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Abstract 
 
Emulsion formulation, solvent extraction and multiphase microfluidics are all 
examples of processes that require precise control of drop or bubble collision stability. 
We use a previously validated numerical model to map the exact conditions under 
which micron-sized drops or bubbles undergo coalescence in the presence of colloidal 
forces and hydrodynamic effects relevant to Brownian motion and low Reynolds 
number flows. We demonstrate that detailed understanding of how the equilibrium 
surface forces vary with film thickness can be applied to make accurate predictions of 
the outcome of a drop or bubble collision when hydrodynamic effects are negligible. 
In addition, we illuminate the parameter space (i.e. interaction velocity, drop 
deformation, interfacial tension, etc.) at which hydrodynamic effects can stabilise 
collisions that are unstable at equilibrium. Further, we determine conditions for which 
drop or bubble collisions become unstable upon separation, caused by negative 
hydrodynamic pressure in the film. Lastly, we show that scaling analyses are not 
applicable for constant force collisions where the approach timescale is comparable to 
the coalescence timescale, and demonstrate that initial conditions under these 
circumstances cannot be ignored.  
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Introduction 
 
Interactions of micron-sized bubbles and droplets separated by distances from 
nanometres to microns are important in many applications, including food processing, 
cosmetics, mineral flotation and microfluidics. Drops and bubbles of this size are 
continually in relative motion, induced by processes including Brownian dynamics, 
flows generated in microfluidics, and gravity. As a consequence of this relative 
motion, bubbles or drops in emulsions or foams are continually colliding and 
separating under force fields influenced by i) the equilibrium interaction forces that 
arise from the surface chemistry of drops and bubbles, ii) the dynamic interaction 
forces due to the motion of the fluid and interface, and iii) the transport of neutral and 
charged species on, to and around the bubble and drop surface. The relative velocity 
of these interactions span many orders of magnitude, from Brownian-induced motion 
of 𝑂(1 µm/s) [1] to drop collisions in microfluidics of 𝑂(10 mm/s) or higher[2] [3]. If 
the combination of these equilibrium and dynamic interactions are unstable, then 
coalescence will occur. Yet, the interplay between the equilibrium interactions, 
dynamic processes and the deformation of the drop or bubble interface can make 
precise understanding of the conditions under which coalescence occurs difficult. 
Importantly, this understanding is vital in a range of applications including the 
prediction of emulsion stability or shelf life in formulated products, drop or bubble 
coalescence phenomena in processing equipment such as mixer-settlers, and in 
assessing the performance of high-throughput multiphase microfluidic devices. For 
example, in these devices, droplets are generated at rates of up to thousands of drops 
per second [4, 5], and are required to transport reagents or biological material in 
discrete packages. In such devices, it is critical that interactions between drops do not 
lead to coalescence. In other processes, such as liquid-liquid separation, it is desirable 
to enhance and accelerate drop coalescence[6].  
 
Equilibrium interactions, whereby the collision speeds are too low for hydrodynamic 
pressure to play a significant role, have been extensively characterised for deformable 
drops and bubbles. Building on methods for flat liquid-liquid or liquid-gas interfaces, 
such as thin film balance methods to measure pressure and thickness[7-9], first 
pioneered by Sheluko[10] and Mysels[11], and later developed by Wasan and co-
workers[12, 13], there has been a steady evolution of methods to probe the 
equilibrium surface forces between deformable interfaces with curvature for drop and 
bubble radii near the capillary length or smaller. This includes the liquid surface 
forces apparatus[14], the work from the Horn group using a modified surface force 
apparatus using a mercury[15, 16] or gas[17] filled capillary and a rigid flat surface, 
and the extension of atomic force microscopy (AFM) to probe the interactions 
between, first, a rigid particle and a single bubble[18-20] or drop[21-24], and 
secondly, to measure the interactions of drop[25-27] or bubble[28] pairs. There have 
also been more recent developments, including the integration of interferometry with 
AFM to probe a single bubble with a flat surface[29], larger length-scale systems that 
utilise bimorph cantilevers and a single drop or bubble in the integrated thin film 
drainage apparatus (ITFDA)[30], and cantilevered capillaries to examine the 
interaction of two drops [31]. The range of surface forces examined in these 
experiments include Derjaguin-Landau-Verwey-Overbeek (DLVO) forces (the 
addition of electrical double layer and van der Waals) [25, 32, 33], repulsive van der 



	

	

Waals forces [34, 35], steric [36, 37], structural [36, 38, 39], depletion [36, 40], 
protein interactions [36, 41] and hydrophobic forces [42]. Common surface forces and 
their corresponding pressure and energy definitions are given in Tables S1 & S2 in 
the Supplementary Information (SI). Equilibrium interactions can lead to repulsive or 
“stable” drop/bubble interactions or “unstable” interactions ending in coalescence 
[43].  
 
At higher velocities, 𝑂 (10 µm/s) and above, hydrodynamic drainage plays an 
important role in drop/bubble collisions. The AFM was easily extended to probe 
hydrodynamic drainage for a particle and drop first by Aston and Berg [44] and then 
for drops [26] and bubble [28] pairs. In addition, a number of the methods mentioned 
above, including the work by Horn[15-17, 45], classical drainage studies of drops 
immobilized in larger capillaries[46], the ITFDA and the cantilevered capillary 
measurement, have all examined a wide range of hydrodynamic drainage behaviour. 
For example, stable interactions have been observed with both stable and unstable 
equilibrium forces[28, 42]. Coalescence has also been observed for drops and bubbles 
in the above methods whilst on approach[47] and whilst separating[28], where 
coalescence whilst separating was first observed in four roll mill measurements[48] 
and then micro-fluidic devices[49, 50]. In addition, coalescence has been observed in 
drops and bubbles undergoing cyclic accelerating approach and withdrawal to mimic 
drop collisions in microfluidic devices [51], and whilst being held together at constant 
applied force to mimic buoyant collisions [52]. In dynamic collisions the viscosity of 
the continuous phase becomes an important parameter[53, 54]. Other important 
quantities that can affect dynamic drop and bubble coalescence are the presence of 
free charge, and in some practical applications the application of external electric 
fields [55-58]. 
 
The impact of experimental measurements has come to fruition though efforts to 
develop quantitative models to account for the presence of surface forces, 
deformation and hydrodynamic drainage (in a creeping flow, Re << 1 regime) in 
order to properly analyse these data. In particular, the deformable nature of the system 
often adds complication to the measurements and analysis, particularly when the 
length scales of the deformation are not accessible with methods such as 
interferometry. In the area of AFM measurements with deformable interfaces, the 
analysis for equilibrium interactions were pioneered by several groups, first for a 
particle and single drop or bubble[32, 59, 60], then for dynamic interactions for a 
single drop[44], and then bubble and drop pairs[1]. The application and validation of 
these models to a range of experimental systems using AFM can be found in the 
review by Tabor et al.[43].  The summary of the development of these models can be 
found in the extensive review by Chan and co-workers[61]. The Stokes-Young-
Reynolds-Laplace (SYRL) numerical model, initially developed and validated for 
AFM measurements, has been extended to analyse the dynamic force measurements 
using the ITFDA [62] and several studies focused on the modified surface forces 
apparatus from the Horn group[63, 64]. In addition, the more recent work by Zeng 
using AFM to probe the interactions of a single drop or bubble with a flat plate using 
interferometry[29] was well described by the same model, first validated on similar 
measurements without interferometry[34, 65].   
 
These observations, in combination with theory, have helped to shed light on the role 
of equilibrium interaction forces, interfacial deformation, drop/bubble size, 



	

	

interfacial/surface tension, viscosity, and collision velocity on the stability of 
interactions, and how these parameters affect the mode of coalescence (i.e. during 
approach, retract, or dwell) for unstable interactions. Thus, the observations in the 
literature and a comprehensively validated SRYL numerical model for both AFM 
measurements and force measurements at larger drop and bubble length scales 
suggest that is may be useful to apply this knowledge in a larger context. 
 
The schematic in Figure 1 suggests juxtaposition of the AFM measurement to other 
types of measurements and uses of drops and bubbles (i.e. emulsion, foams and 
micro-fluidics) in terms of relative drop and bubble size. Emulsions or foams are 
commonly characterised by sub-micron radii (in the case of emulsions) to 10s of 
microns in radii or larger in the case of some foams. AFM measurements have 
accessed drops as small as 5 microns in radius[66] (although there is little 
deformation in those instances) to drops and bubbles with radii up to several hundred 
microns. The micro-fluidic device, showing drop coalescence, denotes that micro-
fluidic drops and bubbles can have radii commensurate with an AFM measurement or 
larger. The two drops fixed on capillaries represent the larger drop and bubble radii 
found in the ITFDA and cantilevered capillary studies as well as more classical 
capillary drainage studies, where the drop rise scenario is representative of traditional 
drop coalescence studies. Thus, in this study we attempt to move forward from AFM 
measurements on individual systems to decant aspects of this understanding to more 
general questions, mapping the precise conditions whereby drops and bubbles 
coalesce. Using the SRYL numerical model we systematically probe the multi-
dimensional parameter space, in order to determine the conditions required for both 
stable and unstable interactions, and the mechanisms responsible for coalescence of 
micron-sized bubbles or drops with direct relevance to the scenarios shown in Figure 
1. 
 
Method 
 
Theory 
The dynamics of both bubble and drop collisions are controlled by the relationship 
between surface forces, fluid dynamics, and surface deformation. The stability of a 
drop or a bubble collision is governed by the dynamic drainage in the liquid film 
separating them. If the film between the two interacting drops or bubbles drains 
completely then coalescence will result, and the interaction is said to be unstable. 
Conversely, if the film does not have time to drain before the drops or bubbles move 
apart, then coalescence will not occur, and the interaction is defined as stable.  
 
The SRYL model is well described in the literature[1, 61, 67], but due to the focus of 
this work on using this model, some of the key points are summarized here. The rate 
at which the film between two interacting, deformable drops or bubbles drains is 
governed by the equation: 

𝜕ℎ
𝜕𝑡 =

1
12𝜇𝑟

𝜕
𝜕𝑟 𝑟ℎ!

𝜕𝑝
𝜕𝑟 , (1) 

 
where ℎ is the film thickness, 𝜇 is the viscosity of the liquid composing the film, 𝑝 is 
the hydrodynamic pressure, and 𝑟 is the radial coordinate. 
 



	

	

The normal stress balance for the deformation of drops or bubbles due to the 
disjoining pressure Π and hydrodynamic pressure 𝑝 is given by the Young-Laplace 
equation with the added term for 𝑝: 

𝜎
2𝑟

𝜕
𝜕𝑟 𝑟

𝜕ℎ
𝜕𝑟 =

2𝛾
𝑅 − 𝑝 − Π. (2) 

 
Here 𝛾 is the interfacial tension and 𝑅 = 2𝑅!𝑅!/(𝑅!+𝑅!) is the harmonic mean of 
the two drop/bubble radii 𝑅! and 𝑅!. 
 
Together, Equations (1) & (2) represent the SRYL model, which has been 
comprehensively validated for the AFM setup where a drop or bubble pinned to a 
cantilever is driven towards a drop or bubble resting on the substrate. The appropriate 
boundary conditions for this particular scenario are given at r = 0 as 
𝜕ℎ(𝑟, 𝑡) 𝜕𝑟 !!!,! = 0  and 𝜕𝑃 𝜕𝑟 !!!,! = 0 . At 𝑟max. , where the inner numerical 
solution is matched to the outer analytical solution of the drop or bubble profile, the 
additional boundary conditions are 
 

𝜕𝑃(𝑟, 𝑡)
𝜕𝑟 !!!max.,!

= −
4𝑃(𝑟 = 𝑟max., 𝑡)

𝑟! , (3) 

 
𝜕ℎ(𝑟, 𝑡)
𝜕𝑡 !!!max.,!

= −
𝑑∆𝑋 𝑡
𝑑𝑡 +

1
𝐾
𝑑𝐹 𝑡
𝑑𝑡   

 

−
1
2𝜋𝛾

𝑑𝐹 𝑡
𝑑𝑡 log

𝑅!
𝑅!

+ 𝐵 𝜃! −𝐵 𝜃! . (4) 

 
Here ∆𝑋  is the drive position, K is the cantilever spring stiffness, 𝐹 𝑡  is the total 
interaction force, 𝜃! and 𝜃! are the contact angles of the drops on the cantilever and 
substrate respectively, and 𝐵(𝜃!) is defined as 

𝐵 𝜃! = 1+
1
2 log

1+ cos𝜃!
1− cos𝜃!

 (5) 

under the assumption that the contact lines of the drops and bubbles are pinned. In 
this study we remove the dependence upon the cantilever stiffness by making K very 
large, and consequently the second term on the RHS of Equation 4 is zero. The 
interaction force 𝐹 𝑡  is calculated from the pressure using  

𝐹 𝑡 = 2𝜋 (𝑝 +  Π)𝑟𝑑𝑟
!

!
, (6) 

 
The SRYL model requires one initial condition, which is defined as ℎ 𝑟, 𝑡 = 0 =
ℎ! + 𝑟! 𝑅, where ℎ! is the initial separation between the two bodies at 𝑟 = 0 such 
that the separation is sufficient to assume that neither body is deformed at ℎ!. 
 
The governing Equations 1 and 2, together with the boundary conditions and the 
initial condition above, solved for a constant velocity approach-retract drive and 
different values of drive velocity U, initial separation ℎ!, and interfacial tension. It is 
assumed that the oil-water or air-water interfaces are immobile[25, 28, 61]. The value 
of 𝑟max is chosen to be large enough such that its size has negligible effect on the 
calculations, where a more detailed discussion of the choice of 𝑟max can be found in 
Manica et al. [67]. 



	

	

 
The SRYL model was built on the model to describe the equilibrium interactions 
between two drop or bubble pairs[60, 61].  Thus, the SRYL model reduces to the 
Chan-Dagastine-White model for equilibrium interactions and is well summarised in 
the literature.  In the interest of brevity, we will not repeat the expressions here, but 
they are nicely presented in the review paper by Tabor et al.[43].  
 
Model Systems 
In the models outlined above, bubbles and drops are uniquely defined through 
specification of interfacial tension, surface charge/potential, and surface forces.  The 
key differences between bubbles and drops are interfacial tension ranges (with or 
without surfactant), which are generally higher for bubbles (i.e. air/water interfaces), 
and the size of the van der Waals force, which is almost an order of magnitude higher 
for a bubble than for a drop. In this study, we examine equilibrium and dynamic 
interactions of both bubble and drop pairs. We initially focus on systems exhibiting 
DLVO forces, which have are prevalent in nature and have been well characterised in 
the literature for bubbles [28, 68] and drops[25, 33, 35]. We also consider drops 
exhibiting (repulsive) steric forces [37] and also drops with (attractive) depletion 
forces[36, 40]. 
  
 
Discussion and Results 
 
Equilibrium Interactions 
Coalescence of drops and bubbles under equilibrium conditions (where hydrodynamic 
effects are minimal) is governed by the thermodynamic driving force to minimise the 
interfacial area of the two phases. Surface forces embody this basic thermodynamic 
principle when determining the stability of drop and bubble interactions.  Thus, the 
starting point for determination of coalescence behaviour is to examine the 
coalescence behaviour as a function of equilibrium surface forces between 
deformable drops and bubbles as well as interfacial tension and drop or bubble radii.   
 
In order to map the equilibrium coalescence behaviour of a drop pair in the presence 
of a DLVO force, we use the disjoining pressure between two flat tetradecane 
interfaces with a surface potential of -17 mV separated by a binary electrolyte 
solution with an ionic strength of 1 mM as shown in Figure 2a. The form of the EDL 
pressure used in this calculation, assuming a weak overlap interaction, is given in 
Table S2 in the SI. The retarded van der Waals force was calculated using Lifshitz 
theory, where the dielectric spectra required were taken from Dagastine, et al. [69] for 
water and Parsegian and Weiss [70] for the tetradecane.    
 
To elucidate the effect of interfacial tension, the equilibrium interactions between 
drops of radius R = 40 µm and different interfacial tensions interacting under the 
influence of this disjoining pressure, calculated using the Chan-Dagastine-White 
model [60], are shown in Figure 2b).  For low interfacial tensions (𝛾 ≤ 30 mN/m), 
the interaction is repulsive with a stable film separating the two drops and no 
coalescence occurs. For higher interfacial tensions (𝛾 ≥ 40 mN/m), the interaction 
becomes unstable and coalescence occurs. The arrows in Figure 2b denote the point at 
which these unstable interactions coalescence. In Figure 2c, we have extracted the 
minimum separation in the film prior to coalescence or the minimum separation of the 



	

	

stable film as a function of interfacial tension where there is a transition from stable 
film to coalescence is at approximately 𝛾 ~38 mN/m.     
 
The above example demonstrates that there is a critical interfacial tension where a 
system that has an attractive disjoining pressure, which can lead to coalescence, can 
also results in a stable interaction between drops due to the interfacial deformation of 
the system. How this stable film evolves is shown the case of a 30 mN/m interfacial 
tension in the subset of Figure 2c, where the interfacial separation profiles between 
the two drops correspond to the x symbols on the 30 mN/m force curve.  It is clear 
that the film approaches a minimum film separation, ℎstable, at the axial (r=0) centre 
of film. As the film flattens, the minimum separation stops changing even as ∆𝑋 
decreases and the force continues to increase, but this is due to the larger interaction 
area between as the two drops continue to deform. As the film begins to flatten, the 
derivative terms describing the curvature of the film near the axial centre begin to 
vanish in the Young-Laplace equation (Equation 2), thus we can simplify this 
equation at the centre of the drops (r=0) to  
 

2𝛾
𝑅 ≈ Π(ℎstable) (7) 

 
This relationship gives a criterion for the stability of equilibrium interactions. If the 
Laplace pressure term 2𝛾 𝑅 is greater than the disjoining pressure for all separation 
distances ℎ , then the interaction will be unstable and the drops will coalesce, 
assuming that the drops are already in close enough proximity to cause some amount 
of interfacial deformation. We can use Equation 7 to also predict the minimum film 
separation, ℎstable.  
 
Equation 7 is an asymptotic solution, and is valid at the centre of the drop (r=0), 
however it neglects the significant curvature present at the edge of the interaction. 
Despite this approximation, it is adept at predicting the stability of equilibrium drop 
interactions. To demonstrate this, we plot the Laplace pressure for drops of radius R= 
40 µm and varying interfacial tensions with the disjoining pressure in Figure 2a. For 
interfacial tensions 𝛾 ≤ 35 mN/m, the Laplace pressure is balanced by the disjoining 
pressure for all values of separation ℎ, indicating that the film will cease thinning 
once this separation is reached, rendering the interaction stable. However, when the 
interfacial tension is increased to 𝛾 ≥ 40 mN/m the disjoining pressure is not high 
enough at any separation to balance the Laplace pressure of the drop, and the 
interaction is unstable. This prediction agrees extremely well with the results of the 
Chan-Dagastine-White model, shown in Figure 2b and 2c, which accounts for the 
effect of deformation over the entire interaction area. Because the stability for 
criterion involves the Laplace pressure, the drop radius also plays a role in the 
stability of equilibrium interactions. For fixed interfacial tension, an increase in drop 
radius gives a decrease in the Laplace pressure, leading to stable interactions if the 
drop radius is increased sufficiently. 
 
As a stability criterion, this relation can be generalised to any disjoining pressure 
versus separation model, not just the DLVO force used in Figure 2. This approach is 
not as general as explicitly deriving the effect of deformation on a stability ratio, but 
may offer more utility with much less complexity. An earlier study has attempted to 
account for deformation in stability ratio, but used truncated spheres instead of 



	

	

deformed surfaces [71]. Based on the interface profiles we can see this is not 
appropriate to describe the interaction of these interfaces, but accounting for complete 
interfacial profiles is difficult to incorporate into stability ratio theory. 
 
Dynamic Interactions 
When the velocity of the drop or bubble interaction is significant, the hydrodynamic 
pressure within the film is no longer negligible. The dynamic interactions of two air 
bubbles in water in the presence of a DLVO force are characterised in Figure 3. The 
EDL contribution is calculated from an implicit numerical solution of the Poisson-
Bolzmann equation, and the non-retarded vdW contribution is calculated using the 
form in Table S2 in the SI. A bubble of radius 60 µm is driven at speed 𝑈 towards a 
bubble of 45 µm over a distance 𝑋 =  20 µm, and then instantaneously retracted at 
the same speed 𝑈. A large number of numerical simulations were performed with 
different drive velocities 𝑈 (1− 250 µm) and initial separations ℎ! (8 – 20 µm), 
where the outcome of each interaction was classified into one of three categories: 
coalescence on approach, coalescence on retract, and no coalescence. The first two 
categories represent unstable interactions, and the last category represents a stable 
interaction. Instead of plotting the results in terms of initial separation ℎ!, we choose 
to use the quantity 𝑋 − ℎ! , where X is the total drive distance. This quantity 
represents the amount of “overlap” that the drops would experience if they were rigid 
bodies: for example, an overlap of 2 µm means that the drops have been driven 
together 2 µm past their initial separation. The overlap quantity can be thought of as a 
measure of the amount of deformation experienced by the drops, or alternatively a 
measure of the extent of the collision. In this study, we plot our stability maps in 
terms of drive velocity and overlap (or deformation). In practice, the interaction 
velocity and amount of deformation are interrelated, but the AFM (and hence model) 
setup allows us to decouple the two to isolate the effect of each. 
 
For the bubble pair shown in Figure 3a, the air-water interface is assumed to be at a 
low surfactant coverage, and the interfacial tension is consequently 𝛾 = 70 mN/m. 
We observe three different outcomes for this parameter space. First, for low 
interaction velocities, the film completely drains on the approach stage and 
coalescence occurs. The second outcome occurs for moderate interaction speeds, 
where the film does not completely drain before the approach ends. However, the film 
continues to drain during the retract stage and coalescence still occurs, despite the fact 
that the bubbles are moving apart. This behaviour is consistent with observations of 
drop coalescence during separation in microfluidic devices [49], glancing collisions in 
a four-roll mill [48] and bubble coalescence on retract in an AFM [28]. Thirdly, for 
very large interaction velocities, the film does not have sufficient time to drain over 
both the approach and retract stages, and no coalescence occurs. Thus, even though 
the surface forces are unstable at equilibrium, hydrodynamic effects stabilise these 
interactions at high velocities. Thus, hydrodynamic effects are more complicated and 
can stabilise an unstable system based on the equilibrium stability criterion in 
Equation 6, indicating more general criteria for stability must account for 
hydrodynamic stabilisation. 
 
Figure 3b shows the effect of decreasing the interfacial tension. For 𝛾 =  60 mN/m, 
the bubble interactions are stable over a much wider range of the parameter space. 
The coalescence on approach region has disappeared, whilst the coalescence on 
retract region is much smaller. For this system, the critical interfacial tension defined 



	

	

using the equilibrium stability criterion (Equation 6) is 𝛾 = 60 mN/m. Thus, at and 
below this limit all equilibrium interactions are stable and coalescence on approach is 
not possible. However, there is still a small coalescence on retract region, 
demonstrating that hydrodynamics can induce coalescence for stable equilibrium 
surface forces.  
 
To demonstrate the sensitivity of the bubble collision outcome to the exact definition 
of the disjoining pressure, we present in Figure 3c & d the stability maps for the same 
bubble pair, this time with a retarded vdW force calculated using Lifshitz theory. The 
comparison between the resulting disjoining pressures is shown in Figure S1 in the SI. 
The non-retarded and retarded vdW give rise to similar DLVO disjoining pressures, 
with a small variation in the magnitude of the maximum repulsive pressure. However, 
the equilibrium stability criterion predicts that the retarded DLVO system will be 
stable for 𝛾 < 65 mN/m rather than 𝛾 < 60 mN/m for the non-retarded case. The 
stability maps in Figure 3 confirm this, and show that the coalescence regions are 
greatly reduced for the retarded case in comparison to the non-retarded case. 
 
In Figure 4 we plot a three-dimensional stability map of the same bubble pair in 
Figure 3 a & b, as a function of interaction velocity 𝑈 and interfacial tension 𝛾 at 
three different values of overlap 𝑋 − ℎ!. Here, all stable interactions are represented 
with white symbols, whilst the unstable interactions are shown with red and blue 
symbols representing coalescence on approach and retract, respectively. The vertical 
grey plane shows the critical interfacial tension based on the equilibrium stability 
criterion given in Equation 6: for 𝛾 > 60 mN/m the equilibrium interactions are 
unstable, and for 𝛾 < 60 mN/m equilibrium interactions are stable. For the lowest 
value of overlap shown, 𝑋 − ℎ! = 2 µm, it is clear that most collisions are stable 
despite the pair being unstable at equilibrium. Thus, the interaction area between 
colliding bubbles needs to be significant for the equilibrium stability criterion to 
apply, and general stability criteria would need to reflect this. At the highest value of 
overlap shown, 𝑋 − ℎ! = 10 µm, coalescence on retract can occur for interfacial 
tensions below the equilibrium stability limit, induced by hydrodynamic effects. As a 
consequence, generalised stability criteria would also need to account for this 
destabilising hydrodynamic mechanism. 
 
To examine the transition from coalescence on approach to coalescence on retract, in 
Figure 5 we plot a contour map of the force at coalescence for the same bubble pair 
shown in Figure 3. The black line depicts the transition from coalescence on approach 
(to the left) to coalescence on retract (to the right).  Also shown in Figure 5b is a plot 
of the force at coalescence for fixed overlap of 𝑋 − ℎ! = 10 µm (the white dashed 
line on the contour map in Figure 5a)), along with the bubble shapes just before 
coalescence occurs. When the bubbles coalesce on approach, the force at coalescence 
is independent of overlap, because the film drains before the bubbles have been 
driven together completely. The region of high force near the transition line indicates 
that coalescence occurs at, or very close to, the end of the approach stage, where the 
maximum interaction force occurs. The high-force region immediately to the right of 
the black line signifies that coalescence occurs soon after the turn-around point, at the 
start of the retract stage. In this high force region the bubble forms a “dimple” at 
coalescence [61].  As the velocity increases further, the force at coalescence drops 
markedly (Figure 5). This indicates that the coalescence occurs much later in the 
retraction stage, far from the maximum interaction force experienced by the bubbles.  



	

	

In this region the bubble forms a “wimple”[45] at coalescence, which changes to a 
“nose” as the interaction velocity increases further. This nose formation is identical to 
the drop profiles formed by drops undergoing coalescence during separation in a 
microfluidic channel[49]. The marked drop in force at coalescence as the interaction 
velocity increases, and the corresponding change in bubble shape, suggests that there 
are two distinct mechanisms leading to coalescence on retract. 
 
In order to further elucidate the mechanisms of coalescence, we plot the time history 
of the interaction force, the minimum separation within the film, and the 
corresponding hydrodynamic pressure at the point of minimum separation in Figure 6. 
Three mechanisms of coalescence are evident. The first mechanism leads to 
coalescence on approach, and is clear when examining the U=10 µm/s and 25 µm/s 
cases. The bubbles are moving slowly enough such that the film completely drains on 
approach, and coalescence occurs before the bubbles reach the point of maximum 
interaction. The second mechanism, shown in the U=50 µm/s example, results in 
coalescence on retract. In this case, the film does not have time to drain completely on 
the approach stage, but continues to drain during the initial part of the approach stage. 
At this intermediate velocity the drops are not moving fast enough apart to counteract 
the film drainage and coalescence occurs. For this case the minimum separation 
decreases monotonically before coalescence occurs in the initial part of the retract 
stage. As the interaction velocity is increased further to U=60 µm/s a third mechanism 
of coalescence becomes evident. The film drains continuously during the approach 
stage, and the beginning of the retract stage, but then briefly begins to thicken as the 
bubbles move apart fast enough to avoid complete drainage occurring. However, the 
high velocity induces a negative hydrodynamic pressure within the film at the point of 
minimum separation, which reverses the film thickening and drives the bubbles to 
coalescence. At very high drive velocities (U = 200 µm/s), the film again thins 
monotonically to coalescence because the negative hydrodynamic pressure occurs 
earlier in the retract stage, before the film has time to thicken. As the velocity 
increases further (U=250 µm/s), the drive velocity becomes large enough to move the 
bubbles apart completely before the negative hydrodynamic pressure can thin the film 
sufficiently, and coalescence does not occur.  
 
In Figure 6a we plot a stability map of the same bubble pair at 𝛾 = 70 mN/m, but for 
a higher salt concentration of 10 mM. At this concentration the Debye length is ~3 
nm, and the EDL repulsion is much less than that for the 0.1 mM case considered 
above. For this particular system, the critical interfacial tension based on the 
equilibrium stability criterion of Equation 6 is extremely low, and thus this system is 
almost always unstable at equilibrium. As a consequence, coalescence occurs over the 
entirety of the parameter space studied, with a significantly larger coalescence on 
approach region that the 0.1 mM system. The position of the line delineating 
coalescence on approach to coalescence on retract as the interfacial tension is 
decreased from 𝛾 = 70  to 20 mN/m is shown in Figure 6b). As 𝛾 decreases, the 
interactions remain unstable, but the transition from coalescence on approach to 
coalescence on retract occurs at smaller approach velocities.  
 
Other surface forces will result in stable or unstable interactions with similar interplay 
with hydrodynamic drainage effects. The subtleties of each surface forces are 
interesting, but the overall behaviours are commensurate with the discussion for 
Figures 3-7.  In the SI we demonstrate that a bubble pair with a depletion surface 



	

	

force also gives significant coalescence on approach and coalescence on retract 
regions due to its inherently attractive nature. We also show that a drop pair with a 
(repulsive) steric force does not result in coalescence over the parameter space 
examined. 
 
In Figure 7 we consider interactions of the same bubble pair system as in Figure 3a 
and b, this time with an approach and hold (or dwell) drive profile, mimicking drop 
interactions produced using cantilevered or translated capillaries, or through buoyant 
collisions. At this interfacial tension the interactions are unstable at equilibrium, and 
thus will coalesce after being held together at some finite time. Based on the literature 
approach to drop coalescence, we define coalescence time to be the time taken for the 
drops to coalesce in the dwell stage. There are many theoretical approaches showing 
that the coalescence time for a drop pair or a drop and a flat interface interacting at a 
constant applied force F varies as  

𝑡coalescence~
𝐹!𝑅!𝜇
𝛾!𝐴!!

 (8) 

 
where 𝐴! is the Hamaker constant, and a, b, c & d are scaling exponents. The 
exponents range from 1/4 < a < 0.84, 31/24 < b < 7/4, 1.14 < c < 1.38 and 2/5 < d < 
4/7[72-78]. Inherent in the derivation of these scaling relations is that the approach 
velocity of the drops plays no role in the time to coalescence. However, our results for 
a bubble pair interacting in water (i.e. for fixed Hamaker constant and interfacial 
tension) show that the approach velocity affects the time to coalescence considerably, 
and that a simple scaling relation is not present. For this particular system, the ratio of 
the coalescence time to the bubble approach time is O(1), demonstrating that initial 
conditions are important. We also show results for systems with viscosity one and two 
orders of magnitude higher, approximating the viscosities of the systems observed 
with cantilevered capillaries[79]. Here the coalescence times scale linearly with 
viscosity for moderate to high forces, and are consequently one and two orders of 
magnitude higher respectively. For these systems, the ratio of approach time to 
coalescence time is O(10) and O(100), respectively. Therefore, there is no 
dependence upon the initial conditions, and a scaling similar to Equation 8 is present 
for moderate to high forces. Interestingly, however, the behaviour of the high-
viscosity system for low forces displays non-monotonic behaviour not accessible 
using scaling analysis. 
 
As a consequence, it is clear that for micron-sized bubbles in water, and micro-drops 
in moderate viscosity oils, that the ratio of approach time to coalescence time will in 
general be O(1), and scaling analyses will not give accurate descriptions of the 
coalescence behaviour due to the dependence upon initial conditions. For larger sized 
drops and bubbles, higher viscosity continuous media, or systems with large density 
differences, scaling analyses do provide reasonable predictions of coalescence time 
for moderate to high forces. This context is critical when making general statements 
about drop and bubble coalescence, keeping in mind that, in practice, the continuous 
phase viscosity in an emulsion or foam may span this entire viscosity range depending 
on the point in processing or formulation. 
 
 
 
 



	

	

Conclusions 
 
We have used an extensively validated numerical model that accounts for drop 
deformation, equilibrium surface forces and hydrodynamic drainage to determine the 
precise conditions under which micron-sized drops or bubbles will undergo 
coalescence. We have considered two types of collision events: a linear approach and 
retract profile mimicking AFM experiments, and a linear approach and hold profile 
similar to constant force (e.g. buoyant) collisions. The parameter space examined 
includes interaction velocity, the amount of drop “overlap” (a measure of the extent of 
the collision), interfacial tension, and salt concentration. We have shown that the a 
well-defined description of the equilibrium surface force as a function of film 
thickness (e.g. DLVO forces) can be used to make precise predictions of drop or 
bubble collision stability when hydrodynamic effects are negligible. Specifically, if 
the Laplace pressure 2𝛾 𝑅 of a drop or a bubble is greater than the disjoining 
pressure for all possible film thicknesses, then the interaction is unstable and 
coalescence will result. This equilibrium stability criterion assumes that the collision 
is significant enough that the film drains enough for attractive surface forces (e.g. van 
der Waals) to induce coalescence.  
 
Using the aforementioned numerical model, we have defined the specific conditions 
when hydrodynamic effects can render unstable equilibrium collisions stable, 
primarily due to high interaction velocities. Further, we have mapped the precise 
conditions whereby stable equilibrium collisions can become unstable due to negative 
hydrodynamic pressure within the film, resulting coalescence whilst the drop or 
bubble pairs are undergoing separation, observed experimentally in microfluidics[49], 
in a four-roll mill [48], and in AFM experiments [28]. In summary, general stability 
criteria describing drop or bubble collisions must account for hydrodynamic 
stabilisation due to high interaction velocities, and destabilisation on separation 
induced by negative hydrodynamic pressure in the film. Lastly, we have established 
that initial conditions are important, and consequently scaling analyses are invalid, for 
constant force collisions when the coalescence time is of the same order as the 
approach time, true for micron-sized bubbles or drops suspended in moderate 
viscosity media. 
  
One limitation to the approach used in this study requires a well-defined model of the 
surface force as a function of the film thickness. In the case of the hydrophobic force, 
there is now some clarity in the literature, where for drops or bubbles we have 
validated experimental force laws[42, 80], with more work and validation ongoing for 
rigid surfaces[81]. Yet, the recent work by Abbott and co-workers[82] in probing a 
surface coated with synthetic peptides suggests that the hydrophobic force for may be 
more complicated and a subsequent description of the force as a function of 
separation may remain elusive. In addition, the other area where this model is limited 
in in the area of specific ion effects. There are AFM data for simple systems, in the 
absence of any surfactant for both polar [83] and non-polar oils[84], suggesting there 
are surface force effects that have yet to be captured in a reproducible way, hindering 
efforts to describe a well-defined surface force model.   
 
The dynamic nature of the interactions for this work have been limited to assume that 
the interfacial deformation can be described using the Laplace equation, neglecting 
any interfacial rheological behaviour. For most of the AFM systems studied 



	

	

previously, this has been the case, but an interesting study by Gunning et al. has 
showcased how there can be more complex behaviour when the interface has a 
relaxation time associated with its response to deformation [41] where more study is 
warranted in this area.  
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Figure	1	Schematic of systems in which drops or bubbles can undergo coalescence.  
The systems are arranged in terms of relative drop or bubble size from smallest to 
largest: emulsions (sub-micron radii) and foams (10s of microns), AFM 
measurements (~5 microns to several hundred microns), microfluidic devices (10s to 
100s of microns, drops fixed on capillaries (> 100s of microns), and drop collision 
with an interface (mm radii and larger).	



	

	

 
  Figure 2 a) DLVO disjoining pressure between two flat tetradecane interfaces adjacent to a 

binary electrolyte, with a surface potential of -17 mV and an ionic strength of 1 mM. The 
dashed lines indicate the Laplace pressures of a drop of radius R = 40 µm at different 
interfacial tensions. b) Equilibrium interactions of two tetradecane drops of radii R = 40 µm 
driven together over a distance ΔX at different interfacial tensions in the presence of the 
DLVO force described in a), calculated using the Chan-Dagastine-White model. The arrows 
denote the point at which coalescence occurs. The inset shows the stable film profiles 
corresponding to the + symbols shown on the interfacial tension 𝜸 = 𝟑𝟎 mN/m curve.  c) 
The minimum stable film thickness (red solid symbols) and the minimum film thickness 
prior to coalescence (blue open symbols) for the same system as b). The dashed line 
delineates the critical interfacial tension where the system becomes unstable.   
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Figure 3 Stability maps of the interaction between two air bubbles in water containing 0.1 mM 
salt solution for varying drive velocities 𝑼 and overlaps 𝑿 − 𝒉𝟎. The left pane shows the 
stability maps calculated using a non-retarded vdW for two interfacial tensions: a) 70 mN/m 
and b) 60 mN/m. The right pane shows the stability maps calculated using a retarded vdW for 
the same two interfacial tensions:  c) 70 mN/m and d) 60 mN/m. The red and blue regions 
indicate coalescence on approach and retract respectively, while the grey region represents 
stable interactions (where no coalescence occurs). The bubbles are initially separated by a 
distance 𝒉𝟎, before being driven together over a distance 𝑿 = 20 µm with velocity 𝑼, and then 
pulled apart with velocity −𝑼. The bubble radii 𝑹𝟏 and 𝑹𝟐 are 59.5 and 45 um respectively, 
and the surface potential of the air-water interface is -72 mV. All other parameters are listed in 
Table S3.  The retarded vdW is calculated using Lifshitz theory. 
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Figure 3 Stability map of the interaction between two air bubbles in water containing 
0.1 mM salt solution for varying drive velocities, bubble deformation, and interfacial 
tensions. The red and blue markers indicate coalescence on approach and retract 
respectively, while the white markers represent stable interactions (where no 
coalescence occurs). The vertical grey plane represents the critical equilibrium 
interfacial tension, below (above) which all equilibrium interactions are stable 
(unstable) for this bubble pair. The bubbles are initially separated by a distance 𝒉𝟎, 
before being driven together over a distance 𝑿 = 20 µm with velocity 𝑼, and then 
pulled apart with velocity −𝑼. The bubble radii 𝑹𝟏  and 𝑹𝟐 are 59.5 and 45 µm 
respectively, and the surface potential of the air-water interface is -72 mV. All other 
parameters are listed in Table S3.  
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Figure	4	Force and film profiles at coalescence for the interaction between two air bubbles in 
water containing 0.1 mM salt solution with interfacial tension 70 mN/m. a) Contour map of the 
force at coalescence for varying approach velocities and overlaps. The black line delineates the 
boundary between coalescence on approach (left) and coalescence on retract (right). The white 
dashed line indicates the values plotted in b), and the grey region represents stable interactions. 
b) Force at coalescence over a range of approach velocities for fixed overlap 𝑿 − 𝒉𝟎 = 𝟏𝟎 µm. 
The corresponding film profiles at coalescence are shown in the panels. The bubbles are 
initially separated by a distance 𝒉𝟎, before being driven together over a distance 𝑿 = 20 µm 
with velocity 𝑼, and then pulled apart with velocity −𝑼. The bubble radii 𝑹𝟏 and 𝑹𝟐 are 59.5 
and 45 um respectively, and the surface potential of the air-water interface is -72 mV. All other 
parameters are listed in Table S3.  
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Figure 5 Time history of the interaction between two air bubbles in water containing 0.1 
mM salt solution for fixed overlap 𝑿 − 𝒉𝟎 = 𝟏𝟎 µm. Time-dependent behaviour of the a) 
interaction force, b) hydrodynamic pressure at position of minimum separation, and c) the 
minimum separation, for varying drive velocities U over the normalised time period 
tV/X. The filled circles depict the force at which the bubble collision for each velocity U 
undergoes coalescence (except for the stable case at U = 250 µm/s). The grey region 
represents the approach stage, and the white region represents the retract stage. The 
dashed lines in c) represent the time at which the hydrodynamic pressure at minimum 
separation becomes negative. 



	

	

 
 

	
Figure 6 Interaction between two air bubbles in water containing 10 mM salt solution 
for varying drive velocities 𝑼 and overlap 𝑿− 𝒉𝟎. a) Stability map for interfacial 
tension 70 mN/m. The red and blue regions indicate coalescence on approach and 
retract respectively. b) Curves showing the boundary between coalescence on 
approach and coalescence on retract for varying interfacial tensions. The bubbles are 
initially separated by a distance 𝒉𝟎, before being driven together over a distance 𝑿 = 
20 µm with velocity 𝑼, and then pulled apart with velocity −𝑼. The bubble radii 𝑹𝟏 
and 𝑹𝟐 are 59.5 and 45 µm respectively, and the surface potential of the air-water 
interface is -72 mV. All other parameters are listed in Table S3.  
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Figure 7 Drainage time versus force at coalescence for two air bubbles in a liquid 
containing 0.1 mM salt solution, subjected to an approach and dwell interaction 
mimicking the constant force interactions of drops on cantilevered capillaries and 
buoyancy-driven collisions. The bubbles are initially separated by a distance 𝒉𝟎, 
before being driven together over a distance 𝑿 = 20 µm with velocity 𝑼, and then held 
until coalescence. The bubble radii 𝑹𝟏 and 𝑹𝟐 are 59.5 and 45 um respectively, the 
interfacial tension is γ=65 mN/m, and the surface potential of the air-water interface is 
-72 mV. Three different values of viscosity are considered: 𝝁𝒘, 10𝝁𝒘,  & 100µ𝒘, 
where 𝝁𝒘 = 𝟖.𝟗×𝟏𝟎!𝟒 Pa.s. All other parameters are listed in Table S3.  
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Table S1. Common surface forces and their corresponding interaction energies. 

 
Surface Force Energy, V 
Van der Waals  
(non-retarded) 𝑉vdW =

𝐴!
12𝜋ℎ" 
 

𝐴! , Hamaker constant 
Electric double layer 

𝑉EDL =
64𝑘#𝑇𝑛$

𝜅 tanh 3
𝑒𝜓%&
4𝑘#𝑇

6 tanh 3
𝑒𝜓%"
4𝑘#𝑇

6 exp(−𝜅ℎ) 

 
𝑘#, Boltzmann constant; 𝑇, temperature; 𝑛$, ion 
concentration; 𝑒, elementary charge; 𝜓%&, surface potential; 
𝜅,	Debye length 

Structural 
𝑉struct = 𝐴	exp	 3

−ℎ
𝜖 6 cos 3

2𝜋ℎ
𝜆 + 𝜙6 

 
𝐴, amplitude fitting parameter ; 𝜖, decay length fitting 
parameter; 𝜆, periodicity fitting parameter; 𝜙,	phase lag fitting 
parameter 

Steric 

V'()*+, =

⎩
⎨

⎧𝛼
8𝑘#𝑇𝛿
35𝑠-

O7 3
2𝛿
ℎ
6
.
/
− 53

ℎ
2𝛿
6
0
/
− 12Q 			for	h < 2δ	

0																																																																			for	h ≥ 2δ

 

 
𝑘# , Boltzmann constant; 𝑇,  temperature; 𝛼,  empirical 
coefficient; 𝛿,  polymeric brush length; 𝑠,  distance between 
contact points on surface 

Depletion 
V1)2 = X

BΠosm
2𝑅%

(ℎ − 2𝛥)(ℎ + 2𝑅%)				for	ℎ < 2𝛥	

0																																																	for	ℎ ≥ 2𝛥
 

 

Πosm = 𝑘#𝑇 3
𝐶poly
𝐴 +

1
𝜉-6 

 
𝑘# , Boltzmann constant; 𝑇,  temperature; 𝐵,  partition 
coefficient; 𝛥,  depletion layer thickness; Πosm,  osmotic 
pressure; 𝐶poly , polyelectrolyte concentration; 𝐴,  number of 
monomers per charge; 𝜉, polyelectrolyte characteristic length 



 

 

Table S2. Common surface forces and their corresponding disjoining pressures.   

Surface Force Disjoining pressure, 𝜫 = − 𝝏𝑽
𝝏𝒉

 
Van der Waals (non-retarded) ΠvdW = −

𝐴!
6𝜋ℎ- 

Electric double layer ΠEDL = 64𝑘#𝑇𝑛$ tanh 3
𝑒𝜓%&
4𝑘#𝑇

6 tanh 3
𝑒𝜓%"
4𝑘#𝑇

6 exp(−𝜅ℎ) 

Structural 
Πstruct = 𝐴	exp	 3

−ℎ
𝜖 6 a

1
𝜖 cos 3

2𝜋ℎ
𝜆 + 𝜙6

+
2𝜋
𝜆 sin 3

2𝜋ℎ
𝜆 + 𝜙6c 

Steric 

Π'()*+, =

⎩
⎨

⎧𝛼
𝑘#𝑇
𝑠-

O3
2𝛿
ℎ
6
:
/
− 3

ℎ
2𝛿
6
-
/
Q 			for	h < 2δ	

0																																													for	h ≥ 2δ

 

Depletion 
Π1)2 = X

BΠosm
𝑅%

(𝛥 − ℎ − 𝑅%)				for	ℎ < 2𝛥	

0																																																	for	ℎ ≥ 2𝛥
 



Table S3. Properties of the bubble pair studied in Figures 3 – 8. 
 
First drop radius R1 59.5 um 

Second drop radius R2 45 um 

Effective radius R 51.2 um 

First drop contact radius 30 um 

Second drop contact radius 20 um 

Hamaker constant 
(non-retarded vdW) 

-3.7211×10-20 J 

Surface potential -72 mV (C = 0.1 mM) 
-10 mV (C = 10 mM) 

Viscosity  8.9×10-4  Pa.s 

 
  



 
 

 
 
 
Figure S1. DLVO disjoining pressure between two air bubbles in water, with a binary 
electrolyte concentration of 0.1 mM and a surface potential of -72 mV. The red line 
shows the disjoining pressure calculated using a non-retarded vdW, and the blue line 
shows the disjoining pressure calculated using a retarded vdW. The dashed lines 
indicate the Laplace pressures of a drop of radius R = 51.2 µm at different interfacial 
tensions.  
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Figure S2. a) Stability map of the interaction between two air bubbles in water under 
the influence of a depletion force (due to the presence of a polyelectrolyte) and an 
EDL force for varying drive velocities 𝑈 and overlaps 𝑋 − ℎ$, and b) corresponding 
contour map of the force at coalescence. Consistent with Browne, et al. [1], the 
bubble radii 𝑅&  and 𝑅"  are both 50 µm, the surface potential is -20 mV, 𝜎 =
66	 mN/m, 𝑇 = 295  K, temperature; 𝐵 = 0.2,  𝛥 = 14.3974  nm, 𝐶poly =
1.377649		 × 10".  monomer/m3, 𝐴 = 5,  𝜉 = 28.7949  nm, and 𝜅 =  40.53 nm. c) 
Stability map of the interaction between two decane drops in water under the 
influence of a steric force (due to the presence of absorbed polymers at the interface) 
for varying drive velocities 𝑈  and overlaps 𝑋 − ℎ$ , and d) corresponding contour 
map of the minimum film thickness for the interaction. Consistent with Manor, et al. 
[2], the drop radii are 𝑅& = 23.6  µm and 𝑅" = 31 µm, the surface potential is -10 
mV, 𝜎 = 14.4	mN/m, 𝑇 = 295	𝐾, 𝛼 = 	0.07, 𝛿 = 18 nm, and 𝑠 = 3.7 nm. The red 
and blue regions indicate coalescence on approach and retract respectively, while the 
grey region represents stable interactions (where no coalescence occurs). The drops 
are initially separated by a distance ℎ$, before being driven together over a distance 𝑋 
= 20 µm with velocity 𝑈, and then pulled apart with velocity −𝑈.  
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