in our

study the average predictive performance for GLMall in all clinical endpoints ranged from 0.50

to 0.66. For comparison, other studies predicting outcome with both PET radiomics and clini-

cal variables in NSCLC found predictive performances of 0.63 for predicting OS [41], 0.72 for

local recurrence [71], and 0.71 for distant metastases [72]. Even with those results, neglecting

any limitations of those studies, there is still no strong evidence that PET texture features

exhibit complementary information.

Results from the external validation demonstrated even lower AUC values in most cases

than the internal validation set. Besides the limitation of the use of a small external dataset, dif-

ferences were observed between institutes regarding patients, treatment, and image acquisition

and reconstruction settings, that also can influence outcome [44, 73], and could have resulted

in poor generalizability. To overcome the issue of poor generalizability, a prognostic model

should be trained on a combination of well-balanced patient cohorts from multiple institutes,

and PET acquisition and reconstruction protocols should be harmonized across centers in

multi-centre studies. Alternatively, a post-reconstruction harmonization method proposed by

Orlhac et al. may also aid in removing the multicenter effect for textural features and SUV

[74].

Furthermore, limitations of this paper include the relatively small sample size for machine

learning methods that could have affected the predictive performance [75], and the impact of

tumour motion on PET radiomics features, especially in lower lobe tumours [76]. Although

Grootjans et al. showed that there are specific PET radiomics features whose prognostic accu-

racy was not affected by respiratory motion and varying noise-levels [29].

To overcome the limitations of this study, and to be certain that there is no complimentary

information in PET radiomics features, future studies need to set up large scale multi-centre

cohorts to allow for multiple independent validation datasets. To further improve predictive

performance, studies could investigate elastic net-Cox proportional hazard models [77], non-

linear relationships by applying data transformation on PET radiomics features [21, 78, 79], or

assess computer engineered features with neural networks or deep learning networks [80, 81].

Currently, deep learning is under investigation for use in lung nodule detection, tumour seg-

mentation, and tumour classification with histopathology images [82]. Its use in medical

image analysis is increasing as algorithms become more sophisticated and more data becomes

available, which might lead to new insights in survival prediction. A step further would be to

combine radiomics features from multimodal imaging such as PET, CT and MRI [83, 84],

where the combination of anatomical and biological features may of added value for providing

a personalized treatment strategy.
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Conclusion

In this study, robust independent PET radiomics features, identified with 4D PET imaging,

did not have complementary value in predicting overall survival and progression-free survival

in NSCLC patients treated with concurrent chemoradiotherapy. Improving risk stratification

and clinical decision making based on clinical variables and PET radiomics features has still

been proven difficult in locally advanced lung cancer patients. New approaches should be

investigated in large scale multi-centre studies to deal with current challenges in the field of

radiomics before translation to the clinic becomes realistic.
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