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Abstract 

Glyoxalase I (GlxI) is a member of the glyoxalase system, which is important in cell 

detoxification and converts hemithioacetals of methylglyoxal (a cytotoxic byproduct of sugar 

metabolism that may react with DNA or proteins and introduce nucleic acid strand breaks, elevated 

mutation frequencies and structural or functional changes of the proteins) and glutathione into D-

lactate. GlxI accepts both the S and R enantiomers of hemithioacetal, but converts them to only the 

S-D enantiomer of lactoylglutathione. Interestingly, the enzyme shows this unusual specificity with 

a rather symmetric active site (a Zn ion coordinated to two glutamate residues; Glu-99 and Glu-

172), making the investigation of its reaction mechanism challenging. Herein, we have performed a 

series of combined quantum mechanics and molecular mechanics calculations to study the reaction 

mechanism of GlxI. The substrate can bind to the enzyme in two different modes, depending on the 

direction of its alcoholic proton (H2; toward Glu-99 or Glu-172). Our results show that the S 

substrate can react only if H2 is directed toward Glu-99 and the R substrate only if H2 is directed 

toward Glu-172. In both cases, the reactions lead to the experimentally observed S-D enantiomer of 

the product. In addition, the results do not show any low-energy paths to the wrong enantiomer of 

the product from neither the S nor the R substrate. Previous studies have presented several opposing 

mechanisms for the conversion of R and S enantiomers of the substrate to the correct enantiomer of 

the product. Our results confirm one of them for the S substrate, but propose a new one for the R 

substrate. 
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1. Introduction  

Glyoxalase is a two-member enzymatic system with an unusual stereospecificity. It converts the 

R- and S-hemithioacetals of methylglyoxal (MG; a cytotoxic byproduct of sugar metabolism) and 

glutathione (H-SG) into D-lactate (cf. Scheme 1). The system is responsible for MG detoxification. 

MG may react with DNA or proteins and introduces nucleic acid strand breaks, elevated mutation 

frequencies,1,2 or structural and functional changes of the proteins.3 

The glyoxalase system was discovered in 1913.4–6 In 1930s, it was shown that H-SG is a specific 

and essential cofactor for MG metabolism7 and that H-SG and MG react reversibly to form a 

hemithioacetal substrate for the system.8 In addition, in the same decade, it was found that the 

system converts the hemithioacetal into an acid-stable base-labile intermediate (nowadays known as 

S-D-lactoylglutathione).9 In 1950s, Racker found that the system consists of two enzymes 

(glyoxalase I and II). The former catalyzes the formation of S-D-lactoylglutathione from 

hemithioacetal and the latter converts this intermediate to D-lactate10,11 (cf. Scheme 1). The 

formation of D-lactate was later verified by Ekwall and Mannervik.12 For a detailed historical 

survey of the system see reference 13. 

 
Scheme 1. The glyoxalase pathway. 

In this study we focus on the catalytic reaction of glyoxalase I (EC 4.4.1.5, lactoylglutathione 

lyase; GlxI). It converts both R- and S-hemithioacetals into the S-D enantiomer of 

lactoylglutathione4–12 (the proper enantiomer of GlxI product; DP) but not into the R-L enantiomer 

(the wrong enantiomer of GlxI product; LP). Scheme 1 shows the complete glyoxalase pathway. 

GlxI requires a divalent metal ion for its activity. The ion varies with the organism. It is Zn(II) for 
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the human14–16 and yeast enzymes,17 but Ni(II) for the Escherichia coli18,19 and Zea mays20,21 

enzymes (the latter two proteins are inactive in presence of Zn(II) and have a reduced activity with 

the Co(II), Cd(II) and Mn(II) ions). The Zn ion of human GlxI is coordinated by His-126, Gln-33, 

Glu-99, Glu-172 and one or two water molecules in crystal structures of the resting enzyme.22,23 

The two active-site glutamate residues are coordinated symmetrically to the Zn ion (the Zn–OE1 

distances are 2.04 and 1.97 Å or 1.98 and 2.02 Å, respectively).22 When an inhibitor (S-[N-hydroxy-

N-(p-iodophenyl)carbamoyl]glutathione; HIC-SG) binds to GlxI, it coordinates to the Zn ion, 

displacing the water molecules and detaching Glu-172 from the ion. This gives a penta-coordinated 

Zn site (1QIP pdb ID).23 Thus, the symmetry of the Glu residues is broken in the HIC-SG-bound 

enzyme (the Zn–OE1 distances are 1.90 and 3.26 Å for Glu-99 and Glu-172, respectively). It was 

proposed that the displacement of Glu-172 gives it a higher basicity.23 Recently, we confirmed the 

higher basicity of this residue by quantum mechanical cluster (QM-cluster) and hybrid quantum 

mechanics/molecular mechanics (QM/MM) calculations.24–26 In addition, we showed through 

molecular dynamics (MD) simulations that Glu-172 has a higher flexibility than Glu-99 and this 

flexibility causes its displacement form the Zn ion and its higher basicity.25 However, Hartree–Fock 

and density functional theory (DFT) calculations using relatively small models and symmetric 

glutamates could not explain the unusual specificity of GlxI.26–28 

In the last two decades, different aspects of the catalytic mechanism of GlxI have been studied.22–

37 Two mechanisms were proposed for the reaction of the S substrate with GlxI in 2001.27–29 Richter 

and Krauss (RK),28 used Hartree–Fock calculations, coupled with a frozen effective fragment 

potential,38,39 whereas Creighton and Hamilton (CH),29 summarizing experimental aspects of the 

catalytic mechanism of GlxI up to that date, suggested independently the same three-step 

mechanism shown in Scheme 2. In the RK-CH mechanism, Glu-172 starts the reaction with 

abstraction of H1 from the substrate (see Scheme 2 for the naming of the atoms). Next, H1 is 

transferred from Glu-172 to C2 and H2 is concurrently transferred from O1 to Glu-99. Finally, O2 

abstracts H2 from Glu-99, forming DP. In the same year, Himo and Siegbahn (HS) proposed a five-
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step mechanism for the S substrate.27 The first step is the same as for the RK-CH mechanism 

(abstraction of H1 by Glu-172), but the subsequent steps are different (the HS mechanism for the S 

substrate is shown in Scheme S1 and fully described in the Supporting Information). 

 
Scheme 2. The RK-CH mechanism for the S substrate of GlxI. Note that the arrows in all schemes in this article indicate 

the movement of the protons, which gives a simpler view than the movement of electons. 

The most challenging part of the GlxI catalytic reaction is to explain how it accepts both 

enantiomers of its chiral substrate but converts them to the same enantiomer of the product and to 

describe the point where the two mechanisms join to form the same product. All previously 

proposed mechanisms for the R substrate suggest the same first step i.e. the abstraction of H1 by 

Glu-99,23,27–29 but they suggest different steps for the subsequent reaction. RK28 suggested that H2 

is transferred to Glu172, whereas HS27 proposed that H1 moves to O2. On the other hand, CH 

proposed that the enzyme first converts the R substrate to the S substrate (via dissociation of a 

glutathionyl mercaptide ion) and then processes the S substrate (the full proposed mechanisms for 

the R substrate by RK, HS and CH are shown in Schemes S2, S3 and S4 in the Supporting 

Information). 

Recently, we have studied different aspects of the GlxI reaction in three separate works.24–26 In 

the first work, we showed that the symmetric glutamates in a small QM-cluster model cannot 

reproduce the experimentally observed special stereospecificity of GlxI.26 On the contrary, our 

results showed that with small QM-cluster models, like those used in previous studies,27,28 the 

suggested mechanisms work equally well for the other enantiomer of the substrate, leading to the 
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incorrect enantiomer of the product. In the second work, we studied the catalytic reaction of a 

product analogue (glutathiohydroxyacetone), with the QM-cluster approach and MD simulations.25 

The results showed that an asymmetric QM-cluster model with a larger size for Glu-172, can 

reproduce the experimentally observed stereospecific proton exchange of the product analogue (a 

deuterium from the D2O medium can only be exchanged by the pro-S hydroxymethyl proton of the 

product analogue). Furthermore, MD simulations showed that Glu-172 is more flexible than Glu-99 

in the crystal structure and is much closer to flexible loops inside the protein.25 In our most recent 

work, using more accurate and expensive QM/MM calculations and free energy perturbations we 

studied the proton exchange reaction of a product anlouge.24 The results confirmed the proposed 

higher basicity of Glu-172. In summary, the three studies indicated that the higher basicity and 

flexibility of Glu-172 may explain the special stereospecificity of GlxI. Despite all previous 

studies,22–37 there is not any computationally or experimentally confirmed mechanism for the 

reaction of the R enantiomer of the normal substrate of GlxI. Moreover, there are two opposing 

mechanisms for the S substrate and they are based on either a rather primitive ab initio method 

(HF/4-31G) or a small model of the active site with no constraints on the residues during 

optimization processes.27,28 In addition, previous studies have not checked whether the suggested 

mechanisms also work on the other enantiomer of the substrate, giving the incorrect enantiomer of 

the product, i.e. they have not fully explained the intricate stereochemistry of GlxI. 

In this study, QM/MM calculations with a large QM system (246 atoms) are employed to 

investigate the reactions of the S and R substrates of GlxI. Furthermore, we use the big-QM 

method40,41 (single-point QM/MM calculations with 1336 atoms in the QM system) and QM/MM 

free energy perturbations42–44 to obtain accurate energies. We scan all possible paths from all 

different binding modes of the substrates to find the most favorable paths for the reactions of the S 

and R substrates. 
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2. Methods 

2.1 The Protein 

All calculations are based on the 2.0 Å crystal structure of human GlxI (PDB code 1QIN).23 The 

PDB structure contains a bound intermediate analogue (HIC-SG) in the active site, which mimics 

the binding of the substrate. Both subunits and all crystal-water molecules were included in the 

calculations. We built the substrate by modifying the HIC-SG molecule in one of the active sites. In 

the other active site, we replaced HIC-SG with two water molecules coordinated to the Zn ion. 

Thus, the reaction was assumed to take place in only one of the active sites, whilst the other site 

acted as a spectator. The same approach was successfully applied to other enzymatic systems.45,46 

The protein setup was the same as in our previous studies of human GlxI.24,25 The protonation 

states of all residues were determined by a study of the hydrogen-bond pattern, solvent accessibility 

and the possible formation of ionic pairs. They were also checked by PROPKA.47–49 Details of the 

protonation states of all the protein residues are given in the Supporting Information. After 

assigning the protonation states, the protein was protonated and solvated with water molecules 

forming a sphere with a radius of 40 Å around the geometrical center of the protein, using the leap 

module of the Amber software package50 (23,655 atoms in total). The added protons and water 

molecules were optimized by a 240 ps simulated annealing (up to 370 K) calculation, followed by a 

minimization, keeping the other atoms fixed at the crystal-structure positions. The protein, substrate 

and water molecules were described with the Amber99SB,51 GAFF52 force fields and the TIP3P 

model,53 respectively. These calculations were performed using the AMBER program suite.50 

2.2 QM/MM Calculations 

The QM/MM calculations were performed with the ComQum software.54,55 In this approach,56,57 

we split the protein and solvent into two subsystems: System 1 (the QM region) was treated by QM 

methods, System 2 (the MM region) contained the remaining part of the protein and solvent and 

was represented by an array of partial point charges, one for each atom, taken from MM libraries. It 

was kept fixed at the coordinates of the equilibrated protein. Junctions between systems 1 and 2 
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were treated with the hydrogen link-atom approach, as described in references 54 and 58. The QM 

calculations were performed at the TPSS-D3/def2-SV(P) level of theory,59–64 using the Turbomole 

software65,66 and was accelerated by the resolution-of-identity approximation.61,62 In our previous 

studies on this enzyme with a rather small QM-cluster model, we used B3LYP functional, instead 

of TPSS.25,26 Both are DFT methods, but the B3LYP calculations are more expensive and time 

consuming. Therefore, we used TPSS for the present QM/MM calculations with large QM systems. 

xxx Again, i would be good if we can say that they give similar results. The MM calculations 

were performed with the Amber software,50 using the Amber ff14SB67 and GAFF52 force fields for 

the protein and the substrate, respectively. Water molecules were described by the TIP3P model.53 

Transition states were estimated from potential-energy scans of the corresponding reaction 

coordinate, which always was either an H–O or H–C distance. Further details of the ComQum 

calculations can be found in the Supporting information. 

The QM system consisted of the Zn ion, Gln-33, His-126, Thr-97, Leu-98, Glu-99, Leu-100, Thr-

101, Trp-170, Ile-171, Glu-172, Ile-173, Leu-174, HOC-SG and HOH-404 (the glutamine and 

histidine were included up to their alpha carbons, but all atoms of the other groups were included in 

the QM region; cf. Figure 1), giving a total of 246 atoms. We have also performed preliminary 

calculations with a smaller QM system (QM’; cf. Figure S1 in the Supporting Information). 

Calculations based on the QM’ system gave similar reaction paths as those of the larger QM 

system. However, energies obtained with the larger QM system reproduced experimental data 

better. In the main paper, we report only results based on the larger QM system. Calculated reaction 

energy profiles based on the QM’ system are shown in Figure S3 in the Supporting Information 

(using big-QM energies). 
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Figure 1. QM/MM structure of the S1 state, showing the 246-atom QM system (see section 3 for definition of the 

states). The substrate, Zn ion and HOH-404 are shown in a ball-and-stick representation and the amino acids by tubes. 
Junction atoms are marked with asterisks. 

2.3 Big-QM calculations 

Previous studies have shown that QM/MM energies strongly depend on the size of the studied 

QM system.68,69 Therefore, we have developed the big-QM approach to obtain converged QM/MM 

energies.40,41 This method improves the QM/MM energies by choosing a very big QM system and 

moving junctions away from the reaction center.40 In this work, the big-QM calculations include 

1336 atoms in the QM region and 22,319 atoms in the MM system (cf. Figure S2 in the Supporting 

Information). The big-QM energy calculations were performed on the optimized QM/MM 

stationary structures as is described in the previous subsection, but they also employed the 

multipole-accelerated resolution-of-identity J approach (marij keyword).70 We added the DFT-D3 

dispersion correction and a standard MM correction (𝐸MM12,q1=0
CL − 𝐸MM1,q1=0

HL ) to the big-QM 

energies, yielding a standard QM/MM energy but with the big-QM system as the QM region. Thus, 

both the QM/MM and big-QM calculations include the entire solvated protein, treated by standard 

MM methods (bonded, electrostatics and van der Waals terms). Further details of the big-QM 

calculations can be found in the Supporting information. Reported energies in the following are big-

QM energies, except those in Figure 4, which also includes QTCP and QM/MM energies. 
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2.4 QTCP calculations 

QM/MM thermodynamic cycle perturbation (QTCP) is a method to calculate free energies 

between two states, I and J, with a high-level QM/MM method, using free-energy perturbation with 

sampling only at the MM level.42–44 It employs the thermodynamic cycle in Scheme S5 in the 

Supporting Information. The QTCP calculations were performed as has been described before.44,46 

Further details of the QTCP calculations can be found in the Supporting information and in 

http://signe.teokem.lu.se/~ulf/ Methods/qtcp.html. 

 

3. Results and Discussion 

In this investigation, we perform an extensive and detailed QM/MM study on the reaction 

mechanism of GlxI. A primary problem with GlxI is the multitude of possible reaction paths. Here 

we attempt to systematically follow all possible paths. Both enantiomers of the substrate have been 

studied, differing at the C1 stereocenter (S or R). Moreover, each of them can bind to the enzyme in 

two different modes, depending on the direction of the H2 atom (pointing toward Glu-99 or Glu-

172). These two modes cannot easily interconvert in the active site and give rise to different 

reaction paths.24,25 Therefore, we have studied all possible reactions, starting from the four different 

starting structures. We call them S1, S2, R1 and R2. The letter (in Italics) indicates the type of C1 

stereocenter (S or R) and the number shows the direction of H2 (1 indicates that H2 is directed 

toward Glu-99 and 2 indicates that H2 is directed toward Glu-172). 

Figure 1 shows the QM/MM optimized structure of the S1 state (the optimized structures of the 

other states are shown in Figure S4 in the Supporting Information and schematic views of all states 

are shown in Scheme 3). It can be seen that in the optimized structures of the S2 and R2 states, H2 

is abstracted by Glu-172, whereas it remains bound to O1 in the S1 and R1 states. This confirms the 

higher basicity of Glu-172 compared to Glu-99, as was previously proposed.23–26 

The big-QM energies of the four states are compared in Table 1, showing that the S1, S2 and R2 
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states are almost degenerate, whereas the R1 state is ~4 kcal/mol less stable than the others. In the 

latter, both protons (H1 and H2) point toward Glu-99, which may destabilize it by steric effects. In 

the S2 state both H1 and H2 are also on the same side (toward Glu-172). However, this is not 

reflected in the energies, because H2 is abstracted by Glu-172 in the S2 state. Furthermore, the 

more basic and flexible Glu-17223–26 is dissociated from the Zn ion in S2 and reducing the steric 

crowding (the Zn–Glu-172 distance in S2 is 3.23 Å, whereas the Zn–Glu-99 distance is 2.04 Å in 

R1; cf. Table S2 for more distances). 

All possible reactions paths from the four states are shown in Scheme 3. Our calculations show 

that there is no path to any product from the states with H1 and H2 on the same side (the R1 and S2 

states). However, there are possible reaction paths to the right enantiomer of the product from the 

states with H1 and H2 pointing in opposite directions (the S1 and R2 states). Therefore, we discuss 

the paths from the S1 and R2 states in the next two sections. Reactions from the R1 and S2 states 

are discussed in the Supporting Information. 

Table 1. Big-QM energy differences between the R2, R1, S1 and S2 states. 
 

State Big-QM energy (kcal/mol) 
R2 0.0 
R1 3.9 
S1 0.2 
S2 0.5 
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3.1 Scheme 3. Schematic views of the (a) R1, (b) S2, (c) S1 and (d) R2 states. The possible 

proton transfers are shown by arrows.Reaction paths from the S1 state 

There are two possible proton transfers from S1, H1 to Glu-172 and H2 to Glu-99 (cf. Scheme 

3c). The results show that the H1 to O6 transfer (shown by a curved green arrow in Scheme 3c) is 

favorable with a barrier and a reaction energy of 3.8 and 1.1 kcal/mol, respectively (cf. Figure 2 for 

the energy profile). We call the product of this reaction S1-IM1 (cf. Scheme 4a for the structure). 

There are three possible proton transfers from the S1-IM1 state (shown in Scheme 4a). Our results 
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show that the transfers of H2 to Glu-99 or H1 to O2, shown by red arrows in Scheme 4a, are not 

possible (H1 and H2 returns to the starting point on Glu-172 and Glu-99 after releasing any 

constraints). On the other hand, the H1 to C2 transfer (shown by a green arrow in Scheme 4a) is 

possible with a barrier and reaction energy of 11.9 and –1.2 kcal/mol, respectively. We name the 

resulting intermediate as S1-IM2 and its schematic structure is shown in Scheme 4b. In S1-IM2, 

H2 is on Glu-99, making a close hydrogen bond to O2. It moved spontaneously from O1 to Glu-99 

when transferring H1 to C2. From S1-IM2, there is only one reasonable proton transfer, H2 from 

Glu-99 to O2 (shown by a green arrow in Scheme 4b). This proton transfer has no barrier and 

produces the DP product (S1-DP; cf. Scheme 4c), which is almost degenerate with the reactant state 

(0.9 kcal/mol lower than S1; cf. Figure 2). 

The second possible transfer from S1 (H2 to Glu-99) is also favorable (the barrier and reaction 

energy are 3.0 and 2.0 kcal/mol, respectively) and produces S1-IM1’ (cf. Scheme 4d for the 

structure). In fact, Glu-99 abstracts H2, but it forms a strong hydrogen bond to O1 (the H2–O4 and 

H2–O1 distances are 1.13 and 1.35 Å). From the S1-IM1’ states there are three possible proton 

transfers (H1 to Glu-172 and H2 to C2 or O2). The results showed that the former produces the S1-

IM1 state (H2 returns to O1 when transferring H1 to Glu172) and the latter two transfers have very 

high barriers (56 and 41 kcal/mol for H2 to C2 and O2, respectively). Thus, there is only one 

feasible path from the S1 state and it reaches to the proper enantiomer of the product (S1→S1-

IM1→S1-IM2→S1-DP) with an overall reaction barrier of 14.0 kcal/mol. 
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Figure 2. Energy profiles from the S1 state. 

  
Scheme 4. Schematic view and possible proton transfers of (a) S1-IM1, (b) S1-IM2, (c) DP from S1, S1-DP and (d) 

S1-IM1’. 
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3.2 Reaction paths from the R2 state 

Finally, we considered reaction paths starting from the R2 state. There are four possible proton 

transfers from R2 (shown by arrows in Scheme 3d). The results showed that the H2 to O2 transfer is 

not possible (it is strongly uphill and H2 returns on O6 after releasing the bond constraints, although 

the carboxyl group of Glu-172 rotates around the CG–CD bond to make a hydrogen bond with O2 

instead of O1). Likewise, the H2 to C2 transfer has a high barrier (37 kcal/mol) and the H2 to O1 

transfer is not possible. These three transfers are shown by red arrows in Scheme 3d. The reason for 

these unsuccessful transfers is that H2 is strongly sandwiched between O6 of Glu-172 and O1 in the 

R2 state. This makes dissociation of H2 from Glu-172 energetically expensive. Furthermore, H2 is 

connected to the more basic Glu residue, making its dissociation less favorable. 

On the other hand, our calculations showed that H1 can be transferred to Glu-99, producing R2-

IM1 (the barrier and reaction energy are 14.5 and 14.8 kcal/mol, respectively; cf. Figure 3). The 

formation of R2-IM1 has a higher barrier and reaction energy than the formation of S1-IM1 (3.8 

and 1.1 kcal/mol, respectively). In R2-IM1, H2 is on Glu-172 and the substrate has lost two 

protons, giving a –2 charge on it, whereas the substrate has a single negative charge in S1-IM1, 

making its formation more favorable. This also confirms higher basicity of Glu-172. 

  
Figure 3. Energy profiles from the R2 state. 

0

36.7

15.6

0

26.1

9.8

0

14.5 14.814.8

21.1

-15.3

14.8

16.3
15.415.4 15.9

-0.8

14.8

17.2

0.90.9 0.1 -0.8

-20

-10

0

10

20

30

40

E
bi

g-
Q

M
(k

ca
l/m

ol
)

H2 to C2

H2 to O2

H1 to Glu-99

H1 to C2

H1 to O2

H2 to C2

H2 to C2

H1 to O2

R2

R2-IM1

R2-IM2

R2-IM2'

R2-IM2'' R2-DP



 

16 

 

  
Scheme 5. Schematic views and possible proton transfers of (a) R2-IM1 (b) R2-IM2 (c) R2-IM2’ (d) R2-DP and (e) 

R2-IM2’’. 

From R2-IM1, there are four reasonable proton transfers (cf. Scheme 5a). The results show that 

the H2 to O2 proton transfer is not possible (it returns to the starting point after releasing any bond 

constraints) and the H1 to C2 proton transfer produces a very stable intermediate (R2-IM2; 15.3 

kcal/mol more stable than R2). Production of R2-IM2 could inhibit the enzyme, but the barrier for 

its production is quite high (21.1 kcal/mol). To produce a product from R2-IM2, H2 has to move 

from Glu-172 to O2 (cf. Scheme 5b). This would produce the incorrect enantiomer of the product. 

But the calculations showed that this transfer is not possible. Thus, there is no low-energy path to 

the incorrect enantiomer of the product from R2. 

According to our results, the H1 to O2 proton transfer from R2-IM1 crosses through a low barrier 

(1.5 kcal/mol) and reaches to the R2-IM2’ intermediate, which is 15.4 kcal/mol higher than R2 (cf. 

Figure 3). From R2-IM2’ (Scheme 5c), H2 can be transferred to C2, via a low barrier (0.5 

kcal/mol). This yields the proper enantiomer of the product (R2-DP; cf. Scheme 5d). The product is 

almost degenerate with the product of the S1 state (S1-DP), although the H1 and H2 atoms are in 

opposite positions and point in different directions (compare Schemes 5d and 4c). 

The H2 to C2 proton transfer from R2-IM1 crosses through a low barrier 2.4 kcal/mol and 

reaches to R2-IM2’’ (cf. Scheme 5e). From R2-IM2’’, the DP product can also be reached by 

transferring H1 to O2. Our results show that this transfer has no barrier. The barriers and reactions 

energies from the R2 state are shown in Figure 3. The lowest overall barrier for production of R2-

DP is 16.3 kcal/mol. 

 

4. Conclusions 

Summing up the results (shown in Figures 2–4, S5 and S6), we have studied reactions starting 

from the four different substrate complexes (R1, R2, S1 and S2). There is no path from the R1 state 
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to any product. This state is also ~4 kcal/mol less stable than the other reactant states, because both 

H1 and H2 atoms point in the same direction, toward the less flexible and less basic Glu-99. 

The S2 state is 3.4 kcal/mol more stable than R1. Production of the wrong enantiomer of the 

product from this state is unlikely, because both H1 and H2 atoms point toward Glu-172, which in 

turn is on the si face side of C2. Abstraction of H1 by Glu-172 in S2 is more favorable than 

abstraction of H1 by Glu-99 in R1 (7.4 vs. 19.3 kcal/mol, compare the profiles in Figures S6 and 

S5). However, the produced intermediate in S2 (S2-IM1) can pass only one proton to the substrate, 

producing either S2-IM2 or S2-IM2’’. These two states represent thermodynamic sinks which are 

13.1 kcal/mol more stable than S2, and there is no path from them to the DP product. The S2→S2-

IM1→S2-IM2 path has a relatively low barrier (20.3 kcal/mol). However, there is a more favorable 

path from the S1 binding mode to the product (S1→S1-IM1’→S1-IM2→S1-DP) with an overall 

barrier of 14.0 kcal/mol. This would make the former ~3600 times slower than the latter (using the 

Arrhenius equation at 300 K). Therefore, the path from the S2 state to the thermodynamic sinks is 

unlikely. 

In the S1 binding mode, H2 is directed toward the Glu-99 residue and formation of the wrong 

enantiomer of the product could be conceivable (if Glu-99 abstracts H2 and pass it to the re face of 

C2). However, our results showed that Glu-99 can abstract H2 from the substrate, but cannot pass it 

to the re face of C2. Even after the first step (H1 to Glu-172), Glu-99 could not abstract H2, but H1 

can be passed to C2, with a barrier of 14.0 kcal/mol. The reaction path from S1 to S1-DP (S1→S1-

IM1→S1-IM2→S1-DP) agrees with the path proposed by RK-CH 28,29 (cf. Scheme 2). On the 

other hand, our calculations do not support the HS mechanism 27 in Scheme S1 (H1 cannot move 

from Glu-172 to O2 in the second step from S1-IM1).  

Our calculations show that the R substrate can bind in both the R1 and R2 modes. However, R1 is 

3.9 kcal/mol less stable than R2 and there is no path from it to a product. From the R2 state, H2 

cannot accomplish any proton transfer in the first step. Therefore, Glu-99 must abstract H1, 

producing R2-IM1, and pass it to either the re face of C2, producing R2-IM2, or to O2 producing 
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R2-IM2’. The R2-IM2 state could give rise to the wrong enantiomer of the product, but the last 

step is not possible (H2 to O2). Furthermore, the barrier of production of R2-IM2 is 21.1 kcal/mol, 

making its production unlikely. On the other hand, our results show two alternative paths from R2 

to the DP product (R2→R2-IM1→ R2-IM2’→ R2-DP and R2→R2-IM1→ R2-IM2’’→ R2-DP). 

Thus, based on the QM/MM calculations for the paths from the R2 state, we propose the reaction 

mechanism for the R-substrate of GlxI in Scheme 6. It is the first computationally confirmed 

mechanism for the R-substrate. In our proposed mechanism, Glu-172 abstracts the alcoholic oxygen 

of the substrate (H2) upon binding. Then, Glu-99 abstracts H1 from C1. After that, the reaction can 

proceed by moving either H1 from Glu-99 to O2 or H2 from Glu-172 to C2. The results indicate 

that the two paths have similar barriers (16.3 and 17.2 kcal/mol). The first path produces R2-IM2’ 

and the second path produces R2-IM2’’. Finally, H2 can move from Glu-172 to O2 and H1 can 

move from Glu-99 to O2 in R2-IM2’ and R2-IM2’’, respectively, giving the D enantiomer of the 

product (R2-DP). 

The second alternative path is almost the same mechanism proposed by RK for the R substrate 

(cf. Scheme S2). However, in our proposed path, H2 is abstracted by Glu-172 in the reactant state 

and not after abstraction of H1 by Glu-99 (compare mechanisms in Scheme S2 and Scheme 6). The 

QM/MM results indicate that the HS mechanism for the R substrate27 (Scheme S3) is not possible, 

because structures with H1 on Glu-99 and H2 is directed toward Glu-172 are not stable (the first 

intermediate in the HS mechanism in Scheme S3). Instead, Glu-172 abstracts H2 in such a structure 

(R2-IM1; Scheme 5a). The reason for this discrepancy is most likely that HS used a very small 

QM-cluster model with 36 atoms and with no constraints on the terminal atoms of the amino acids 

and no model of the surroundings. This indicates that QM/MM calculations with big QM systems 

are needed to obtain accurate mechanism for challenging enzymatic systems like that of GlxI,. 

In conclusion, our results show that a proton can be abstracted from C1 of both enantiomers of 

the substrate, but it is always added to the si face of C2. This is in line with the results of Landro et 

al.,35 which experimentally showed a non-stereospecific proton abstraction by the glutamates, but a 
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stereospecific proton delivery to the si face of C2 (the face which is directed to Glu-172). 

 
Scheme 6. QM/MM based proposed mechanism for the conversion of R-hemithioacetal by GlxI. 

 
To address the local-minima problem of the QM/MM calculations and to estimate also entropic 

effects, we recalculated the energy profiles for the three main reaction paths (S1→S1-IM1→S1-

IM2→S1-DP, R2→R2-IM1→ R2-IM2’→ R2-DP and R2→R2-IM1→ R2-IM2’’→ R2-DP) with 
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the QTCP method, which yields QM/MM free energies. These free-energy corrections were added 

to the big-QM energies according to Etot = Ebig-QM – EQM/MM + ∆GQTCP. The results in Figure 4 show 

that the overall Etot barriers for the reactions from the S1 and R2 states are 16.6 and 15.0 kcal/mol, 

respectively. These are in a reasonable agreement with the experimental reaction rate (kcat=1500 s–1, 

corresponding to an activation barrier of ∼14 kcal/mol)71 and the computationally calculated 

barriers (14.4 and ∼13 kcal mol-1 by HS and  Åqvist et al., respectively).27,36 In addition, the Etot 

energies show a lower barrier for the conversion of the R substrate compared to the conversion of 

the S substrate (15.0 kcal/mol vs. 16.6 kcal/mol). This is also in agreement with experiments which 

showed a faster conversion for the R enantiomer of glutathiolactaldehydes by GlxI (0.8 and 0.4 s–1 

conversion rates for the S and R enantiomers of glutathiolactaldehydes, respectively).35 

  
Figure 4. The Etot energy profiles for the main path reactions (a) from the S1 and (b) from the R2 states. The energy 

componetent of Etot is shown in Table S1 in the Supporting Information. 

Supporting Information Available: 

The full description of the HS mechanism for the S substrate, schematic views for the R substrate 

by RK, HS and CH, details of the protonation states of the protein residues, details of the ComQum 

calculations, description of the QM’ system and the corresponding energy profiles, details of the 

big-QM calculations, details of the QTCP calculations, optimized structures of R1, R2 and S2 

states, results and discussion of the reactions from the R1 and S2 states, selected distances of the 

stationary structures, energy components of Etot in Figure 4 and energy difference analysis between 

the stationary structures. 
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Synopsis: 

QM/MM calculations show that the S substrate of glyoxalase I can react only if its alcoholic 

proton is directed toward Glu-99 and the R substrate only if the alcoholic proton is directed toward 

Glu-172 and both reactions lead to the experimentally observed S-D enantiomer of the product. 


