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ABSTRACT 
Non-crimp fabric (NCF) composites combine the superior in-plane properties of 

unidirectional pre-impregnated tape (UDPT) and excellent out-of-plane properties of woven 

fabrics without their associated drawbacks of high manufacturing cost and crimping 

respectively. Research on such novel composite materials have mostly been parochial and 

focused on improving either the matrix or the reinforcement. The aim of this thesis is therefore 

to present a holistic and multifaceted study (in a life cycle vision of the composite) addressing 

the critical factors of matrix modification, dispersion quantification, testing optimisation and 

fibre reclamation from waste.  

Opencast moulding and vacuum-assisted resin transfer moulding (VARTM) were 

applied in the fabrication of three (3) sets of composite plates, namely silane functionalised 

Titanium dioxide (TiO2) samples, samples with non-functionalised TiO2, and samples without 

TiO2 nanoparticles. TiO2 was chosen because of its unique chemical and physical properties 

such as, electrical, UV absorption, corrosion resistance, superior photocatalytic activity, 

photostability, and refractive index. Several characterisations to evaluate the influence of silane 

treatment on the mechanical and thermal properties of the NCF composites were performed. 

The tests conducted on the samples included impact testing, microstructural analysis, and 

thermogravimetric analysis (TGA). Additionally, two new approaches using gap statistics and 

fractal dimension were developed for quantifying the state of TiO2 dispersion within the 

nanocomposite. Taguchi design of experiment, multiple response and genetic algorithm 

optimisations were explored for optimisation of tensile testing through the selection of optimal 

tab configurations. The end of life and fibre recovery were also evaluated. Pyrolysis and 

oxidation were used to recycle and recover carbon fibre from the NCF fibre reinforced 

composite plates. The recovered fibres were then characterised using a scanning electron 
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microscope (SEM), Brunauer-Emmett-Teller (BET) analysis, TGA, elemental analysis, X-ray 

diffraction (XRD), and Raman spectroscopy to investigate the influence of char.  

The results and analysis conclusively showed that silane functionalisation significantly 

improves thermal stability (≈ 19%), the integral procedural decomposition temperature 

(IPDT) (≈ 12%), the oxidation index (OI) (≈ 85%), and impact absorption energy. The two 

new dispersion quantification methods were used to accurately show that silane treatment 

improved the state of dispersion while significantly reducing agglomeration. The positive 

impact of silane treatment can be attributed to improved particle-matrix adhesion observed in 

the composites.  

In order to quantify the test sample parameters and sensitivity, statistical analysis on 

tensile testing revealed that tab stiffness, tab taper angle and adhesive thickness were the most 

significant factors, and the optimal tab design configuration necessary for minimising stress 

concentration was to select lower tab stiffness and tab taper angle values while increasing the 

adhesive thickness. The recovery of carbon fibre from NCF composites via pyrolysis and 

oxidation revealed that the char after pyrolysis acted as a sacrificial protective covering over 

the fibres during oxidation. The oxidised fibres exhibited improved thermal stability, increased 

pore size, decreased surface area and reduced pore volume. In addition, crystallite thickness or 

stacking height (𝐿𝑐) and crystallite width (𝐿𝑎) obtained from XRD decreased after oxidation 

while the relative intensity (𝐼𝑅) from Raman characterisation increased. 

This work contributes to the scientific body of research in polymer composites by 

presenting a holistic approach where characterisations and assessments are carried out from the 

manufacturing stage through to recycling and reclamation of reusable fibres.  

Keywords: Char; Dispersion quantification; Optimisation; Oxidation; Pyrolysis; and Silane 

coupling. 
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GLOSSARY OF TERMS 
 

Agglomeration 
Refers to nanoparticles that have associated into a cluster composed 

of two or more nanoparticles. 

Char 
Carbonaceous layer that covers the surface of fibres due to the 

degradation of epoxy matrix after pyrolysis. 

Circular economy 
An economic system aimed at eliminating waste and the continual 

use of resources. 

Cluster 
A cluster refers to a collection of data points aggregated together 

because of certain similarities. 

Composite materials A material that has two or more distinct phases or constituents 

Crimping 
When warp and weft yarn interlace in fabric, they follow a wavy 

path. 

Desirability index 
A means for complexity reduction of multivariate quality 

optimization 

Dispersion 
The action or process of distributing things or people over a wide 

area 

Drapeability 
The spherical deformability of textile planar material without 

structural folds 

Epoxy resin 
A class of reactive prepolymers and polymers which contain 

epoxide groups 

Finite Element 

Analysis 

the simulation of any given physical phenomenon using the 

numerical technique called Finite Element Method 

Fractal dimension 
A ratio providing a statistical index of complexity comparing how 

detail in a pattern changes with the scale at which it is measured. 

Fracture toughness A property which describes the ability of a material to resist fracture 

Functionalisation 

The process of adding new functions, features, capabilities, or 

properties to a material by changing the surface chemistry of the 

material 

Gap statistic 
A standard method for determining the number of clusters in a set 

of data. 

Hydrophobicity 
The physical property of a molecule that is seemingly repelled from 

a mass of water 
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Image Segmentation The process of partitioning a digital image into multiple segments 

Impact energy The energy required to break the material 

Interfacial adhesion 

Adhesion in which interfaces between phases or components are 

maintained by intermolecular forces, chain entanglements, or both, 

across the interfaces. 

K-Mean algorithm 

It identifies k number of centroids, and then allocates every data 

point to the nearest cluster, while keeping the centroids as small as 

possible. 

Matrix 
A homogeneous and monolithic material in which a fibre system of 

a composite is embedded 

Morphology the study of the forms of things 

Nanocomposites 
Nanocomposites are materials that incorporate nanosized particles 

into a matrix of standard material. 

Nanoparticles 
particles between 1 and 100 nanometres (nm) in size with a 

surrounding interfacial layer 

Optimisation 
the selection of a best element from some set of available 

alternatives 

Oxidation 
A process in which a chemical substance changes because of the 

addition of oxygen. 

Polymer 
It is a chemical compound with molecules bonded together in long 

repeating chains 

Preforms Form or shape beforehand or determine the shape of beforehand 

Pyrolysis 
The thermal decomposition of materials at elevated temperatures in 

an inert atmosphere. 

Recycling  
The process of converting waste materials into new materials and 

objects. 

Refluxing 
A technique involving the condensation of vapours and the return 

of this condensate to the system from which it originated 

Resin 
A solid or highly viscous substance of plant or synthetic origin that 

is typically convertible into polymers 

Silane coupling agent 
A class of organosilane compounds having at least two reactive 

groups of different types bonded to the silicon atom in a molecule 

Solvolysis The degradation of resin with the application of a solvent 
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Stress concentration 
The accumulation of stress in a body due to sudden change in its 

geometry 

Tab 
Object used to cushion against grip loading during mechanical 

characterisations 

Thermal stability 
Ability of a material to resist the action of heat and to maintain its 

properties 

Thermoplastic 

polymer 

A polymer that, when heated, becomes liquid, so it can be easily 

formed in any desired shape. 

Thermosetting 

polymer 

A polymer that is irreversibly hardened by curing from a soft solid 

or viscous liquid prepolymer or resin 

Warp knitting 
A process whereby knitting loops are generated in the direction of 

production 

Weft threads  

Wettability 
The tendency of one fluid to spread on, or adhere to, a solid surface 

in the presence of other immiscible fluids 
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ACRONYMS AND ABBREVIATIONS 
 

𝐷0 Dispersion quantity (Fractal dimension) 

𝐷𝑝 Dispersion parameter  

𝐺0 Gap factor 

𝐿𝑎  Crystallite width  

𝐿𝑐 Crystallite thickness or stacking height 

𝑃𝑆𝐷1 Particle spacing dispersity 

𝑃𝑆𝐷2 Particle size dispersity 

𝜎𝑥 Normal stress concentration 

𝜎𝑦 Peel stress 

𝜏𝑥𝑦 Shear stress 

ACARE Aviation Research and Innovation in Europe 

Al2O3 Alumina 

ANOVA Analysis of variance 

APTMS 3-aminopropyltrimethoxysilane 

BET Brunauer-Emmet-Teller 

C/N Carbon to nitrogen ratio 

CF-NE NCF carbon fibre reinforced composite  

CF-STN NCF carbon fibre reinforced composite with TiO2 inclusion 

CNT Carbon nanotubes  

CO2 Carbon dioxide 

DTG Derivative thermogravimetry 

EDX Energy dispersive X-ray 

EoL End of Life 

FEM Finite element method 

FTIR Fourier-transform infrared spectroscopy 

FVF Fibre volume fraction 

FWHM Full width at half maximum 

GA  Genetic algorithm  

H2 Hydrogen 

H2S Hydrogen sulphide 

IPDT Integral procedural decomposition temperature 

IPTMS 3-Isocyanatopropyltrimethoxysilane 

KM Kinematic mapping 
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KOH Potassium hydroxide 

LCM Liquid composite moulding 

MEK Methyl ethyl ketone MEK 

MPS 3-methacryloxypropyl-trimethoxysilane 

MTN Methanol treated TiO2 

N2 Nitrogen gas 

Na Sodium 

NCF Non-crimp fabric 

NE Neat epoxy 

NH3 Ammonia 

Ni Nickel 

O and O2 Oxygen 

O/C Oxygen content 

OI Oxidation index 

PDI Polydispersity index 

PEEK Polyetheretherketone 

PMMA Poly(methyl methacrylate) 

PY-CHAR Char covered fibres after pyrolysis 

PY-CHAR-OX Clean fibre after oxidation in air 

RPSD Radial power spectral density 

RTM Resin Transfer Moulding 

SEM Scanning Electron Microscopy 

SiO2 Silica 

SPM Scanning probe microscope 

STN Silane functionalised TiO2 nanocomposite 

TEM Transmission electron microscope 

TGA Thermogravimetric analysis 

TiO2 Titania 

TN Non-functionalised TiO2 nanocomposite 

UDPT Unidirectional Pre-impregnated Tape 

UHMWPE Ultra-high-molecular-weight polyethylene 

UV Ultraviolet 

VARTM Vacuum Assisted Resin Transfer Moulding 

VF Virgin fibre 

VF-OX Oxidised virgin fibre 

XPS X-ray photoelectron spectroscopy 
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XRD X-ray Diffraction 

𝐷 Dispersion quantity (Gap statistics) 

𝐼𝐷  𝐷 − 𝑏𝑎𝑛𝑑  

𝐼𝐺 𝐺 − 𝑏𝑎𝑛𝑑 

𝐼𝑅 Relative intensity  

𝑁 Aromatic layer 

𝑆𝑁 Signal-to-noise ratio 
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CHAPTER ONE 

1. INTRODUCTION 

1.1 Background of the Study 

The demand for light-weight but durable products has fuelled great interest in polymer 

composite as an alternative to conventional material in the industrial sector due to its ease of 

manufacture, low cost, and the possibility of optimising properties[1–5]. The category of 

composites leading this revolution is non-crimp fabric-based composites (NCF). In 1983 the 

first non-crimp fabrics (NCF) was manufactured from ±45° plies knitted together to form a 

double bias fabric. Phillips [6] defines NCF ply construction as, “a textile structure constructed 

out of one or more laid parallel non-crimped non-woven thread plies, which are differently 

oriented, with different yarn densities of single thread plies and in which integration of fibre 

fleeces, films, foams, or other materials is possible”. NCF-based composites evolved as a 

compromise between woven fabrics and unidirectional pre-impregnated tape (UDPT) and is 

distinguishable by the use of stitching. It possesses the outstanding out-of-plane properties of 

woven fabrics such as excellent drapeability while avoiding the problem of crimping. NCF-

based composites also have the advantage of possessing the in-plane properties of UDPT but 

are less tedious and less expensive to manufacture. 

Mechanical characterisations such as tensile and compressive testing for NCF polymer 

composites usually require the implementation of bonded tabs due to the low transverse 

compressive stress typical of such materials [7]. The existing literature on optimising these 

tests to minimise stresses is mostly purely experimental with some form of accompanying finite 

element analysis [8–13]. The implementation of advanced optimisation techniques such as 

genetic algorithms is not extensively explored. 
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The superior benefits of polymer composites make the need for control and enhancement 

of its mechanical, physical and chemical properties imperative. Matrix modification with 

nanoparticles to improve the properties of NCF composites have been extensively researched. 

TiO2 nanoparticles has received a lot of interest in recent times due to their peculiar chemical, 

electrical, UV absorption, corrosion resistance, superior photocatalytic activity, photostability, 

and refractive index properties [14–18]. The incorporation of TiO2 nanoparticles as 

reinforcement in polymer matrices has been successfully achieved by several researchers 

[17,19–24]. However, the inherently large surface area to volume ratio of the nanoparticles 

present a strong affinity for agglomeration [23]. Improvements to mechanical properties have 

only been achieved when nanoparticles are homogeneously distributed using mechanical or 

high-speed stirring [25], sonication [26,27], high shear mixing or melting [28,29], 

incorporating surfactants or compatibilisers [30] and casting solvents [31] and ultrasonic 

dispersion [32]. However, most of the available literature investigates non-functionalised TiO2 

nanoparticles, which makes achieving homogeneity extremely difficult. This provides a gap in 

the literature for examining the influence of functionalisation agents such as silane on the 

thermal, mechanical and fracture mechanics of the composite. 

The thermal stability of epoxy-based nanocomposites, in particular, is known to be highly 

dependent on the state of the TiO2 dispersion in the matrix. This means that the formation of 

agglomerates can negatively affect effective particle-matrix bonding which causes a reduction 

in the thermal stability of the nanocomposite [23]. A quantitative means of assessment is 

therefore an important step towards understanding the effects and relationships between bulk 

scale functional performance and nanoscale structures in nanocomposites [33]. Furthermore, 

quantification establishes a direct base for correlating the properties of the composite material 

to a standardised measure while providing variables for optimisation [34]. A number of 

researchers have proposed various approaches based on randomly distributed determinants 
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[35], clustering [36], interparticle spacing [37], quadrant [38–42]; [43], probability [44,45], 

particle volume loading [46] and fractal dimension [47]. All the above approaches are either 

highly sophisticated, complex or too simplistic, or theoretical with severe practical limitations. 

Some technical drawbacks in the existing techniques include lack of agglomeration parameters, 

over-reliance on only free path spacing, standard deviation as the sole basis, suitability for 

comparison of only similar particle concentrations, and difficulties with reference sampling. 

As continual research towards optimisation of composite characterisation advances, its 

demand and industrial applications also rises. This situation is resulting in End of Life (EoL) 

waste management challenges. The core principle of the circular economy concept is value 

addition to EoL waste via recycling and reuse. Globally, an increase in demand for carbon 

fibres rose from 27000 𝑡𝑜𝑛𝑛𝑒𝑠 in 2009 to about 116,000 𝑡𝑜𝑛𝑛𝑒𝑠 by 2021 [48], which presents 

a waste management challenge in scraps and EoL products. Harsh waste disposal legislatures 

such as the 2000/53/ EC EU Directive make it imperative that research focuses on recycling 

and adequate reclamation of carbon fibre from composite waste. Several recovery techniques 

have been researched, and the most appealing is pyrolysis [49] which is capable of recovering 

solid residue, liquids and gaseous by-products. The study by Mazzocchetti et al [49] is one of 

the few comprehensive reports on the pyrolytic recovery of CF from waste. Their research is 

presently the only attempt to explore the influence of char on the surface of CF although it was 

limited to morphological changes. Additionally, the effect of pyrolysis, oxidation and char was 

limited to temperatures below 650℃. Further research is required to investigate the influence 

of these parameters at more elevated temperatures.  

1.2 Problem Statement  

Research on non-crimp fabric composites has traditionally focused on either mechanical 

characterisations, failure mechanisms, drapability or a combination of these factors. Based on 

the literature reviewed and knowledge-gap identified, three critical areas of research have 
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received little or no research attention with respect to NCF composites. Firstly, mechanical 

testing optimisations using tools such as genetic algorithms and multiple responses are scanty 

and have for the most part been overlooked, yet it is important to apply such optimisation tools 

for precise and accurate solutions and improvement of parametric conditions. Secondly, 

achieving a homogeneous dispersion of nanoparticles within matrices is still very difficult [32]. 

Thirdly, assessments of the state of dispersion in most studies are done via visual inspection of 

SEM or TEM images, which is very subjective.  

There is progressive improvements in fabrication and testing of composite materials 

coupled with climate change, global warming, stricter regulations on noise and emissions, and 

a progressive global shift towards greener, sustainable and efficient energy sources. This has 

resulted in a greater demand for composite materials which is expected to reach 

120,000 𝑡𝑜𝑛𝑛𝑒𝑠 in 2021[49]. The wind energy sector is the largest consumer of NCFs since it 

is the primary material used for the fabrication of wind turbine blades [49]. However, the high 

demand implies high waste output, and with stringent directives such as the 2000/53/ EC EU 

Directive on waste management, research into recycling and fibre recovery techniques has 

become critical. Comprehensive studies conducted by Mattson [50], specifically on NCF 

composites, do not report on waste management or recycling and fibre recovery techniques. 

There is in fact no literature on NCF composites at present that is holistic and captures analyses 

based on a circular economy or cradle to cradle approach. Furthermore, the characteristics of 

the recovered fibres require a detailed examination to ensure reuse. 
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1.3 Research Question 

The key research question based on reviewed literature and the identified knowledge 

gaps was as follows: 

How can non-crimp fabric composites be improved up to end of life utilisation through matrix 

modification using functionalised nanoparticles with a perspective focusing on optimisation 

and quality of the characterisation approaches? 

1.4 Aim  

The aim of this research is to investigate and develop a holistic approach for the 

characterisation of non-crimp fabric composites from fabrication to fibre recovery with the 

emphasis on matrix modification, dispersion quantification, test parameter optimisation, and 

pyrolysis as a viable option for recycling and fibre recovery towards establishing a circular 

economy. 

1.5  Objectives 

The research objectives include: 

1. To determine the influence of silane functionalisation of TiO2 nanoparticles on the thermal 

and impact properties of NCF composite; 

2. To develop two methods for quantifying the state of dispersion in the TiO2 modified 

matrix; 

3. To investigate and compare Taguchi, Multiple response and Genetic algorithms 

optimisation techniques for minimising tab induced stress concentration during tensile 

testing; 

4. To deternmine the impact of pyrolytic and oxidation conditions on the recovered carbon 

fibre and the influence of char formation on fibre surface. 
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1.6 Hypothesis Statement 

In this research study, silane functionalisation is expected to significantly improve the 

state of nanoparticle dispersion and the thermo-mechanical properties of polymer composites. 

During mechanical testing, it is expected that optimising the geometry and varying material 

characteristics will significantly reduce the induced stress concentrations and thereby improve 

accuracy and consistency in test results. It is also envisaged that the process of pyrolysis 

coupled with oxidation will effectively recover fibre from polymer composites.  

1.7 Motivation 

Fibre-reinforced composites are a great resource for obtaining lighter, corrosion-

resistant, flexible, biocompatible and structurally optimised materials for use across 

multidisciplinary fields. Although standardised testing is well-established for mechanical 

testing, avenues for optimising the experimental process remains under-researched. There is 

consequently a need to explore various optimisation techniques to address the engineering 

problem. Modifying the matrix properties to fabricate fibre- reinforced composites through 

nanoparticle inclusion has been extensively researched, however, the state of dispersion which 

directly correlates with the obtained properties are mostly qualitatively assessed through visual 

inspection. Quantification techniques for accurately assessing dispersion are necessary to 

investigate the full potential of composites.  

There is presently a drive towards a circular economy in the composite industry, and 

waste minimisation through recycling and re-use to complete the circle. Due to the continued 

rise in demand for NCF composites, coupled with an increase in End of Life (EoL) waste and 

the environmental implications, the significance of developing recycling and fibre recovery 

approaches for secondary applications cannot be overemphasised. 
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1.8 Scope of Study 

In this research, the theoretical data analysis and laboratory work considered only non-

crimp fabric composites and TiO2 nanoparticles. Test samples were fabricated with either open 

cast or vacuum-assisted resin transfer moulding (VARTM) system. Pyrolysis was the only 

approach used for recycling the NCF carbon fibre reinforced composites; these are well 

reported in detail. 

1.9 Contribution to Knowledge 

There is limited research on the holistic assessment of non-crimp fabric composite 

materials from fabrication to EoL waste management. This research contributes to the scientific 

body of knowledge by investigating the influence of silane treated TiO2 on the thermal and 

mechanical properties of NCF composites, the development of two quantification techniques 

for assessing the state of nanoparticle dispersion within the matrix, the application of three 

optimisation techniques for tab configuration design during tensile testing to minimise induced 

stress concentration, and finally recycling and recovery of carbon fibre NCF with the focus on 

the influence of pyrolytic and oxidation conditions. The effect of char on the recovered fibre is 

also comprehensively explored and reported. 

1.10 Structure of Thesis 

This thesis is organised into five chapters with a summary at the end of each chapter, 

presented as follows: 

Chapter One: This chapter presents a general background to fibre-reinforced polymer 

composites with the emphasis on optimising tests for end of life waste recycling. It offers a 

brief highlight of the problem statement constructed from identified gaps in a critical review 

of the literature. The aim, objectives, hypothesis statement, motivation, delimitation of the 

study and contribution to the body of knowledge are outlined. 
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Chapter Two: This chapter presents a general and critical review of the relevant 

literature. It also reports on a general but comprehensive review of non-crimp fabric 

composites, detailing all the manufacturing techniques and attempts at optimising tensile 

testing. It offers three major critical reviews highlighting identified gaps in the literature. 

Firstly, a detailed discussion of the effects of TiO2 nanoparticles on the matrix is reported. 

Secondly, the existing methods of quantifying the state of dispersion in nanocomposites is 

presented. Finally, a review of existing recycling methods for fibre-reinforced composites was 

conducted with the emphasis on pyrolysis. The chapter concludes with a critical summary of 

the reviewed literature and highlights the identified gaps. 

Chapter Three: In this chapter, the material, experimental procedures and quantification 

methodologies used to achieve the aim and objectives of this research are presented. It also 

offers the statistical approaches used for the data analysis to assess the influence, impact and 

interactions. 

Chapter Four: All the findings and inferred influences, the importance, correlations and 

impact of this research are presented and discussed in detail.   

Chapter Five: This chapter presents a result-based conclusion, which captures the 

summarised results and their correlation and relevance to the aim and objectives of the study. 

All the challenges and limitations are discussed and used as foundation for formulating 

recommendations for future studies and developments. 
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CHAPTER TWO 

2. LITERATURE REVIEW 

2.1 Introduction 

The application of human-made composite materials can be traced back thousands of 

years. Wattle-and-daub for example, is amongst the oldest composites, dating back over 6000 

years [51]. Advanced application of composites, however, dates back only some three decades, 

specifically in the aerospace industry [52]. The present rise in the demand for and interest in 

composites is primarily driven by their superior advantages over conventional materials such 

as wood, steel and aluminium. These advantages include superior strength and stiffness, high 

resistance to corrosion, excellent rigidity and lightweight, and have motivated extensive 

applications in automobile, wind turbine, aerospace, marine and sports equipment. A definition 

of a composite material is provided by Tsai [53] who states that “composite materials consist 

of two or more constituent materials bonded together so that the gross properties of the 

composite are superior to those of the constituents”. Agarwal et al. also define it as “a material 

that has two or more distinct phases or constituents” [54]. However, the term composite 

material is inferred only when there is a significant difference between the physical properties 

of each constituent phase [50]. The two primary phases, which make up a composite material, 

are the dispersed or reinforcing phase and the matrix phase. The matrix is the primary phase, 

which is characteristically homogeneous and continuous, ductile, and accommodates the 

reinforcement. The secondary phase is the reinforcement incorporated within the matrix in a 

discontinuous nature. Reinforcements have superior strengths in comparison with the matrix 

and can be categorised as particles (micro and nano), whiskers, platelets, continuous and 
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discontinuous fibres etc. Matrix materials are primarily categorised into three groups, namely 

ceramics, metals and polymers [55]. 

2.2 Non-Crimp Fabrics 

Typically, non-crimp fabrics are identified as yarn stitched unidirectional plies organised 

in distinct orientations [56]. Phillips [6], defines NCFs as “a textile structure constructed out 

of one or more laid parallel non-crimped non-woven thread plies, which are differently 

oriented, with different thread densities of single thread plies and in which integration of fibre 

fleeces, films, foams, or other materials is possible”. The patent number DD000000008194A 

was granted to Heinrich Mauersberger in 1949 for the design and manufacturing process of a 

novel textile material. This patent was very important because it was the first step towards the 

development of an engineering fabric such as a non-crimp fabric. The patent detailed the 

fundamental idea of producing textiles via the application of chain-stitched seams to interlink 

threads that are either loose fillings or drawn parallel weft. In addition, a guide rail was used 

for routing the weft thread intersects with chain- seam connections. Zig-zag chain stitching 

seams were used for fixing process direction fed threads to the unit for stitching. Furthermore, 

the needle puncturing position was placed within two weft threads [57]. However, in 1983 the 

first NCF was developed through the knitting of plies with +45°and -45° orientations [58]. 

There are several categories of NCFs as shown in Figure 2.1. The high reduction in 

manufacturing cost of NCFs can be attributed to the manufacturing process, which is an 

adoption of the production systems of existing traditional textile manufacturing equipment 

using glass, carbon, aramid or ceramic fibres. Generally, NCFs have greatly benefited from the 

cost-efficiency and high automation of manufacturing techniques already developed within the 

textile industry such as knitting, weaving and braiding to produce dry NCF preforms [50]. Non-

crimp fabrics, when used as reinforcement in composite fabrication, can be categorised into 
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two primary steps, namely preform manufacture using textile stitching technology and 

moulding via liquid composite moulding (LCM). 

 

Figure 2.1 Types of Non-crimp fabrics [59] 

 

Basically, the manufacture of preforms comprises optimal placement of non-crimp fabric 

tows via warp knitting using stitching yarns such as polyester or aramid [56,60,61]. Uni-, bi-, 

tri- and quadaxial dry preforms are manufactured using the above-stated method (Figure 2.2) 

followed by stacking to obtain desired thickness and geometry, and finally moulding to 

fabricate the component. 
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Figure 2.2 Stitching of Multiaxial NCF, source: Seuß (2014) 

 

Warp knitting of fabrics is described as a process whereby knitting loops are generated 

in the direction of production. The creation of loops is carried out by compound needles 

carefully positioned to simultaneously move on a continuous needle bar. Several systems of 

yarn are necessary for the production of warp knitted fabrics [59]. During the warp knitting 

NCF, the formation of loops is solely for the binding reinforcement fibres or layers. Warp 

knitting technology and machinery are highly productive in comparison with other existing 

systems. The resulting warp knitted NCF has the advantage of good flexibility in terms of fibre 

orientation and setup of layers, however, the constraint of possessing a constant area weight 

and width is a limiting factor. The warp-knitting process could be coursewise or non-

coursewise regarding the positioning of the thread reinforcement.  

 

Figure 2.3 Warp-Knitting machine (diagram by Liba), source: Mattsson (2005) 
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A coursewise weft insertion is characterised by a single knitting loop binding both weft 

and warp threads while a non-course weft insertion is distinguishable by the thread positioning 

which is independent to the stitch length [59]. Multiaxial warp-knitting of NCFs as illustrated 

in Figure 2.3 is achieved with similar technology and machinery as biaxial warp-knitting 

however, multiaxial weft insertions are used instead of biaxial weft insertions (Arnold et al., 

2000; LIBA, 2007d; Parekh, 1989; Petrenz, 2009). 

2.3 Non-Crimp Fabric Composite 

The past six decades have seen a significant rise in the application of fibre reinforced 

composites in traditional mainstream industries where reductions in manufacturing cost and 

weight, and a high demand for flexibility in tuning properties for enhanced mechanical and 

structural strength, are baseline requirements [49,50,62]. Unidirectional pre-impregnated tape 

(UDPT) laminate intrinsically exhibit excellent in-plane properties, however, some major 

drawbacks are: delamination sensitivity, crack initiation and progression due to inferior 

interlaminar toughness during impact [63], and high fabrication cost mainly attributed to labour 

and storage costs [56]. The above-stated disadvantages served as inspiration for the 

manufacture of bidirectional woven fabrics composites, which were cheaper to manufacture, 

and had superior fractional toughness. Notwithstanding, woven reinforced composites exhibit 

out-of-plane waviness which results in significantly reduced in-plane properties in comparison 

to UDPT [50,64].  

A third fibre reinforcement fabric was therefore developed as a compromise - bridging 

the excellent properties of UDPT and woven fabrics without their drawbacks of either. Non-

crimp fabrics possess the enhanced drapeability of woven fabrics without the associated 

waviness or crimping [65] which directly contributes to lower manufacturing cost [66] and 

increased compressive strength [65,67].  
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Figure 2.4 (a) Internal structure of UDPT [50], (b) Pain woven structure [68] and (c) Non-crimp fabric [50]  

 

A representation of UDPT, woven and NCFs is shown in Figure 2.4 (a) (b) and (c) 

respectively. Furthermore, NCF reinforced composites are observed to possess improved 

damage tolerance and delamination resistance as a result of the stitching [69]. As alluded to 

earlier, the primary indicator for the transition from autoclave based UDPT to resin infusion 

fabricated NCF was the cost gains as presented by Bibo et al. [56] where 35% reduction in 

labour cost was observed for NCF composites. The cost analysis from the study further showed 

that in composite manufacturing, material and labour cost constituted 25% and 50% of the 

total cost of production respectively. 

2.4 Liquid Composite Moulding Techniques  

The methods developed for production of composite components are varied and can 

deliver products with a broad-spectrum range in quality and cost. Most composite fabrication 

techniques integrate systems for forming porous reinforcements into desired geometries, and 

then infusion with a matrix medium [64]. Nevertheless, different approaches are used to 

execute the two steps depending on the particular manufacturing process. The least complicated 

and low-cost approach is wet layup, however, the parts produced are low in quality [64,70]. 

Another process is via autoclave which results in products of very high quality but at a 

(a) (b) (c) 
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relatively higher manufacturing cost and with bulky equipment. Liquid composite moulding 

(LCM) represents a category of moulding techniques, which is a compromise between wet 

layup and autoclave processes. This implies that parts are produced with better quality than wet 

layups and at a lower manufacturing cost than using autoclave. The above advantages of LCM 

are motivating factors for their usage in the production of the majority of composite materials 

[70]. 

LCM techniques entail soaking a fibrous material with a matrix, usually a liquid resin, 

and after a gelling period the composite part is formed. The process of soaking or saturation is 

termed infusion. A mould is normally used for the geometric shaping of the component, and 

the flow of the resin through the preform is accomplished through resin pressurisation and the 

application of a pulling vacuum or a merger of both. Several LCM variations are currently 

available two of which are resin transfer moulding (RTM) and vacuum assisted resin transfer 

moulding (VARTM) [64,71]. 

2.4.1 Resin Transfer Moulding (RTM) System 

Resin transfer moulding (RTM) is a variant of LCM with operational procedures 

involving a two-sided matching mould used for forming the composite structure. Compression 

of the fibrous preform is carried out to create a tightly seal system using two structurally rigid 

moulds. Injection of a matrix, usually a thermosetting resin, is performed via at least one inlet 

located at different positions in the mould. To ensure effective infusion and saturation of the 

preforms, an injection pressure of 700 kPa is normally used [70–72]. The removal of volatiles 

generated during the curing of the resin can be done by connecting the outlet port to a vacuum 

source. Additionally, the integration of a vacuum system minimises the creation of void content 

and creates conditions that enables the application of lower injection pressures. Precautions 

must however be taken to prevent the pressure falling lower than the resin’s vapour pressure to 

avoid the creation of voids. After the infusion is completed and the preform reaches full 
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saturation, the curing process is commenced via heating the mould [70–72]. The RTM process 

is described in Figure 2.5.  

 

Figure 2.5 The Resin Transfer Moulding (RTM) Process [73] 

 

RTM produces parts that are close in quality to autoclave produced components with a 

void content lower than 4% [74] and a high fibre volume fraction of about 60 − 70% [75]. 

The use of a two-sided rigid mould ensures that the fabricated parts have high dimensional 

tolerance, excellent surface finish on all sides and high reproducibility. Moreover, since the 

injection process is conducted under pressure, reduced cycle times (5 − 10 𝑚𝑖𝑛𝑠) are 

attainable [74] which is a motivation for adoption in large scale production of composite parts 

in industries such as the automotive industry [71,72]. The cost of tooling required for an RTM 

process is extremely high and a major drawback to mainstream adoption. The fabrication of 

two-sided moulds also requires high machining to tolerances plus the use of materials and 

designs capable of withstanding high pressures during the injection process. Furthermore, 

heating and pressurisation of the mould requires additional equipment [70–72]. 

2.4.2 Vacuum Assisted Resin Transfer Moulding (VARTM) 

Vacuum assisted resin transfer moulding (VARTM) involves the use of a one-sided 

moulding system that sucks in the matrix material into a fibrous preform via pressurised 

vacuum as shown in Figure 2.6. During VARTM, a one-sided mould serves as a platform for 
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layering the preform before vacuum bag sealing is carried out [6,64,70]. Normally a medium 

with high porosity is positioned between the flexible vacuum sheet and the preform. The 

VARTM process has a distribution mechanism that intrinsically ensures moderate fluid flow 

resistance which promotes fast saturation of the mould with the resin. As the space between 

the mould and the vacuum bag experiences the pressure introduced by the vacuum, the 

atmospheric pressure outside act on the flexible vacuum bag and the fibrous preform 

[64,70,76]. Preform infusion is ensured by the placement of the resin inlet ports at several parts 

of the mould which facilitates the creation of suction force by the vacuum pressure and causing 

fast saturation of the preform. 

 

Figure 2.6 Vacuum-Assisted Resin Transfer Moulding (VARTM) [76] 

 

In comparison to RTM the cost of tooling in VATRM is significantly less because 

composite fabrication is conducted on a single-sided mould, lower machining tolerances are 

acceptable, and cheaper. A less mechanically stiff materials can therefore be used because of 

the absence of high injection pressure which is a requirement for a two-sided moulding process 

[70]. Additionally, the presence of vacuum pressure implies that during injection and infusion 

of the preform with resin, the creation of void content is significantly minimised in comparison 

with RTM and layup processes [70–72]. The highest attainable fibre volume fraction (FVF) 

when fabricating with VARTM is 50 − 60%. The main reason for such low FVF is attributed 

to the low compaction pressure, limited to 1 atm, which is used for the compression of the 

preform during moulding [75]. The low pressure associated with the infusion process of 

VARTM contributes to lengthier fill and saturation times compared to the RTM process. For 
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large scale applications such as in wind turbine manufacture, the use of simulation programmes 

is often required for optimising the placement of the inlet and outlet ports primarily to ensure 

complete saturation of the preforms before resin curing commences [70]. Furthermore, the 

drawback to using a single-sided mould is that the quality of the surface finish of the vacuum 

sheet side is significantly inferior and of a lower tolerance than the mould side [71,72]. 

Even after optimising the infusion process, a challenge relating to the nature of the resin 

flow within the mould, which is normally inhomogeneous due to the resistance of the preform 

and low pressure difference, is the risk of manufacturing parts with voids and dry patches which 

are detrimental to the overall mechanical properties of the structure [77–80]. Therefore, to avert 

any possible defects from developing and to ensure efficient process control, introducing a 

sensor suitable for tracking and monitoring the resin flow-front evolution within the mould is 

vital [80]. Some of the sensors that have been applied for monitoring of the fluid flow within 

VARTM systems are electrical time-domain reflectometry sensors [81], pressure sensors [82] 

and permittivity sensors [83]. 

2.5 Application of Non-Crimp Fabric Composite 

Non-crimp fabric composites have been applied in several fields such as the automotive, 

aerospace, wind and marine industries. However, there is an exponential rise in utilisation 

especially in the automotive, aerospace and wind power sectors. The following review 

therefore focuses on some significant applications in the above-stated fields. The main driving 

forces behind the increase in demand have been improved drapeabilty during preforming, low 

weight, and cheaper cost of manufacture.  
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2.5.1 Application in the Automotive Industry 

Chevrolet pioneered the introduction of composite materials specifically with the 

application of glass fibre components in the design and manufacture of the Corvette in 1953. 

Lotus was one of the first automotive companies to successfully build a sports vehicle from 

glass fibre reinforced composite in 1962. Presently, NCFs are scarcely used in conventional 

mass production of automobile components resulting from the non-existence of reliable 

automated production systems [84]. Barely 5000 parts per year can be produced via resin 

infusion methods whereas the incorporation of automation for preforming and the moulding 

process will improve the rate of production to more than 50000 parts per year [59]. The 

limitations associated with the absence of full automation has restricted the application of NCFs 

to mostly high-end luxury and sports automobiles. The first reported batch manufactured NCF 

components were on the roof of the BMW M3 and the roof carline of the M6 [59,85]. These 

components were fabricated using glass fibre NCF which translated into a weight reduction of 

over 5𝑘𝑔 compared with traditional roofs. The BMW Group, Munich, Germany, has 

introduced innovative approaches that apply hybrid methods for the production of components 

by manually gluing NCF preforms onto body-parts to enhance mechanical properties such as 

excellent stiffness which is required for satisfying crash standards. A typical example of the 

hybrid method application is the fabrication of the side frame for BMW’s Hydrogen7 vehicle 

[85]. Lamborghini has also incorporated NCFs in the design of the boot lid of the Gallardo 

Spyder. For a comparative study, they also designed another boot lid with the same dimensions 

and geometry from aluminium. The NCF fabricated boot lid required only two (2) parts while 

nine (9) single parts were required when aluminium was used [85].  

In Europe, the first reported use of NCF in the automotive industry was by Lotus in their 

1962 sports car [59]. Non-crimp fabric composites are presently exclusively manufactured for 

use in high-end luxury and sports vehicles [86,87]. This is the general trend in application of 
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composite materials in the automotive industry. The major limiting factor for mass production 

of composite materials is a lack of automated systems from preform production to draping and 

finally moulding [59,88–90]. In the fabrication of NCF composites, the preform manufacture 

is the only automated section. Draping and moulding are all labour intensive. The ability to 

produce components with high geometric complexities is severely restricted by the drapability 

limitations [89]. Luxury cars are partly automated and partly manual, which means that 

incorporating composite materials is feasible. Increasing the current application levels for 

composite material use in the automotive industry however requires further investment into 

mitigating the limitations of draping and introducing full automation to ensure mass production 

possibilities without which mainstream applications will remain elusive and restricted [84]. 

2.5.2 Application in the Aeronautic Industry 

In the aeronautic industry, the most significant motivating factors for material selection 

are weight reduction (which directly enhances performance) and efficiency. Composite 

materials are particularly suited for lightweight design applications, and further provides the 

requirements for complex integration of designs, superior strength-to-cost benefits, and 

excellent specific weight stiffness [50]. The application of composite materials in aviation can 

be traced to World War II particularly in the design of the British Spitfire. Hemp fibre was used 

for reinforcement and phenolic resins as matrix. Chronologically, glass fibre fabricated into 

honeycomb-core sandwich panels were introduced in 1950 while in 1960 boron/epoxy 

composites were developed and applied in the industry [59]. However, not until the 1970s did 

the introduction and application of carbon and Kevlar fibre reinforced composites within the 

aviation industry started gaining prominence [91]. Although aluminium, titanium and steel 

alloys still remain competitive materials in the dominant applications of composites materials, 

the drive towards sustainability, excellent mechanical and thermal properties, weight loss, 

efficiency and reduction in fuel consumption, and strict adherence to environmental legislation, 
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is contributing to higher demand and the increased significance which composite materials will 

assume in the future of the industry [92]. 

There has also been a steady rise in the percentage of composite materials over the years 

in the airline industry. The Airbus A340 (1990-2000) for example incorporated 17% of 

composite structures and components in its design while the A380 (2000-2010) model was 

manufactured using 25% composite parts [93]. It has been announced that the A350 XWB 

model which is still in production will incorporate 50% composite structures. Boeing is already 

leading in this regard as the Boeing 787 model consists of 50% composite components (Figure 

2.7) which ultimately impacts performance and fuel consumption efficiency. The continuous 

and steady increase in the application of composites such as NCF is a direct consequence of 

the shift towards more environmentally sustainable policies, regulations and legislation from 

nations and institutions such as the Advisory Council for Aviation Research and Innovation in 

Europe [94]. Some of the set goals for the aviation industry from ACARE (2015) are curtailing 

carbon dioxide CO2, noise levels, and NOx by the year 2020. 

 

Figure 2.7 Composite content -Boeing 787 [95] 

 

Airbus was the first to manufacture a rear pressure bulkhead (see Figure 2.8)for the 

commercial airlines Airbus A340-500/600. These components were fabricated with pre-
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impregnated fabric, although the new design in the A380 was manufactured solely from carbon 

fibre NCF. It is the largest composite structural member with a dimension of 6.2𝑚𝑚 𝑋 5.5 𝑚𝑚 

and weighs 240 𝑘𝑔. Multiaxial carbon fibre NCFs was also the main material used for 

manufacturing the rear cargo door of the Airbus A400M's pressurised fuselage. The aircraft is 

designed for the transportation of military inventories [93]. 

 

Figure 2.8 Composite application in the manufacture of Airbus A380 [96] 

 

2.5.3 Application in the Wind Power Industry 

The energy crisis in 1979 was the catalyst for the advancement of the modern-day wind 

energy industry. Fibre reinforced composites are highly suited for the manufacture of wind 

power blades because of their performance efficiency, light weight, weather and fatigue 

resistance, and flexibility for fabricating optimal aerodynamic shapes. In principle steel, 

aluminium, titanium and fibre reinforced composites (glass, carbon, aramid, Kevlar etc.) are 

all aerospace materials that can be used to manufacture rotor blades [97–99]. However, the 

basic requirements for material selection in rotor blades are excellent specific strength, 

modulus of elasticity, and fatigue strength. By comparison, glass/epoxy composites were 

observed to possess and exhibit an excellent property balance at lower cost-effective strength 

[100]. Fibre glass is generally known to have a low cost per unit strength and mass, and is 

therefore the most suited for adoption in rotor blade fabrication [101]. In a typical blade design 
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using NCF, the laminate build-up is normally via unidirectional, biaxial and triaxial NCF 

fabrics. In standard practice for normal modern rotor blades, the unidirectional NCF segment 

of the blade is about 50 𝑡𝑜 60% of the NCF fabric [59,101]. However, in larger blade designs, 

triaxials are decreased in favour of ±45° biaxial and unidirectional NCFs. Rotor shear webs 

are also mainly built out of ±45° biaxial. 

The wind industry is one of the largest consumers of NCF composites because its largest 

component (rotor blade) is made almost entirely from it. Non-crimp fabrics are often the 

preferred material choice because they generally address durability, cost considerations, 

flexibility of the manufacturing process, and suitability for the complex blade shape which is 

critical to the material selection [101]. In wind turbine design, specifically of rotor blades, 

several loading instances are incorporated in compliance with existing standards [102,103]. 

Significant among the loads are extreme operational loads, survival loads, and prolonged 

durability. The maximum load that blades can withstand in extreme conditions such as 

earthquakes or hurricanes is referred to as the survival load, while the maximum possible loads 

expected during typical workings of the turbine is termed extreme operational loads. Durability 

for wind turbines describes the ability to provide fail-free performance under normal 

circumstances throughout 20 to 25 years of standard service life [59]. Extreme design 

conditions are outlined in the IEC 61400 part 1[102] standards. 

 

2.6 Matrix Modification via Introduction of Nanoparticles 

2.6.1 Titanium dioxide (TiO2) as filler in Nanocomposites 

A composite material comprises a combination of reinforcement (fibre, particles or both) 

and matrix, which is either thermosetting or thermoplastic. Epoxy is thermosetting and widely 

used because of its distinguishing and excellent mechanical and thermal properties, minimal 

shrinkage after curing, superior chemical and corrosion resistance, and suitability for 
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processing under varied conditions [18]. The curing of epoxy resins leads to the formation of 

3D cross-linked networks which result in brittle characteristics that limit its application [18,30]. 

It has been well established that the brittle nature of epoxy resin displays low resistance to 

crack initiation and propagation [104]. These limitations have motivated several research 

outputs focused on methodologies and techniques to aim at improving fracture resistance, 

which comprises brittleness and toughness through the introduction of nanoparticles such as 

alumina Al2O3, carbon nanotubes (CNT), silica (SiO2), titania (TiO2) and many more. 

TiO2 nanoparticles, in particular, have received a great interest in recent times due to 

their peculiar chemical, electrical, UV absorption, corrosion resistance, superior photocatalytic 

activity, photostability, and refractive index properties [14–18]. These excellent properties 

have been exploited for the manufacture of skincare products, food packaging, water 

purification systems, nanomedicine, coatings, solar cells, ion-batteries, and as reinforcement 

for polymer composites [105–108].  

Matrix reinforcement and modifications have been carried out for epoxy [17,18], 

polypropylene [109], poly(butylene succinate) (PBS) [110,111], polyethylene [112], 

poly(vinyl butyral) [113] and poly (methyl methacrylate) [114,115] matrices to enhance the 

mechanical and thermal properties. Such nanocomposites have found applications in a wide 

variety of multidisciplinary industries such as in aerospace, automotive, semiconductors, 

construction, structural engineering and many more. The incorporation of nanoparticles into 

thermosetting polymer matrices are known to improve matrix mechanical properties such as 

fracture toughness, tensile modulus and strength, flexural modulus and strength and impact 

energy [116,117]. 
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2.6.2 Effect of Titanium dioxide (TiO2) on Impact and thermal properties of polymer 

composites 

Reports from TiO2 nanocomposites have shown significant improvements in 

environmental resistance, electrical, optical, mechanical, and thermal properties, [118–122]. A 

strong correlation between nanofiller type and volume content has been established in the 

literature [19,123]. Furthermore, titanium dioxide intrinsically possesses a high surface-to-

volume ratio; a property that has been exploited in biomedical [105], solar cell [124] and 

photocatalysis applications [125]. TiO2 polymer nanocomposites are known to exhibit 

considerable flame retardant properties, antibacterial behaviour and mechanical strength 

[24,126]. The successful synthesis of TiO2/polymer composites have been achieved with a 

wide variety of matrices such as epoxy, [21,127–129], poly(methyl methacrylate) (PMMA) 

[130], polyamide [131], polyester [132], polyimide [133], polystyrene [134] and vinyl 

ester/TiO2 [135].  

Impact resistance is a pivotal mechanical characterisation but also the least understood 

polymer composite property. Although predicting most mechanical properties is relatively 

achievable, predicting the impact strength of polymer composites is impossible. Additionally, 

carbon fibre reinforced polymer composites are characteristically brittle and therefore 

particularly susceptible to impact loading [136,137]. However, the impact response of these 

composites is still difficult to predict as a result of the complicated fracture behaviours 

exhibited in the formation of delamination, matrix cracks, fibre fractures, and the separation of 

fibre from the matrix interface [136]. Aktaş et al. [138] observed that the damage modes due 

to the impact response of fibre-reinforced epoxy laminate composites are fracture and matrix 

cracks coupled with delamination for high and low impact energies respectively. Damage due 

to impact is a primary challenge since its detection is difficult, and the mechanical properties 

of laminates used for component manufacture may be additionally impaired. As such during 
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service life of material, the initiation and propagation of delaminations and cracks within the 

matrix as a result of low energy strikes, minimises structural integrity [139–141]. Impact 

susceptibility has assumed critical importance especially in the airplane industry, where thinner 

wing skins and fuselages are increasingly the norm to reduce manufacturing cost and weight 

[142]. 

Although laminates are observed to enhance certain mechanical in-plane properties and 

retard the initiation and progression of cracking within the matrix, its influence on out-of- plane 

properties are not clearly established [143–146]. Possessing in-situ strength is the main 

advantage when thin-plies are used [147–149]. Salehian and Jenabali Jahromi [135], carried 

out Charpy impact testing on unnotched vinyl ester matrix reinforced with TiO2 nanoparticles. 

BYK C-8000 was used as the polymeric coupling agent while methyl ethyl ketone peroxide 

served as the curing catalyst. The resulting impact energy improved systematically until the 

TiO2 loading of 2.5𝑤𝑡% after which a decline in the impact strength commenced upon further 

loading as shown in Figure 2.9. It was observed that the impact strength generally improved 

with smaller particle size and lower aspect ratios.  

 

Figure 2.9 The Charpy impact energy of TiO2 nanocomposite [135] 

 

Dheya et al. [150] studied the effects of introducing TiO2 and MgO nanopowder into a 

90/10% blend of epoxy resin and polystyrene respectively. A significant improvement in the 
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impact strength using the conventional Charpy impact test was observed after the inclusion of 

the nanoparticle. Although the MgO reinforced nanocomposite showed a greater impact 

strength. Du and Wang [130] investigated the influence of introducing TiO2 onto the surface 

of ultra-high-molecular-weight polyethylene (UHMWPE) fibre reinforced to improve 

interfacial bonding between the fibres and the PMMA matrix. The result revealed that impact 

resistance increased by 33% with the incorporation of 5𝑤𝑡% TiO2 in PMMA. Similarly, 

Runqin et al. [151] also observed notable improvement in the Izod impact strength when TiO2 

was introduced into a carbon reinforced PMMA composite as shown in Figure 2.10. 

 

Figure 2.10 The impact strength of composites. [151] 

 

Di et al. [152] observed that the impact strength of carbon fibre reinforced composites 

increased with increasing carbon fibre content because of the high impact strength of the CFs, 

whereas the incorporation of TiO2 increased the impact strength as a result of the reinforcing 

effect of TiO2 nanoparticles. Džunuzović et al. [153] reported on incorporating TiO2 

nanoparticles into a polystyrene matrix via in situ bulk radical polymerisation, and the resulting 

influence on thermal properties. The surface of the nanoparticles was modified 6-palmitate 

ascorbic acid (6-PAA). The surface modification facilitated suppression of the chain transfer 
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reaction due to the decreased mobility of molecules which subsequently enhanced the thermal 

and thermo-oxidative stabilities. Kumar et al. [18] also conducted a thermogravimetric analysis 

to study the thermal stability of TiO2 nanocomposite prepared with epoxy resin but without 

particle surface treatment. To achieve homogenous dispersion, simultaneous dual mixing using 

ultrasonic and mechanical stirring was implemented. Additionally, to prevent degradation of 

the epoxy resin due to temperature rise near the ultrasonic horn, methyl ethyl ketone (MEK) 

was used to reduce the viscosity of the mixture. Thermal stability was observed to increase 

with increasing the TiO2 content from 5 to 10𝑤𝑡%.  

Singh et al. [154], investigated the effect of TiO2 nanoparticles on the thermal properties 

of epoxy resin without particle surface modification. However, to decrease the matrix viscosity, 

methyl ethyl ketone (MEK) was added for mechanical stirring. The thermal storage for 4𝑤𝑡% 

of TiO2 nanocomposite was significantly improved by 32.88%. Chatterjee and Islam [128], 

while introducing TiO2 nanoparticles used acoustic cavitation to disperse the particles in a two-

part epoxy resin. The surface of the particles was not modified with any agent. The nanophase 

thermal stability, which was investigated via TGA revealed that, from 0.5% to 1% loading of 

TiO2, the thermal stability systematically increased but reduced after a further load increase. 

This study is among the few that also analysed the thermal stability of the nanocomposite with 

integral procedural decomposition temperature (IPDT). IPDT was found to increase with 

particle loading with the highest thermal stability at 1%. 

Zhang et al. [155] observed that although several studies have been conducted with 

regard to the effects of nanofillers, the results still show some inconsistencies and therefore 

new research with different methodologies are still needed to attain reliable data. This would 

lead to standards for the selection of nanofiller and possible surface treatment parameters to 

achieve optimal properties while limiting the side- effects of the nanoinclusion. 
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2.6.3 Surface Modification of TiO2 

The application of TiO2 nanoparticles as nanofillers in polymer nanocomposites, in 

particular, is achievable because it is possible to conduct nanoparticle surface modifications or 

functionalisation [106,107]. However, the main drawback is the affinity for agglomeration 

formation at high concentrations which increases exponentially due to strong interparticle 

bonding subsequently making homogeneous dispersion extremely challenging [156,157]. 

Ameliorating this problem has generally been via post-mechanical or chemical treatment of 

TiO2 before dispersion into a matrix [106,107,158]. The surface of TiO2 is complicated and 

highly sensitive to chemical and thermal conditions such as the presence of impurity, pressure, 

temperature and cooling rate [159]. The surface is primarily characterised by ionic and covalent 

interaction of molecules, ions and atoms. Some of the bond formations observed during ionic 

and covalent interactions include Ti-O-Ti bond, Lewis acid site bonding, attachment of 

hydroxylic groups, and adsorption of chloride or sulphate residue during processing of oxidants 

(oxygen species or hydroperoxyl radicals) [160]. The TiO2 surface is also covered with several 

defects such as alien cations, oxygen voids, crystallographic shear planes, stepped edges and 

line defects [159]. The numerous applications of TiO2 can be traced to complex surface 

characteristics [161,162].  

The chemistry of the TiO2 surface is such that under the appropriate conditions, a large 

number of organic and inorganic atoms and molecules can react with it via oxidation, reduction, 

adsorption or dissociation. However, the dissociative or non-dissociative adsorption of H2O is 

the most essential characteristic as it is directly linked with the wettability and dispersity of the 

TiO2 in both aqueous and non-aqueous mediums [159]. When used as reinforcement in 

polymer composites, the photoactive nature of unmodified TiO2 photoactivity causes 

degradation due to oxidation which subsequently results in chalking and embrittlement when 

subjected to sunlight or ultraviolet (UV) irradiation and moisture [157,159]. This drawback 
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requires some type of particle modification that influences the hydrophobicity or hydrophilicity 

of TiO2 to decrease the surface photoactivity and enhance dispersion. The modifications 

improve organic polymer compatibility with TiO2 by the introduction of functional groups that 

are capable of reacting with its organic molecules. 

Several techniques for modifying TiO2 have been researched over the years and can be 

categorised into four primary groups, namely modification by chemisorption through hydrogen 

bonding, polymer grafting onto TiO2, polymer adsorption, and coupling agent via covalent 

bond formation of hydroxyl functional groups and adsorbed species [159]. The scope of this 

section is limited to modification using coupling agents. 

2.6.4 Functionalisation of TiO2 via Silane coupling 

The TiO2 surface is characterised by the presence of O-H species that can serve as anchor 

groups for covalently attaching coupling agents such as metal alkoxides, isocyantes, epoxides 

and organosilanes [106,159]. In recent times silane has attracted great interest in the field of 

surface treatment of nanoparticles for use as composite materials. The primary constituents of 

silane are basically silica and polymeric based organic material [163]. The chemical 

formulation for the resulting reaction of TiO2 can be represented as RSiX3, where R is the 

organofunctional and X an amino, alkoxide, acrylate alkyl or halide group. Therefore, a siloxy 

derivative covalent bond is formed through the reaction between the hydroxylic O-H species 

on the surface of TiO2 and the hydrolysable X components (Lin, 2006; Shokoohi, Arefazar and 

Khosrokhavar, 2008; Xiang, Jiang and Zhang, 2015). Generally, most organosilanes possess 

three (3) hydrolysable substituents attached on the centre of each silicon which facilitate the 

development of networks of cross-linked siloxane through the condensation of O-H groups 

with adsorbed silantriols and between other neighbouring silantriols [159]. Organic polymer 

compatibility is possible due to the presence of the R functional groups within the silane which 

mostly constitutes a minimum of one nonhydrolyzable aryl or an alkyl group. Furthermore, 
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polymer grafting onto the TiO2 surface can take place when the substituent groups produce 

centres that are reactive [159,164].  

Customisation of reactive substituents to target specific groups such as epoxy, acrylate, 

methacrylate, amino, vinyl and mercapto can be achieved. In practice, the most used types of 

organosilanes are the derivatives of alkoxy and chlorine[135,159]. Chlorosilanes are catalysed 

and therefore capable of reacting with the hydroxyl species on the surface of TiO2 even at 

ambient temperatures. However, the resulting by-product of hydrogen chloride is highly toxic 

and detrimental to the environment. By contrast, alkoxysilanes do not readily react with TiO2 

surface silanol at ambient temperatures unless the acidic or basic co-adsorbed species facilitate 

catalysis. Again, contrary to chlorosilanes, alkoxysilanes produce less toxic by-products [159]. 

Therefore, the application of silane coupling agents grafts suitable organic functional groups 

onto the nanoparticle surface atoms which improves dispersion, particle-matrix bonding and 

physical or chemical interactions between the nanoparticles and the matrix [156,157,165] 

Xiang and Zhang [164] investigated the effect of modifying the surface of TiO2 for 

nanocomposite production using 3-methacryloxypropyl-trimethoxysilane (MPS) as shown in 

Figure 2.11. Predispersion of the TiO2 in ethanol was conducted using ultrasonic means to 

enhance the efficacy of the surface treatment. Successful grafting of the silorganic functional 

groups onto the surface of TiO2 was observed using Fourier transform infrared spectroscopy 

and thermogravimetric analysis. Additionally, the increasing MPS load content led to a 

corresponding increase in weight loss during the TGA. 
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Figure 2.11 Illustration for the TiO2 surface modification [164] 

 

The surface modification of TiO2 was described using three (3) steps as shown in Figure 

2.11. Firstly, the hydrolysis of organosilane (MPS) takes place to transform the Si-O-CH3 

groups into Si-OH groups. This is followed by a TiO2 surface reaction of -OH groups with Si-

OH groups [166] which leads to the formation of Si-O covalent bonds. In the final stage, C = 

C groups formation takes place on the surface of TiO2 nanoparticles. A reaction between 

monomers and the C=C groups occurs and subsequently minimises aggregation [164]. 

2.6.5 Effect of Silane coupling agents on filler-matrix adhesion in Nanocomposites 

The application of coupling agents for improving particle-matrix adhesion is critical for 

the design and manufacture of advanced polymer composites for structural purposes [163,167]. 

A broad spectrum of coupling agents are capable of achieving this purpose due to the presence 

of two (2) non similar functional groups; one of which chemically bonds to the polymer matrix 

while the other attaches to the surface of the reinforcement via absorption [168,169]. Since the 

introduction of glass and carbon fibre as reinforcements in composite materials, the drive 

towards developing different bonding methods has gained prominence [163]. Numerous 

research studies have recommended silane as a viable coupling agent effective in promoting 

bonding between polymer molecules and inorganic surfaces [170,171]. The advantages of 

considering silane as a coupling agent includes its commercial availability (large scale), the 

ability of alkoxy silane groups and a wide range of functional groups capable of bonding with 
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surfaces rich in OH and matrix functional groups respectively [172]. Therefore, the purpose of 

using silane is to enhance adhesion which subsequently influences mechanical, thermal and 

electrical properties [173,174]. 

Tee et al. [168] functionalised the surface of silver nanoparticles with silane which led 

to a significant enhancement in their flexural and electrical properties and the dispersity of the 

nanocomposite. They also reported that the coupling agent operated within the particle-matrix 

interface, as a ‘molecular bridge’ leading to covalent bond formation that consequently resulted 

in significant improvement in the properties of the nanocomposite [168]. Hashimoto et al. [175] 

reported on the ‘bridging effect’ while investigating the effect of silane treated TiO2 

nanoparticles on a HDPE matrix. The study observed that the silane coupling agent reduced 

the viscosity of the polymer thereby promoting improved wetting of the reinforcement 

[175,176]. However, they observed an increase in density when the silane was applied. Demjen 

et al. [177] investigated silane coupling agents with different functional groups on PP/Caco3 

composites and observed that varying functional groups influenced their mechanical 

properties. The influence of over a hundred organofunctional silanes on both epoxy and 

polyester was investigated by Plueddemann et al. [178]. Kaynak et al. [179] also investigated 

several silane coupling agents and their effects on the improving the interfacial bonding within 

epoxy matrix and recycled rubber particles.  

The use of silane for treating glass fibre has been investigated by several researchers and 

the findings show that improved interfacial adhesion enhances the thermal and mechanical 

properties [172]. A confirmation of silane treatment enhancing matrix-fibre bonding, was 

confirmed by Tezvergil et al. [180]. Ralph K. Witt found that allyltrimethoxysilane improves 

the strength of glass fibre reinforced polyester composite twice as much as when 

ethyltricholorosilane was used [163]. Ho and Marcolongo [163], and Ho and Marcolongo [181] 

reported that the hardness and local Young’s modulus of the composite was negatively affected 
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when a silane couple agent was used. Goracci et al. [182], reported that microtensile adhesion 

strength between fibre and matrix improved with the application of silane solution. Zewde et 

al. [183] researched the role that TiO2 surface modification plays on the thermal and 

mechanical properties of the epoxy nanocomposite using n-octyltriethoxysilane and 11-

aminoundecyltriethoxysilane. At 0.05% loading of 11-aminoundecyltriethoxysilane 

functionalised TiO2, a high silane group grafting density of 13% was observed which 

subsequently resulted in a significant improvement in the thermal stability of the 

nanocomposite. 

Chen et al. [107] investigated the impact of 3-aminopropyltrimethoxysilane (APTMS) 

and phenyltrimethoxysilane when used as silane coupling agents. The study revealed the 

occurrence of covalent bonding between the silane coupling agent and the surface of the 

nanoparticle [184,185]. A study by Milanesi et al observed the development of a hydrophobic 

film resulting from the chemical bonding between Ti–O–Si and cross-linking of Si–O–Si bonds 

[106]. Zhao et al. [186] modified the surface of TiO2 with 3-aminopropyltrimethoxysilane 

(APTMS) and 3-Isocyanatopropyltrimethoxysilane (IPTMS) and confirmed that a successful 

grafting of organic functional groups onto TiO2 nanoparticles surface was achieved through an 

analysis of the FTIR spectra. The grafting was possible due to the formation of Ti-O-Si 

chemical bonds. The study also reported a significant decrease in the polydispersity index 

(PDI) and the hydrodynamic diameters after the silane treatment, which implies that the 

dispersion stability of the particles improved.  

In their study, Tomovska et al. [187] implemented 3-triethoxysilyl propyl isocyanate as 

a silane coupling agent for the surface modification of TiO2 nanoparticles. The establishment 

of the Ti-O-Si bond and the presence of a functional group on the surface of TiO2 was 

demonstrated. High controllability of the TiO2 surface characteristic was possible depending 

on the quantity and nature of the end-functionality electronegativity of the silane agent. A study 
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by Dinari and Haghighi [157] also reported a significant enhancement in the dispersion of TiO2 

nanoparticles and an improvement in the polymer matrix-particle bond when 1,3,5-triazine 

based silane was used as the coupling agent for modifying the surface of TiO2. Furthermore, 

the inclusion of the silane treated nanoparticles improves the thermal stability of the 

nanocomposite. Similarly, Dalod et al. [188] investigated the in situ functionalisation of TiO2 

surface using selected silane coupling agents to obtain hydrophobicity via covalent bond 

formation.  

2.6.6 Quantification of Dispersion 

Polymer composites have in recent times attracted a lot of attention both in academia and 

industry as a viable alternative to traditional materials due to the ease and simplicity of 

processing and manufacture, low cost, and flexibility in tunability of its properties towards 

optimisation [1–5]. To ensure that the numerous and excellent benefits of polymer composites 

are fully exploited, the ability to customise and optimise through controlling and enhancing the 

mechanical, thermal, electrical and chemical properties is critical. The polymer composite 

industry has developed a huge catalogue of products, however, polymer nanocomposites are 

currently the most interesting and highly researched for applications in multidisciplinary fields 

like polymer biomaterials [4], drug delivery [1], chemical protection [5] and purification 

systems [3]. Studies have shown that the state of nanofiller dispersion significantly affects the 

microscopic and mechanical properties of polymer composites [46]. The increased use of 

nanoparticles as reinforcement in polymer composites has been inspired by their superior 

strength to weight ratio, mechanical, thermal and chemical properties. One of the challenges of 

introducing reinforcement into composites is [189–191]. The discrepancies between 

experimentation and the theoretical mechanical characterisation and properties of 

nanocomposites can be ascribed to ineffective dispersion [25,26,46,192].  
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There are three (3) possible states of dispersion, namely even dispersion, random 

dispersion and clustered [46,193]. Even and random dispersion states are generally preferred 

as they represent the measuring standard for optimal dispersion conditions, which directly 

correlate with improved properties. Fabricating nanocomposites possessing excellent states of 

dispersion is extremely challenging, and constitutes one of the main limitations in 

nanocomposite manufacture [25,192,194]. The presence of Van Der Waals forces between the 

dispersed nanoparticles is stronger than in the matrix-particle bond; this phenomenon 

eventually encourages the formation of agglomerates [194]. Aggregation thus occurs when the 

interparticle interaction is stronger than the particle-matrix interaction. Preventing 

agglomeration is important because it not only resists intended property augmentation but also 

introduces voids which are detrimental to mechanical and fatigue properties by being a source 

of crack initiation and failure [192]. Any attempt to enhance the properties of nanocomposites 

therefore depends significantly on the prevention or minimisation of agglomeration. Several 

properties such as mechanical (strength and stiffness) [34,195–198], thermal [199,200], 

electrical [197] barrier [44,201] and transparency [202] are improved when dispersion 

improves and agglomeration is minimised. The commonly adopted means of dispersing 

nanoparticles include mechanical or high-speed stirring [25], sonication [26,27], high shear 

mixing or melting [28,29], incorporating surfactants or compatibilisers [30] and casting 

solvents [31]. Generally, the process of enhancing dispersion requires a combination of these 

methods. 

Several techniques with varying levels of sophistication and complexity have been 

developed for assessing states of dispersion in nanocomposites. The most commonly employed 

methods are microscopy based. Conventionally, visualisation and assessment of dispersed 

nanomaterials within the host matrix can be accomplished using images from optical 

microscopy [30,203], a scanning electron microscope (SEM) [204,205], a transmission 
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electron microscope (TEM) [37,206] or a scanning probe microscope (SPM) [207,208]. Other 

direct approaches include Raman spectroscopy [209], UV-visible spectroscopy [210,211], 

electrical conductivity [25,28] and fluorescence [212]. Spectrometry methods are limited in 

that they do not provide any information about the state of agglomeration and are not very 

useful when non-aqueous matrixes are used. The main drawbacks to these direct and visual 

techniques analyses are attributed to the qualitative, cumbersome, subjective, inconsistent and 

error-prone nature of the interpreted results [43]. Microscopy images can be further analysed 

using various statistical and distribution functions for quantifying dispersion. To understand 

the importance, effects, and relationships between bulk scale functional performance and the 

nanoscale structures of nanocomposites, a quantitative assessment of the extent and nature of 

nanomaterial dispersion within polymer matrices is a vital initial step [33]. The ability to 

quantify provides tools for process optimisation and critical insight into the factors that affect 

dispersion, and also establishes a means of standardisation for the assessment of dispersion 

[34].  

Several research studies on methodologies for quantifying the degree of dispersion have 

been conducted using approaches of varying sophistication and complexity. Clark and Evans 

[35] characterised the state of dispersion using a random distribution determinant ‘R’. In 

applying this concept, the state of dispersion was characterised as random when R=1. Although 

this approach is theoretically sound, the difficulty with selecting reference samples for 

comparison is a major disadvantage of this quantification method. Moore [213] proposed a 

formulation for dispersion quantification using the parameters of a slice index for assessing 

patterns, an anisotropic ratio and a variability index (VI). In their study, Bakashi et al. [36], 

quantified dispersion utilising a dispersion parameter (DP) which is image-based plus a cluster 

parameter (CP) formulated from the Delaunay triangulation. An acceptable state of dispersion 

is achieved when there is an increase in DP but a simultaneous decrease in CP. The 
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effectiveness of this technique is reliant on comparisons based on nanofillers with similar 

concentrations. Additionally, this method can only provide accurate quantification for an area 

with large nanofiller density. The state of clay dispersion as proposed by Xie et al. [37] was 

determined using the parameters of degree of dispersion (χ) and the mean interparticle spacing 

per unit volume (λV). The quantification of clay exfoliation in percentage was determined with 

(χ) while the spatial distance between clay particles was estimated using λV. However, the 

calculated state of dispersion is not comprehensive and definitively reliable although different 

percentages of the quantification during comparisons are generated. 

The quadrant approach has been thoroughly investigated as a reliable means for 

dispersion quantification [38–42]. This quantification method is primarily based on computing 

the standard deviation of a selected region’s concentration of particulate reinforcement 

observed in the sample image. A lower standard deviation value indicates good state of 

dispersion and vice versa. The main disadvantage to this technique lies in the difficulty of 

selecting the correct mesh size which if wrongly chosen can introduce inaccuracies and 

inconsistencies in the computed dispersion quantity. Due to the obvious limitation of the 

quadrant method previously discussed, Michael and Raeymaekers [43] proposed an improved 

version based on a composite index parameter formulated from a particle dispersion index and 

a particle size distribution index. Although their method succeeded in improving, to a large 

extent, the limitations of early approaches, the drawback of dependency on the quadrant to 

particle size was not resolved. Glaskova et al. [44], developed a methodology for dispersion 

quantification based on the hypothesis that state of dispersion was a factor of dispersion 

parameter (D) and particle size. Dispersion parameter (D) represents the probability of particles 

falling within a predetermined range of the particle area distribution. A high value for D is an 

indication of homogenous dispersion. Although this method is relatively effective in 

quantifying dispersion, the absence of interparticle spatial parameter limits its reliability.  
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Luo and Koo [45] quantified dispersion (D) using a probability density function (PDF) 

integrated for the evaluation of the particle spacing (mean spacing (µ)) via a computation of 

the statistical distribution. An increasing integral bound spacing uniformity is an indication of 

improvement in homogeneity in the state of dispersion. This method is however, limited by the 

exclusive dependency on particle free path spacing which indicates that similar states of 

dispersion can be estimated irrespective of the level of agglomeration. Tyson et al. [214] 

proposed a quantification methodology as an improvement on the Luo and Koo [45] approach 

using two (2) parameters namely; a dispersion quantity (D) and an agglomeration quantity (A). 

The dispersion quantity (D) is based on the measured interparticle spacing whereas the 

agglomeration quantity (A) is a derivation from the measurement of the particle sizes. The 

main limitation to this approach is the difficulty in choosing the most suitable distribution 

function. 

In a recent study by Blazer et al. [46], the formulation for assessment of the quality of 

dispersion (β) was based on an interparticle spacing model, the volume load of the nanoparticle 

(ϕ) and fibre-to-particle diameter ratios (D/d). A high β value connotes a high-level dispersion 

quality. Lillehei et al.[47] applied fractal dimension, radial power spectral density and 

Minkowski functionals to successfully quantify the state of dispersion in SEM images. This 

study is unique as it is among the few quantification methods based on fractal dimension and 

radial power spectral density (RPSD). Broughton et al. [215] used a static light scattering 

technique based on Fourier domain optical coherence tomography, to assess the state of 

dispersion. Although the method was relatively effective in quantifying dispersion, it displayed 

major drawbacks such an output of inconsistent results and a high level of sensitivity to several 

extrinsic influences such as particle size and morphology.  
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2.7 Analysis of Stress Concentration and Application of Finite Element 

Analysis 

The continued rise in the application of composite materials for structural parts is due to 

their process characteristics and excellent properties such as corrosion resistance aesthetics, 

flexibility, fatigue resistance, flexibility, lower cost, and ease of production [216, 217]. 

Accurate determination of the principal forces and stresses acting on or within composite 

structures is therefore essential for the selection and design of suitable composites for 

customised manufacture [217]. Tensile and compressive tests are the fundamental tests often 

used for characterisation and investigation of principal forces and mechanical properties.  

2.7.1 Minimising Stress Concentration during Tensile Testing 

Tensile testing is specifically effective for determining the in-plane of composite 

materials such as tensile strength, elastic modulus, and Poisson’s ratio. The experimental setup 

tensile testing generally requires the use of coarse or serrated clamps for securing the test 

specimen at extreme ends to minimise slipping during the testing. During the clamping process, 

the test specimen is subjected to grip friction, axial loading and shear force [7,8,218,219]. In 

general, metals and their alloys can undergo tensile testing without the application of an 

intermediary cushioning material between the specimen and grips. On the contrary, because, 

fibre reinforced composites tend to display lower transverse compressive strength during 

tensile testing, stress cushioning materials such as tabs are essential to prevent premature 

failure and inconsistency in measured results [7]. The bonded tab is the most commonly used 

standard for tensile testing due to the advantages such as limiting transverse damage to the 

surface of the test specimen because of the high grip forces and reduction of induced out-of-

plane stresses. 

Although the application of tabs has become a standard norm, there is a major drawback 

in its usage. During tensile testing, tabs tend to induce high levels of stress concentrations 
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within the tab termination area [8]. In their study, Hart-Smith [220] concluded that tabs may in 

some cases not be the best option and that its use must be avoided as much as possible; where 

used, its selection must be carefully assessed. Local stress concentrations induced during the 

application of bonded tabs can result in a decrease in tensile in-plane properties. [8,9,221,222]. 

To ameliorate the negative effects of bonded tabs, a number of tab geometries and design 

parameters have been proposed. Two of the commonly used standards for tab implementation 

are the ASTM 3039/D3039M-14 [223] which proposes the adoption of end-tapered tabs while 

the ASTM5083-17 [224] and ISO 527-1:2012 [225] suggest the use of prismatic tabs. Hojo et 

al. [8] carried out a comparative study using a 10o tapered and non-tapered (90o) and found that 

the tensile strength values were comparatively similar and statistically insignificant.  

Belingardi et al. [9] investigated the effect of both bonded and moulded tabs on the tensile 

strength of fibre reinforced laminate composites. After tensile testing the results showed 

significant and higher levels of residual stresses induced in the moulded tab test specimen. 

Bonded tabs with a 30o bevel shape were recommend after comparative testing of several tab 

configurations. Application of the tabs with 30o bevel shapes resulted in the lowest induction 

of stress concentrations in the tab termination region. A number of studies, for example the 

ones conducted by Adams and Adams [8] and Joyce et al. [222], advocate the utilisation of 

tabs since their research reveals that the intensity of the induced stress concentration from the 

tabs are affected by the tab geometry and that optimisation of the tab design was critical.  

De Baere et al. [11], reported that although stress concentration in the tab termination 

region significantly reduces with the application of tapered bonded tabs, some test specimens 

failed prematurely due to weak adhesive bonding between the tapered region of the tab and the 

test coupon. Consequently 90° or straight-ended tabs were proposed as the most preferred 

option. To further minimise stress concentration Wisnom et al. [226] developed tensile test 

coupons from unidirectional fibres with gradual and symmetrical ply drop-offs forming tapers 
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at the grip ends. Emery paper and end tabs were still applied primarily as intermediary materials 

to prevent grip damage even though this novel design was successful in minimising the stress 

concentration. In a current study by Czel et al. [12], investigated the possibility of totally 

eliminating induced stress concentration during testing via a novel design of the test coupons 

using an interlayering of unidirectional glass and carbon fibre fabrics moulded with an epoxy 

matrix. The motivation for the study was also to eliminate the use of tabs in tensile testing.  

Adams and Adams [8] focused specifically on tensile testing using bonded tabs and the 

determination and assessment of the stress concentrations using finite element analysis while 

the study by Belingardi et al. [9] focused on only experimental testing of moulded and bonded 

tabs without the compliment of finite element analysis for determination and analysis of the 

stress concentrations induced. An assessment of the studies reviewed and several others [8–

12,222,226,227] was carried out without any rigorous statistical analysis of the influence of tab 

design parameters in minimising stress concentration and the significance of the parameters in 

optimising the tab design. Minimising the stress concentrations introduced during tensile 

testing via optimisation of the tab design is vital for achieving consistency and accuracy in 

characterised results. There is thus a need for further research and development of hybrid 

approaches, which utilise both statistical and finite element methodologies for customised 

optimisation, and for analysis of design and process parameters. The adaption and exploitation 

of approaches such as regression techniques, analysis of variance (ANOVA), genetic 

algorithms, multiple response optimisation, and the Taguchi method are essential. 

2.7.2 Finite Element Analysis of NCFs 

Finite element modelling is an important tool for predicting the stress behaviours of 

composite materials. For NCF composites in particular, several methodologies are available to 

simulate uni- and biaxial non-crimp fabrics, however, they are categorised under kinetic 

mapping [228,229] or finite element method techniques. Although kinematic mapping (KM) 
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is effective, it is less efficient for problems which involve boundary conditions such as friction, 

forming parameters like blank holder forces, and for the behaviour of materials [230]. Because 

of the aforementioned drawbacks of KM, FEM is the most used approach when modelling non-

crimp fabrics. The classification of FEM-based approaches used for NCF analysis are: discrete, 

semi-discrete and continuous [231]. Indiscrete modelling uses abstract modelling based on bar 

elements and beams [232,233]. Meso-models for NCFs are often used to simulate different 

textile structure components through solid and shell elements. Multi-scale models are meso-

models that are highly sophisticated, detailed, CPU-intensive and mostly required for virtual 

testing of the material [234,235]. However, less sophisticated meso-models are mostly 

implemented in many studies for the simulations of processes such as forming [231,236–238]. 

A semi-discrete approach to modelling involves the input of micro and mesoscale parameters 

directly into the finite element shape function [239–241]. Constitutive equations are applied to 

homogenised modelling of the NCF during a continuous modelling approach. Two main 

constitutive modelling approaches are preferred namely hyperelastic [242–244] and 

hypoelastic approaches [234,245–247]. In hyperelastic modelling, material objectivity which 

incorporates the assumption of rigid body rotation in relation to individual fibre tracking is 

achieved through covariant modelling [231]. I In hypo-elastic modelling material objectivity 

and fibre rotation tracking is ensured via the implementation of acceptable transformational 

laws or material frames between a parallel fibre frame and an existing material frame such as 

Naghdi’s frame [245,247]. 

 

2.8 A review of Approaches for Recycling of Polymer Composites 

2.8.1 Global demand trend for carbon fibre reinforced composites 

T. A. Edison discovered carbon fibres in 1879 [248], although their use for light-weight 

high-performance composites is recent. In 1997 and 2002, carbon fibre growth rate worldwide 
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was 5.8% and 7– 8% respectively [249]. The global production of carbon fibre increased to 

28000 𝑡𝑜𝑛𝑛𝑒𝑠 in 2006 which drove the industry worth up by between $1.4 and $5.6 𝑏𝑖𝑙𝑙𝑖𝑜𝑛. 

A unit of 1kg was priced at approximately $50– 200 [250]. During that year the demand for 

carbon fibre composites especially, exceeded supply with the wind turbine industry being the 

biggest consumer [251]. All the market dynamics and economic indicators support the forecast 

of exponential growth in the composite material industry with carbon and glass fibre being the 

leading reinforcement materials. From 2009 to 2014, the global demand for carbon fibre rose 

from 27000 𝑡𝑜𝑛𝑛𝑒𝑠 to 53,000 𝑡𝑜𝑛𝑛𝑒𝑠. In 2014, the composite market in US alone witnessed 

a 6.3% growth valued at $ 8.2 billion in comparison with previous years. This trend suggests 

that, based on a 6.6% annual compound growth rate, the composite market forecast will be $12 

billion by the year 2020 [252]. Currently, Europe leads in the total global demand for carbon 

fibre by approximately 37% and a further increase of 43% is expected by 2020.  

 

Figure 2.12 Actual and project carbon fibre demand and waste generated from 2010 to 2070 [253] 

 

The trend in demand and regional distribution of carbon fibre reinforced composites 

follows a similar trend as carbon fibre. In Europe, the demand was estimated at 36.8% while 
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North America was 40% [252]. By 2021, this growth in demand is expected to double to 

approximately 116,000 𝑡𝑜𝑛𝑠 [254]. The primary utilisation of carbon fibre is as a polymer 

composite. The high exploitation has brought to the fore the critical need to address the 

production and End-of-life (EoL) waste. 

There has been a sharp rise in scraps from carbon fibre reinforced composite production 

and end-of-life, particularly within the wind energy industry in 2017 [252]. The graph in Figure 

2.12 shows the demand for carbon fibre reinforced composites in kilo tonnes for several 

industries, and the resulting projected waste is represented as black spots [253].  

2.8.2 Circular Economy and Waste Management of carbon fibre reinforced 

composites. 

The circular economy concept emphasises the restoration and regeneration of resources 

through efficient design [255]. The main aim of this concept is to provide protection for 

materials, product and resources when their effective utility is highest while significantly 

reducing the negative influences [256]. The pursuance of circular economy as the basis for 

recovering both material and energy in a society that is sustainable is difficult to achieve 

[257,258]. Attaining a sustainable circular economy for fibre reinforced composites presents a 

unique challenge, requiring the application of both recycling and conservatory approaches for 

dealing with production and end-of-life scrap [252]. The greatest challenge to the sustainability 

of fibre reinforced polymer composites is their recyclability. Increasing restrictive 

environmental directives and legislation on landfill disposal coupled with the detrimental 

impact on the environment is driving a sense of urgency for the acceleration of composite 

recycling processes to industrial-scale as the best solution [259].  

The high demand, production and consumption of polymer composites present an end-

of-life disposal problem since the majority of these materials are currently not recycled due to 

lack of suitable cost-effective technologies and therefore end up in landfills [252,260,261]. 
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However, the landfill approach is becoming unsustainable and represents a high cost of 

disposal due to directives such as the new EC waste directive that categorises carbon fibre 

reinforced composites waste as chemical waste, which if not harnessed, constitutes a loss of 

valuable secondary raw materials [262]. Under the European Union’s Waste Framework 

Directive [263], for example, the least preferred option for waste management is landfill 

although it is the cheapest disposal route. In countries such as Germany, the landfill option is 

illegal, and many more EU nations are following suit in opposing this method of waste 

management [263]. The EU legislation in its present state does not categorically issue specific 

regulations on composite waste. However, its disposal is captured although indirectly, in the 

2000/53/ EC EU Directive where total End-of-Life vehicle weight should meet the 

requirements of 85% recycling and 95% recovery while restricting the utilisation of non-

metals if they do not adhere to the tenets of the directive [49].  

2.8.3 Technologies for recycling of Polymer Composites 

Virgin carbon fibre is relatively expensive at a value of approximately 30 € 𝑘𝑔⁄  [264] 

and also has a high energy input cost ranging from 183– 286 𝑀𝐽/𝑘𝑔 [265]. Therefore, 

processes that can recover carbon fibre at lower energy cost than virgin fibre manufacture, offer 

a more environmentally friendly and sustainable alternative which is also more economically 

beneficial to manufacturers. For example, pyrolysis which is one of such promising processes 

has been found to use only 5 − 10% of the energy consumed during the manufacture of virgin 

fibre [266,267]. In the past decade, various research studies on recycling polymer composites 

have been undertaken and developed. These include mechanical (grinding) [259,268–274], 

thermal processes (incineration, pyrolysis etc) [259,260,275–284], and solvolysis [259,285–

292].  

A comprehensive study on the three methodologies for recycling carbon fibre reinforced 

waste was carried out by Pickering [270], Pimenta and Pinho [293] and Oliveux et al. [259] 
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specifically on the technical comparisons and re-use. All these studies concluded that the most 

suitable approach for recycling carbon fibre reinforced composite is the thermochemical route. 

Several reuse options have been proposed for polymer composite waste which includes 

mechanical grinding for use as filler reinforcement in the manufacture of new materials [260], 

thermal and chemical approaches for recovery of gasses, liquids, plastic parts and carbon fibres 

and incineration for energy recovery [262,280,294]. 

2.8.4 Mechanical Recycling Methods 

This approach comprises initially shredding or crushing to downsize the composite into 

smaller bits followed by a grinding process which further reduces the materials into a finer 

product [295]. Crushing or shredding is often the standard step for all recycling techniques. 

Thereafter, sieving is carried out to separate resin-rich powder recyclate from fibres of varying 

lengths. Mechanical grinding has found greater application in the recycling of glass fibre 

composites [268–270]. However, there are a few studies on mechanical recycling of carbon 

fibre reinforced composites [271–274,295].  

Mechanically ground composite waste can have two applications, namely reinforcement 

or filler. Virgin fillers like silica and calcium carbonate are generally inexpensive and cost less 

than processing ground recycled composite fillers, which make them commercially not viable. 

The fillers consist of sieved and sorted powdered product after grinding [259]. Schinner et al. 

[271] observed that thermoplastic composites could be mechanically ground and used as 

quality reinforcement in injection moulding. The inclusion capacity of filler materials is 

relatively restricted to not more than 10 𝑤𝑡% primarily due to the resulting decline in 

mechanical properties coupled with inherent challenges such as increased viscosity associated 

with processing at higher filler contents [270]. Although resin-rich compositions are not 

competitive replacement as fillers at present, they are suitable for use as an energy source. At 

the moment, industrial exploitation of ground carbon fibre reinforced composites is non-
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existent because other treatment processes are more efficient in recovering the fibre. However, 

Roux et al. [296] developed a novel technique for grinding carbon fibre reinforced 

thermoplastics via electrodynamic fragmentation.  

2.8.5 Solvolysis (Chemical Methods) 

Solvolysis is the degradation of resin with the application of a solvent. The first 

application of solvolysis can be traced to over three (3) decades ago [297] on unsaturated 

polyester. In 1980, Kinstle et al. successfully broke down unsaturated polyester into its 

constituent monomers (glycols and carboxylic acids) and degraded styrene (fumaric acid 

copolymer). The hydrolysis was conducted either with or without the addition of catalysts or 

solvents within the temperature range of 220 and 275℃ [297]. Since then, the recovery of fibre 

and matrix (either thermosetting or thermoplastic) from fibre reinforced composites using 

varying solvents and conditions, has been achieved by several researchers [285–292,298,299]. 

The type of resin determines the temperature and pressure condition needed for resin 

degradation. Epoxy resin, for example, is more difficult to degrade than polyester resin and 

therefore requires higher temperatures and pressure. Carbon fibre reinforced composites have 

been extensively recycled using this method and its commercial viability is attracting a lot of 

interest. 

Water is the most used solvent; either neat [249,285,297,300,301] or mixed with co-

solvents such as amines, alcohols and phenols [285,297,302]. Water mixed with alkaline 

catalysts such as potassium hydroxide (KOH) and sodium hydroxide has also been successfully 

used [249,288,291,303]. Besides water, the following solvents with or without catalysts or 

additives have also been used, and include alcohols such as acetone, glycols, ethanol, methanol 

and propanol [249,289,290,292,297,299,301]. Acidic catalysts are less often used but are 

suitable for the degradation of highly resistant resins such as PEEK and epoxy at lower 

temperatures. Liu et al. [304] recovered carbon fibre from carbon fibre reinforced polymer 
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composites using nitric acid at a temperature of 90℃. Supercritical fluids are also attracting a 

lot of attention due to the tunability of recycled products through the variation of operating 

parameters such as pressure, temperature and volume. The main drawback of this approach is 

the high cost of the equipment used. This is so because of the extreme and severe operating 

conditions [290,298,299,302,305]. Furthermore, some catalysts and/or solvents are toxic and 

highly detrimental to the environment making its disposal or separation very difficult with 

some form of fibre damage still occurring. Meng et al. [12] recycled carbon fibre composites 

using supercritical water.  

Solvolysis provides endless possibilities for the application of a wide spectrum of 

solvents, catalysts, pressures and temperatures. Its primary advantage over pyrolysis is the 

ability to accomplish polymer degradation at relatively low temperatures specifically for epoxy 

resins and unsaturated polystyrene [259]. In situations where supercritical conditions are 

required, the cost of recovery becomes expensive due to the high cost of reactors which 

experience extreme temperature and pressure conditions that promote corrosion [306]. Char 

formation during solvolysis is avoidable as the usage of specific reactive solvents with co-

solvents or co-reactive solvent are capable of degrading specific bonds within the composite 

through diffusion. This makes the recovery of, monomers which cause char formation possible 

[259]. Pyrolysis is presently the recycling option most preferred and widely used because it is 

a well-established and often-used technology in the chemical processing industry. Although it 

enjoys widespread interest, the challenge of fibre degradation due to high process temperatures 

is motivating research interest into solvolytic techniques [259]. 

2.8.6 Thermal Recycling Methods 

There are three main thermal treatment processes available for recycling composite waste 

which are: pyrolysis, fluidised-bed pyrolysis, and microwave-assisted pyrolysis [260,277–

280,282–284,307–309].  
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2.8.6.1  Fluidised Bed Reactor 

The fluidised bed reactor was developed by Pickering et al. [280] at the University of 

Nottingham (UK) for the incineration of glass fibre composites at low-temperature combustion 

conditions of 450℃ to recover the energy and the fibre. This process, however, has the 

drawback of high labour and high-energy requirements, which makes a weak business case for 

using this technology. 

2.8.6.2 Pyrolysis 

Presently, the continued generation and rise in the volume of end-of-life (EoL) composite 

waste is detrimental to the environment and impacts negatively on existing resources. To 

mitigate against impending environmental challenges, a promising solution is the utilisation of 

pyrolysis, which comprises a two-stage approach capable of material, fuel and chemical 

recovery from composite waste. During the first stage carbon fibre is recovered from reinforced 

composites through heating the material within a temperature range of 350 –  700℃ under inert 

conditions in the absence of air or oxygen [310–312]. The decomposition of the composite 

matrix yields a solid residue comprising fibres, fillers and char, bio-oils, and gases. Inspection 

of the surface of pyrolysed fibres shows the presence of deposited char and therefore cleaning 

of the fibres via oxidation in air is necessary to burn off the char [252]. Pyrolysis has been 

successfully implemented at an industrial level and its commercial viability is currently being 

exploited by companies such as ELG Carbon Fibre Ltd. (ELGCF) in the UK [252]. Adherent 

Technologies Inc. (ATI) in USA broke down the resin matrix in composites using a wet 

chemical, and Innoveox in France [313] developed an approach which used supercritical 

hydrolysis for recycling composites. 

Naqvi et al. [252] conducted a comprehensive review on recycling carbon and glass fibre 

reinforced composites using pyrolysis with the emphasis on possibilities for re-use and the 

accompanying technical challenges in relation to the concept of a circular economy. The study 
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highlighted the economic viability of the pyrolytic recyclates and the possible inherent 

challenges associated with commercialisation, and concluded that the commercial viability of 

pyrolysis was justifiable. Several studies have shown that the application of pyrolysis in an 

inert environment is the most viable thermal process for the recovery of carbon fibre from 

composite scrap [310,314,315]. Optimisation of the process parameters of all pyrolytic 

processes whether flash, fast or slow, is necessary for effective and efficient recovery of fibres, 

fuels and chemicals [312,316–318].  

In their study, Wong et al. [319], conducted a comparative analysis to extensively review 

the energy consumption of thermochemical (pyrolysis and combustion), chemical and 

mechanical methodologies for recycling fibre reinforced composites. The study revealed that 

the consumption of energy via pyrolysis was a moderate 30 𝑀𝐽/𝑘𝑔 in comparison to the other 

methods. Furthermore, the other approaches were relatively more expensive, and the recovered 

fibres mechanically inferior. Therefore, pyrolysis seems to be the most suitable balance 

between a moderated production cost and best fibre quality production. Nahil and Williams et 

al. [275] pyrolysed composite waste manufactured from carbon fibre reinforcement in a 

polybenzoxazines resin matrix using a fixed bed reactor at varying temperatures. High 

concentrated aniline, nitrogenated and oxygenated aromatic compounds were obtained from 

the pyrolysis liquid while CO, CO2, H2, CH4 and several hydrocarbons were derived from the 

pyrolysis gases. They achieved activation of carbon fibre via pyrolysis at temperatures ranging 

between 350– 700°𝐶 for 1ℎ𝑟 of the carbon fibre composite waste using a fixed-bed reactor. It 

was observed that after the oxidation of the char, the mechanical strength of the recovered 

fibres was comparable to that of the virgin fibre. However, an in-depth analysis of the influence 

of char was not carried out. 

Bradna and Zima [320], used as chromatography/mass spectroscopy, to investigate the 

effect of pyrolysis on the thermal degradation of carbon fibre reinforced composites. The study, 
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however, did not report the mechanisms of pyrolysis and the product yields from pyrolysis. 

Meyer et al. [310], used a thermogravimetric analysis (TGA) under inert conditions to assess 

the thermal degradation of carbon fibre reinforced composites. Post pyrolysis treatment was 

not considered in the study. They were able to regulate the thermogravimetric analysis 

parameters to optimise both pyrolysis conditions to recover good quality fibre properties. The 

pyrolytic char was observed as lacking any value and should be burnt off. Giorgini et al. [311] 

recovered carbon fibre through pyrolysis using a batch pilot plant at temperatures of 500℃, 

550℃ and 600℃. The morphology of the recovered fibres was examined with a scan electron 

microscope (SEM). The pyrolysed fibres were rougher and less homogenous than virgin carbon 

fibre. The observation of a thin char layer which was degraded through oxidation was reported, 

but the possible importance of char was not investigated.  

2.8.6.3 Role of post-pyrolysis treatment in recovery 

As earlier explained, during pyrolysis, the solid residue produced comprises char 

deposited on fibre. A circular economy implies that reuse is paramount. However, the presence 

of char contaminated surfaces limits reuse and results in fibres with inferior mechanical 

properties. To mitigate this drawback, post pyrolysis treatment is critical for cleaning the fibres 

if the primary focus is to re-introduces fibre into thermoplastic or thermosetting matrices to 

manufacture new composites [252]. Oxidation is the most viable method for char removal, but 

optimising the process parameters of temperature and residence time is difficult to achieve 

[275]. Nahil and Williams [275] separated char from solid residues through oxidation at 500℃ 

to recover the carbon fibre which had 90% of the mechanical properties of the initial virgin 

fibres.  
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2.8.6.4 Characterization of recovered fibre using the pyrolysis process 

Studies by Pimenta and Pinho [293] and Oliveux et al. [259], definitively concluded that 

pyrolysis was the only method that produced recycled fibres with mechanical properties 

comparable to those of virgin fabrics, and which has large scale commercial viability for the 

manufacture of composite structures. Wong et al. [319], employed pyrolysis and a combustion 

process for comparative analysis, and the results showed that a slight reduction of 

approximately 10% in fibre strength of the recycled carbon fibre occurred with a significant 

loss of approximately 50%. From the literature it is observed that the tensile strength loss when 

pyrolysis is used for fibre recovery , is on average within the range of 5– 10% while that of 

combustion is approximately 18% [309]. To further gain insight into the recycling process, the 

recyclate and the recycled products must be characterised to provide the essential data 

regarding the thermo-chemical process. Thermogravimetric analysis (TGA) has been 

extensively used for characterising the thermal degradation of composite materials [321]. The 

generated TG and derivative thermogravimetry (DTG) curves describe the relationship 

between the matrix mass loss with respect to temperature. The TGA curves also provide 

information on the decomposition and oxidation temperatures of the resin and fibres 

respectively.  

Giorgini et al. [311] and Kim et al. [322] reported that the decomposition temperatures 

of carbon fibre reinforced composites during pyrolysis was within the range of 450– 600℃ 

with respect to whether the sample was cured or not. The most suitable temperature range for 

conducting the post-pyrolysis of oxidation to clean char off the surface fibres, was found to fall 

within 500– 600℃ in the presence of air. The influence of the recycling process on the 

mechanical properties of recovered fibre was determined by Yildirir et al. [323] and Song et 

al. [324]. The initial fibre length, elongation at break, fibre diameter, young modulus, tensile 

strength and flexural properties were investigated. The study further investigated the 



80 | P a g e  

 

morphology of the recovered fibre with scan electron microscopy (SEM), Raman spectroscopy, 

and X-ray photoelectron spectroscopy (XPS) analysis. Das and Varughese [325], successfully 

identified a functional group on the surface of the recovered fibres using an attenuated total 

reflection linked to Fourier-transform infrared spectroscopy (ATR-FTIR). Jiang et al. [326], 

also detected the presence of carbonyl and carboxylic groups on the recovered fibre surface 

using X-ray photoelectron spectroscopy. The presence of functional groups was attributed to 

the effect of heating the fibre in air, which positively influences interfacial bonding. Jiang and 

Pickering [327], recovered fibres via pyrolysis and found active oxygenated species still 

present on the fibre surface which ultimately improved the fibre-epoxy bond. The 

characteristics of the fibre surface are influenced by the thermal and oxidation conditions. 

Surface defects resulting from oxidation resulted in tensile strength and crystallite size 

reduction.  

A recent study by Mazzocchett et al. [49] validated pyrolysis as a viable recycling option 

for recovering carbon fibre, and investigated the effect of different oxidation conditions for 

char removal. The results revealed that the presence of pyrolytic char protected the fibre from 

excessive damage during the oxidation process. They observed the presence of oxygen-rich 

fibre surfaces as a result of the oxidation process which improves fibre-matrix bonding 

rendering the need for additional sizing unnecessary. Their research is the only study that 

attempts to characterise the residual char via Raman spectroscopy. The findings showed that 

the virgin fibres which were char-free showed sharper signals while the pyrolysed fibre 

exhibited broader and poorly defined peaks - clearly confirming the presence of the deposited 

char. After oxidation, the D and G peaks became well-defined and narrower, clearly indicating 

the removal of the char. The majority of such studies limited the thermal characterisation of 

pyrolysed and oxidised fibres to temperatures below 650℃. However, there is a need to further 
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investigate the influence of the char deposition at a much higher temperature during which the 

carbon fibre itself begins to degrade.  

2.8.7 Pros and Cons of the Recycling Methodologies 

Although various methods for recycling carbon fibre reinforced composites exist, the 

majority lack optimisation and possess significant limitations. Mechanical recycling for 

instance usually results in powdery materials with highly reduced value addition suitable for 

utilisation as fillers [270]. Also, crushing or shredding requires high energy consumption. 

Optimising the control of thermal recycling processes is critical to preventing unwanted 

chemical changes that can affect the recovered material and prevent loss of valuable 

constituents [266,280,326]. Although solvolysis utilises comparatively lower temperatures, it 

requires more chemicals than all the other processes, thereby necessitating additional avenues 

for the disposal of these chemicals [262]. Incineration is the most used approach for energy 

recovery from a mixed stream of wastes; however, some drawbacks include atmospheric 

pollution from emissions, loss of valuable products, and the installation of expensive 

equipment for gas cleaning. 

2.9 Summary  

The literature review highlighted and provided a holistic overview of the fundamental 

fabrication techniques for non-crimp fabrics, non-crimp fabric composites, and possible 

recycling techniques. The review focused on the basic background of NCF composites and 

their applications, the modification of a composite matrix via functionalised TiO2 

nanoparticles, the dispersion quantification of nanofillers, the application of finite element 

analysis to NCF composites, and recycling with the emphasis on pyrolysis.  

Non-crimp fabrics can generally be described as unidirectional plies organised and yarn-

stitched in a distinct orientation [56]. It is a compromise between unidirectional pre-
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impregnated tapes (UDPT) and woven fabrics. Liquid composite moulding techniques are 

mostly used in the fabrication of NCF composites with vacuum assisted resin transfer moulding 

being the most preferred. The unique properties of NCF composites have attracted a lot of 

interest from researchers and applications in the aerospace, automotive and wind turbine 

industries. 

Matrix modification has been widely explored as a research area since epoxy, which is 

the most, used thermosetting resin has the limitation of high brittleness after curing. The 

literature has shown that this characteristic results in reduced resistance to crack initiation and 

propagation [104]. This drawback has motivated high research outputs aimed at enhancing 

fracture toughness via the introduction of nanoparticles such as alumina Al2O3, carbon 

nanotubes (CNT), silica (SiO2), titania (TiO2) and many more. However, TiO2 is presently 

receiving great research attention due to its unique properties such as UV adsorption, refractive 

index, photocatalytic activity, photostability, and corrosion resistance [14–18]. The influence 

of TiO2 on the impact strength and thermal properties of composite materials were reviewed. 

Most of the literature reviewed concluded that predicting the impact response of composite 

materials was nearly impossible due to the diverse and complicated modes of possible 

fractures. In general, the introduction of TiO2 nanoparticles improved both the impact and 

thermal properties of the composites. The comprehensive review conducted revealed that there 

was no known literature on the influence of TiO2 on the impact and thermal properties of NCF 

composites was non-existent.  

The reviewed literature indicates that homogeneous dispersion of nanoparticles is critical 

for improving the mechanical and thermal properties of nanocomposites. One means of 

achieving this is through surface treatment or the functionalisation of nanoparticles. Silane 

coupling agents were identified as efficient in covalently attaching hydroxyl functional groups 

and species onto the surface of TiO2, which was observed to significantly improve particle 
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wettability. Improving the particle-matrix interfacial adhesion consequently reduces 

agglomeration and promotes homogenous dispersion of the nanoparticles. Accurately 

quantifying the state of dispersion with a simple but effective approach is still a present 

challenge to researchers. Visual inspection has been the most used approach, but it is highly 

subjective. Quantitative methodologies that are therefore generally based on standard 

deviation, and distribution functions have been developed. There was clear gap in literature for 

a methodology that was simple implement but sophisticated enough to avoid the drawbacks of 

difficulties in selecting reference samples and mesh size with quadrant methods, and the 

inherent limitations in relying on standard deviation.  

The application of finite element based approaches for modelling NCFs, such as discrete, 

semi-discrete and continuous methods [231], were reviewed. The most prominent approach is 

the use of meso-models for NCFs for simulating varied elements of the textile structure via 

solid and shell elements. The reviewed literature showed that meso-models with lower 

complexity and sophistication were normally preferred for simulations of processes such as 

forming [231,236–238].  

The manufacturing process of virgin carbon fibre is economically expensive and requires 

high energy input. The economic and environmental benefits of exploring recovered fibres 

which is a more sustainable alternative can be harnessed. Pyrolysis in particular is very 

attractive since the process only consumes 5 − 10% of the energy input required for the 

manufacture of virgin fibre [266,267]. There are only a few recent research studies on the 

recovery of carbon fibre through thermal techniques, but none have been conducted on non-

crimp fabric composites. This therefore presents an area of novelty in this thesis. 

A review of the literature relevant to this research was comprehensively presented in this 

chapter. The next chapter highlights the materials and methods implemented in the course of 

the study to achieve the aims of the research. 
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CHAPTER THREE 

3. MATERIALS AND METHODS 

3.1 Introduction 

The methodology can be categorised under five main sections as shown in Figure 3.1. 

The first section focuses on the manufacturing processes and methods used in the preparation 

and fabrication of composite plates. In the second section, particular attention is paid to the 

development of two new dispersion quantification techniques. Proof of concept and validation 

approaches are comprehensively presented. The third section provides numerical 

methodologies based on finite element modelling and simulations, optimisation techniques, 

and statistical analysis geared towards stress concentration minimisation in the tab termination 

region of tensile test samples. The efficacy of three optimisation techniques is compared. To 

provide a holistic assessment of the composite material in accordance with a circular economy, 

the fourth section deals with recycling, reclamation, and the reuse of carbon fibre reinforced 

composites. Various post-pyrolytic treatments required for enhancing wettability are also 

detailed. In the final section, all the methodological approaches for the morphological, 

spectroscopic, chemical, thermal and physicochemical characterisations carried out during the 

research, are presented. A list of materials and equipment used have been provided in Table 

3.1 and Table 3.2 respectively. 
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Figure 3.1 Sections of Methodology 
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Table 3.1 List of Materials  

Material Source Purity 

Titanium(iv) Oxide Sigma Aldrich  ≥99.5% trace 

metals basis 

3-Aminopropyl)Triethoxysilane Sigma Aldrich 98.0% 

   

Carbon Fibre Non-Crimp Fabric 

Of ±45° Fibre Orientation (414 

𝑔/𝑚2 area weight, 3,700 𝑡𝑒𝑥 

Titer, 7.2 Μ𝑚) With 6 𝑔/𝑚2 

Polyester Stitching Thread 

Seartex Ltd South Africa/ Germany -  

  -  

Mirror Glaze Mold Release Meguiars Ltd -  

Prime 20 Lv Resin Advanced Materials Technology (Pty) Ltd  -  

Prime 20 Lv Resin (1kg) Advanced Materials Technology (Pty) Ltd -  

Spiral Bind Advanced Materials Technology (Pty) Ltd -  

Tubing 10mm Polymide Advanced Materials Technology (Pty) Ltd -  

PEELPLY NYLON 

085g/LTX/PS 1000MM 

Advanced Materials Technology (Pty) Ltd -  

Sealant Tape B1192 

10x2mmx22.5m /22 

Advanced Materials Technology (Pty) Ltd -  

Vac Film 450v 50mic 1.50m 

Tube 60 /300 

Advanced Materials Technology (Pty) Ltd -  

Shade Mesh Advanced Materials Technology (Pty) Ltd -  

 

Table 3.2 List of Equipment  

Equipment Manufacturer Ananlysis 

Heating Plate with magnetic stirrer FMH Instrument Heating and Stirring 

Thermometer  FMH Instrument Temperature analysis 

Glass Open Cast Mould  Moulding 

Vacuum Oven Shel Lab Ltd Curing and de-gassing 

Vacmobile modular 2s Shel LabLtd Vacuum assisted Resin Transfer 

Moulding 

Carbolite EHA one-zone model 

furnace 

A Carbolite Ltd Pyrolysis 

Variac, and a reflux system Variac Ltd Refluxing 

Dryer EcoTherm Ltd Drying fibres 

Brunauer-Emmet-Teller (BET) 

2460 micromeritics instrument 

Micromeritics Instrument 

Corporation 

BET Analysis 

A Thermo Scientific Flash 2000 Thermo Scientific™ Elemental Analysis 

TESCAN VEGA 3 XMU scanning 

electron microscope (SEM) with an 

accompanying XMAX Oxford 

Instrument Energy Dispersive X-

Ray (EDX) analyser 

Escan Analytics Ltd SEM and EDX analysis 

SDT-Q-600 thermogravimetric 

analyser 

TA Instruments Ltd Thermogravimetric analysis 

A Rigaku Ultima IV X-Ray 

diffractometer 

Rigaku Global Ltd X-ray diffraction analysis 

Renishaw Invia Reflex equipped 

with an IlluminatIRII FTIR 

microscope 

inVia™  Raman spectroscopy analysis 

100 𝑘𝑁 capacity MTS Alliance 

𝑅𝐹/100 tensile testing equipment 

MTS Alliance Ltd Tensile Testing 

Instron impact testing machine Instron Ltd Impact Testing 

KB-45 Band Saw ECCO Machinery™ Cutting 
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3.2 Fabrication of Composite Plates  

The epoxy resin (PRIME 20 LV) and hardener (PRIME 20 SLOW) used for matrix 

preparation in this study were purchased from Advanced Materials Technology (Pty) Ltd. The 

non-crimp fabric of ±45° fibre orientation (414 𝑔/𝑚2 𝑎𝑟𝑒𝑎 𝑤𝑒𝑖𝑔ℎ𝑡, 3,700 𝑡𝑒𝑥 titer, 7.2 µ𝑚) 

with 6 𝑔/𝑚2 polyester stitching thread, donated by Seartex, was used as fibre reinforcements. 

The primary Nano inclusion used is commercially available titanium (IV) oxide (TiO2) and 

nanoparticles (21 𝑛𝑚), acquired from Sigma Aldrich for the fabrication of the 

nanocomposites.  

Two sets of samples were manufactured with and without TiO2 nanoparticle inclusion. 

Additionally, these samples were fabricated with two different techniques namely; open cast 

moulding and Vacuum assisted resin transfer moulding (see Figure 3.4and Figure 3.5). Open 

cast moulding was used to fabricate samples without fibre reinforcement; neat epoxy (NE), 

methanol treated TiO2 (MTN), silane functionalised TiO2 nanocomposite (STN) and non-

functionalised TiO2 nanocomposite (TN). Vacuum Assisted Resin Transfer Moulding 

(VARTM) was used for the fabrication of the NCF carbon fibre reinforced composite (CF-NE) 

and for NCF carbon fibre reinforced composite with TiO2 inclusion (CF-STN). 

3.3 Silane Functionalisation and Methanol Treatment of TiO2 

Titanium (IV) oxide nanoparticles exhibit a high affinity for agglomeration when 

dispersed into epoxy resin. This is due to its high hydrophilicity, which is detrimental to the 

properties of the fabricated composite. This drawback can be minimised through silane 

functionalisation. In theory, silane is capable of forming a hydrophobic film on the surface of 

titanium dioxide via the chemical bonding of Ti–O–Si and cross-linking of Si–O–Si bonds. 

Naturally, TiO2 has a high surface-to-volume ratio which makes the reaction possible [106]. 

The setup included a glass beaker, thermometer and a heating plate equipped with magnetic 

stirring as seen in Figure 3.2. 
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(a) (b) 

Figure 3.2 Experimental setup for functionalisation of TiO2. (a) Glass beaker and heating plate with magnetic 

stirring; (b) Thermometer  

 

The silane solution as shown in Figure 3.3 (a), was also purchased from Sigma Aldrich. 

The functionalisation was conducted in accordance with the procedure reported by Adhikari et 

al. [328]. The functionalisation was carried out by first preparing the silane solution with a 

liquid mixture of 95% methanol, 5% distilled water and 1% silane. To ensure homogeneity, 

the mixture was thoroughly stirred for 15 min. The TiO2 (see Figure 3.3 (b)) nanoparticles 

were first weighed (2.5𝑤𝑡%) then dispersed into the silane solution while continuously stirring 

for an additional 10 min before heating the mixture for 1 ℎ𝑟 at 95℃ on a hotplate to facilitate 

evaporation of both methanol and distilled water. Further drying was performed in a vacuum 

oven at a temperature of 100℃ until only a dry nanoparticle residue was observed. The 

recovered residue was crushed and pulverised in a ceramic crucible as shown in Figure 3.3 (c), 

before dispersing into the matrix. To assess the influence of 95% methanol addition on TiO2, 

samples were also fabricated using the silane functionalisation methodology but without the 

1% silane. 
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(a) (b) 

 

(c) 

Figure 3.3 (a) Silane Solution; (b) TiO2 nanoparticles before functionalisation and (c) TiO2 nanoparticles after 

functionalisation 

 

3.4 Open Cast Moulding 

A square mould fabricated from glass with inner dimensions of 200 𝑚𝑚 × 200 𝑚𝑚 ×

5 𝑚𝑚 was used for open cast moulding as shown in Figure 3.4 (a). The inner section of the 

mould was lined with strips of stick-on peel plies developed for the provision of a leakproof 

mould to ensure easy removability after curing the composite. The open cast process requires 

four (4) stages, namely pre-moulding preparation, preparation of the matrix, filling of the 
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mould with matrix, and curing. The pre-moulding preparations involved mechanical cleaning 

of the mould with dry clean cloth and the application of a mould releasing agent such as 

Meguear’s mirror glaze maximum mould release wax 8 or 87 (for hot temperatures) as shown 

in Figure 3.4 (b). In the second stage, the matrix was prepared by mechanically dispersing TiO2 

nanoparticles into the less viscous hardener and thereafter degassing before the addition of the 

epoxy with a mix ratio of 100: 26 by weight as per the manufacturer’s recommendation. After 

the second mechanical agitation and degassing, the mixture was poured into the mould and 

cured in a Shel Lab Oven for 7 ℎ𝑜𝑢𝑟𝑠 at a temperature of 65℃ in accordance with the 

manufacturer’s recommendations as shown in Figure 3.4 (c). The moulding process was carried 

out in accordance with the methodology presented by Agrawal and Satapathy [329]. 

  

(a) (b) 

 

(c) 

Figure 3.4 Setup for conducting Open Cast Moulding. (a) Glass Mould with peelply; (b) Mould release wax; (c) 

Curing Oven 
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3.5 Vacuum Assisted Resin Transfer Moulding (VARTM) System 

In this study, the fibre-reinforced samples were produced using vacuum assisted resin 

transfer moulding. The Vacmobile modular 2s model equipped with a single-phase 

50 𝑚𝑏𝑎𝑟 (50 𝑃𝑎) VSV-20 vacuum pump and a resin trap with catching capacity of 12 𝑙𝑖𝑡𝑟𝑒𝑠 

was used for the moulding process as shown in Figure 3.5.  

 

Figure 3.5 The Vacmobile modular 2s model for VARTM 

 

The basic items required for performing the moulding are: a spiral bind, tubing, peel ply, 

sealant tape, vacuum bag, mesh, mould plate, and epoxy hardener as shown in Figure 3.6. Aside 

from the mould plate, all the other items were purchased from Advanced Materials Technology 

(AMT)-South Africa. 
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(a) (b) 

 
 

(c) (d) 

  
(e) (f) 

 

Figure 3.6 Primary items for the VARTM process. (a) Epoxy and hardener; (b) Carbon fibre; (c) Mesh; (d) 

Vacuum bag; (e) Tubing and (f) Spiral bind 

 

The moulding process involved three (3) main stages, namely material preparation, 

mould preparation, and the moulding process. The first stage required cutting eight plies of 

carbon fibre non-crimp fabric (CF-NCF) with dimensions of 300 𝑚𝑚 × 200 𝑚𝑚. The mesh 
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was cut to a quarter of the length of the CF while the peel ply dimension was cut slightly smaller 

than the moulding plate. One end of the mesh was wrapped around the spiral bind and sown, 

after which the entire stack comprising CF-NCF (bottom), peel ply (middle) and mesh and 

spiral bind (top) was stitched together at the two top corners as shown in Figure 3.7. 

  
(a) (b) 

 

Figure 3.7 Stacked Material for moulding. (a) Before corner stitching; (b) After Corner stitching 

 

The second stage involved cleaning the stainless steel moulding plates with acetone and 

wiping them thoroughly to remove any debris left over from previous usage. The surface of the 

plates was waxed before placing the stacked materials on it. This was immediately followed 

by the sealant plate application along the inner edges of the plate. An inlet tubing with one end 

connected to the sown spiral bind, and the other end left as a suction end for matrix intake, was 

secured on the sealant tape. Concurrently, one end of the outlet tubing was secured onto the 

sealant tape and the other end connected to one of the inlet ports of the Vacmobile modular 

vacuum pump. Lastly, the vacuum bag was fastened onto the sealant tapes, followed by sealing 

the inlet tube end and starting the pump to investigate the integrity of the vacuum seal. After 

thorough checks to block all leakages, the outlet tube was unsealed and placed into the prepared 

matrix (see Figure 3.8). The infusion process is completed when the epoxy starts rising out of 

the outlet tube. The process was conducted in accordance with the methodology presented by 
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Abusrea et al. [76]. The recommended curing condition from the manufacturer was set at 65℃ 

for 7 ℎ𝑜𝑢𝑟𝑠. 

  
(a) (b) 

 

Figure 3.8 The VARTM Process. (a) Testing integrity of vacuum seal; (b) Process of resin infusion via vacuum 

suction 

  

Mechanical agitation as a means of dispersion and mixing introduces bubbles into the matrix 

which results in the formation of voids and therefore degrades the mechanical strength of the 

composite. In this study degassing was conducted using a Shel Lab Vacuum oven at a pressure 

of 60 𝑘𝑝𝑎 for approximately 10 𝑚𝑖𝑛 before crushing the formed bubbles under atmospheric 

pressure (see Figure 3.9).  

  
(a) (b) 

Figure 3.9 Process of degassing. (a) Sample without degassing; (b) Epoxy Matrix placed in the vacuum oven 
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3.6 Quantification of Dispersion in Nanocomposites 

3.6.1 Quantification using gap Statistics 

3.6.1.1 Gap Statistic Estimation  

Composite plates were manufactured using titanium (IV) oxide nanoparticles (21 𝑛𝑚), 

purchased from Sigma Aldrich and dispersed within an epoxy matrix at a fraction weight of 

2.5 𝑤𝑡%. The concept was tested using five models which simulate varying and commonly 

occurring states of dispersion. The models presented in Figure 3.10 are: uniformly dispersed 

(Model 1), randomly dispersed (Model 2), randomly dispersed with small agglomeration 

formations (Model 3), randomly dispersed with the inclusion of three large agglomerates 

(Model 4), and lastly randomly dispersed with a large agglomerate (Model 5).  

  

(a) (b) 

  

(c) (d) 
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(e) 
Figure 3.10 Concept models simulating possible states of particle distribution. (a) Model 1; (b) Model 2; (c) 

Model 3; (d) Model 4 and (e) Model 5. [330] 

 

Tibshirani et al. [331] developed a gap statistic model, which is relatively efficient in 

estimating the number of clusters present within a data set. The method can incorporate the 

majority of the existing cluster algorithms like the K-mean and the hierarchical algorithms to 

quantify the variations in cluster dispersion with respect to a reference distribution. The gap 

criterion is effective in identifying the number of clusters, which have the largest gap value, 

and the optimal number of clusters is derived from a solution dataset with a tolerance range 

possessing the largest global or local gap value. The gap value was formulated as Equation 

(3.1):  

𝐺𝑎𝑝𝑛(𝑘) = 𝐸𝑛
∗{log(𝑊𝑘)} − log(𝑊𝑘) (3.1) 

where 𝐸𝑛
∗ is the estimated expected value derived from Monte Carlo sampling with respect to 

a reference distribution, 𝑛 is the size of the sample dataset, 𝑘 is the optimal number of clusters 

estimated, and 𝑊𝑘 is the pooled within-cluster sum of squares around the cluster mean or 

dispersion measurement. The main disadvantage of the gap criterion is the associated high 

computational cost due to the application of reference data to the cluster algorithms for every 

cluster solution [331]. The MATLAB algorithm for computing the gap criterion is provided in 

Appendix A1. The resulting gap characteristics were implemented as a first principle basis in 
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developing the formulation of a gap factor (𝐺0) expressed in Equation (3.2) and illustrated in 

Figure 3.11 as the area between the expected and observed curves. 

 

Figure 3.11 Illustrations of the Area Under a Curve Method (AUCM) for dispersion quantification. [330] 

 

𝐺0 = [∫ 𝑓(𝑥𝑒)𝑑𝑥
𝑘

=1

] − [∫ 𝑓(𝑥𝑜)𝑑𝑥
𝑘

𝑛=1

] (3.2) 

 

where 𝐺0 is the gap factor, 𝑓(𝑥𝑒) is the area under the expected curve, 𝑓(𝑥𝑜) is the area under 

the observed curve, and 𝑛 and 𝑘 represent the initial and final inspected 𝑘 − 𝑚𝑒𝑎𝑛 values 

respectively.  

The following are the assumptions adopted to ensure effectiveness and accuracy: (1) the 

number of particles within each model were the same to establish a standardised reference for 

all models, (2) the particle location and data extraction were based on a particle centroid 

approach, (3) the cluster analysis was conducted using the same number of inspected k values 

and finally (4) all the model and scanning electron microscopy (SEM) images were converted 

to 1500 × 1500 pixels.  
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3.6.1.2  Particle Spacing and Size Dispersity 

Applying only the gap factor for the dispersion quantification is not comprehensive 

enough and therefore two more factors were formulated to include a dimension of particle 

spacing dispersity (𝑃𝑆𝐷1) and a particle size dispersity (𝑃𝑆𝐷2). 𝑃𝑆𝐷1 was determined via an 

initial step of computing the minimum spatial distances between individual particles within an 

image with the MATLAB coded algorithm provided in Appendix A2. All the distances 

between the points on the particle boundary (B) and boundary (A) as illustrated in Figure 3.12, 

were computed through the formulation in Equation (3.3). 

 

Figure 3.12 An illustration of interparticle spacing 

 

𝑆 = √(𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝐴𝑥 − 𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝐵𝑥)2 + (𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝐴𝑦 − 𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝐵𝑦)2 (3.3) 

 

Where 𝑥 and y represent the Cartesian coordinates of the particles A and B. The overall 

minimum distances were calculated for assessment of the inter particle spacing dispersity 

(𝑃𝑆𝐷1). Similarly, the particle size dispersity was calculated using the area of the distributed 

particles (𝑃𝑆𝐷2). The general expression for calculating the dispersity (𝑃𝑆𝐷) is presented in 

Equation (3.4): 
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𝑃𝑆𝐷 = [(
∑ 𝑥𝑖

2

∑ 𝑥𝑖
) (

∑ 𝑥𝑖

𝑁
)⁄ ]  (3.4) 

 Where 𝑥𝑖 is the inter particle spacing or particle size while 𝑁 is the number of variables. In 

establishing the dispersion quantity (𝐷), a dispersion parameter (𝐷𝑃) which is a summation of 

𝐺0, 𝑃𝑆𝐷1 and 𝑃𝑆𝐷2 (see Equation (3.5)) was formulated as shown in Equation (3.6). For a 

uniformly dispersed state which is considered as ideal, 𝐷 = 100% as 𝐷𝑃 = 3.  

This means 𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑆𝑖𝑧𝑒 𝐷𝑖𝑠𝑝𝑒𝑠𝑖𝑡𝑦, 𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑠𝑝𝑎𝑐𝑖𝑛𝑔 𝐷𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑡𝑦 and 𝐺𝑎𝑝 𝑓𝑎𝑐𝑡𝑜𝑟 each 

have a value =1. 

𝐷𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛 𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦 (𝐷) = (
3

𝐷𝑃
) × 100% (3.5) 

𝐷𝑃 = 𝐺0 + 𝑃𝑆𝐷1 + 𝑃𝑆𝐷2 (3.6) 

3.6.2  Quantification using Fractal Dimension 

This technique was formulated based on the fractal dimension and variance obtained 

from the SEM images to quantify the state of dispersion. The five dispersion states presented 

in Figure 3.13 were used for the proof of concept. The fractal dimensions of black and white 

images obtained from image segmentation of the models were computed using a box counting 

method [332]. The choice of the box counting method was due to its compatibility and 

simplicity. The algorithm for fractal dimension estimation developed by Moisy, [333] in 

MATLAB was adopted (see Appendix A3). Equation (3.7) was used for calculating the fractal 

dimension:  

     

(a) (b) (c) (d) (e) 
 

Figure 3.13 Proof of concept models; (a) Uniformly dispersed model, (b) Randomly dispersed model, (c) 

Cluster distribution model, (d) One large Agglomerate model and (e) One Three large Agglomerate model. 

[330] 
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Df = −
d ln N

d ln R
 (3.7) 

Where the fractal dimension is Df for fractal set C, and 𝑁 is the D-dimensional (D=1,2,3) 

set of 𝑅 sized boxes ranging from the non-zero elements of C. 𝑅 = 1, 2, 4 ... 2P, where P is the 

smallest integer. Df was eventually calculated using a second order finite difference followed 

by an estimation of the variances for each model. The upper boundary was set using the 

variance value obtained from the uniformly dispersed model (𝑆𝑈𝐷
2 ) which was considered the 

ideal state of dispersion. Therefore, (𝑆𝑈𝐷
2 ) was found to be 1.89 × 10−1 while a dispersion 

factor (𝑓𝐷) = 1.0 × 10−1 was carefully selected. The Equation (3.8) was formulated to quantify 

the state of dispersion: 

𝐷0 = (
𝑆2

𝑓𝐷
) × 100% (3.8) 

where the dispersion quantity is (𝐷0) and( 𝑆2) is the fractal dimension variance of the 

sample image. A perfectly homogeneous state of dispersion or ideal conditions will result in 

𝐷0 = 100%. Therefore, the set boundary condition was 0% ≤ 𝐷0 ≤ 100%, where as 𝐷0 →

100 % dispersion improves. The measures adopted to ensure accuracy and consistency in the 

derived results were: converting all the model and sample SEM images to 1500 × 1500 pixels 

and ensuring that all the models used in the proof of concept had the same number of particles. 

3.6.3 Image Segmentation and centroiding 

Image segmentation was critical in the generation of grayscale and binary (black and 

white) images from which data was extracted to develop proof of concept for dispersion 

quantification using both gap statistics and fractal dimension. The segmentation process was 

accomplished via the use of a K-Mean algorithm [334]. The segmented images were then used 

for the extraction of critical data from the white pixels such as the area and centroid of 
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individual particles. The MATLAB algorithms for image segmentation, area and centroid 

computations are provided in Appendix A4.  

3.7 Optimisation of Tab Design for Minimisation of Stress Concentration 

Tensile testing is one of the oldest methods used to identify the elastic properties of 

materials. It is a fundamental characterisation technique applied to achieve accuracy, which is 

of paramount importance in material science engineering. Typically, bonded tabs are used to 

prevent premature failure of fibre-reinforced composites. This section presents the 

methodologies for finite element analysis and three optimisation approaches for comparative 

analysis. The objective was to optimise tab configurations, namely tab stiffness, tab thickness, 

tab length, tab taper angle, and adhesive thickness - with the aim of minimising induced stress 

concentrations in the tab termination region during testing. The response variables were the 

following three induced stress concentrations: normal stress (𝜎𝑥) peel stress (𝜎𝑦) and shear 

stress (𝜏𝑥𝑦). 

3.7.1 Tensile testing 

Tensile testing according to the ASTM D D3039 standard [223] as depicted in Figure 

3.14 was carried out on the unidirectional non-crimp fabric composite plate donated by 

Chomarat Ltd using 100 𝑘𝑁 capacity MTS Alliance 𝑅𝐹/100 tensile testing equipment with a 

crosshead speed of 2 𝑚𝑚/𝑚𝑖𝑛. Ten sets of samples with 0° and 10° fibre orientations were 

cut with a waterjet and then tabbed with G-10 glass/epoxy rectangular tabs to specified 

dimensions as shown in Figure 3.15. Bonding was achieved using Hysol 907 two-part paste 

adhesive. Strain gauges with configurations of 0°/90° and 0°/45°/90° were also bonded to 

the 0° and 10° orientations respectively. 
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Figure 3.14 Dimensions of test specimen 

 

  
(a) (b) 

 

Figure 3.15 Tabbing process. (a) Cutting of tabs; (b) Bonding of tabs [335] 

 

3.7.2 Finite Element Analysis 

Finite element analysis is an effective and efficient tool for modelling and simulating 

stress-related engineering problems. The stress concentrations induced within the tabs, the tab 

termination region, and the adhesive bond were comprehensively assessed and analysed. A 

software package ANSYS APDL Mechanical 18 was used to investigate the stress 

concentrations induced at the regions. All the generated and computed results were normalised. 

Some necessary assumptions were introduced to simplify and reduce the computational time 

for the modelling and simulation process. Firstly, the assumption of constant width made the 

use of two-dimensional models possible and adequate for analysis. Secondly, the plain stress 

assumption where 𝜎𝑧 = 𝜏𝑥𝑧 = 𝜏𝑦𝑧 = 0 , was preferred to a plain strain assumption. This 

assumption prioritises the edges and surfaces of the sample and is specifically suitable for 
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composite materials as it captures the volume of the test sample [7]. Thirdly, symmetry was 

implemented to further simplify and reduce the number of nodes. A quarter of the specimen 

was used in the analysis as shown in Figure 3.16. Also, linear elastic modelling was preferred 

while the 8 node 183 element in ANSYS was used for meshing. To minimise errors a double 

layered adhesive region meshing of 2:1 aspect ratio representing the adhesive thickness was 

employed as shown in Figure 3.17. The design parameters were: tab thickness, tab length, tab 

taper angle, and adhesive thickness. 

 
Figure 3.16 Finite element model configurations 

 

 
Figure 3.17 Meshing of the adhesive bonded tabs [335] 

 

The simulation of gripping during tensile testing is critical to obtain accurate and realistic 

results. The equation formulated by MTS Systems Corporation [336] expressed in Equation 

(3.9) and Equation (3.10) for simulating the grip in the jaw clamping was employed. This 

equation fundamentally establishes and describes the relationship between normal gripping 
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traction (𝑃𝑦), shear traction (𝑃𝑥𝑦) on the surface of the tab, and the normal (𝐹𝑦) and shear 

forces (𝐹𝑥𝑦) applied, where the coefficient of friction is µand grip taper angle is Ø: 

𝑃𝑥𝑦

𝑃𝑦
=

𝐹𝑥𝑦

𝐴𝑡𝑎𝑏

𝐹𝑦

𝐴𝑡𝑎𝑏

=
𝐹𝑥𝑦

𝐹𝑦
= tan(tan−1(𝜇) + ∅) 

 

(3.9) 

 

 

𝜇 = 0.06, ∅ = 15𝑜 

𝑃𝑥𝑦

𝑃𝑦
=

𝐹𝑥𝑦

𝐹𝑦
= 0.33 

 

 (3.10) 

 

3.7.3  Taguchi Based Optimisation 

The Taguchi method is a powerful tool for systematically analysing and solving 

engineering problems. It has contributed to the reduction or total elimination of trial and error 

methods in an industry which directly impacts manufacturing cost, time loss, quality and 

efficiency [337]. The Taguchi approach uses an orthogonal array design to significantly reduce 

the number of experiments which ultimately limit the effect of difficult to control factors as 

shown in Table 3.3 [338–340]. A loss function is used to compute the disparities between 

experimental and desired data. This is accomplished via conversion to a signal-noise (𝑆𝑁) ratio 

[338,340]. The 𝑆𝑁 ratio analysis is carried out using three quality characteristics namely; the 

lower-the-better, the higher-the-better and the nominal-the-best. The optimal parameters (see   

Table 3.4) are derived from the 𝑆/𝑁 analysis for all levels of the process [338,341]. The 

S/N ratio formulated is shown in Equation (3.11): 

𝜂 = 𝑆 𝑁𝑆⁄ = −10 log [
1

𝑛
∑ 𝑦𝑖

2

𝑛

𝑖=1

] 
 

 (3.11) 

 

 

where n is the number of experimental or simulated observations and yi is the ith 

experimental data observed [342]. 
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Table 3.3 Taguchi Orthogonal Array Design [Taguchi L8 (25)] 
Simulation no. Factor A Factor B Factor C Factor D Factor E  

1 1 1 1 1 1 

2 1 1 1 2 2 

3 1 2 2 1 1 

4 1 2 2 2 2 

5 2 1 2 1 2 

6 2 1 2 2 1 

7 2 2 1 1 2 

8 2 2 1 2 1 

Source [335] 

 

Table 3.4 Tab design parameters and their levels 
Design Factors Symbol Level 1 Level 2 

Tab stiffness A 32.6 132 

Tab Thickness B 0.5 1.5 

Tab length C 50 100 

Tab taper angle D 5o 90o 

Adhesive thickness E 0.25 1.5 

Source [335] 

3.7.4 Multi-Response (Desirability Approach)  

A theoretical basis for multiple response optimisation was established by Derringer and 

Suich [343]. The primary motivation for developing such an approach was to overcome the 

drawbacks of single response optimisation techniques [344,345]. The incorporation of a 

desirability function was essential for integrating optimal process parameters for quantification 

of the optimal values. Optimal desirability values are computed using a gradient algorithm 

[346] as shown in Equation (3.12), Equation (3.13) and Equation (3.14) for evaluating 

individual desirabilities. The desirability value lies between zero (0) and one (1) for which a 

value close to 1 is an indication of approaching acceptable responses from settings. 
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Additionally, a composite desirability (𝐷) index is calculated for generating the optimal 

settings for a set of responses. 

𝑑𝑖 = 0         𝑦�̂� < 𝐿𝑖 
 

(3.12) 

 

𝑑𝑖 = (
(𝑈𝑖 − 𝑦�̂�)

(𝑈𝑖 − 𝑇𝑖)
)

𝑟𝑖

   𝑇𝑖 ≤ 𝑦�̂� ≤ 𝑈𝑖 (3.13) 

𝑑𝑖 = 1         𝑦�̂� < 𝑇𝑖 (3.14) 

 

The composite desirability which is the weighted geometric mean of all the individual 

desirability’s is calculated using Equation (3.15): 

𝐷 = (∏(𝑑𝑖
𝑤𝑖))

1
𝑊

 (3.15) 

 

For cases where all responses have the same importance, the desirability is calculated 

using Equation (3.16) as: 

𝐷 = (𝑑1 × 𝑑2 × … × 𝑑𝑖)
1
𝑛 (3.16) 

where:  

𝑑𝑖 = individual desirability for the 𝑖𝑡ℎ response  

𝐷 = composite desirability 

𝐿𝑖 = lowest acceptable value for 𝑖𝑡ℎ response  

𝑛 = number of responses 

𝑟𝑖 = weight of desirability function of 𝑖𝑡ℎ response  

𝑇𝑖 = target value of 𝑖𝑡ℎ response  

𝑈𝑖 = highest acceptable value for 𝑖𝑡ℎ  response 

𝑤𝑖 = importance of 𝑖𝑡ℎ response 
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𝑊 = sum of 𝑤𝑖or ∑ 𝑤𝑖 

𝑦�̂� = Predicted value of 𝑖𝑡ℎ response 

3.7.5 Genetic Algorithm Optimisation 

Another optimisation approach considered was genetic algorithms (GA) for comparison 

with Taguchi and multiple response approaches. GAs are categorised under the family of 

evolutionary algorithms based on Darwin’s evolution theory first developed by John Holland 

[347]. It is a non-linear approach, which solves optimisation problems by converging in an 

optimal global solution. In solving optimisation, GA uses a population’s chromosomes instead 

of decision variables. However, all chromosome used for the evaluation of the objective 

function carries decision variables. Parent chromosome selection from a mating pool of suitable 

candidates is critical to ensure continuous production of new generations [348]. New 

chromosome production is achieved by using a crossover operator that selects parents via a 

two-by-two (binary crossover) technique which facilitates the breeding of new offspring [349–

351]. Gene mutation of offspring is vital to reaching an optimal solution because of the 

versatility introduced into the next population’s new generation [352].  

The objective functions used for conducting multi-objective optimisation are shown in the 

regression Equations (3.17) to (3.19). Presented below is the optimisation problem formulation: 

𝑥(1)  −  −  −  𝑇𝑎𝑏 𝑠𝑡𝑖𝑓𝑓𝑛𝑒𝑠𝑠 

𝑥(2)  −  −  −  𝑇𝑎𝑏 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 

𝑥(3)  −  −  −  𝑇𝑎𝑏 𝑙𝑒𝑛𝑔𝑡ℎ 

𝑥(4)  −  −  −  𝑇𝑎𝑏 𝑡𝑎𝑝𝑝𝑒𝑟 𝑎𝑛𝑔𝑙𝑒 

𝑥(5)  −  −  −  𝐴𝑑ℎ𝑒𝑠𝑖𝑣𝑒 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 

𝐿𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 = [32.6 0.5 50 5𝑜 0.25 1] 

𝑈𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 = [132 1.5 100 90𝑜1.5 1] 
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𝒚(𝟏)  =  𝑶𝒃𝒋𝒆𝒄𝒕𝒊𝒗𝒆 𝟏 − − 𝒆𝒒𝒖𝒂𝒕𝒊𝒐𝒏 𝒇𝒐𝒓 𝝈𝒙(𝑵𝒐𝒓𝒎) 𝒎𝒊𝒏𝒊𝒎𝒊𝒛𝒆 

 

 

  

 

𝒚(𝟏) =  1.1678 +  0.001220𝒙(𝟏) +  0.0309𝒙(𝟐) −  0.000078𝒙(𝟑) +  0.001827𝒙(𝟒)
−  0.1064𝒙(𝟓) 

 

(3.17) 

 
 

𝒚(𝟐)  =  𝑶𝒃𝒋𝒆𝒄𝒕𝒊𝒗𝒆 𝟐 − −𝒆𝒒𝒖𝒂𝒕𝒊𝒐𝒏 𝒇𝒐𝒓 𝝈𝒚(𝑵𝒐𝒓𝒎) 𝒎𝒊𝒏𝒊𝒎𝒊𝒛𝒆 

 

 

  

 

𝒚(𝟐)  =  0.0583 +  0.000363𝒙(𝟏) + 0.01387𝒙(𝟐)0.000045𝒙(𝟑) +  0.000256𝒙(𝟒)  
−  0.01254𝒙(𝟓) 

 

(3.18) 

 
 

𝒚(𝟑)  =  𝑶𝒃𝒋𝒆𝒄𝒕𝒊𝒗𝒆 𝟑 − −𝒆𝒒𝒖𝒂𝒕𝒊𝒐𝒏 𝒇𝒐𝒓 𝝉𝒙𝒚(𝑵𝒐𝒓𝒎) 𝒎𝒊𝒏𝒊𝒎𝒊𝒛𝒆 

 

 

  

 

𝒚(𝟑) =  0.0332 +  0.000245𝒙(𝟏) +  0.00791𝒙(𝟐) +  0.000015𝒙(𝟑)
+  0.000269𝒙(𝟒) −  0.01583𝒙(𝟓) 

 

(3.19) 

 

 

3.7.6 Two -Level (𝟐𝒌) Factorial Design 

A full factorial 2-level five factorial design was used to describe the design of experiment 

(DoE) for the finite element simulations. The normalised induced stress concentrations at the 

tab termination region data was collected for all possible combinations under study. In general, 

a two-level (2𝑘) factorial design, and k factors each with 2 levels having 2𝑘 treatment were 

employed to identify important factors and their interactions. The interactions had one degree 

of freedom. The regression equation used for prediction is the following first order equation: 

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑘𝑥𝑘 

where 𝛽1, 𝛽2 … 𝛽𝑘 are related to the main effects and interactions. While each factor’s level is coded 

as (𝑐𝑜𝑑𝑒𝑑 − 1 𝑎𝑛𝑑 + 1). 

3.7.7 Analysis of Variance (ANOVA) 

ANOVA was implemented to determine the factors that significantly influence the 

stress concentration within tabs during tensile testing. This was accomplished by letting 𝑦 

donate the total of all observation under the 𝑖𝑡ℎ level of factor A, Y. j. denote the total of all 

observations under the jth level of factor B, Y ij denotes the total of observation in the 𝑖𝑗𝑡ℎ 
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cell, and 𝑌… denote grand total of all the cell, and grand averages. This is mathematically 

expressed in Equation (3.20): 

 

𝑌𝑖. . = ∑ ∑ 𝑌 𝑖𝑗𝑘

𝑛

𝑘=1

𝑏

𝑗=1

�̅�𝑖 =
𝑌𝑖. .

𝑏𝑛
     𝑖 = 1,2, … , 𝑎  

𝑌. 𝑗. = ∑ ∑ 𝑌 𝑖𝑗𝑘

𝑛

𝑘=1

𝑏

𝑗=1

�̅�. 𝑗. =
𝑌. 𝑗.

𝑎𝑛
     𝑗 = 1,2, … , 𝑏 (3.20) 

𝑌𝑖𝑗. =  ∑ 𝑌 𝑖𝑗𝑘

𝑛
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𝑛
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𝑗 = 1,2, . . , 𝑏
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𝑛

𝑘=1

𝑏

𝑗=1

𝑎

𝑖=1

�̅� … =
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𝑎𝑏𝑛
  

The total corrected sum of squares is expressed in Equation (3.21) as:  
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 (3.21) 

 

The total sum of the squares is partitioned into a sum of squares due to the formation of “rows” 

or Factor A, (SSA); sum of squares due to “columns” or factor B, (SSB); a sum of squares due 
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to the interaction between A and B, (SSAB); and a sum of squares due to error, (SSE). Equation 

(3.21) shows that there must be at least two replicates (n ≥ 2) to obtain an error sum of squares. 

This can be expressed symbolically in Equation (3.22); 

 

𝑆𝑆𝑇 = 𝑆𝑆𝐴 + 𝑆𝑆𝐵 + 𝑆𝑆𝐴𝐵 + 𝑆𝑆𝐸 (3.22) 

The total degrees of freedom to the sums of squares may be expressed as follows: The main 

effects A and B have 𝑎 and 𝑏 levels, respectively; this implies that 𝑎 − 1 and 𝑏 − 1 degrees of 

freedom exist as shown. The interaction degrees of freedom are the number of degrees of 

freedom for the two (2) main effects namely A and B; that is, 𝑎𝑏 − 1 − (𝑎 − 1) − (𝑏 − 1) =

(𝑎 − 1)(𝑏 − 1). Within each of the 𝑎𝑏 cells, there are 𝑛 − 1 degrees of freedom between the 

𝑛 replicates; hence there are 𝑎𝑏(𝑛 − 1) degrees of freedom for error. Assuming that the model 

(Equation (3.22)) is adequate and that the error terms ∈𝑖𝑗𝑘 are normally and independently 

distributed with constant variance𝜎2, then each of the ratios of mean squares MSA/MSE, 

MSB/MSE and MSAB/MSE are distributed as F with a – 1, b – 1, and (a – 1)(b – 1) numerator 

degrees of freedom, respectively, and ab(n – 1) denominator degrees of freedom, and the 

critical region would be the upper tail of the variance table.  

The total sum of squares is computed as usual by Equations (3.23) and Equation (3.24): 

 

𝑆𝑆𝑇 = ∑ ∑ ∑ 𝑌𝑖𝑗𝑘
2 −

𝑛

𝑘=1

𝑌2

𝑎𝑏𝑛

𝑏

𝑗=1

𝑎

𝑖=1

  (3.23) 

 

The sums of squares for the main effects are Equations (3.24) and Equation (3.25). 
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SSAB is obtained in two (2) stages. The sum of squares between the ab cell totals is firstly 

computed (“subtotals”) as in Equation (3.26): 

 

𝑆𝑆𝑠𝑢𝑏𝑡𝑜𝑡𝑎𝑙𝑠 = ∑ ∑
𝑌𝑖𝑗.

2

𝑛
−

𝑌…
2

𝑎𝑏𝑛

𝑏

𝑗=1

𝑎

𝑖=1

 (3.26) 

This sum of squares also contains SSA and SSB. Therefore, the second step is to compute 

SSAB (Equation (3.27)) as  

𝑆𝑆𝐴𝐵 = 𝑆𝑆𝑠𝑢𝑏𝑡𝑜𝑡𝑎𝑙𝑠 − 𝑆𝑆𝐴 − 𝑆𝑆 𝐵 (3.27) 

SSE (Equation (3.28) is computed by subtraction;  

𝑆𝑆𝐸 = 𝑆𝑆𝑇 − 𝑆𝑆𝐴𝐵 − 𝑆𝑆 𝐴 − 𝑆𝑆𝐵 (3.28) 

or  

𝑆𝑆𝐸 = 𝑆𝑆𝑇 − 𝑆𝑆𝑠𝑢𝑏𝑡𝑜𝑡𝑎𝑙𝑠  

3.8 Non-Crimp Fabric Carbon Fibre Recovery  

3.8.1 Pyrolysis Experimental Setup  

The recovery of carbon fibre from the carbon fibre reinforced composite was undertaken 

via pyrolysis. Units of 2 𝑘𝑔 samples were weighed after cutting them into square pieces using 

a diamond blade cutter and placed into ceramic crucibles, which were then inserted into the 

reactor with the help of a furnace plunger. A Carbolite EHA one-zone model furnace equipped 

with an argon filled cylinder was used for the pyrolysis processes as shown in Figure 3.18. The 

process requires initial flushing with argon to remove air after closing the furnace lid before 

heating the system at a rate of 5℃/𝑚𝑖𝑛 to the predetermined temperature of 500℃ for 1 ℎ𝑜𝑢𝑟 

and then cooled under argon flow of 10 𝑙/𝑚𝑖𝑛 at a pressure of 2.5 𝑝𝑠𝑖. An extended tong for 

gripping the crucible was used to ensure centre placement of the samples in the furnace. 
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Figure 3.18 Pyrolysis Setup 

 

The size of the furnace inner tube is the limiting factor with regard to the sample 

dimensions. The main focus was on fibre recovery and therefore pyrolysis gas and oil yields 

were not considered. The pyrolysis process was conducted in accordance with the procedure 

proposed by Mazzocchetti et al. [49]. 

3.8.2 Post-Pyrolysis Treatment (Oxidation) 

The recovered solid residue from the pyrolysis process comprises carbon fibre coated 

with a carbonaceous film usually referred to as the char. In order to fully recover the fibre to 

have mechanical properties comparable to virgin fibre, oxidation to get rid of the char is 

essential. The oxidation was conducted in a Thermo scientific Thermolyne furnace as shown 

in Appendix A6. The char covered fibres were placed in the furnace and the temperature was 

set to 500℃ and maintained at this temperature for 1 ℎ𝑟. The heating was carried out in air. 

The oxidation parameters were obtained from Mazzocchetti et al. [49]. 
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3.8.3 Functionalisation with Nitric Acid 

The primary purpose for modifying the surface of carbon fibre is to improve the 

wettability, effectively improving the interfacial adhesion and shear properties of the resulting 

composite. Several methods such as plasma and thermal treatments are also effective but 

relatively expensive, require high energy consumption and degrade the mechanical strength of 

the fibres. Therefore, an approach that increases wettability without the associated drawbacks 

of high cost and loss in fibre strength, was wet oxidation using nitric acid as proposed by Li 

[353]. This process directly influences the surface energy, the specific surface area, and the 

surface chemical functionality which are critical parameters for improving wettability.  

The experimental setup comprised a round bottom flask, thermometer, a heating mantel 

regulated by a Variac, and a reflux system as shown in Figure 3.19. Char-covered recovered 

carbon fibre and virgin carbon fibre were treated with 6 mol nitric acid (HNO3) obtained from 

a solution of 38 𝑚𝑙 nitric acid added to 62 𝑚𝑙 distilled water in accordance with Li [353]. 

During the oxidising process, 40 𝑚𝑙 of the prepared solution was poured into the round bottom 

flask followed by the inclusion of the fibres whereafter the solution was heated under reflux 

for 5 ℎ𝑜𝑢𝑟𝑠 at a temperature of 90℃. The fibres were then removed, washed with distilled 

water until neutral pH was attained, and dried in an oven at 60℃ overnight. 
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(a) (b) 

 
 

(c) 

Figure 3.19 Functionalisation of virgin and recovered carbon fibre. (a) round bottom flask, thermometer, a 

heating mantel and reflux tubes; (b) A variac for regulating the heating mantle; (c) Drying of fibres  
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3.9 Materials Characterisations  

3.9.1 Impact Testing 

Impact Charpy tests in accordance with the ISO 179/92 standard [354]was performed on 

neat epoxy (NE), silane functionalised TiO2 nanocomposite (STN) (See Figure 3.20  (a)), non-

functionalised TiO2 nanocomposite (TN), NCF carbon fibre reinforced composite (CF-NE) and 

NCF carbon fibre reinforced composite with TiO2 addition (CF-STN) test specimen (See 

Figure 3.20 (b)). The MPX series motorised pendulum impact tester equipped with a hammer 

weight of 32.208 kg as shown in Appendix A6, was used for characterising the notched 

specimen with dimensions of 55 × 10 𝑚𝑚 with respect to the prerequisites of the ISO 179/92 

standard [354].  

  

(a) (b) 

Figure 3.20 Charpy impact test specimen. (a) Epoxy matrix with TiO2 nanoparticle inclusion (b) Carbon fibre 

NCF with TiO2 nanoparticle inclusion  

 

3.9.2 Physisorption Isothermal Analysis using Brunauer Emmett Teller (BET) 

The surface properties of virgin and recovered carbon fibre were characterised through a 

physisorption isotherm analysis. The adsorption-desorption behaviour of the carbon fibres was 

assessed under controlled conditions and analysed using Brunauer-Emmet-Teller (BET) 

methodology with an ASAP 2460 micromeritics instrument as shown in Figure 3.21(a). The 

carbon fibre was degassed at 250℃ under a flow of N2 gas for 24 ℎ𝑟𝑠 using the Prep Flow 
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060 – Sample degas system micromeritics as shown in Figure 3.21 (b). During the 

physisorption isotherm analysis process, N2 sorption porosimetry at −196℃ isotherms was 

investigated using BET measurements which quantify the physical adsorption of the fibre and 

correlates it with the specific surface area, the distribution of pore size, the total pore volume, 

and the adsorbent’s mean pore diameter. The plots and data from the BET analysis were used 

for evaluating the surface area of the carbon fibre (𝑚2/g), while the nitrogen adsorption 

isotherms based on density functional theory were used to derive the pore size differential 

distribution curves. Additionally, the total pore volume (𝑐𝑚3 𝑔)⁄  of the carbon fibre was 

computed from the quantity of N2 adsorption close to vapour pressure saturation of the N2 gas. 

The experimentation was carried out with strict adherence to the procedural standards in the 

manufacturer’s manual. 

 

 

 

 

(a) (b) 

Figure 3.21 Nitrogen sorption porosimetry. (a) BET equipment; (b) Degassing equipment  
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3.9.3 Elemental Analysis (Ultimate Analysis) 

A Thermo Scientific Flash 2000 organic element analyser was used to conduct the final 

analysis on both the virgin and recovered carbon fibres. As a methodology, it is one of the most 

attractive for carrying out carbon hydrogen nitrogen (CHN) microanalysis due to its high 

validation quality while conducting purity analysis. As the combustion process progresses, 

carbon, hydrogen and nitrogen get converted into carbon dioxide, water, and nitrogen gas 

respectively via a variety of adsorbents. The CHN was investigated and the correlations of the 

adsorption behaviour of the carbon fibre to the molar ratios of O/C and H/C in accordance with 

D3176-15 of ASTM [355] were determined.  

3.9.4 Scanning Electron Microscopy combined with Energy Dispersive X-ray 

Spectroscopy (SEM-EDX) 

The surface morphology of virgin and recovered carbon fibres was investigated to assess 

the possible morphological and chemical transformations that may have occurred during 

pyrolysis, oxidation, and functionalisation. This was accomplished using a TESCAN VEGA 3 

XMU scanning electron microscope (SEM) with an accompanying XMAX Oxford Instrument 

Energy Dispersive X-Ray (EDX) analyser as shown in Figure 3.22. A cross-section of the SEM 

composite samples was prepared by cryo-fracturing [356]. The samples were immersed in 

liquid nitrogen and then shattered. This method generally minimises distortions when 

compared to the use of shear force applied by a cutter. Sample sizes of approximately 5 𝑚𝑚 

lateral dimensions were selected for experimentation. The EDX section provides data on the 

chemical composition of the samples. 
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Figure 3.22 SEM equipped with EDX imaging 

 

3.9.5 Thermal Analysis 

3.9.5.1 Thermogravimetric Analysis (TGA) 

Thermogravimetric analysis (TGA) provides a standardised method for measuring the 

thermal degradation of materials. Under controlled conditions and specific heating rates, 

samples are heated, and as the data on weight changes, temperatures and times are 

simultaneously documented. The TGA method is thus quantitative and focuses on thermal 

degradation because weight variations are a factor of temperature and time. During the TGA 

analysis, second-order transition characteristics of the sample absorption, adsorption, 

desorption, sublimation, and vapourisation can be recorded. Aside from the physical 

information that is captured during TGA, important chemical data such as decomposition, 

devolatisation, chemisorption, and solid-gas reactions can also be determined. The 
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determination of the rate of weight loss in relation to temperature or time is termed the derivate 

of the thermogravimetry (DTG). 

 

Figure 3.23 SDT-Q-600 thermogravimetric analyser 

 

The SDT-Q-600 Thermogravimetric Analyser manufactured by TA Instruments, as 

shown in Figure 3.23 was used to assess the thermal stability of composite and virgin/recovered 

carbon fibre samples. Composite samples were either cryofractured or cut (fibre reinforced 

composites). Approximately 100 𝑚𝑔 of the samples were heated for 10 𝑚𝑖𝑛𝑠 at 105℃ to 

ensure the elimination of any trapped moisture on samples resulting from sample preparation, 

prior to starting the TGA process. The TGA analysis involved heating composite and carbon 

fibre samples to 800℃ and 1100℃ respectively under a nitrogen inert condition of 

100 𝑚𝑙/𝑚𝑖𝑛 and a heating rate of 10℃/𝑚𝑖𝑛 in accordance with Mazzocchetti et al. [49]. 

Weight loss (TG) and weight loss rate (DTG) information was captured and used for the 

thermal stability analysis. 
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3.9.5.2 Integral Procedural Decomposition Temperature 

The integral procedural decomposition temperature (IPDT) is a tool primarily used for 

analysing sections of a polymeric material that are volatile and also to determine the intrinsic 

thermal stability of the polymer matrix as illustrated in Figure 3.24. Doyle [357] developed the 

IPDT procedure through computation of the thermogram area summations acquired from 

thermogravimetric analyses. The formulation for computing IPDT as shown in Equation (3.29) 

was within a temperature boundary constraint of 30℃ and 800℃ which represents the initial 

and final temperatures:  

 
Figure 3.24 The schematic diagram of the Doyle’s method for determining the IPDT 

 

 

𝐼𝑃𝐷𝑇 (℃) = 𝐴 × 𝐾 × (𝑇𝑓 − 𝑇𝑖) (3.29) 

 

𝐴 =
𝑆1 + 𝑆2

𝑆1 + 𝑆2 + 𝑆3
 (3.30) 

 

𝐾 =
𝑆1 + 𝑆2

𝑆1
 (3.31) 
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where 𝐴 is the total experimental curve area ratio described by the total regions within 

which the TGA thermogram lies, 𝐾 represents the coefficient, while 𝑇𝑖 and 𝑇𝑓 represent the 

initial and final temperatures respectively. 

3.9.5.3 Oxidation Index 

Oxidation index (OI) is an important indexing tool used in the estimation of the flame 

retardant capacity of polymer composites [358]. The index is formulated based on the 

decomposition of the matrix with emphasis on the char residual (𝐶𝑅) retrieved after pyrolysis. 

The mathematical formulation is presented as follows in Equation (3.32): 

𝑂𝐼 =
17.5 × 0.4 𝐶𝑅

100
 (3.32) 

 

3.9.6 X-Ray Diffraction Analysis (XRD) 

X-ray diffraction (XRD) is a non-destructive analytical approach uniquely suited to 

provide comprehensive information on chemical constitution, crystallographic 

structure/phases, and physical and chemical properties. In this study powder XRD was used, 

and therefore the carbon fibre samples had to be pulverised. The standard procedure of X-ray 

diffraction measurements on carbon materials by Iwashita et al. [359] was adopted in this 

research. Powder XRD allows for the investigation and identification of solid-state material 

phases which is useful for analysing phase transitions, polymorphs, lattice parameters, 

crystallinity, crystal size, and strain.  

A Rigaku Ultima IV X-Ray diffractometer as shown in Figure 3.25, which is equipped 

with crossbeam optics from the Saskatchewan Structural Science Center in the University of 

Saskatchewan was used for this study. The X-Ray diffraction uses a Cu source with a 

wavelength of 1.54056Å while cross-beam optics (CBO) technology provides the possibility 

for immediate switching between parallel and para-focusing beams. Additionally, the Rigaku 

Ultima IV X-Ray diffractometer has a broad 2𝜃 scan range of −3° to 162° The experimental 
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works were conducted under strict adherence to operational and specific standards provided by 

the Saskatchewan Structural Science Center. 

 

Figure 3.25 The Rigaku Ultima IV X-Ray diffractometer 

 

Crystallite characteristics were determined from the XRD data using Bragg’s law and 

Debye-Scherrers equations. Bragg’s law is capable of computing the interlayer spacing (𝑑002) 

and lattice constants values as shown in Equation (3.33). 

 𝑑002 =
𝜆

2𝑠𝑖𝑛𝜃
 (3.33) 

 

where 𝜆 is the wavelength of x-ray (1.54056 Å) and 2𝜃 is the diffraction angle. The 

classical Debye-Scherrer equations as shown in Equations (3.34), (3.35) and (3.36) were used 

for analysing the structural parameters from the XRD patterns [360]:  

𝐿𝑐 =
𝐾𝑐𝜆

𝛽002 𝑐𝑜𝑠𝜃002
 (3.34) 

𝐿𝑎 =
𝐾𝑎𝜆

𝛽011 𝑐𝑜𝑠𝜃011
 (3.35) 

𝑁 =
𝐿𝑐

𝑑002
 (3.36) 
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where 𝛽 is the full width at half maximum intensity (FWHM),  𝐿𝑐 is the crystallite 

thickness with its accompanying coefficient 𝐾𝑐 (0.9), 𝐿𝑎 is the crystallite width with its 

accompanying 𝐾𝑎 (1.77), and 𝑁 is the average number of aromatic layers [361]. These 

crystallite structural parameters are primarily influenced by pyrolysis and oxidation treatments. 

3.9.7 Raman Spectroscopy Analysis 

Raman spectroscopy is an approach which provides sample information that is highly 

chemical-specific and based on modes of molecular systems that are vibrational and rotational. 

It is a non-contact and non-destructive technique that is very useful in detecting and analysing 

chemical composition, evaluation of crystallinity, structural analysis of molecules and many 

more. In this study, the Renishaw Invia reflex microscope as shown in Figure 3. 26 equipped 

with an IlluminatIRII FTIR microscope accessory in the Saskatchewan Structural Science 

Center at the University of Saskatchewan, was used. The microscope is capable of very high 

resolutions due to the MS20 encoded stage which enables precise steps of 100 𝑛𝑚. 

Additionally, the Invia Reflex is equipped with lasers with excitations of 514.5 𝑛𝑚 and 

785 𝑛𝑚. The automatic laser switching capabilities allow for simultaneous spectroscopy 

excitation of Raman and FTIR wavelengths. Several structural studies have been successfully 

carried out on carbon-based materials [362–364] such as graphite and carbon fibre using 

Raman spectroscopy, and the reliability of the results has ensured commercialisation of the 

technique. It is uniquely suited for the analysis of carbon-based materials because of its high 

sensitivity to different types of carbon structures differentiated by the generation of distinctive 

Raman peaks corresponding to each specific form of carbon. The intensity ratio (𝐼𝑅) describes 

the ratio of the first-order peak intensities of 𝐷 − 𝑏𝑎𝑛𝑑 (𝐼𝐷) and 𝐺 − 𝑏𝑎𝑛𝑑 (𝐼𝐺) [361,365] as 

shown in Equation (3.37). This parameter is an important indicator which determines the 

influence of treatments such as pyrolysis and oxidation on the crystallinity of carbon materials. 
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𝐼𝑅 = (
𝐼𝐷

𝐼𝐺
) (3.37) 

 

Sample testing was undertaken at the Saskatchewan Structural Science Centre at the 

University of Saskatchewan. All operational standards with regard to testing were strictly 

adhered to. 

 

Figure 3.26 Renishaw Invia Reflex equipped with an IlluminatIRII FTIR microscope 
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3.10 Summary  

Two composite fabrication methodologies were adopted from the literature and 

manufacturer’s recommendations to ensure standardised fabrication. Titanium oxide 

nanoparticle functionalisation was carried out based on established methods and parameters 

reported in the literature for silane treatment. Two formulations for dispersion quantification 

were developed based on reviewed literature. The first was established on the theories of gap 

statistics and dispersity, while the other was based on fractal dimension and variance. The 

quantification analysis required various algorithms, which were developed in MATLAB for 

activities such as image segmentation. Tab optimisation to reduce stress concentration in the 

tab termination region was investigated via the established literature on the finite element 

analysis of composite materials and the application of various optimisation techniques. Apart 

from the normal Taguchi, genetic algorithms and multiple response optimisations were 

developed to critically evaluate the influence of all design parameters and configurations on 

the induced stress concentration, and to further determine optimal combinations of the 

parameters. Analysis of variance was applied to the simulation results obtained from the finite 

element analysis to determine the main effects and significance of these effects via a p-value. 

In recycling the carbon reinforced composites, pyrolytic parameters such as optimal 

temperature and post-treatment oxidation temperature were based on the reviewed literature. 

Additionally, nitric acid functionalisation of virgin and recovered fibres was carried out in 

accordance with established methodologies in the literature.  

The next chapter presents the results derived from quantifying the state of nanoparticle 

dispersion, optimising the design parameters using varying optimisation techniques, and 

recycling carbon fibre reinforced composites. 
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CHAPTER FOUR 

4. RESULTS AND DISCUSSION 

4.1 Introduction 

Non-crimp fabric composites fabricated from an epoxy matrix modified through the 

inclusion of functionalised and non-functionalised TiO2 nanoparticles. Then, the state of TiO2 

dispersions in the modified epoxy matrix was quantified using gap statistics and fractal 

dimension. Finite element modelling coupled with optimisation techniques were used to obtain 

optimal Tensile test specimen design parameters of the NCF composites. Thereafter impact test 

analysis coupled with thermal charaterisations were conducted. Lastly, the effects of pyrolysis 

and oxidation on reclaimed NCF carbon fibre were investigated and discussed.  

4.2 Quantification of TiO2 Nanoparticle Dispersion  

4.2.1 Dispersion Quantification Using Gap Statistics 

The proof of concept as presented is required in the development of simulated models 

(see Figure 3.1) of the possible particle dispersion and agglomeration states. Obtaining data 

from the models for formulation and computation involved image segmentation of the models 

via the K-mean algorithm [334] which transforms the model image to one that is binary, and 

thereafter also the location, extraction and plotting of the centroid coordinates as shown in 

Figure 4.1. 
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Model Segmentation Particle centroid location 

Figure 4.1 The image data extraction process for Model 4 [330] 

 

The data extracted provided numerical input for application of the gap statistic criterion to 

genearte both observed and expected curves as depicted in Figure 4.2. The significant 

observation focused on how, from Model 1 (uniform distribution) to Model 5 (highly 

agglomerated), the gap between the observed and expected curves progressively expanded. 

This obvious trend correlated with the increase in the inhomogeneity and agglomeration levels. 

The gap behaviour trend provided a scientific basis for the development and formulation of the 

gap factor (G0) described Section 3.2.1. Consequently, the gap factor was determined as the 

area between the observed and expected curves; or the difference of the area under the two 

curves. 

 

 

(a) (b) 
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(c) (d) 

 

 

(e) (f) 

 

 

(g) (h) 
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(i) (j) 

Figure 4.2 Plotted centroids and corresponding Gap curves for Model 1 (a and b), Model 2 (c and d), Model 3 (e 

and f), Model 4 (g and h) and Model 5 (i and j) [330] 

 

Thereafter, a dispersion quantity (𝐷) was formulated from the gap factor (𝐺0), particle 

spacing dispersity (𝑃𝑆𝐷1) and particle size dispersity (𝑃𝑆𝐷2) and tested on the five simulated 

models. However, computing 𝑃𝑆𝐷1 and 𝑃𝑆𝐷2 required the calculation of critical parameters 

like average particle spacing and average particle size with their corresponding standard 

deviations; all of which were extrapolated from each of the five simulated models as reported 

in Table 4.1. As expected, the observed trend revealed that, Models 1, 2 and 3 showed relatively 

similar but lower average particle spacing in comparison with Models 4 and 5. The above 

observations were in agreement with the visual assessment where larger agglomerates 

indicating higher variations in spacing were seen for Models 4 and 5. Therefore, the average 

spacing standard deviation for the uniform and randomly dispersed Models (1 and 2) without 

agglomerations were significantly lower than the models with agglomeration. Furthermore, 

Models 3 to 4 which had large agglomerates showed higher average particle sizes and standard 

deviations than Models 1 and 2 which had the same sized particles but without agglomerates. 

A larger average particle spacing coupled with an associated lower standard deviation implies 

interparticle spacing homogeneity which is indicative of a good state of dispersion and minimal 

presence of agglomeration within the composite matrix. 
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Table 4.1 Average particle spacing and size with corresponding standard deviations for simulated model in 

pixels 

Model  Ave. Particle 

Spacing 

Weighted 

Average 

Std 

Deviation 

Ave. Particle Size Weighted 

Average 

Std Deviation  

Model 1 7.84E+02 6.93E+02 3.75E+02 2.42E+03 2.43E+03 9.18E+01 

Model 2 7.44E+02 8.06E+02 3.70E+02 2.42E+03 2.43E+03 9.18E+01 

Model 3 7.71E+02 8.06E+02 4.07E+02 1.23E+04 7.12E+04 2.70E+04 

Model 4 8.42E+02 1.11E+03 4.57E+02 1.45E+04 4.01E+05 7.52E+04 

Model 5 9.14E+02 1.10E+03 4.59E+02 1.26E+04 9.89E+05 1.12E+05 

Source [330] 

Conversely, a lower average particle size coupled with a low standard deviation signifies 

lower levels of agglomerations and homogeneity in the distributed particles in the matrix. A 

positive correlation can thus be inferred between increasing average particle spacing and 

homogenous dispersion, while a negative correlation was observed between increasing average 

particle size and an increase in homogeneity in dispersion. Additionally, increasing standard 

deviation is negatively correlated with increasing homogeneity.  

In practice three factors are known to directly affect the thermal and mechanical 

properties of nanocomposites, namely interparticle interactions, particle contiguity and state of 

particle distribution [366]. Nanocomposite elastic property, in particular, is significantly 

influenced by particle congruity, distribution, and size [366]. Studies have shown that 

nanocomposite toughness and stiffness significantly improve when the distance between 

individual particles is progressively reduced in comparison to the nanoparticle diameters 

[122,367,368]. The resulting outcome is therefore an enhanced particle-matrix interphase 

characterised by a three-dimensional physical network which dominates the performance of 

the nanocomposite [122,368]. The performance domination discussed is positive when higher 

dispersion homogeneity is achieved. Table 4.1 shows that, the average interparticle spacings 

were 7.84𝐸 + 02 and 9.14𝐸 + 02 for Models 1 and 5 respectively while their corresponding 

average particle sizes were 2.42𝐸 + 03 and 1.26𝐸 + 04. Clearly, the interparticle spacing for 

both models are greater than their average sizes; however, Model 1 was uniformly distributed 
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while Model 5 had large agglomerates. The smallest standard deviation for average particle 

spacing was 3.75𝐸 + 02 for Model 1 implying that a smaller standard deviation indicated 

better particle homogeneity.  

However, Lou and Koo [369] however report that the reliance on standard deviations is 

not sufficient for exhaustive quantification of dispersion. This insufficiency associated with 

reliance on only average spacing, size and their standard deviations, required the 

implementation of an approach which incorporated gap factor, particle spacing, and size 

dispersity for the determination of the critical parameter known as the dispersion parameter 

(𝐷𝑝). Consequently, a much more comprehensive method for estimation of the dispersion 

quantity (𝐷) was formulated. 

For Model 1 which represents a uniformly dispersed system, 𝐺0, 𝑃𝑆𝐷1 and 𝑃𝑆𝐷2 all had 

values of approximately 1 which presented a perfect score of approximately 3 for 𝐷𝑝 as shown 

in Table 4.2. The resulting dispersion quantity (𝐷) was computed to be 99.34% ≈ 100% 

representing an ideal state of dispersion or perfectly homogeneous system. The D for Model 5 

however was found to be 3.65%; the lowest value and indicates extremely poor homogeneity 

in dispersion and high state of agglomeration. The emerging and expected trend in Table 4.2 

indicates a progressive retrogression in dispersion percentage moving from Models 1 to 5 

which is in agreement with the visual assessment of the models. Previous studies have shown 

that any formulation for quantifying dispersion must incorporate an agglomeration component 

[370]. In this study, 𝑃𝑆𝐷2 represents the agglomeration parameter; hence, the PSD2 values for 

Models 1 and 5 were 1 and 78.38 respectively. This means that an increase in 𝑃𝑆𝐷2 correlates 

with an increase in the state of agglomeration. In theory, as 𝐷 → 100%, the state of dispersion 

improves. 
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Table 4.2 Degree of dispersion in the simulated models 

Model 𝐺0 PSD1 PSD2 𝐷𝑝 D 

Model 1(Uniform Distr.) 1.02 1 1 3,02 99.34% 

Model 2 (Random Distr.) 1.56 1.08 1 3.64 82.42% 

Model 3 (Small Agg.) 1.93 1.05 5.8 8.78 34.17% 

Model 4 (Three Agg) 4.49 1.32 27.7 33.51 8.95% 

Model 5 (One Agg) 2.59 1.2 78.38 8.17 3.65% 

Source [330] 

*Agglomeration (Agg) 

 

4.2.1.1 Validation using real images 

Although proof of concept has theoretically been established, a means of validating the 

methodology was vital. To achieve this, the concept was tested on real SEM images comprising 

varying degrees of dispersion and agglomerations of TiO2 nanoparticles in the epoxy matrix. 

Four scenarios as can be observed in Figure 4.3, were used for testing the veracity, versatility 

and robustness of the method. All the scenarios were subjected to the initial stage of 

segmentation, which clearly exposed the dispersed nanoparticles as white pixels then extraction 

and plotting of the centroid data and finally plotting the observed and expected curves within 

the gap statistic criterion. To ensure reliability and accuracy all the images were scaled to a 

resolution of 1500 × 1500 pixels. The data analysis for the four scenarios is summarised in 

Table 4.3. 
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Scenario 1 

 

 

 

 

Scenario 2 
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Senario 3 

 

 

 

 

Senario 4 

Figure 4.3 Data extraction process and Gap plots for real image scenarios 1, 2, 3 and 4 [330]
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Table 4.3 Average particle spacing and size with corresponding standard deviations for real image scenarios in 

pixels 

Real Images Ave. Particle 

Spacing 

Weighted 

Average 

Std 

Deviation 

Ave. Particle 

Size 

Weighted 

Average 

Std 

Deviation 

Scenario 1 7.40E+02 9.46E+02 3.46E+02 6.11E+02 4.65E+03 1.59E+03 

Scenario 2 7.01E+02 6.40E+02 3.59E+02 6.67E+01 3.59E+02 1.94E+02 

Scenario 3 6.96E+02 7.81E+02 3.94E+02 6.40E+01 5.05E+02 1.36E+02 

Scenario 4 9.03E+02 1.25E+03 3.73E+02 2.44E+03 8.13E+04 1.76E+04 

Source [330] 

From Table 4.3, scenarios 1, 2 and 3 had average particle spacing of 7.40𝐸 + 02, 

7.01𝐸 + 02 and 6.96𝐸 + 02 respectively. These values were equivalent. However, an average 

spacing of 9.03𝐸 + 02 which is comparatively higher was observed for scenario 4. The high 

average spacing is an indication of dispersion inhomogeneity plus the presence of large 

agglomerates. The variations in the standard deviations of the average spacing for all the 

scenarios was not significant. In comparison, scenarios 1 and 4 had the highest values for 

average particle sizes at 6.11𝐸 + 02 and 2.44𝐸 + 03 respectively. Also, the standard deviation 

values of 1.59𝐸 + 03 and 1.76𝐸 + 04 for scenarios 1 and 4 respectively were greater than 

those of scenario 2 (1.94𝐸 + 02) and 3 (1.36𝐸 + 02). 

It must however be noted that high values of average particle sizes and their 

corresponding standard deviations can have two distinct interpretations. Scenario 1 represents 

a situation where there is large variation in the size of nanoparticles, and smaller agglomerate 

sizes in the matrix. While scenario 4 represents a situation where high average particle sizes 

and the standard deviation is attributed to the presence of large agglomerates. The ambiguity 

associated with relying on standard deviations is clearly demonstrated in the above scenarios, 

and they are therefore not sufficient for comprehensively assessing the state of dispersion and 

agglomeration [36]. 𝐺0, 𝑃𝑆𝐷1, 𝑃𝑆𝐷2 and the dispersion quantity (𝐷) for the four scenarios 

were determined as summarised in Table 4.4. The resulting dispersion Quantity (𝐷) was 

31.02%, 28.60%, 22.95% and 7.72% for scenarios 1 to 4 respectively. 
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Table 4.4 Degree of dispersion for real image scenarios 

Real Images 𝐺0 PSD1 PSD2 𝐷𝑝 D 

Scenario 1 0.79 1.28 7.6 9.67 31.02% 

Scenario 2 4.21 0.91 5.37 10.49 28.60% 

Scenario 3 4.06 1.12 7.89 13.07 22.95% 

Scenario 4 4.07 1.39 33.38 38.84 7.72% 

 Source [330]  

As can be seen, the most and least homogeneous scenarios were 1 and 4 respectively. The 

agglomeration parameter, 𝑷𝑺𝑫𝟐, for scenario 1 was 𝟕. 𝟔 while scenario 4 was 𝟑𝟑. 𝟑𝟖. The 

higher 𝑷𝑺𝑫𝟐 value for scenario 4 indicates that it had higher agglomeration content which is 

in agreement with the visual inspection. 

4.2.1.2 Particle Matrix-Interphase Improvement 

Improving the particle-matrix interphase is critical for enhancing the thermomechanical 

properties of nanocomposites. It is known that particle congruity and distribution significantly 

influence particle-matrix interphase. A critical analysis of the interphase regions exposes a 

sophisticated and complex interplay of several phenomena such as high-stress gradient, 

singularities of even stresses induced by particle geometry, mechanical stresses induced by 

shrinkage, microcracks, void content, bonding deficiencies and many more [366]. Improving 

particle hydrophobicity is critical to mitigating several of the discussed interphase 

inefficiencies. Wettability increases as hydrophobicity improve and consequently, dispersion 

also improves. This brings to fore the importance of functionalisation using oxidising agents 

coupled with cavitation processes such as ultrasonic dispersion which seek to modify the 

surface of the nanoparticles to enhance interphase bonding and overcome the interparticle 

Vander Waal forces which promotes agglomeration [32,371–373]. Silane functionalisation of 

TiO2 nanoparticles was carried out on samples used in scenarios 1, 2 and 3 and was evidenced 

by higher 𝐷 values indicating higher homogeneity and hydrophobicity. Hydrophobicity of the 

TiO2 nanoparticles was accomplished through creating a film comprising 𝑇𝑖– 𝑂– 𝑆𝑖 chemical 

bonding coupled with 𝑆𝑖– 𝑂– 𝑆𝑖 cross-link bonds after the silane treatment [106]. In 
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comparison, scenario 4 had the lowest 𝐷 value because the nanocomposite was fabricated from 

nonfunctionalised TiO2 nanoparticles, which exhibited higher agglomeration and lower 

hydrophobicity.  

4.2.2 Dispersion Quantification Using Fractal Dimension 

A less complicated approach has been developed based on the fractal dimension 𝐷𝑓 

where the box-counting method by Moisy [333] is adopted for computation of the variance of 

the fractal dimension via the segmentation of sample images. Five simulated concept models 

comprising dispersion states that are uniform, random, clustered and highly agglomerated were 

developed for testing proof of concept. The fractal dimension graphs for each model are shown 

in Figure 4.4. The equation developed for computing the dispersion quantity (𝐷0) (see section 

3.2.1) was used to determine the state of dispersion in the models; a summary of the results is 

presented in Table 4.5. As expected, uniform and randomly dispersed models showed the 

highest 𝐷0 values of 100% and 99.47% respectively; while the models with one and three 

large agglomerates had the lowest 𝐷0 values of 15.17% and 7.13% respectively. These results 

are consistent with the visual assessment of the models. 

 

 

(a) (b) 
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(i) (j) 

Figure 4.4(a) Uniformly dispersed model, (b) Fractal dimension graph of the Uniformly dispersed model, (c) 

Randomly dispersed model, (d) Fractal dimension graph of the randomly dispersed model, (e) Cluster 

distribution model, (f) Fractal dimension graph of the cluster Distribution model, (g) One large Agglomerate 

model, (h) Fractal dimension graph of the One large Agglomerate model, (i) One Three large Agglomerate 

model, (j) Fractal dimension graph of the three large Agglomerate model [374]  

 

The concept was theoretically proved through the results in Table 4.5, therefore the next 

step was a validation of the concept using real microscopy images. The three SEM images 

shown in Figure 4.5 were used for the validation process. All the images were captured at 5 𝜇𝑚 

using 15 𝐾𝑉 after which they were converted to 1500 × 1500 pixels before generating the 

fractal dimension plots. 

Table 4.5 Fractal Dimension, Variance and Dispersion of the concept models 

Models Fractal Dimension (Df) Variance (S2) Dispersion (𝐷0) 

Uniformly Dispersed 1.394 ± 0.434 1.89 × 10−1 100% 

Randomly Dispersed 1.425 ± 0.315 0.099 99.47% 

Clustered 1.483 ± 0.142 0.020 20.03% 

One Large Agglomerate 1.837±0.123 0.015 15.17% 

Three Large Agglomerates 1.877±0.084 0.007 7.13% 

Source [374] 

The assessment of significantly different states of dispersion is easily determined by visual 

inspection however, for distinguishing between very similar dispersion states, quantification 

tools such as the one developed in this study is required.  
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(a) (b) 

 
 

(c) (d) 

 

 

(e) (f) 
 

Figure 4.5 (a) Sample 1, (b) Fractal dimension graph of Sample 1, (c) Sample 2, (d) Fractal dimension graph of 

Sample 2, Sample 3 and (f) Fractal dimension graph of Sample 3. [374]  
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The SEM images were therefore carefully selected on the basis of all samples which display 

high levels of agglomerations. The proposed method was successfully employed to determine 

the degree of dispersion within the samples. Table 4.6 represents a summary of the obtained 

results. The dispersion quantity (𝐷0) was found to be 19.79%, 11.74% and 1.95% for samples 

1, 2 and 3 respectively. Sample 3 in particular, was expected to have the worst state of 

dispersion since visual inspection shows a giant agglomerate lump.  

Table 4.6 Fractal Dimension, Variance and Dispersion of real samples 

Real Images Fractal Dimension (Df) Variance (S2) Dispersion (𝐷0)  

Sample 1 1.481±0.141 0.0198 19.79% 

Sample 2 1.706±0.108 0.0117 11.74% 

Sample 3 1.847±0.044 0.0019 1.95% 

Source [374] 

Additionally, the low dispersion percentages for all samples can be attributed to the 

presence of large agglomerates resulting from the use of non-functionalised TiO2 nanoparticles. 

The high agglomeration levels are due to poor particle-matrix interphase characteristics such 

as low hydrophobicity, specific area of the particles, high interparticle Van der Waal attraction, 

and matrix viscosity [375] [376,377]. There are however some drawbacks to this proposed 

method in its current state. These include a lack of components within the dispersion equation 

such as particle contiguity parameters which considers interparticle spacing and an 

agglomeration quantity for precise assessment.  

4.3 Optimisation Methods for Minimising stress Concentration in NCF 

composites During Tensile Testing 

4.3.1 Tensile Testing 

The elastic properties for non-crimp fabric glass fibre composites were obtained via an 

analysis of the stress-strain and shear (stress-strain) plots for 0° and 10° specimens as shown 

in Figure 4.6 and Figure 4.7 and Figure 4.8. The shear failure mode of the 10o G-10 glass-

epoxy specimen is presented in Figure 4.9, and the obtained results are summarised in  
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Table 4.7. The elastic and shear modulus of the NCF composite were 132 𝐺𝑝𝑎 and 

7.5 𝐺𝑝𝑎 respectively. The results were primarily obtained to serve as inputs for the finite 

element analysis.  

  

Figure 4.6 Stress-strain curve for 0o test specimen 

[335]  

Figure 4.7 Stress-strain curve for 10o test specimen 

[335] 

 

 

 

 

 

 

 

Figure 4.8 Shear (stress-strain) curve [335] Figure 4.9 Shear failure of 10o specimen [335]  
 

 

Table 4.7 Elastic properties of E-glass Non-crimp fabric 

Composite FVF (%) * Ex (GPa) Gxy (Gpa) Vxy 

UD-Glass/Epoxy NCF 71 132 7.5 0.307 

Source [335] 
*Fibre Volume Fraction 
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4.3.2 Finite Element Analysis 

The technology for measuring induced stress concentrations directly during testing is 

presently non-existent and nearly impossible. However, finite element analysis provides the 

only feasible and effective avenue for investigating such induced stresses [8,11]. In this study, 

the approach proposed by Adams and Adams [8] was adopted.  

Table 4.8 Material input for finite element analysis 

Source [378] 
*Experimental results from tensile testing 

 

All the input parameters required for conducting finite element modelling of tensile 

loading are summarised in Table 4.8. The elastic modulus for the tab materials was 𝐸 =

32.6 𝐺𝑝𝑎 for G-10 glass fabric/epoxy [8] representing the low stiffness material and 𝐸 =

132 𝐺𝑝𝑎 for the non-crimp fabric composite representing the high stiffness material. After the 

finite element simulation of tensile loading, the area of maximum stress concentration was 

located at the tab termination region as shown in  

Figure 4.10. The ability to minimise stress concentration at the tab termination region 

is essential to significantly limit testing deficiencies such as premature failures which lead to 

result inconsistencies, inaccuracies and extremely reduced tensile strength values. 

Material 

Properties 

UD glass NCF-

epoxy* 

Tab Material (G-10 glass fabric-epoxy) 

** 

Two-part 

Adhesive** 

Ex (GPa) 132 32.6 3.17 

Ey (GPa) 10 6.9  

Es (GPa) 10 6.9  

Vxy 0.307 0.06 0.31 

Vys 0.307 0.06  

Vxs 0.307 0.06  

Gxy (GPa) 7.5 3.45  

Gys (GPa) 66 10  

Gxs (GPa) 6.5 3.45  
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Figure 4.10 Finite element result showing the location of maximum stress concentration [335] 

 

A summary of the normalised induced stress concentration at the tab termination region 

after 32 simulations using a full factorial 2-level five-factor design, is presented in Table 4.9. 

In this study, the five design parameters considered are: adhesive thickness, tab thickness, tab 

length, tap taper angle, and tab stiffness. An analysis of variance (ANOVA) was carried out to 

obtain the p-values which indicate the significance of each parameter as shown in Table 4. This 

was necessary to ascertain which factors were most significant. Since the objective was to 

minimise the stress concentration induced during tensile testing, the following factors had p-

values less than 0.05 and therefore were the most significant: tab stiffness, tap taper angle, and 

adhesive thickness. The least significant factors were the tab thickness and tab length which 

had 𝑃 − 𝑣𝑎𝑙𝑢𝑒𝑠 of 0.117 and 0.979 respectively for σxmax as shown in Table 4.10. The 

inference from having such 𝑝 − 𝑣𝑎𝑙𝑢𝑒𝑠 is that tab thickness ranging from 0.5 to 1.5 𝑚𝑚 are 

acceptable and have no effect on induced stress concentration. The recommended rule of thumb 

in standard practice is to use a tab thickness, which is 1 to 4 times the thickness of the test 

specimen to guarantee against premature tab failure due to grip loading tab strength capable of 

withstanding grip loads. 

 

Table 4.9 2-level factorial design 
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Tab 

Stiffness 

(Gpa) 

Tab 

Thickness 

(mm) 

Tab 

Length 

(mm) 

Tap Tapper 

Angle 

(degrees) 

Adhesive 

Thickness 

(mm) 

σxmax 

(Normalised) 

σymax 

(Normalised) 

τxymax 

(Normalised) 

32.6 0.5 50 90 1.5 1.193 0.070 0.038 

32.6 1.5 100 90 0.25 1.394 0.126 0.084 

32.6 1.5 100 90 1.5 1.251 0.104 0.057 

32.6 1.5 100 5 0.25 1.151 0.045 0.031 

32.6 0.5 50 90 0.25 1.297 0.079 0.053 

132 1.5 50 90 1.5 1.329 0.133 0.072 

132 0.5 100 5 0.25 1.500 0.145 0.096 

32.6 0.5 50 5 1.5 1.201 0.082 0.045 

32.6 0.5 100 90 0.25 1.285 0.083 0.055 

32.6 1.5 50 5 1.5 1.199 0.081 0.044 

132 1.5 100 5 1.5 1.339 0.147 0.079 

32.6 1.5 50 90 0.25 1.402 0.123 0.082 

32.6 1.5 50 90 1.5 1.244 0.096 0.052 

132 0.5 50 90 0.25 1.591 0.164 0.108 

132 0.5 100 90 0.25 1.596 0.174 0.116 

132 1.5 100 90 0.25 1.655 0.198 0.132 

32.6 0.5 50 5 0.25 1.151 0.045 0.031 

132 1.5 100 90 1.5 1.346 0.145 0.078 

32.6 0.5 100 5 1.5 1.195 0.079 0.043 

32.6 1.5 50 5 0.25 1.151 0.045 0.031 

132 0.5 100 90 1.5 1.313 0.130 0.070 

132 0.5 100 5 1.5 1.328 0.142 0.077 

32.6 0.5 100 5 0.25 1.151 0.045 0.031 

32.6 0.5 100 90 1.5 1.197 0.076 0.042 

132 0.5 50 5 1.5 1.338 0.147 0.079 

132 1.5 50 5 0.25 1.505 0.149 0.098 

132 1.5 50 90 0.25 1.651 0.191 0.127 

132 1.5 50 5 1.5 1.342 0.148 0.080 

132 0.5 50 5 0.25 1.501 0.148 0.098 

32.6 1.5 100 5 1.5 1.198 0.080 0.044 

132 1.5 100 5 0.25 1.505 0.149 0.098 

132 0.5 50 90 1.5 1.299 0.119 0.064 

Source [335] 

 

Table 4.10 P-values for stress concentrations in bonded tabs 

  

 

 

 

     Source [335] 

Factor      σxmax  σymax  τxymax  

Tab Stiffness 0.000 0.000 0.000 

Tab Thickness 0.117 0.010 0.020 

Tab Length 0.979 0.581 0.612 

Tab Taper Angle 0.001 0.000 0.001 

Adhesive Thickness 0.000 0.000 0.001 
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A minimum thickness of 0.5 𝑚𝑚 is recommended in the literature [7,379]. Similarly, the 

𝑃 − 𝑣𝑎𝑙𝑢𝑒 for tab length also indicates that any length ranging from 50 𝑚𝑚 to 100 𝑚𝑚 is 

acceptable. Tab length corresponding to the length of the grips is recommended [11].  

 

Figure 4.11 Effect of Tab stiffness on stress concentration [378] 

 

To further investigate the effects of the tab design parameters, a finite element analysis 

was conducted again but over theoretically larger tab stiffness ranges of 20 –  240 𝐺𝑝𝑎, since 

tab stiffness was the most significant factor as observed from its 𝑝 − 𝑣𝑎𝑙𝑢𝑒. In Figure 4.11, the 

trend showed that increasing tab stiffness positively correlated with an increase in all three 

stress concentrations in the tab termination region. The selection of tab materials with low 

stiffness is recommended to minimise stress concentration. The stiffness of a material indicates 

how compliant the material is. Material selection must therefore be guided by a compromise 

between material compliance and its mechanical strength capable to withstand and effectively 

transmit grip load to test specimen during tensile testing, since a material that is too compliant 

will fail under crushing and shearing load testing. The tab stiffness of the G-10 glass 
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fabric/epoxy (𝐸 = 32.6 𝐺𝑝𝑎) meets the compliance and strength criteria and is recommended 

as suitable tab material [219]. 

 
Figure 4.12 Effect of taper angle on stress concentration [378] 

 

The shape or geometry of an object is known to significantly influence stress 

concentration and is a critical parameter to consider if stress minimisation is the primary goal. 

An increase in all three stress concentrations obtained from the finite element analysis (see 

Figure 4.12) showed a positive correlation with increase in the tab taper angle. Theoretically, 

tabs with the smallest taper angles, which are practically possible, are recommended. However, 

during tensile testing, the tab tapered region is not gripped and consequently susceptible to both 

the negative effects of peel stress (𝜎𝑦) and shear stress (𝜏𝑥𝑦) which can result in premature 

failure in the adhesive regions with decreasing tab taper angles. In the literature, researchers 

have recommended taper angles within a range of 10o to 30o to meet the convenience of 

practicality and for ease of fabrication [7,380]. 
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Figure 4.13 Influence of Adhesive thickness on stress concentration 

 

The influence of adhesive thickness on all three stress concentrations was different from 

the two previous tab design parameters discussed. In Figure 4.13, an increase in adhesive 

thickness was inversely correlated to the induced normal stress concentration (𝜎𝑥) which is the 

predominant stress which causes premature failure at the tab termination region. Therefore, to 

minimise the stress the adhesive must be as thick as practically possible. However, when using 

tapered tabs, the inherent taper geometry can cause an increase in the peel stress (𝜎𝑦) as the 

adhesive thickness increases. This implies that the peel stress (𝜎𝑦) is positively correlated with 

an increase in adhesive thickness. The shear stress (𝜏𝑥𝑦) was relatively constant. 

4.3.3 Taguchi optimisation 

The Taguchi 𝐿8 (25) orthogonal array DOE was used to analyse combinations of the 

design parameters to identify the configurations that minimise the stress concentrations; σxmax, 
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σymax and τxymax which were computed from finite element simulations of tensile loading as 

seen in Table 4.11. The criteria for determination of the 𝑆𝑁 ratio was based on the “lower-the-

better” equation. An 𝑆𝑁 response table was created after analysing the influence of all the 

design parameters as presented in Table 4.12. The optimal levels for every design factor was 

provided in the Table 4.13.  

Table 4.11 Taguchi DOE with response stress concentration values 

Simulation No.  A B C D E σx (norm) σy (norm) Τxy (norm) 

1 32.6 0.5 50 5o 0.25 1.201 0.0817 0.0449 

2 32.6 0.5 50 90o 1.50 1.193 0.0701 0.0384 

3 32.6 1.5 100 5o 0.25 1.198 0.0801 0.0440 

4 32.6 1.5 100 90o 1.50 1.251 0.1039 0.0566 

5 132 0.5 100 5o 1.50 1.328 0.1417 0.0767 

6 132 0.5 100 90o 0.25 1.596 0.1742 0.1157 

7 132 1.5 50 5o 1.50 1.342 0.1484 0.0803 

8 132 1.5 50 90o 0.25 1.651 0.1908 0.1265 

Source [335] 

Furthermore, the 𝑆𝑁 ratio values were computed for all the resulting induced stress 

concentrations. The optimal level was selected based on the highest 𝑆𝑁 ratio for a particular 

control factor level. A representation of the 𝑆𝑁 ratio main effects for global optimal and 

individual induced stresses is given in Figure 4.14. The optimised tab design configuration 

necessary to minimise the overall combination of the stress concentrations σxmax, σymax and 

τxymax, are detailed in Table 4.13. The bold text represents optimal values. 

Table 4.12 The results of simulations and SN ratios values 

No.  

Control factors 

σxmax SN ratio 

(σxmax) 

σymax SN ratio 

(σymax) 

τxymax SN ratio 

(τxymax) 

 A B C D E       

1 32.6 0.5 50 5 0.25 1.201 -1.594 0.082 21.754 0.045 26.961 

2 32.6 0.5 50 90 1.50 1.193 -1.535 0.070 23.082 0.038 28.304 

3 32.6 1.5 100 5 0.25 1.198 -1.570 0.080 21.922 0.044 27.125 

4 32.6 1.5 100 90 1.50 1.250 -1.943 0.104 19.668 0.057 24.950 

5 132 0.5 100 5 1.50 1.327 -2.464 0.142 16.971 0.077 22.303 

6 132 0.5 100 90 0.25 1.596 -4.060 0.174 15.178 0.116 18.731 

7 132 1.5 50 5 1.50 1.342 -2.558 0.148 16.569 0.080 21.908 

8 132 1.5 50 90 0.25 1.651 -4.355 0.191 14.388 0.127 17.958 

Source [335] 
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The main effect plot provides a graphical representation of the nature of the significance 

via line orientation. The degree of line gradient determines the magnitude of the main effect. 

Factors which influence the system are thus characterised by non-horizontal lines while a 

horizontal line implies that the factor is not significant and has no effect on the system. Further 

analysis of the effects of factor interaction showed no significance which indicates that the 

main effect plots were sufficient for accurate interpretation of the data. An examination of the 

global optimal main effect plot clearly shows that tab stiffness had the greatest influence on 

minimising stress while tab length was horizontal reinforcing the high p-value earlier reported. 

Adhesive thickness was observed to be inversely correlated with increasing stiffness and stress. 

This implies that increasing the adhesive thickness significantly reduces induced stress 

concentrations at the tab termination region. 

 

 

(a) (b) 

 

 

(c) (d) 

Figure 4.14 SN main effects plots for (a) σxmax (b) σxmax (c) σxmax (d) global main effect [335] 
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The results in Table 4.13 show that the 𝑆𝑁 ratios and corresponding levels for the design 

factors required for minimising stress concentrations in the tab termination region were 

summarised as follow:; for factor A (tab stiffness) the optimal 𝑆𝑁 ratio was 3.083 at level 1, 

factor B (tab thickness) had an optimal 𝑆𝑁 ratio of 2.312 also at level 1, for factor C (tab 

length) the optimal 𝑆𝑁 ratio of 2.212 was indicated at both levels 1 and 2, and the optimal 𝑆𝑁 

ratio for factor D (tab taper angle) was 2.679 at level 1. Lastly, for factor E (adhesive thickness) 

the optimal 𝑆𝑁 ratio value was 2.599 at level 2. Therefore, during tensile testing, the overall 

stress concentration effectuated due to the bonding of the tabs for this particular composite, can 

be minimised by implementing the optimal tab design configuration of tab stiffness = 

32.6 𝐺𝑝𝑎, tab thickness =  50 𝑚𝑚, tab length =  50 𝑚𝑚 or 100 𝑚𝑚, tab taper angle =  5° , 

and adhesive thickness =  1.5 𝑚𝑚. 

Table 4.13 SN response table for the combined stress concentrations (σxmax, σymax, τxymax) 

Levels Control factors 

(σxmax, σymax, τxymax) 

A B C D E 

Tab Stiffness  Tab Thickness  Tab Length  Tab Taper Angle  Adhesive Thickness 

Level 1 3.083   2.312  2.212  2.679   14 

Level 2 1.340   2.111  2.212  1.744   2.599 

Delta 1.743   0.201  0.000  0.935   0.774 

Rank 1 4 5 2 3 

Source [335] 
*Bold values show the optimal levels of design factors  

 

4.3.4 Taguchi-Multiple Response optimisation 

The second optimisation approach developed was a Taguchi multiple response hybrid 

where the DOE portion of the Taguchi methodology was used in combination with a 

desirability based multiple response optimisation. Table 4.14 shows the setup of the 

optimisation problem, which include factors such as the goal of minimisation, 𝑤𝑒𝑖𝑔ℎ𝑡 =  1 

and 𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 =  1 for all the tab design factors. After the computation of the optimal 

outcomes for all the tab design parameters, the results are shown in Table 4.15 while the 
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graphical representation of the desirability components is shown in Figure 10 (the optimal 

values are given in red). 

Table 4.14 Setup of design optimisation parameters 

Response     Goal Target   Upper Weight Importance 

τxy (Norm)     Minimum 0.03844  0.12651 1 1 

σy (Norm) Minimum 0.07013  0.19080 1 1 

σx (Norm)  Minimum 1.19333  1.65100 1 1 

Source [335] 

 

Table 4.15 Multiple response prediction (Optimised configuration) 

Variable     Optimal Tab Configuration 

Tab Stiffness     32.6 (Gpa) 

Tab Thickness 0.5 (mm) 

Tab Length 100 (mm) 

Tab Taper Angle 5o 

Adhesive Thickness 1.5 (mm) 

  Source [335] 

 

 

Figure 4.15 Composite desirability plot [335] 
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The objective for using a desirability methodology in carrying out multiple response 

optimisations was to derive a composite desirability equal to or close to 1. The weight and 

important values of 1 were selected to establish a baseline where all factors had the same 

influence. The optimal tab design parameters required for minimising the induced stress 

concentration at the tab termination region are tab stiffness (32.6 𝐺𝑃𝑎), tab thickness 

(0.5𝑚𝑚), tab length (50𝑚𝑚), tab taper angle (5°),and adhesive thickness (1.5𝑚𝑚). The 

individual desirability value was 1 for all three stress concentrations also leading to a composite 

desirability of also 1 as seen in Figure 4.15.  

4.3.5 Taguchi-Genetic Algorithm optimisation 

The second approach developed for optimising the design configuration of tabs to 

minimise stress concentration was a hybrid approach consisting of a combination of Taguchi 

design of experiments (DOE) and genetic algorithms (GA). The Taguchi L8 (2
5) DOE section 

was required to generate the regression equations from the induced stress concentrations, while 

the GA portion used the resulting regression as the objective functions.  

 

(a)  
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(b) 

 
(c) 

Figure 4.16 (a) Optimal Objective function (b) Average distance between individuals (c) Average Spread [335] 

 

Table 4.16 Optimal solution for design parameters using Taguchi-GA hybrid approach 

Obj. Fun 1 Obj. Fun 

2 

Obj. Fun 

3 

Tab 

Stiffness 

Tab 

Thickness 

Tab 

Length 

Tap Tapper 

Angle 

Adhesive 

Thickness 

1.053284 0.057215 0.020405 32.6 0.5 50.004 5 1.5 

1.049491 0.059404 0.021135 32.6 0.5 98.639 5 1.5 

Source [335] 



155 | P a g e  

 

At the solution point, the objective function values were computed to be 

[1.049491143, 0.053284701] for objective function 1, [0.057215173, 0.059403764] for 

objective function 2 and [0.020405058, 0.021134588] for objective function 3 as captured in 

Figure 4.16 (a). The average distance and spread are shown in Figure 4.16 (b) and (c) 

respectively and had values of 0.00107454444268082 and 0.541749461994625. After 

105 generations, the optimal solution was obtained. The computational time was extremely 

short since the problem was linear and the solution easily attainable. The results of the attained 

optimal tab design configuration are outlined in Table 4.16 as follows: tab stiffness 

(32.6 𝐺𝑃𝑎), tab thickness (0.5 𝑚𝑚), tab length (50 𝑚𝑚 𝑜𝑟 100 𝑚𝑚), tab taper angle (5°) 

and adhesive thickness (1.5 𝑚𝑚). 

4.3.6 Comparison of Approaches 

A comparison of the optimal solutions for the three optimisation approaches is given in 

Table 13. The results are clearly similar and in agreement with the 𝑃 − 𝑣𝑎𝑙𝑢𝑒𝑠 obtained from 

ANOVA. Therefore, the induced stress concentrations in the tab termination region can be 

minimised by reducing tab stiffness, taper angle and increasing the adhesive thickness [8].  

Table 4.17 Comparison of all optimisation techniques  

Optimisation Method Design Parameters 

Tab 

Stiffness 

Tab 

Thickness 

Tab 

Length 

Tab Taper 

Angle 

Adhesive 

Thickness 

Taguchi  32.6 0.5 50/100 5o 1.5 

Taguchi – MRO  32.6 0.5 50 5o 1.5 

Taguchi – GA  32.6 0.5 50/100 5o 1.5 

MRO-Mult-Response 

In comparison with the other two techniques, the Taguchi method is primarily based on 

the interactions between noise and controllable factors. Critical drawbacks in this technique 

can occur in cases where the interactions between the controllable design parameters such as 
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the tab stiffness, thickness, length, taper angle and adhesive thickness and noise factors such 

as temperature and humidity are insignificant or highly significant. A weak interaction between 

the design parameters and noises makes the Taguchi approach ineffective and unreliable while 

strong interactions compromise the capability and power of the Taguchi technique [381]. 

Multiple response optimisation approaches using the desirability function were very 

efficient for reaching optimal values and were simpler to implement compared to a GA based 

optimisation. The desirability function used in this study was developed by Derringer and Suich 

[343] and assumes that the variability within the response variables is stable, therefore making 

the multiple response means the primary focus of attention during optimisation. However, in 

situations of high multiple response variability, the assumption of this stable variability is 

challenged making the outcomes unreliable [382]. 

GA-based approaches do not have the drawback related to interaction and response 

variability as observed in the Taguchi method and multiple response optimisation respectively. 

The GA approach is the only method that can effectively handle non-linear objective functions 

to obtain a global solution without the drawbacks of gradient-based approaches such as getting 

stuck in a local minimum and the fact that performance is dependent on initial values of design 

variables as with the Taguchi and Multiple response optimisations. Since the problem was 

linear, the computational time was extremely fast. Although only three linear equations were 

involved in this study, for situations of an even higher number of equations with infinitely 

many solutions, GAs can solve large system of linear equations without the disadvantage of 

other techniques such as inversion of large matrixes and rounding errors [383]. The above-

stated methods are suitable for optimising design parameters of the test specimen for other 

mechanical characterisations such as impact, compression, flexural, hardness, fatigue and 

many more. 
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4.4 Impact Test 

In characterising the mechanical properties of polymer nanocomposites, impact 

resistance, in particular, is the least understood but one of the most important. In distinct 

variance with other mechanical properties, predicting the impact strength of polymer 

composites is not possible. Therefore, the 𝐴𝑆𝑇𝑀 𝐷6110-18 [384] clearly states that the 

standard must not be used for determining design data. Consequently, the Charpy test basically 

seeks to provide a platform for comparative testing of different materials or configurations to 

investigate the absorption of localised impact energy.  

 

 
 

Figure 4.17 Charpy impact test results for TiO2 Nanocomposites with and without functionalisation ((Neat 

epoxy (NE); Silane functionalised TiO2 nanocomposite (STN); Non-functionalised TiO2 nanocomposite (TN) 

and Methanol treated TiO2 (MTN). 

 

The Charpy impact test results as shown in Figure 4.17 for NE, STN, TN and methanol 

treated TiO2 (MTN) nanoparticles generated impact absorption energies of 0.322 𝐽, 0.412 𝐽, 

0.274 𝐽 and 0.286 𝐽 respectively. The energy absorbed improved by 28% when silane 

functionalised TiO2 was incorporated into the epoxy matrix. However, the introduction of non-
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functionalised and methanol treated TiO2 decreased the energy absorbed by 15% and 11% 

respectively.  

 

 
 

Figure 4.18 Charpy impact test result for NCF Carbon fibre reinforced composite with and without TiO2  

 

CF-NE and CF-STN samples were fabricated to investigate the influence of both fibre 

incorporation and the influence of functionalised TiO2 on the impact energy of the composite. 

The impact energies presented in Figure 4.18, show that an increase of 2600% was observed 

for CF-NE while an increment in absorbed energy of approximately 3000% was obtained for 

CF-STN. As expected, the use of carbon fibre as reinforcement significantly improved the 

impact properties of the composite [179]; however, and more importantly, was the 13% 

improvement in impact energy of CF-STN as a result of incorporating silane functionalised 

TiO2 nanoparticles [385].  
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Table 4.18 ANOVA of the average impact energies for matrix composites with or without TiO2 reinforcement. 
 

Source DF Adj SS  Adj MS F-Value  P-Value 

Sample Treatment 3 0.05845 0.019482 5.06 0.013 

Error 15 0.05779 0.003853   

Total 18 0.11624    

 

From the results generated, the null hypothesis for the analysis of variance (see Table 

4.18), stipulating that a statistical P-value of 5% significance indicates that the means are equal, 

was rejected. This P-Value was 0.013; implying that the applied treatments of incorporating 

TiO2 functionalised and non-functionalised had different effects on the Charpy impact energy. 

 

Table 4.19 Tukey Pairwise Comparisons of the average impact energies for epoxy matrix composites with and 

without TiO2 reinforcement ((Neat epoxy (NE); Silane functionalised TiO2 nanocomposite (STN); Non-

functionalised TiO2 nanocomposite (TN) and Methanol treated TiO2 (MTN). 

 

Sample Treatment Mean Std. Dev Grouping 

STN   0.4120  0.0716  A 

NE      0.3225  0.0666  A B 

MTN 0.2860  0.0313  B 

TN 0.2740  0.0723  B 

 

* Means that do not share a letter are significantly different. 

 

 

 

Table 4.20 Tukey Simultaneous Tests for Differences of Means for epoxy matrix composites with and without 

TiO2 reinforcement (Neat epoxy (NE); Silane functionalised TiO2 nanocomposite (STN); Non-functionalised 

TiO2 nanocomposite (TN) and Methanol treated TiO2 (MTN).  
 

Difference of Levels Difference of Means  SE of Difference         T-Value  Adjusted P-Value 

TN – STN   0.1380  0.0393 -3.52 0.015 

MTN – STN   -0.1260 0.0393 -3.21 0.027 

NE – STN -0.0895   0.0416 -2.15 0.183 

MTN – TN   0.0120   0.0393 0.31 0.990 

NE – TN   0.0485 0.0416 1.16 0.657 

NE – MTN   0.0365   0.0416 0.88 0.817 

 

 

To further investigate the statistical significance of the treatments, the Tukey test at a 

confidence level of 95% as in Table 4.19 was applied to determine how significant the process 

of silane functionalisation of TiO2 contributed to improving the impact energy of the epoxy 

matrix. The pairwise comparison results in Table 4.20 showed a 𝑝 − 𝑣𝑎𝑙𝑢𝑒 of 0.015 when 

STN and TN were compared. The high significance was certainly due to the effects of silane 
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functionalisation which led to superior average impact energy. Conversely, the non-

functionalised specimen (TN) displayed lower impact energies which can be attributed to the 

formation of large agglomeration and a poor state of dispersion [135]. The second most 

significant comparison was between STN and MTN which generated a 𝑃 − 𝑣𝑎𝑙𝑢𝑒 of 0.027. 

Clearly, silane functionalisation improved homogeneity in nanoparticle dispersion and 

wettability and therefore was better at improving the impact energy by exhibiting higher 

average values while methanol treatment, degraded the impact properties of the epoxy matrix. 

Table 4.21 ANOVA of the average impact energies of NCF Carbon Fibre reinforced composites with and 

without TiO2.  
 

Source DF Adj SS  Adj MS F-Value  P-Value 

Sample Treatment 2 4283.71  141.85  29.21  0.000 

Error 17 82.54  4.86   

Total 19 366.26    

 

Similarly, ANOVA was also conducted on NE, CF-NE and CF-STN as seen in Table 

4.21. The resulting 𝑝 − 𝑣𝑎𝑙𝑢𝑒 of 0.000 indicates a high significance and a rejection of the null 

hypothesis where the mean impact energy values are assumed to be equal. But of greater 

interest was to determine whether the silane treatment had statistical significance on the fibre 

reinforced composites.  

Table 4.22 Tukey Pairwise Comparisons of the average impact energies for NCF Carbon Fibre reinforced 

composites with or without TiO2 

Sample Treatment Mean StDev Grouping 

CF – STN   10.086  2.562  A 

CF – NE   8.940  2.167  A  

Neat Epoxy    0.3225  0.0723  B 

 

Means that do not share a letter are significantly different. 

 

 

Table 4.23 Tukey Simultaneous Tests for Differences of Means for NCF Carbon Fibre reinforced composites 

with or without TiO2 

Difference of Levels Difference of Means  SE of 

Difference         

T-Value  Adjusted P-

Value 

CF-STN – NE  9.76   1.30   7.49   0.000 

CF-NE – NE   8.62   1.42 6.06   0.000 

CF-NE – CF-STN -1.15   1.14 -1.01   0.583 
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The Tukey analysis presented in Table 4.22 and Table 4.23 clearly shows that when 

samples with and without silane treatment were compared the 𝑝 − 𝑣𝑎𝑙𝑢𝑒 was 0.583 - an 

indication that the statistical improvement observed in the silane treatment of TiO2 was not 

significant. However, the very low 𝑝 − 𝑣𝑎𝑙𝑢𝑒 of 0.000 observed between neat epoxy and fibre 

reinforced samples implies that the fibre, orientation and surface morphology, and interface 

bonding between fibre and matrix may have contributed to the high variation in means. The 

influence of the above factors is thoroughly discussed in Sections 4.4.1 to 4.4.3.   

4.4.1 Effect of Silane Functionalisation TiO2 on Impact Energy of Matrix 

The impact energy absorption behaviour of nanocomposites can be investigated by 

studying the mechanisms that are responsible for this property. The proper functioning of 

composite systems is primarily based on its load transfer properties. The ability of TiO2 

nanoparticles to function as reinforcement is dependent on the matrix-to-nanoparticle load 

transfer which is a critical metric for interfacial strength. Interfacial enhancement directly 

correlates with improved load transfer which leads to improved mechanical properties. Another 

mechanism well-known for contributing to the improvement of nanocomposite mechanical 

properties is the bridging phenomenon. This effect is based on the increase in nanoparticles 

bridging the interface cracks while particle weight fraction increases with particle size 

remaining constant [386]. This study confirmed the observation from previous studies that the 

low aspect ratio of smaller particles enhances impact properties as in STN while larger particles 

(agglomerate etc) can behave as flaws exhibiting high aspect ratios that create high-stress 

concentrations along the matrix-particle interface as in TN [135,387]. 

4.4.2 Effect of Silane Functionalisation TiO2 on Impact Fracture 

To evaluate the influence of flaws and agglomerates in initiating and propagating cracks 

in the matrix, unnotched testing is most suitable. A measure of 2.5 𝑤𝑡% of TiO2 as 
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recommended by Salehian and Jahromi [135] was used in manufacturing the samples since a 

high concentration of nanoparticle inclusion tends to degrade the mechanical properties of 

composite materials, because of its susceptibility to increased agglomeration which introduces 

defects in the epoxy matrix and causes degradation of the interfacial bonding [385,388]. 

 

Figure 4.19 Charpy impact fracture surface of NE (0 vol% of fibre) with detail of the epoxy transversal fracture 

 

The evaluation of the fracture surface of nanocomposites provides visual details and 

information about the effect of nanoparticle on fracture response and fracture mechanisms. In 

Figure 4.19 brittle behaviour of the neat epoxy fracture surface is observed with large smooth 

regions, creases, fracture steps, and hyperbolic markings along the path of the crack 

propagation and obvious river lines. These features are an indication of low resistance to crack 

propagation; a factor which results in brittle failure [135]. 
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Figure 4.20 Homogenous dispersion with some agglomerations (STN) 

 

On inclusion of the TiO2 nanocomposites, as seen in Figure 4.20, a mostly well-spaced 

and homogenously distributed TiO2 nanoparticles with only a few minor agglomerates within 

the polymer matrix was observed. This leads to a rough surface that serves as a hindrance to 

crack propagation and further as crack deflection [127,135]. The divergence of crack fronts 

after contacting the rigid nanoparticles results in a larger fracture surface, which correlates with 

increased energy absorption. Agglomerate breakage and shear lips are also observed as being 

primarily responsible for this type of fracture mechanism. It must be noted that the breakage 

of agglomerates is associated with good adhesion between particles and the matrix because 

weak bonding would have resulted in agglomerate pull-out. 

The literature indicates that some of the toughening mechanisms include void 

nucleation and matrix deformation via localised inelastic shear [389], debonding at particle-
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matrix interface, and crack defection at reaching agglomerates [390]. All these mechanisms 

were present in the functionalised samples. Shear bands developing from agglomerates are 

observed in Figure 4.21. The presence of the bands is an indication of the epoxy matrix 

undergoing plastic deformation originating from void nucleation. 

 

Figure 4.21 Shear bands developing from agglomeration of the TN sample 

 

An analysis of the non-functionalised TiO2 nanoparticles as shown in Figure 4.22, 

revealed the presence of both nano- and micro-reinforcing mechanisms. The nano fracture 

mechanisms were (1) particle pull-out, (2) interparticle crack propagation, and (3) particle 

crack pinning (characterised by a tail behind the particle). The micro fracture mechanisms are 

attributed to the presence of agglomerates which promotes (4) crack deflection. The poor 

energy absorbed value from the inclusion of non-functionalised TiO2 nanoparticles can be 

ascribed to weak interface adhesion between the polymer chains and nanoparticles. This leads 

to high stress concentration along the interface which consequently results in failure of the 

nanocomposite [385]. 
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Figure 4.22 Defects in non-functionalised TiO2 nanocomposite (TN) 

 

However, the process of functionalisation improves the adhesion between the TiO2 

nanoparticles and epoxy matrix through the attraction of greater polymer molecules and the 

formation of an interphase. The silane functionalised TiO2 nanoparticles are linked to polymer 

chains via strong covalent bonds [385]. Furthermore, the formation of relatively larger 

agglomerates when using non-functionalised TiO2 nanoparticles hinders effective dispersion 

in the matrix. The inclusion of nanoparticles thus induces greater energy absorbing mechanisms 

which serve as obstacles to the propagation of crack re-sharpening implying that increased 

work is required to fracture the nanocomposite. 

4.4.3 Effect of Impact Energy Absorbed on NCF Carbon Fibre 

Composite impact damage response is influenced by a variety of factors, the most 

important being matrix toughness, impact velocity and support conditions, fibre strength and 

stiffness, fibre arrangement, layup and thickness [391]. During impact testing of composite 

materials, a portion of the associated energy is used for elastic deformation while the remaining 
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excess energy is consumed via other mechanisms such as delamination, matrix cracking, fibre 

breakage and fibre-matrix bonding. The resulting degree of damage is a function of the total 

energy absorbed during the impact [391].  

An improvement in fibre-matrix and nanoparticle interface bonding is the main factor in 

enhanced impact strength. The modes of failure observed were, delamination and multiple fibre 

breakages, both of which are directly linked to the percentage weight selected [392]. The use 

of bi-axial ±45o NCF played an important role in the effective absorption of impact energy 

since both fibre and epoxy matrix absorbed the impact energy similar to the laminate 

orthotropic failure reported by Morioka, et al [393]. 

 

Figure 4.23 NCF CF-STN fracture profile 

A high crack propagation energy was produced when cross point fibre breakages were 

induced at crack initiation with the crack propagation along the ±45o fibre-matrix interface in 

a zigzag path [394] as shown in Figure 4.23. The ±45o orientation of the ply laminates in the 

NCF carbon fibre exhibited pseudo-ductile characteristics, which resulted from the +45 

laminae undergoing shearing. Both the epoxy matrix and fibres in such circumstances share 

the impact load [391]. It must be noted that the matrix strength is lower than the fibre strength 

which causes delamination to be the dominant fracture mode with accompanying transverse 

cracking of the matrix without breakages in the fibre. This particular behaviour has been 



167 | P a g e  

 

reported in several studies [391,395,396]. A ±45o stacked laminate shows superior impact 

performance compared to other stacked orientations [391,397].  

In summary, three main categories of failure mechanisms occur during impact testing, 

which are: (1) matrix only associated fracture and plastic deformation, (2) fibre only fracture 

and plastic deformation, and (3) interfacial-associated mechanisms such as fibre-matrix 

debonding, post-bonding friction and fibre pull-out [398]. Failure mechanisms in composite 

materials do not depend on the constituent properties alone but also on the efficiency of 

interface bonding, fibre length, fibre volume and fibre orientation.  

4.5 Inclusion of TiO2 Nanoparticle towards Matrix Modification for 

Manufacture of NCF Composites 

4.5.1 Thermal Characterisation of TiO2 Nanocomposite 

Thermogravimetric analysis (TGA) was carried out on a nanophase composite system to 

investigate its thermal stability. It was envisaged that the introduction of TiO2 would positively 

impact the thermal stability of the composite material. Real time thermograms were generated 

using a universal analysis data acquisition system to analyse the thermal stability of the neat 

epoxy (NE), silane functionalised TiO2 nanocomposites (STN), non-functionalised TiO2 

nanocomposites (TN), NCF carbon fibre reinforced composites (CF-NE), and NCF carbon 

fibre reinforced composites with TiO2 inclusion (CF-STN) as shown in Figure 4.24. 

Observation of the TGA curves indicated that in general, thermal stability was enhanced by the 

inclusion of silane treated TiO2 nanoparticles. The thermal stability of the composites was 

analysed through computation of the fractional weight as a function of the heating temperature. 

A sample is inferred to show higher thermal stability if it satisfies the assumption of retaining 

a specific fractional weight at a more elevated temperature.  

Weight loss measurements were determined between the temperature ranges of 30℃ and 

800℃. However, the range of importance was between 150℃ - below which weight changes 
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could be influenced by the absorption of water- and 700℃ - above which significant oxidation 

occurs [21]. The results clearly indicate that the inclusion of TiO2 nanoparticles improves the 

thermal stability of neat epoxy [21,399] as in the tabulation of the decomposition temperatures 

for the samples with and without TiO2 presented in Table 4.24. 

 

Figure 4.24 Thermogravimetric Curves for composites with and without TiO2 (Neat epoxy (NE); Silane 

functionalised TiO2 nanocomposite (STN); Non-functionalised TiO2 nanocomposite (TN); NCF carbon fibre 

reinforced composite (CF-NE) and NCF carbon fibre reinforced composite with TiO2 inclusion (CF-STN)) 

 

The initial weight loss of 25% which is critical to comprehending the thermal stability 

of polymer composites manufactured with the thermosetting matrix was analysed. It was 

observed that the thermal stability of NE at this weight loss was significantly improved by the 

inclusion of TiO2 nanoparticles from 338℃ to 347℃. Furthermore, the thermal stability for 

both CF-STN and CF-NE at the weight loss of 25% did not improve but remained unchanged 

at 365℃. However, at a weight loss of 30% and 35%, the thermal stability of the carbon fibre 

reinforced polymer composites was enhanced by the presence of TiO2 from 337℃ to 394℃ 
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and from 385℃ to 459℃ respectively. For 50% weight loss, the NE decomposition 

temperature was 361℃ while a thermal stability increases to 370℃ was observed for STN. 

Furthermore, a significant improvement in thermal stability at 75% weight loss from 383℃ to 

396℃ occurred with the presence of TiO2 nanoparticles.  

Table 4.24 Thermo Gravimetric Analysis (TGA) values for neat epoxy and its composites. 

Weight loss % Degradation Temperature  

Neat Epoxy STN CF-NE CF-STN 

25 338 347 365 365 

30 346 354 337 394 

35 350 357 385 459 

50 361 370 - - 

75 383 396 - - 

 

Table 4.25 Char residue after 800oC 

Samples Char Residue (CR) 

CF-NE 53.56% 

CF-STN 63.67% 

NE 3.82% 

STN 7.13% 

TN 6.28% 

 

The critical weight loss at 460℃ was determined to be approximately 90% for both NE 

and STN and approximately 36% for the samples with CF reinforcement. During this stage, 

the epoxy was almost completely degraded. The low weight loss values for CF-NE and CF-

STN was due to the presence of CF, which requires higher temperatures to degrade. At 800℃, 

the residual weight was below 8% for NE and STN and approximately 60% for the samples 

with CF as shown in Table 4.25. Thermosetting polymers generally exhibit relatively high 

cross-linking densities that contribute to its associated elevated decomposition temperature 

[18]. The thermal stability of epoxy-based nanocomposites, in particular, is known to be highly 

dependent on the state of the TiO2 dispersion within the matrix. Consequently, the formation 

of agglomerates can negatively affect effective particle-matrix bonding which causes a 
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reduction in the thermal stability of the nanocomposite [23]. The results as discussed, shows 

that TiO2 improves the overall thermal properties of the nanocomposites whether in an epoxy 

matrix or in fibre reinforced composites. To further improve the impact of TiO2 on the thermal 

properties of the epoxy matrix, techniques and methodologies for limiting agglomerations and 

inhomogeneous dispersion can be implemented [18,328]. Furthermore, this study clearly 

establishes a basis for recycling fibre reinforced composites via pyrolysis due to the high 

residual weight of the CF retained even at 800℃.  

4.5.2 Integral Procedural Decomposition Temperature  

In this study, further characterisation of thermal stability was performed using integral 

procedural decomposition temperature (IPDT). Using Doyle’s [357]methodology, the IDPT of 

NE, STN and TN were calculated and the results are summarised in Table 4.26. A positive 

correlation between the inclusion of TiO2 nanoparticle and IPDT was observed. The IPDT 

increased by 12% when TiO2 was introduced. Silane functionalisation contributed to the 

homogeneous dispersion of the particles within the matrix which is known to improve 

insulation and the heat resistance capabilities the TiO2 nanoparticles [400]. The oxygen heat 

movement was restricted because of the presence of the particles. Heat retardation was 

therefore observed with the inclusion of the nanoparticles. 

 

Table 4.26 Integral Procedural Decomposition Temperature for epoxy modified with TiO2 nanoparticles 

Samples IPDT (oC) 

NE 393.1495 

TN 422.3792 

STN 440.1293 

 

Although the non-functionalised TiO2 nanoparticles also improved the IPDT of the 

epoxy matrix by 7%, this was much lower than when the silane functionalised TiO2 

nanoparticles were used. This reduction in the IPDT value from 440℃ to 422℃ can be 
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attributed to the detrimental effect of agglomerations present in the matrix [400]. Non-

homogenous dispersion is a characteristic of non-functionalised nanoparticles leading to the 

formation of agglomerates that are less efficient at repelling oxygen and heat [400]. IPDT is a 

good indicator because it encompasses or reflects the entire thermal stability of the samples 

from the initial decomposition stage through rapid decomposition to the final stage (char 

residue). Therefore, IPDT increases with the inclusion of TiO2 and promotes the retardant 

properties of the matrix by influencing the behaviour of heat, oxygen and the formation of char 

residue.  

4.5.3 Oxidation Index 

Another index considered was the oxidation index (OI) which can estimate the flame-

retardant capacity of composite materials [358]. The oxidation index based on char residue was 

determined after decomposition of the matrix for NE, STN and TN as shown in Table 4.27. 

The results revealed that the inclusion of silane functionalised TiO2 nanoparticles increased the 

OI by 87%. The OI of non-functionalised TiO2 nanoparticles dispersed in the epoxy matrix 

also improved by 65%.  

Table 4.27 Oxidation Index for epoxy modified with TiO2 nanoparticles  

Samples OI 

NE 0.27 

TN 0.44 

STN 0.50 

 

The increase in OI after the introduction of TiO2 is an indication of enhanced flame resistance. 

It is well-established in the literature [358] that thermal stability increases with an increase in 

the oxidation index. The higher oxidation index values observed in STN and TN therefore 

indicates that they possess superior thermal stability in comparison with NE. TN had a lower 

OI value than STN due to the presence of agglomerates and non-uniformity of the particle 

distribution. OI ranging from 0.5 and above is an indication that the composite has good flame-
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resistant properties [358]. Since the OI for STN was 0.5, it can be concluded that the presence 

of TiO2 significantly enhanced the flame resistance of NE (0.27). 

4.6 Effect of Pyrolysis and Oxidation on NCF Carbon Fibre reinforced 

Composite 

Pyrolysis was conducted on diamond cut carbon fibre non-crimp fabric composites and 

virgin carbon fibre as seen in Figure 4.25. The resulting solid residue after pyrolysis, as shown 

in Figure 4.26, was classified as pyrolysed char covered (PY-CHAR) and pyrolysed virgin fibre 

(Py-VF). Further characterisation and oxidation were then successfully conducted. The virgin 

fibres were pyrolysed and oxidised for comparison to assess the effects of pyrolysis and 

oxidation treatments on the properties of samples while eliminating the bias of pyrolysis and 

oxidation.  

  

(a) (b) 
Figure 4.25 Samples before pyrolysis; (a) NCF carbon fibre reinforced composite, (b) Virgin NCF fabric  

 

A visual inspection of PY-CHAR shows the brittle-like characteristic of the fibres stuck 

together with a carbonaceous solid residue normally referred to as char. The surface of PY-

CHAR seemed rougher while the surface of PY-VF remained smooth with fibres well 

separated. This clearly showed that the pyro-gasification process produces char which has both 

positive and negative implications [49].  
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(a) (b) 

Figure 4.26 Samples after pyrolysis; (a) NCF carbon fibre reinforced composite (PY-CHAR), (b) Virgin NCF 

fabric (PY-VF) 

 

The two oxidation methods used were thermal treatment in air (PY-CHAR-OX) at 

500℃, and reflux using nitric acid (PY-CHAR-CHEM-OX) at 90℃ as earlier reported (see 

Chapter 3) primarily to provide clean fibres. This provided a basis for comparing the two 

methods and to determine the most suitable option for fibre recovery and use as a secondary 

raw material. After oxidation as shown in Figure 4.27, the PY-CHAR-OX samples were well 

separated, smoother and looked identical to PY-VF. A visual assessment showed that the two 

oxidation treatments were effective in cleaning the fibres. 

 

Figure 4.27 Char residue removed through oxidation (PY-CHAR-OX) 
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The fibre recovery process from manufacture to oxidation is presented in Figure 4.28. 

The choice of an optimal temperature for pyrolysis and oxidation is critical for the strength and 

surface morphology of the fibres. Studies by Meredith [401] and Mazzocchetti et al. [49] 

reported decreases in mechanical properties when pyrolytic and oxidation temperatures greater 

than 600℃ were used.  

 

Figure 4.28 A flow chart for the recovery of NCF carbon fibre from manufacture to oxidation 

 

Using higher temperatures increases surface oxygen fraction and effectively removes the 

char, but it compromises the mechanical integrity and other properties of the fibres which leads 

to a decrease in mechanical performance. The application of the same temperature (500℃) for 

both pyrolysis and oxidation established a solid foundation for the development of a continuous 

line thermal treatment from pyrolysis through to oxidation. The reliability of pyrolysis as a 

suitable methodology for the recovery and use of residue as a secondary raw material, was 

validated by the quality and unique characteristics of the recovered fibre. 
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4.7 Effect of Pyrolysis and Oxidation on the Morphology of Carbon Fibre 

Morphological characterisation of the pyrolysed samples was carried out to examine the 

surface characteristics of the fibres and to observe the pyrolytic and oxidative footprints. 

Microscopy images provide insights into conducting qualitative analyses, which can also be 

quantitatively validated through experimentation. A critical factor during the pyrolysis of 

composite materials is the influence of polymer degradation both in non-oxidised and oxidised 

atmospheres. Therefore, in this study, an examination of the char residue deposits on the CF 

surface after pyrolysis and its removal after oxidation was visually conducted using scanning 

electron microscopy (SEM). 

  

Figure 4.29 Fig. 4. SEM micrographs of virgin fibre 

 

  

The pristine virgin fibre shown in Figure 4.29 was, as expected, characteristically smooth, 

homogenous and not linked or adhering together. The SEM micrograph presented in Figure 

4.30 clearly shows that after pyrolytic treatment, the recovered solid residue obtained from the 

furnace comprised rough surface fibres and a spot-like layer of resin residues (PY-CHAR). The 

amorphous carbonaceous residue is characteristically stiff due to fibre-to-fibre adhesions.  
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Figure 4.30 Fig. 4. SEM micrographs of carbon fibres recovered from pyrolysis (PY-CHAR). 

 

Several studies on the reuse of the fibre for manufacture of composites have reported poor 

wettability attributed to the presence of char residue which subsequently causes poor fibre-

matrix interfacial bonding leading to significantly low mechanical properties [49]. 

.  

Figure 4.31 SEM micrographs of carbon fibres after oxidation in air at recovered from pyrolysis 500oC (PY-

CHAR-OX). 



177 | P a g e  

 

The process of aggressive oxidation in elevated temperatures of 500℃ for 60 𝑚𝑖𝑛 and above 

is often characterised by defective symptoms such as localised damage and pitting which 

increases the surface roughness of most fibres. This is however not the case for PY-CHAR-OX 

as shown in Figure 4.31: the reclaimed carbon fibre surface appears rather smooth and intact 

without any signs of local degradation or surface damage. This agrees with existing literature 

[49,252]. 

4.8 Effect of Pyrolysis and Oxidation on the Size of NCF Carbon Fibre 

Another approach used to observe the influence of pyrolysis and oxidation on the carbon 

fibre was the application of SEM to measure the diameters of the samples as presented in Table 

4.28. The average diameter measured from the SEM for VF was 7.20 𝜇𝑚 and agrees with the 

CF filament diameter data provided by SAERTEX South Africa (PYT) LTD. This is the total 

diameter inclusive of sizing. After oxidation treatment at 500℃ for 1 ℎ𝑟, the average diameter 

of the sample (VF-OX) was 6.51 𝜇𝑚; a 10% reduction in its original size. After conducting 

pyrolysis of the carbon fibre reinforced composite; PY-CHAR, showed an average diameter of 

approximately 7.91 𝜇𝑚 which was a 10% size increment over the VF. This was expected and 

provides proof of the presence of layers of char residue deposited on the carbon fibre during 

the pyrolysis of the epoxy resin.  

Table 4.28 Fibre size variation after pyrolysis and oxidation 

Sample Average diameter (µm) Variation in diameter (%) 

VF 7.20 - 

VF-OX 6.51 - 9.58 

PY-CHAR 7.91 + 9.86 

PY-CHAR-OX 6.99 - 2.91 

 

After the oxidation of the char covered fibres in air, the resulting clean fibre (PY-CHAR-OX) 

showed a 3% decrease in average diameter. The reductions in diameters after oxidation are 

10% and 3% for VF-OX and PY-CHAR respectively and support the claim that the char 
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provided some level of protection in the fibre surface to warrant the lower percentage loss in 

diameter [49]. Another implication is that the virgin fibre is more susceptible to oxidation 

degradation, a large portion of which can be attributed to surface sizing degradation. It can 

therefore be assumed that the amorphous carbon deposit behaves as a sacrificial film shielding 

the oxygen from contacting the surface of the fibres. 

4.9 Effect of Pyrolysis and Oxidation on Physio-sorption Isothermal 

Analysis  

The physio-sorption characterisation of NCF carbon fibre samples, both virgin and 

recovered, were evaluated using the BET (Brunauer-Emmett-Teller) method which is effective 

in determining gas absorption solids based on influencing factors such as surface area and 

surface porosity. Pyrolysis and both chemical and air oxidation played an important role in 

causing modifications in the microstructural and textural morphology of the carbon fibres. 

Table 4.29 Physio-sorption characteristics of NCF Carbon fibre 

Biochar BET surface area [m2/g] Pore volume [cm3/g] Pore size [nm] 

VF 0.44 0.0020 18.16 

PY-CHAR-OX 0.60  0.0024 16.28 

PY-VF-OX 1.16  0.0024 8.27 

PY-CHAR 3.44 0.0055 6.38 

 PY-CHAR-CHEM-OX 3.56  0.0054 6.03 

 

 As VF was subjected to pyrolytic conditions of 500℃ and then oxidation in air at the 

same temperature for 1 hr, the BET surface area increased from 0.44 to 1.16 m2 g⁄  which 

represents a 164% increase as seen in Table 4.29 for PY-VF-OX. After pyrolysis of the carbon 

fibre reinforced composite, the PY-CHAR BET surface area was observed to be 3.44 𝑚2 𝑔⁄  

which is a vastly significant increase of 682% in comparison with VF. After the oxidation of 

PY-CHAR in air, a BET surface area of 0.6 𝑚2 𝑔⁄  for PY-CHAR-OX was obtained. The 

oxidation process reduced the BET surface by a significant margin of 473%.  
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The higher BET surface area of PY-CHEM-OX after chemical activation can be 

attributed to the presence of char. This clearly indicates that, as a means of char removal, it is 

less effective when compared to air oxidation as discussed during the analysis of the TGA 

results in section 4.11. This explains the reason for the almost identical BET values with PY-

CHAR. The increase in BET surface area of PY-VF-OX can be ascribed to decomposition of 

the sizing agent which introduces some porosity during pyrolysis and oxidation at such elevated 

temperatures [402]. The significantly higher BET surface area observed with PY-CHAR can 

be attributed to the layer of amorphous carbonaceous material deposited during the gasification 

of the epoxy matrix [49,275]. The char after deposition experiences thermal cracking and 

deposing of some pore blocking substances through continuous volatilisation which further 

improves external accessibility on the surface area of the char residue [403].  

The BET surface area results, as expected, were generally low and therefore required 

more aggressive means of activation via chemical or physical means to significantly increase 

the active surface area of the fibres. However, it must be noted that the objective of this study 

was not to improve the surface area of the carbon fibre but to obtain surface properties 

comparable to virgin fibre for reuse in the manufacture of composite materials. The BET 

surface area of virgin carbon fibre, in general, is less than 0.7 𝑚2 𝑔⁄ . PY-CHAR-OX clearly 

met the surface area morphology criteria of VF by exhibiting a BET surface area of less than 

0.7 𝑚2 𝑔⁄ . Also, open porosity on the surface of fibre can be assumed as negligible or 

insignificant. Therefore, pyrolysis increases the BET surface area while air oxidation decreases 

the BET surface area. 

VF, PY-VF and PY-CHAR-OX displayed relatively similar pore volumes of 

approximately 0.0024 cm3 g⁄  as observed in Table 4.29. Clearly, pyrolysis and subsequent air 

oxidation of VF have no significant impact on pore volume. The pore volume of PY-CHAR 

showed an increase from 0.0020 𝑐𝑚3 𝑔⁄  to 0.0055 𝑐𝑚3 𝑔⁄  representing a 175% increase 
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when compared with VF. After oxidation, the pore volume then decreased to 0.0024 𝑐𝑚3 𝑔⁄  

which is a 125% decrease. A comparison of the pore volume values of VF and PY-CHAR-OX 

reveals that they possessed similar pore volumes which implies that PY-CHAR-OX is suitable 

for direct reuse in the manufacture of composites. Pore volume thus improves with pyrolysis 

but degrades after oxidation in air. 

PY-VF-OX exhibited a drastic reduction in pore size to 6.38 𝑛𝑚 which represents a 

reduction of 142%. The pore size for VF and PY-CHAR-OX were 18.16 𝑛𝑚 and 16.28 𝑛𝑚 

respectively. These values are also not significantly different. The pore size of PY-CHAR after 

pyrolysis of the composite, however, was significantly reduced by 185%. This improvement 

in pore size as stated earlier is attributed to the layer of char residue deposit on the surface of 

the carbon fibre. After oxidation in air, the char is removed, and a large pore size representing 

an increase of 155% was recorded.  

An inverse relationship exists between pore size and BET surface area after pyrolysis 

and oxidation. The pore size of both VF and PY-CHAR decreased after pyrolysis but increased 

after oxidation in air. The pore sizes determined for all the samples were free of both 

micropores and macropores. In general, micropores have diameters within the range of 1.50 to 

2.0 𝑛𝑚, while macropores are characterised by diameters above 50 nm. Pore sizes between 2.0 

to 50 𝑛𝑚 are considered mesopores. All the samples analysed in this study can therefore be 

classified as possessing mesopores. Where all pore size values range between 6 to 18 𝑛𝑚. The 

presence of mesopores on VF, PY-VF-OX and PY-CHAR-OX is most likely due to small 

flaws, wrinkles and crevices or cracks [402].  

For application where gas adsorption and greater activation is the primary focus, the 

presence of char residue may be advantageous as the amorphous carbon deposit shows superior 

surface area and reduced pore size. This possible use of pyrolysed carbon fibre could provide 

a means for chemical functionalisation and customisation depending on the matrix used. 
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4.10 Effect of Pyrolysis and Oxidation on Elemental Composition of NCF 

Carbon Fibre 

The elemental composition of recovered and virgin fibre is investigated to evaluate the 

effect of pyrolysis, oxidation and presence of char. The compositional data was captured using 

a thermal analyser and the EDX section of the Scanning Electron Microscope. The elemental 

compositions and atomic ratios of pyrolysed and oxidised recovered and virgin carbon fibres 

are presented in Table 4.30. As expected in carbon fibre samples, the most abundant element 

was carbon with percentages of 93.61%, 93.39%, 91.80% and 79.42% for PY-VF-OX, PY-

CHAR, PY-CHAR-CHEM-OX and PY-CHAR-OX respectively, while their corresponding 

O/C atomic ratios were 0.0256, 0.2187, 0.0410 and 0.0256 respectively. 

Table 4.30 Elemental composition of carbon fibre after pyrolysis and oxidation 

Sample Name Nitrogen (%) Carbon (%) Oxygen (%) Sulphur (%) O/C N/C 

PY-CHAR-OX 3.21 79.42 17.37 1.12 0.2187 0.0404 

PY-VF-OX 4.22 93.61 2.17 1.17 0.0232 0.0451 

PY-CHAR 4.22 93.39 2.39 0 0.0256 0.0452 

PY-CHAR-

CHEM-OX 

4.44 91.80 3.76 0 0.0410 0.0484 

 

Also, the N/C ratio values were 0.0452, 0.0404, 0.0499 and 0.0441 for PY-CHAR, 

PY-CHAR-OX, PY-CHAR-CHEM-OX and PY-VF-OX respectively. The oxygen and 

nitrogen content of PY-CHAR was 2.39% and 4.22% respectively. This comparably low polar 

element percentages clearly confirm a relatively inert carbon fibre surface. Similarly, the 

oxygen and nitrogen content of the PY-VF-OX were 2.17% and 4.22% respectively. These 

values even after oxidation were very low which is an indication of a highly inert surface which 

can be attributed to the sizing agent used and its reaction with the elevated temperature and 

oxygen [404]. However, for char covered carbon fibre (PY-CHAR), as oxidation in air and 

electrochemical oxidation progressed, an increment in oxygen content was observed. The 

relative oxygen content increased by 700% and 60% for PY-CHAR-OX and PY-CHAR-
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CHEM-OX respectively which is indicative of a highly active fibre surface [404,405]. The 

relative oxygen and nitrogen contents both increased after chemical oxidation however, for 

oxidation by air, the oxygen content increase was significant but conversely, a slight reduction 

in the nitrogen content was observed. The presence of oxygen is the result of oxidation 

treatments and adsorbed material while nitrogen was due to some adsorption and the PAN 

precursor origin of the carbon fibre.  

O/C and N/C ratios have a direct correlation with the interlaminar shear strength (ILSS) 

of composites manufactured from carbon fibre. An increase in O/C and N/C ratios improves 

the interlaminar shear strength [404]. It can therefore be concluded that the surface 

functionality of carbon fibre positively influences the interfacial properties of carbon fibre 

reinforced composites [404,405]. An increase in O/C is also an indication that polar functional 

groups have been introduced after the oxidation treatments, and often promotes good wetting 

[406,407]. The polar component is a critical governing parameter which influences fibre-matrix 

adhesion [408]. Consequently, an increase in O/C introduces surface-active sites on the surface 

of the fibre which facilitates a higher propensity for the formation of improved fibre-matrix 

chemical bonds. The enhanced interfacial adhesion of matrix to fibre occurs as a direct result 

of an increase in surface polarity which causes an improvement in the matrix to fibre stress 

transfer [409,410]. The O/C atomic ratio content of the PY-VF-OX was comparatively low and 

can be attributed to the sizing which influenced the oxidation process [411]. 

Interfacial adhesion may improve as a result of an increment in relative oxygen content, 

polar component and surface energy of total fibre surfaces. There is thus a direct correlation 

between O/C ratio, fibre surface energy, and interfacial shear strength [412]. The degree of 

oxygen content on the surface of the carbon fibre also influences the surface energy consisting 

of a polar or specific surface energy and dispersive surface energy [413]. Studies have shown 

that there is an approximately linear relationship between the O/C atomic ratio and surface 
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energy [409]. Surface energy indeed has a positive correlation with the increase in relative 

oxygen content [412,413]. 

Although the primary elemental composition was carbon, oxygen and nitrogen, the minor 

element observed was sulphur. The presence of such minor elements can be categorised as 

impurities. The level of impurities such as sulphur was seen to increase with increasing oxygen 

content. This indicates the development of chemical bonding between oxygen and sulphur to 

form acid promoting oxides such as sulphur dioxide attributed to the pre-treatment process. 

The presence of such impurities influences the acid-base characteristics of the carbon fibre 

surface [413,414]. The variability in acidic and base properties of the carbon fibre surface 

resulting from treatments such as oxidation correlates with both nitrogen and oxygen content 

increase, with oxygen being the primary contributor [413]. Any significant variation in the state 

of acidity on the fibre surface will affect its adhesion properties to the polymer matrix and 

directly influence the mechanical properties of the composite material [412,413]. An increase 

in relative oxygen and nitrogen content improves surface acidity especially when acidic 

oxidation treatments such as in the case of PY-CHAR-CHEM-OX are used [415]. This higher 

acidity leads to improved inter-laminar shear strength between the interface of the fibre and 

matrix [412–414]. Also, an increase in the O/C ratio signifies the introduction of polar 

functional groups which promote good wetting [407]. 

 

Figure 4.32 EDX compositional analysis for PY-CHAR 
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The EDX also showed that carbon was the dominant element on the surface of PY-CHAR at 

97.2 % followed by oxygen which was 2.8 % (see Figure 4.32).  

 

Figure 4.33 EDX compositional analysis for PY-CHAR-OX 

 

After oxidation to remove the char layer the oxygen content increased to 13.7% shown 

in Figure 4.33 which corroborates the results from the elemental analysis as shown in Table 

4.30. This clearly indicated a significant increase in oxygen-rich moieties on the surface of the 

carbon fibre. 

4.11 Effect of Pyrolysis and Oxidation on the Thermal property of NCF 

Thermogravimetric analysis (TGA), was carried out on the pyrolytically treated fibres 

with the application of steady heating from 30℃ to 1000℃ within an inert environment using 

nitrogen gas. This study seeks to assess the impact of oxidation treatments and the influence of 

char on the thermal properties of carbon fibre.  

Table 4.31 Thermal degradation of pyrolysed samples during thermogravimetric analysis 

Sample Weight loss (%) Degradation Temperature (oC) Residual weight 

at 1000oC (%) 

Event 1 Event 2 Event 1 Event 2 

PY-CHAR 0.2 2.25 696.67 934.66 97.00 

PY-CHAR-OX 1.03 - 903.27 - 96.23 

PY-CHAR-CHEM-OX 0.45 3.88 160.90 932.65 95.85 
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Figure 4.34 Thermogram of char covered carbon fibre (PY-CHAR) 

 

The thermogram of PY-CHAR in Figure 4.34 shows two distinctive degradation and 

weight loss events occurring. The first degradation commences during the 40𝑡ℎ (40.28) 𝑚𝑖𝑛 

at 423.15℃ (𝑇𝑜𝑛𝑠𝑒𝑡) with an initial weight loss of 0.2%, and continues until the 

70𝑡ℎ (67.51) min at 696.67 ℃ with a total weight loss of 2.44%. The second event takes 

place around the 90th (90.98) min at 934.66℃ with weight loss of 2.25%. A residual mass 

of 97% was recorded at 990℃. The first degradation event can be attributed to the 

decomposition of the char residue on the surface of the carbon. The second event was primarily 

due to the decomposition of the carbon fibre itself and any char residuals left behind. Per 

literature, carbon fibre starts decomposition between 650℃ − 750℃ [416]. The shape of the 

thermogram is indicative of a process that is not thermally stable over the temperature range 

(30℃ − 1000℃) in comparison with the thermogram for the PY-CHAR-OX samples. 
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Therefore, it may be concluded that the presence of char is detrimental to the thermal stability 

of carbon fibre. 

 
Figure 4.35 Thermogram of carbon fibre after oxidation in air @ 500℃ (PY-CHAR-OX) 

 

Only one significant degradation event was observed when TGA was conducted on the 

PY-CHAR-OX sample as shown in Figure 4.35. The primary decomposition occurred within 

the 90th (88.27) min at 903.27℃ (Tonset) with a weight loss of 1.03%. At 990℃ a residual 

mass of 96.23% was obtained at the end of the process. The decomposition when compared to 

PY-CHAR can only be attributed to the degradation of the carbon fibre. The absence of the 

first degradation event in PY-CHAR clearly proves that the oxidation in air at 500℃ for 1hr 

completely removed the char residue. The shape of the thermogram up to 900℃ is 

characterised by relatively low variation and can be described as having a good thermal 

stability compared with PY-CHAR and PY-CHAR-CHEM-OX. Consequently, oxidation 
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drastically improves the thermal stability of the carbon fibre and provides a basis for reuse as 

a secondary raw material in manufacturing composite materials. 

 
Figure 4.36 Thermogram of carbon fibre after chemical oxidation using nitric acid (PY-CHAR-CHEM-OX) 

PY-CHAR samples were also oxidised using nitric acid via refluxing and heating for 

comparison with air oxidation. The resulting samples, PY-CHAR-CHEM-OX, were also 

subjected to a TGA analysis to ascertain the veracity of the methodology and its impact on the 

char covered fibres. The generated thermogram was similar to that of PY-CHAR and double 

degradation events were observed. The first decomposition occurred within the 

14th (14.16) min at 160.90℃ (Tonset) with a corresponding weight loss of 0.45%. The 

decomposition process continued to the 70th (73.77) min at 758.21℃ with a total weight loss 

of 3.85%. The second event began at a decomposition temperature of 932.65℃ within the 

90th (91.30) min with a weight loss of 3.88%. The first event can also be attributed to the 

degradation of residual char present on the fibre surface [49,315]. This observation implies that 
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the chemical oxidation process is not efficient for the removal of char residue. The second 

event resulted from the degradation of both char and carbon fibre. The shape of the thermogram 

is clearly analogous to that of the PY-CHAR and is thermally unstable in comparison to PY-

CHAR-OX. The residual mass percentage at the end of the process was 95.85%. 

The residual mass percentages recorded establishes a trend of PY-CHAR> PY-CHAR-

OX. This trend is significant in confirming the importance of char with regards to thermal 

properties of carbon fibre. The fact that PY-CHAR had the highest residual mass implies that 

the char provided some level of protection to the fibres and thus minimised the rate of 

degradation in comparison with PY-CHAR-OX which were char free [49]. Therefore, in 

situations where high thermal resistance of carbon fibre is the priority and not mechanical 

strength, char covered fibres may be more suitable. In most literature oxidation after pyrolysis 

is a critical component in the recycling of carbon fibre reinforced composites. However, this 

study has shown that the presence of char can be exploited for thermal applications and for the 

customised activation of fibres.  

4.12 Effect of Pyrolysis and Oxidation on Crystallinity of NCF Carbon 

Fibre  

The XRD technique was used to characterise the pyrolysed and oxidised fibres to further 

explore the effect of the presence of char and the influence of oxidation on carbon fibre at 

crystalline level. Figure 4.37 shows the XRD spectra for PY-CHAR-OX and PY-CHAR 

samples. Two distinctive widened diffractogram reflection patterns with angles (𝜃) 

approximately situated at 25° and 44° were observed for both PY-CHAR-OX and PY-CHAR. 

The broadened peaks at 44° were significant as this indicated the presence of an amorphous 

structural aspect [417]. 
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Figure 4.37 XRD spectra of oxidised (PY-CHAR-OX) and char covered (PY-CHAR) carbon fibre 

The peaks reflected were at angles 25° and 44° corresponding to the 002 and 011 

diffraction line, respectively. Furthermore, the presence of an amorphous structure is a positive 

indicator of the presence of char residuals or some form of activation on the surface of the 

carbon fibres. A summary of the structural parameters extracted from the peaks generated 

during XRD diffraction is presented in Table 4.32, where a comparison of oxidised recovered 

carbon fibre and char covered recovered carbon fibre was conducted. From the analysis, the 

interlayer spacing represented by 𝑑002 for PY-CHAR and PY-CHAR-OX were determined to 

be 3.58 Å and 3.57 Å respectively. 
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Table 4.32 XRD peak characterisation of d002 and d011 for PY-CHAR-OX and PY-CHAR 

Sample 002 peak 011 peak 

d002 (Å) Lc (Å) N d011 (Å) La (Å) 

PY-CHAR 3.57 15.71 4.40 2.06 Å 93.91 

PY-CHAR-OX 3.58 13.14 3.67 2.05 Å 17.87 

 

These values were approximately the same and lie closer to the lower end of the 

disordered carbon material range and in agreement with the established literature where 

disordered carbon materials display interlayer spacing within the range of 3.4 ~ 8 Å [418–421]. 

The interlayer spacing(𝑑002) of carbon fibre is known to be significantly higher than a purely 

graphitic material [361].  

The interlayer spacing (𝑑011) was 2.06 Å for PY-CHAR and 2.05 Å for PY-CHAR-OX. 

These results are also consistent with other studies [361,418]. The results revealed that for all 

cases, the interlayer spacing was approximately the same even after the oxidation processes. 

Additionally, oxidation is known to introduce some level of activation that impacts the 

crystalline structure of the fibres [361,422,423]. The crystallite structural parameters primarily 

influenced by pyrolysis and oxidation include crystallite thickness (𝐿𝑐), crystallite width 𝐿𝑎 

and the number of aromatic layers (𝑁) [361]. The full width at half maximum intensity 

(FWHM) is the parameter used in XRD analysis to calculate the crystallite. The FWHM was 

measured from the corrected diffraction profile. Further analysis was conducted using the 

Scherrer equation [419] which incorporates the FWHM to analyse patterns of the X-ray 

diffraction for the determination of critical parameters, namely the crystallite width or lateral 

size (𝐿𝑎) and the crystallite thickness or stacking height  (𝐿𝑐). 𝐿𝑎 and 𝐿𝑐 are mostly sufficient 

for characterising the diffractogram reflections for most carbon-based materials. The other 

components of the Scherrer equation were used for the computation of the crystallite 

parameters which included the first Scherrer constant 𝑘𝑐with a numerical value of 0.9 for the 

002 diffraction line and 𝑘𝑎 which represents the diffraction line 011 with a value of 1.77.  



191 | P a g e  

 

The 𝐿𝑐 values were 15.71 Å for PY-CHAR and 13.14 Å for PY-CHAR-OX while the 

La values were 93.91 Å and 17.87 Å for PY-CHAR and PY-CHAR-OX respectively. The 

crystallite thickness or stacking height (𝐿𝑐) decreased by 16% after the oxidation process. This 

should normally have resulted in a widening of the interlayer spacing [424]. But on the 

contrary, it had no significant effect on the 𝑑002 value which remained constant at 

approximately 3.6 Å. However, the crystallite width (𝐿𝑎) values decreased significantly by 

80% after the post-treatment oxidation to remove the char. This huge difference in the 

crystallite width can be attributed to the reduction process that takes place during oxidation 

when the evacuation of carbon atoms occurs at the edge of the crystallites. Consequently, the 

reduction process induces an increase in crystallinity disorder and introduces imperfection 

within the layer stacking.  

A morphological analysis via SEM which captured the char residuals coupled with the 

higher BET surface area and smaller mesopores diameter (see section 4.7 and 4.9) of the PY-

CHAR compared to PY-CHAR-OX, significantly contributed to the huge difference in the 𝐿𝑎 

values. Increasing the surface area of the carbon fibre therefore increases 𝐿𝑐 and 𝐿𝑎, while 

reducing the pore size also increases 𝐿𝑐 and 𝐿𝑎. The significantly higher values of La compared 

to 𝐿𝑐 implies that the graphitic order further extends in the direction of the planes rather than 

perpendicular to the planes [417].  

Another important parameter obtained from the XRD analysis was the average number 

of aromatic layers (𝑁). The calculation of N was also based on the interlayer spacing (𝑑002) 

and the crystallite thickness or stacking height (𝐿𝑐) [417] (see section 3.2). The average 

aromatic layer for PY-CHAR was 4.40 and 3.67 for PY-CHAR-OX. The 𝐿𝑐 and 𝐿𝑎 values of 

the PY-CHAR represents a stacking of less than 5-layer planes. This structural layout, 

therefore, indicates the presence of randomly distributed layers with random active sites [361]. 

The structure of the chars is composed of nanosized aromatic layers and disordered carbon. 
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The aromatic layers are known to form stacks that often pile up in 2 − 3 up to 8 − 10 while 

the disordered carbon forms a “turbostratic structure” within the aromatic layer and cross-

linkage structures comprising periphery aliphatic chains [425]. Pyrolysis thus increases the 

aromatic layers, crystallite width, and thickness while oxidation has a decreasing effect on the 

crystallite parameters consequently increases the disorder.  

4.13 Raman Spectroscopy 

Microstructural analysis of carbon-based materials is essential for the characterisation of 

its properties, and Raman spectroscopy in particular is an important experimental method for 

accessing and assessing such information. To further investigate the influence of oxidation 

treatment and the effect of char on the pyrolysed carbon fibre, Raman spectroscopy was 

conducted. The microscopic section of the equipment allowed for precise guidance of the probe 

which ensured that a precise recording of the spectra at the preferred region of interest was 

accomplished as shown in Figure 4.38. 

 

Figure 4.38 Microscopic view of carbon fibre using the Raman spectrometer probe 
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Sadesky [426] methodology was adopted for analysing the Raman spectra. The spectra 

observed in Figure 4.39 are well-known signals in the literature for conditions of absorption - 

usually representative of carbonaceous materials with graphitic (𝐺 𝑝𝑒𝑎𝑘) and amorphous 

carbon (𝐷 𝑝𝑒𝑎𝑘). 

 

Figure 4.39 Raman spectra for pyrolysed and oxidised carbon fibre samples 
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The Raman spectra analysis is summarised in Table 4.33 where the 𝐷 𝑏𝑎𝑛𝑑 peak 

positions for PY-CHAR and PY-VF were 1384.58 𝑐𝑚−1 and 1381.35 𝑐𝑚−1 respectively 

while that for PY-CHAR-OX and PY-VF-OX were 1367.42 𝑐𝑚−1 and 1367.17 𝑐𝑚−1 

respectively. A slight reduction in the peak position is observed after oxidation. For 

the 𝐺 𝑏𝑎𝑛𝑑, the peak positions were approximately 1600 𝑐𝑚−1. From Figure 4.39, PY-CHAR 

and PY-VF had a wider band than PY-CHAR-OX and PV-VF-OX which were oxidised. 

Table 4.33 A summary of the peak positions, peak intensities and the intensity ratio for non-oxidised and 

oxidised samples 

Sample Peak Position Peak Intensity 
IR = (

ID

IG
) 

D-band FWHM (D) G-band FWHM (G) D-band G-band 

PY-CHAR 1384.58 206.54 1595.95 113.23 3576.61 4157.05 0.8604 

PY-CHAR-

OX 

1367.42 196.93 1596.67 112.24 1433.59 1488.42 0.9632 

Py-VF 1381.35 250.94 1619.72 177.92 4895.97 7476.43 0.6549 

Py-VF-OX 1367.17 228.93 1596.22 96.11 5018.32 5188.85 0.9671 

 

The different frequencies of the 𝐺 and 𝐷 𝑏𝑎𝑛𝑑𝑠 for graphitic and amorphous 

carbonaceous materials are attributed to the varying crystallite and induced stresses 

characteristic within these carbon domains [427]. For carbon materials, the Raman spectra are 

often categorised into first- and second-order regions. For purposes of this study, the first order 

which lies within the region of 1100 − 1800 𝑐𝑚−1, was the primary focus because this is the 

region where the 𝐺 and 𝐷 𝑏𝑎𝑛𝑑𝑠 can be observed. The 𝐺 𝑏𝑎𝑛𝑑 is characterised by a graphite 

vibration mode known as 𝐸2𝑔, and is ascribed to the occurrence of a stretching vibration at a 

frequency of ∼ 1580 𝑐𝑚−1 within the aromatic layers. Consequently, the carbon 𝑠𝑝2 atom 

pairs experience the motion of in-plane stretching during the 𝐸2𝑔 mode of vibration [428]. The 

G band is the only band observed within the first-order region of the Raman spectra when pure 

or perfect graphite is analysed. The 𝑠𝑝2 G band is therefore the primary Raman signature.  

The 𝐷 𝑏𝑎𝑛𝑑, also known as the defective band lies within the 1350 𝑐𝑚−1 band and is 

commonly attributed to the degradation of local lattice and translational symmetries or to the 
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vibration mode of the graphite crystallite 𝐴1𝑔 [429,430]. The 𝐷 − 𝑝𝑒𝑎𝑘 is caused by the 

induced defects or disorder on the 𝑠𝑝2 structure [49,427]. The intensity of the 𝐷 𝑏𝑎𝑛𝑑 can, 

therefore, be quantified by the disorder which is mainly activated by defects during processes 

like oxidation and all types of activation. The 𝐷 − 𝑏𝑎𝑛𝑑 is clearly wider and is an indication 

of the presence of carbon materials that are poorly crystallised. This could possibly be the result 

of interstitials caused by 𝑠𝑝3 carbon residuals [431].  

The above concept of using double resonance for a given phonon branch and laser energy 

to excite the 𝐷 𝑚𝑜𝑑𝑒 of a Raman spectrum was first proposed by Thomsen and Reich [432], 

while Matthews et al. [429], investigated the dispersion and origin of the 𝐷 𝑏𝑎𝑛𝑑 in carbon 

materials. These two studies provided the physical basis for exciting, graphite’s 2-D electron 

and phonon dispersion curves and deduced that in the Brillouin zone electronic transition takes 

place only in the region of the 𝐾 point. Both studies concluded that there was a correlation of 

proportionality between band intensities and the state of carbonaceous materials organisation.  

In this study an analysis of the peak intensities for the 𝐷 𝑏𝑎𝑛𝑑 showed a significant 

decrease (see Table 4.33) after the samples underwent oxidation. This decrease can be 

attributed to an increased state of structural organisation [433]. In the first-order Raman 

spectrum, the non-oxidised samples showed well-resolved 𝐷 and 𝐺 bands of equivalent 

intensities. However, after oxidation, both the 𝐷 and 𝐺 bands became slightly narrower with 

their maxima shifting towards lower frequencies and increased intensity ratios (𝐼𝑅). The 

parameters that influence the relative intensity (𝐼𝑅) include post pyrolysis treatments such as 

oxidation, crystallinity and carbon material disorder which affects the crystallite size. The 𝐼𝑅 

increased after the oxidation process for each sample. Researchers including Lespade 

[365]showed that the structure of the carbon material is related to the intensity ratio (𝐼𝑅 =

𝐼𝐷/𝐼𝐺) of the two first-order 𝐷 and 𝐺 bands [361,365]. The disorder within the carbon fibre 

was characterised using the intensity ratio where an increase in 𝐼𝑅 represented an increase in 
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the degree of disorder. The peak positions for oxidised and non-oxidised fibres were very close 

meaning that the oxidation treatment was just sufficient for removal of the residual char but 

did not modify the core region of the carbon fibre.  

 

Figure 4.40 Lorentzian fitting of peaks 

 

The Raman spectra of all the samples were subjected to deconvolution to provide a basis 

for the separation of the first-order D and G peaks via fitting Lorentzian shaped curves because 

they provide the best fits for the experimental data as shown in Figure 4.40 Lorentzian fitting 

of peaks during the analysis, particular attention was focused on defining the most appropriate 

baseline for comparison of one spectrum to another. In this regard, a linear baseline was 

selected as the most appropriate for all spectra. The results suggest that the oxidation process 

affected the Raman band positioning. The 𝐺 𝑏𝑎𝑛𝑑 positions exhibited no significant difference 
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oxidation. A shift towards a lowered wave number occurred after the oxidation process. This 

shift may possibly result from the high disorder or poor organisation [434]. 

4.14 Summary  

Results from the computations and characterisations were analysed and discussed in this 

chapter. Thermal analysis using TGA revealed that in general, the incorporation of silane 

functionalised TiO2 nanoparticles significantly improves the thermal stability of polymer 

composites due to improved particle-matrix bonding. A positive correlation was observed 

between enhanced thermal stability and improved dispersion with corresponding reduction in 

agglomeration when silane treated TiO2 nanoparticles were used. Furthermore, indices such as 

IPDT and OI increased with the inclusion of TiO2. A p-value of 0.015 for nanocomposite 

samples with silane treated TiO2 clearly indicates that the treatment significantly influenced 

the Charpy impact energy in a positive manner. SEM characterisation revealed the occurrence 

of agglomeration breakage and not pull-outs for STN samples which is evidence of 

improvement in particle-matrix bonding.  

Two approaches for quantifying dispersion of nanoparticles were successfully developed 

and validated based on gap statistics and fractal dimension of the two methodologies, gap 

statistic was the most comprehensive. It incorporated agglomeration factors and was not 

dependent on some probability distribution function and standard deviation. The approaches 

were versatile, robust and sophisticated, but not limited by the complexities of other 

approaches.  

Analysis of variance (ANOVA) was conducted on finite element analyis data of the 

induced stress concentrations when variable tab configurations were investigated. The results 

showed that designing tabs with lower stiffness and taper angle while simultaneously 

increasing adhesive thickness significantly minimised the stress concentration at the tab 
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termination region. Taguchi, Taguchi-multiple response and Taguchi-genetic algorithm 

approaches were also implemented for the determination of optimal tab design parameters. All 

the approaches were equally efficient in converging at the optimal values of tab stiffness 

(32.6 𝐺𝑃𝑎), tab thickness (0.5 𝑚𝑚), tab length (50 𝑚𝑚 𝑜𝑟 100 𝑚𝑚), tab taper angle (5°) 

and adhesive thickness (1.5 𝑚𝑚).  

The application of pyrolysis and oxidation on NCF reinforced composites for carbon 

fibre recovery was successfully achieved. To investigate the influence of char deposits, 

morphological and thermal characterisations were also conducted. The SEM results revealed 

that virgin fibre was highly susceptible to oxidation degradation while the char on the 

pyrolyzed samples acted as a sacrificial shield preventing oxygen from reaching the fibre 

surface. Furthermore, BET analysis showed that after pyrolysis fibre surface area and pore 

volume increased and decreased after oxidation. Pore size, however, decreased after pyrolysis 

and increased during oxidation. The observation from the XRD analysis revealed that carbon 

fibre’s crystallite interlayer spacing was not impacted by both pyrolysis and oxidation, but the 

crystallite thickness (𝐿𝑐), crystallite width (𝐿𝑎) and the number of aromatic layers (𝑁) were 

significantly influenced by oxidation in air. 𝐿𝑐 and 𝐿𝑎 increased with increase in surface area 

and reduction in pore size. The Raman spectroscopy results showed that the oxidation process 

significantly reduced the intensity of 𝐷 𝑏𝑎𝑛𝑑 peaks while a slight increase in the intensity ratio 

was observed. Furthermore, after oxidation sharper and narrower 𝐷 and 𝐺 𝑝𝑒𝑎𝑘𝑠 were 

observed with a Raman band shift towards lower wave numbers which was evidence of char-

free fibres. 
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CHAPTER FIVE 

5. CONCLUSIONS AND 

RECOMMENDATIONS 

5.1 Introduction 

The objective of this research was to present a holistic approach for characterising non-

crimp fabric composites where the emphasis is placed on modification of the matrix during 

fabrication, dispersion quantification of the nano-inclusions, minimising stress concentration 

during mechanical testing via optimisation techniques, and the application of pyrolysis and 

oxidation for the reclamation of carbon fibre from NCF composite waste. A circular economy 

approach that considers the composite from fabrication to fibre recovery was thus adopted. 

A comprehensive literature review highlighted the manufacture of non-crimp fabric 

materials and the fabrication of non-crimp fabric composites. The review identified the 

difficulties and drawbacks of non-functionalised nanoparticles before inclusion in a matrix. 

Furthermore, the limitations of existing methodologies for quantifying the dispersed 

nanoparticles were highlighted. Possible recycling options for carbon fibre reinforced 

composites were extensively reviewed emphasising their pros and cons. 

The knowledge gap identified included the lack of a comprehensive report characterising 

NCF composites from fabrication to fibre recovery. The application of dispersion 

quantification methodologies, which are not reliant on some probability distribution function, 

was limited. Furthermore, studies on characterising and investigating the effects of char were 

also limited.  

Details of all the methodologies and experimental procedures applied in this research 

study were reported in Chapter 3. The functionalisation of TiO2 nanoparticles before the 
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fabrication of composites with both open cast moulding and vacuum assisted resin transfer 

moulding was presented. A detailed description of two new approaches for quantifying 

dispersion using gap statistics and fractal dimensions were developed. The implementation of 

finite element analysis, statistical analysis and optimisation techniques were employed in stress 

concentration minimisation during tensile testing. The processes of recycling and reclamation 

of carbon fibre from NCF composite waste using pyrolysis followed by oxidation were 

presented. Thereafter, comprehensive characterisations including mechanical testing, scan 

electron microscopy, BET, elemental analysis, thermogravimetric analysis (TGA), X-ray 

diffraction analysis (XRD) and Raman spectroscopy analysis were offered.  

5.2 Conclusions 

The results and discussion as presented in Chapter 4 constituted studies from matrix 

modification, and characterisations and fibre reclamation via pyrolysis. The samples produced 

for experimentation included neat epoxy (NE), silane functionalised TiO2 nanocomposites 

(STN), non-functionalised TiO2 nanocomposites (TN), NCF carbon fibre reinforced 

composites (CF-NE) and NCF carbon fibre reinforced composite with TiO2 inclusion (CF-

STN).  

It is obvious that dispersion plays a key role in the thermal and mechanical properties of 

composites. Two methodologies for assessing the state of dispersion were therefore developed, 

namely, dispersion quantification using gap statistics and dispersion quantification using 

fractal dimension. Proof of concept using simulated models and validation with real images 

was carried out. The gap statistic approach was the most comprehensive approach which used 

a gap factor (𝐺0), particle spacing dispersity (𝑃𝑆𝐷1) and particle size dispersity (𝑃𝑆𝐷2) to 

determine the dispersion quantity (𝐷). The simulated models revealed that average particle 

size and its corresponding standard deviation for models and real samples with agglomerates 

and large variations in particle sizes were greater than those with consistent particles sizes and 
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minimal agglomerates. Furthermore, the presence of larger agglomerates correlated with higher 

variation in interparticle spacing. Homogeneous dispersion was thus characterised by lower 

standard deviation of the interparticle spacing. However, studies have shown that standard 

deviation is not a reliable metric for quantifying dispersion. Hence, a much more 

comprehensive quantification with 𝑃𝑆𝐷2 representing the agglomeration factor which 

increases as the state of agglomeration increases, was formulated. An agglomeration parameter 

is critical for accuracy in quantification. An improvement in the state of dispersion was 

observed as 𝐷 → 100%. For an ideal condition of same sized and uniformly distributed 

particles, 𝐺0, 𝑃𝑆𝐷1 and 𝑃𝑆𝐷2 each must have a value of one (1). 

The second quantification approach developed was less complicated and was based on 

the variance (S2) of the fractal dimension 𝐷𝑓. As S2 increases the dispersion quantity (𝐷0) →

100% and homogeneity is improved. This methodology was successfully tested with simulated 

models during proof of concept and validated with real SEM images. The techniques developed 

are easy to implement, ensure reliable and consistent outputs, are very robust with some level 

of sophistication but without the complexities of other techniques, and are versatile enough to 

analyse both optical and electron microscopy images. These quantification methods serve as a 

means of establishing standardised benchmarks for characterising the state of dispersion. 

An investigation into optimising the tab design configurations to minimise stress 

concentration within the tab termination region during tensile testing of NCF was carried out. 

To determine the statistical significance of each parameter, analysis of variance (ANOVA) was 

used after finite element analysis, which is the most effective means of analysing stress 

concentrations. The most significant factors were found to be tab stiffness, tap taper angle and 

adhesive thickness with corresponding P-values of approximately 0.000 for all the stress 

concentrations; σxmax, σymax and τxymax. The finite element analysis showed that increasing tab 

stiffness and taper angle directly increased the stress concentrations within the tab termination 
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region. Therefore, selection of tab materials with low stiffness and designing the tabs with 

lower taper angles was recommended. The results also revealed that in general increasing 

adhesive thickness decreases induced stress concentrations. However, in the case of tapered 

tabs, the peel stress (𝜎𝑦) increased with increasing adhesive thickness. 

Three optimisation techniques, namely Taguchi, Taguchi-multiple response and 

Taguchi-genetic algorithm approach, were applied to obtain the optimal tab design parameters. 

The results showed that all the approaches were efficient in converging at the same optimal 

values of tab stiffness (32.6 𝐺𝑃𝑎), tab thickness (0.5 𝑚𝑚), tab length (50 𝑚𝑚 𝑜𝑟 100 𝑚𝑚), 

tab taper angle (5°) and adhesive thickness (1.5 𝑚𝑚). Comparatively, GA-based approaches 

are not limited by the challenges of interaction and response variability as seen with the 

Taguchi approach and multiple response optimisation respectively. Furthermore, a GA 

approach does not have the drawbacks of gradient-based approaches and can handle non-linear 

objective functions. Lastly, performance is not dependent on an initial design variable. 

The impact strength of NE, STN, TN, methanol treated TiO2 (MTN), CF-NE and CF-

STN were determined as 0.322 𝐽, 0.412 𝐽, 0.274 𝐽, 0.286 𝐽, 8.98 𝐽 and 10.086 𝐽 respectively 

via the Charpy impact test. Analysis of variance (ANOVA) and a Tukey pairwise comparison 

was conducted to ascertain the significance of introducing silane treated TiO2 nanoparticles. A 

P-Value of 0.013 was obtained indicating that the application of different treatments to the 

TiO2 nanoparticles was significant from the ANOVA. The Tukey pairwise comparison test 

between TN and STN gave a P-value of 0.015. This clearly showed that silane treatment 

significantly affected the Charpy impact energy by improving the particle-matrix. 

The fractured surfaces from the Charpy impact tests were investigated using SEM to 

evaluate the influence of nanoparticles on fracture response and mechanisms. The fracture 

behaviour of NE was characteristically brittle with large smooth regions, creases, fracture steps 

and hyperbolic markings along the path of the crack propagation and obvious river lines. These 
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characteristics clearly describe low resistance to crack propagation. The SEM image of the 

STN samples showed mostly homogenous dispersion with some sparsely distributed 

agglomerates of the nanoparticles attributed to the silane treatment. Improved particle-matrix 

bonding was observed in the large fracture surfaces attributed to rigid nanoparticles and 

diverging crack fronts resulting in increased energy absorption. Furthermore, the presence of 

agglomerate breakage and not pull-out clearly indicated strong particle-matrix adhesion. The 

SEM examination of the TN samples revealed nano fracture mechanisms associated with poor 

particle-matrix bonding and high presence of agglomeration such as particle pull-outs, 

interparticle crack propagation, particle crack pinning and crack deflection. These results 

clearly demonstrate the importance of silane functionalisation. Finally, the impact failure 

mechanisms observed after SEM examination of the fracture surfaces of NCF composites can 

be grouped into three main categories, namely (1) matrix only associated fracture and plastic 

deformation, (2) fibre only fracture and plastic deformation, and (3) interfacial-associated 

mechanisms such as fibre-matrix debonding, post-bonding friction and fibre pull-out. 

After conducting the TGA analysis on NCF samples with and without TiO2, it was 

observed that in most instances significant improvements in thermal stability were achieved 

with the introduction of TiO2 nanoparticles. At the critical initial weight loss of 25%, the 

thermal stability of NE improved significantly from 338℃ to 347℃ after the introduction of 

TiO2 nanoparticles. Thermal stability improvements were only pronounced for CF-STN and 

CF-NE after a 30% weight loss. Further enhancements in thermal stability were also observed 

from 50% − 70% weight loss with the inclusion of TiO2 nanoparticles. At 460℃, 90% weight 

loss occurred, and the epoxy resin had completely degraded. The high weight of 60% at 800℃ 

for CF-STN clearly justifies the application of processes such as pyrolysis as an effective 

means of reclaiming carbon fibre. The treatment of the TiO2 nanoparticles with silane solution 

ensured improvement in the particle-matrix bonding. This contributed to improving 
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homogeneity in the dispersion of the nanoparticles. A strong correlation was established 

between thermal stability and the dispersion state of particles where agglomeration is 

detrimental to particle-matrix bonding [23].  

Further examination of the thermal stability of samples was carried out using the integral 

procedural decomposition temperature (IPDT) methodology. The inclusion of TiO2 

nanoparticle correlated positively with an increase in IPDT values. There was an increase of 

7% and 12% and in the IPDT values after the introduction of silane treated and nontreated TiO2 

Respectively. An increase in IPDT is an established indication of improved heat retardation 

primarily due to the restriction in the oxygen heat movement caused by the presence of 

nanoparticles. The oxidation index (OI) was used in the estimation of the flame-retardant 

capacity of the NE, STN and TN; 0.27, 0.44 and 0.50 respectively. An 87% increase in OI was 

observed when NE and STN were compared. It is known in the literature that OI ranging from 

0.5 and above indicates an increase in thermal stability and consequently enhancement in the 

flame resistance. 

The reclamation of carbon fibre from NCF reinforced composites was successfully 

conducted via pyrolysis and oxidation. After the pyrolytic (500℃) process, an examination of 

the fibre morphology was carried out using the SEM. The resulting solid residue comprised 

fibres with brittle-like characteristics covered and bonded together with a carbonaceous solid 

residue known as char. Thereafter, the char was effectively removed by oxidation in air at 

500℃. The oxidation process is critical to achieving the circular economy component of re-

use as secondary raw material; char covered fibres are known to show poor fibre-matrix 

adhesion due to poor wettability which severely degrades the mechanical properties of the 

resulting composite when compared to virgin fibre. Furthermore, the capability of using the 

same temperature for pyrolysis and oxidation established a platform for developing a 

continuous thermal line treatment from pyrolysis to oxidation. In general, most fibres tend to 
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experience defects such as pitting and localised damage when subjected to elevated oxidation 

temperatures. However, the surface morphology of PY-CHAR-OX appeared very smooth 

without local and surface damage. This can be attributed to the protective action of the char. 

To further investigate the influence of char during oxidation, the fibre diameters of virgin 

and pyrolyzed samples were determined using the SEM. A 10% reduction in virgin carbon 

fibre filament diameter was observed after oxidation. After pyrolysis, a 10% increase in fibre 

diameter was observed. This increase was clearly due to the deposition of char on the surface 

of the fibre. The removal of the char through oxidation resulted in a diameter decrease of only 

3%. This lower percentage reduction is also proof that the presence of char acts as a protective 

cover during oxidation. Clearly the virgin fibre was highly susceptible to oxidation degradation 

while the char on the pyrolysed samples acted as a sacrificial shield preventing oxygen from 

reaching the fibre surface. 

 The physio-sorption characteristics of the recovered NCF carbon fibres were 

investigated using the Brunauer-Emmett-Teller (BET) method. The BET surface area analysis 

showed that after pyrolysis the fibre surface area increases by 682% while oxidation decreased 

it by 473%. The relatively higher surface area of PY-CHAR was due to the deposition of the 

amorphous carbon material from the gasification of the epoxy matrix. Since surface activation 

was not the objective of this study priority was given to achieving recovered fibre (PY-CHAR-

OX) surface areas as close to those of virgin fibre (VF). Although the BET surface area for VF 

was 0.44 𝑚2 𝑔⁄ , the acceptable surface area for virgin carbon fibre from the literature falls 

within the range of values less than 0.7 𝑚2 𝑔⁄ . Therefore, PY-CHAR-OX (0.6 𝑚2 𝑔⁄ ) clearly 

satisfies the above-stated criteria and provides a justification for applying pyrolysis as a viable 

approach for reclamation fibre from composite waste. In general, pore volume was found to 

increase after pyrolysis, and decrease after oxidation. However, pore size exhibited an inverse 
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relationship with BET surface area such that pore size decreased after pyrolysis but increased 

after oxidation. in air.  

The elemental composition of the recovered fibres was evaluated using a thermal 

analyser and the EDX unit of the SEM to investigate the effect of pyrolysis and oxidation. In 

the elemental composition of the comprised carbon, oxygen, nitrogen and sulphur, carbon, as 

expected, was the dominant element. A comparison of PY-CHAR and PY-CHAR-OX showed 

an oxygen composition of 2.39% and 17.37% respectively. The corresponding O/C atomic 

ratios were also 0.0256 and 0.2187 respectively. The comparably lower oxygen percentage of 

PY-CHAR is indication of an inert fibre surface which consequently decreases fibre-matrix 

bonding. After oxidation, the increase in O/C coupled with an increase of over 700% in oxygen 

content of PY-CHAR-OX, implied that surface active sites which promote surface polarity 

were introduced onto the fibre surface. This facilitates a higher propensity for the formation of 

improved fibre-matrix chemical bonds and therefore wetting is enhanced. The presence of 

minor constituent elements such as sulphur enhances the acid-base properties of the fibre and 

is critical in improving fibre-matrix adhesion. 

The impact of pyrolysis and oxidation on the thermal property of carbon fibre was 

investigated using TGA under heating conditions from 30℃ to 1000℃. Two distinguishable 

events on the thermogram of PY-CHAR were observed after TGA with the decomposition of 

the char layer attributed to the first event while the second event was due to the decomposition 

of the carbon fibre itself. The two events coupled with the shape of the thermogram clearly 

represents low thermal stability and an indication that the presence of char negatively 

influences thermal stability. However, the thermogram for PY-CHAR-OX had only one event 

which corresponded to the decomposition of the carbon fibre itself. Higher thermal stability 

could be deduced from the shape of the thermogram and the occurrence of just one event. The 

lack of char on the fibre surface due to its removal via oxidation therefore positively impacts 
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thermal stability. Nevertheless, the residual weights for PY-CHAR and PY-CHAR-OX were 

approximately 97% and 96% respectively. The slightly higher residual of PY-CHAR supports 

the conclusion that the char layer has thermal protection capabilities.  

Investigating the effects of pyrolysis and oxidation on the crystallinity of the recovered 

carbon fibre was carried out using XRD. The two peaks observed on the diffractograms from 

the XRD spectra of PY-CHAR-OX and PY-CHAR samples were reflected at 25° and 44° 

corresponding to the 002 and 011 diffraction lines respectively. The interlayer spacings of 

𝑑002 and 𝑑011 for both PY-CHAR and PY-CHAR-OX were approximately equal with 𝑑002 

closer to the lower end of the disordered carbon material range disorder range of 3.4 Å. 

Pyrolysis and oxidation thus did not significantly influence the crystallite interlayer spacing of 

the carbon fibre. The most critical crystallite structural parameters that were affected by 

oxidation treatment were the crystallite thickness (𝐿𝑐), crystallite width (𝐿𝑎) and the number 

of aromatic layers (𝑁). After oxidation of the char covered reclaimed carbon fibre, the  𝐿𝑐 

decreased by 16%, 𝐿𝑎 saw a significant reduction of 80%, and 𝑁 also slightly decreased. The 

high decrease in 𝐿𝑎 can be attributed to the evacuation of carbon atoms from the crystallite 

edge during the reduction reaction of oxidation. Furthermore, the results show that as the 

surface area of carbon fibre increases, 𝐿𝑐 and 𝐿𝑎 tend to increase while a reduction in pore size 

also increases 𝐿𝑐 and 𝐿𝑎. 

Raman spectroscopy was also used to explore the effects of pyrolysis, oxidation and the 

presence of char on the microstructure of carbon fibre. Two absorptions or well-resolved peaks 

were present in both oxidised and non-oxidised fibres. A significant reduction in the 𝐷 𝑏𝑎𝑛𝑑 

peak intensities was observed after the oxidation process which was attributed to improvement 

in the structural organisation. The intensity ratio of the oxidised fibres was slightly higher than 

the pyrolysed fibres. Furthermore, the signal sharpness of the oxidised samples coupled with 

the broadness and in some cases poorly defined peaks of the pyrolysed samples provide an 
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indication of deposited char residue and resin on the surface of the fibres. Additionally, the 

aggressive oxidation conditions of 500℃ for 60 𝑚𝑖𝑛 caused a sharper, narrower 𝐷 and 

𝐺 𝑝𝑒𝑎𝑘𝑠, a change in position of the Raman band, and a shift towards lower wave numbers 

which was evidence of char-free fibres.  

5.3 Recommendations for Future Research 

This research provides a holistic approach by successfully addressing critical gaps in 

literature related to improving non-crimp fabric reinforced composites using active particles, 

quantification of the particle dispersion after matrix modification, improving testing through 

optimisation approaches and reclamation of quality fibre for end of life utilisation. Although 

this research study has been comprehensive, further investigations are still required in some 

critical areas. These include:  

1. The greatest limitation to mainstream use of fibre-reinforced composites is the lack of 

a continuous automation process from fabric manufacture to composite fabrication. 

Non-crimp fabrics are uniquely suited for complete automation due to the fact that 

existing automation processes in the textile industry were adopted for the manufacture 

of preforms. A significant advancement will be a combination of preform manufacture, 

draping and Vacuum assisted resin transfer moulding processes.  

2. Existing dispersion quantification techniques rely on 2D images, however, the newly 

developed approaches in this study can be modified to analyse 3D images. Furthermore, 

a stepwise increase in magnifications can be used to generate various images that can 

be employed to give a better representation of the dispersion state within the entire 

sample.  
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3. The importance of char after pyrolysis has not been sufficiently explored; further 

studies are required to investigate the properties of the carbonaceous layer. A study into 

its possible role in activation and functionalisation of the fibres is necessary.  

4. Presently, there is no published literature on the use of recovered activated carbon fibre 

for adsorption purposes. Future studies will benefit from focusing on the use of such 

fibres for biogas upgrades.  

5. The application of optimised process parameters for both pyrolysis and post pyrolysis 

processes are critical to enhance the quality of reclaimed fibres. Further studies are 

required to establish the optimal parameters required to gain insight into the impact of 

the pyrolysis.  

Since the current literature on economic assessment, energy analysis and environmental impact 

analyses of pyrolysis on carbon fibre reinforced composites is scanty or non-existent, this field 

will greatly benefit from further exploration. 
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7. APPENDIX 

A1 – Gap statistics and Data Extraction  

Gap Statistics 

close all; 

clear all; 

clc; 

warning off 

%% Gap Statistics 

load Sample_2a_1000x 

x=(Sample_2a_1000x); 

rng('default'); % For reproducibility 

eva = evalclusters(x,'kmeans','gap','KList',[1:8])  

%% Plot the gap criterion values for each number of clusters tested.  

figure, 

plot(eva) 

%% 

figure, 

plot(eva.InspectedK,eva.ExpectedLogW,'m+-',eva.InspectedK,eva.LogW,'ro-') 

xlabel('Number of clusters') 

ylabel('obs and exp log(Wk)') 

legend('exp log(Wk)','obs') 

 

Data Extraction 

%% Data Extraction from Observed and Expected curves from Gap statistics 

clear all; 

close all; 

clc; 

h=openfig('Sample_2c_160x'); 

h=findobj(gca,'Type','line'); 

x=get(h,'Xdata'); 

y=get(h,'Ydata'); 
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A2 – Particle Size Dispersity and Particle Spacing Dispersity  

close all; 

clear all; 

clc; 

warning off 

UniDisp=rgb2gray(imread('Sample_2a_1000x.jpg')); 

figure, imshow(UniDisp); 

[pixelCount, grayLevels] = imhist(UniDisp); 

bar(grayLevels, pixelCount) 

graph=bar(grayLevels, pixelCount); 

%% 

imData=reshape(UniDisp,[],1); % Conversion into an array 

imData=double(imData); % Conversion from unit8 to double 

[IDX nn]=kmeans(imData,4); %Perform kmean with 4 clusters 

imIDX=reshape(IDX, size(UniDisp)); % (256*256) matrix of indexes 

%% 

figure, 

imshow(imIDX,[]),title('index image'); 

%% 

figure, 

subplot(3,2,1),imshow(imIDX==1,[]); 

subplot(3,2,2),imshow(imIDX==2,[]); 

subplot(3,2,3),imshow(imIDX==3,[]); 

subplot(3,2,4),imshow(imIDX==4,[]); 

%% 

bw=(imIDX==2); 

se=ones(2); 

bw=imopen(bw,se); 

bw=bwareaopen(bw,10); 

figure,imshow(bw); 

  

%% 

% Count particles and label them 

[L Ne]=bwlabel(bw); 

imshow(label2rgb(L)); 

% Find the properties of the image 

prop=regionprops(L); 

% feature extraction - size distribution (area, pixels) 

stats = regionprops(L); 

A = [stats.Area]; % Calculates individual particle sizes 

%% 

  

boundaries = bwboundaries(bw); 

numberOfBoundaries = size(boundaries, 1); 

for k = 1 : numberOfBoundaries 

 thisBoundary = boundaries{k}; 

 plot(thisBoundary(:,2), thisBoundary(:,1), 'r', 'LineWidth', 3); 

end 

hold off; 

  

% Define object boundaries 

numberOfBoundaries = size(boundaries, 1) 

% message = sprintf('Found %d boundaries', numberOfBoundaries); 

% uiwait(helpdlg(message)); 
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% Find minimum distance between each pair of boundaries 

for b1 = 1 : numberOfBoundaries 

 for b2 = 1 : numberOfBoundaries 

  if b1 == b2 

   % Can't find distance between the region and itself 

   continue; 

  end 

  boundary1 = boundaries{b1}; 

  boundary2 = boundaries{b2}; 

  boundary1x = boundary1(:, 2); 

  boundary1y = boundary1(:, 1); 

  x1=1; 

  y1=1; 

  x2=1; 

  y2=1; 

  overallMinDistance = inf; % Initialize. 

  % For every point in boundary 2, find the distance to every point in boundary 1. 

  for k = 1 : size(boundary2, 1) 

   % Pick the next point on boundary 2. 

   boundary2x = boundary2(k, 2); 

   boundary2y = boundary2(k, 1); 

   % For this point, compute distances from it to all points in boundary 1. 

   allDistances = sqrt((boundary1x - boundary2x).^2 + (boundary1y - boundary2y).^2); 

   % Find closest point, min distance. 

   [minDistance(k), indexOfMin] = min(allDistances); 

   if minDistance(k) < overallMinDistance 

    x1 = boundary1x(indexOfMin); 

    y1 = boundary1y(indexOfMin); 

    x2 = boundary2x; 

    y2 = boundary2y; 

    overallMinDistance = minDistance(k); 

   end 

  end 

  % Find the overall min distance 

  minDistance = min(minDistance); 

  % Report to command window. 

  fprintf('The minimum distance from region %d to region %d is %.3f pixels\n', b1, b2, minDistance); 

   

  % Draw a line between point 1 and 2 

  line([x1, x2], [y1, y2], 'Color', 'y', 'LineWidth', 3); 

 end 

end 
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A3 – Fractal Dimension 

FRACTAL DIMENSION 

 

close all; 

clear all; 

clc; 

warning off 

UniDisp=rgb2gray(imread('2-4.jpg')); 

figure, imshow(UniDisp); 

%% 

imData=reshape(UniDisp,[],1); % Conversion into an array 

imData=double(imData); % Conversion from unit8 to double 

[IDX nn]=kmeans(imData,2); %Perform kmean with 4 clusters 

imIDX=reshape(IDX, size(UniDisp)); % (256*256) matrix of indexes 

%% 

figure, 

imshow(imIDX,[]),title('index image'); 

%% 

figure, 

subplot(3,2,1),imshow(imIDX==1,[]); 

subplot(3,2,2),imshow(imIDX==2,[]); 

subplot(3,2,3),imshow(imIDX==3,[]); 

subplot(3,2,4),imshow(imIDX==4,[]); 

%% 

bw=(imIDX==1); 

se=ones(1); 

bw=imopen(bw,se); 

bw=bwareaopen(bw,10); 

figure,imshow(bw); 

%% Fractal Dimension  

axis square 

figure 

boxcount(bw) 

figure 

[n,r]=boxcount(bw,'slope'); 

df = -diff(log(n))./diff(log(r)); 

disp(['Fractal dimension, Df = ' num2str(mean(df(4:8))) ' +/- ' num2str(std(df(4:8)))]); 

 

function [n,r] = boxcount(c,varargin) 

%BOXCOUNT Box-Counting of a D-dimensional array (with D=1,2,3). 

% [N, R] = BOXCOUNT(C), where C is a D-dimensional array (with D=1,2,3), 

% counts the number N of D-dimensional boxes of size R needed to cover 

% the nonzero elements of C. The box sizes are powers of two, i.e.,  

% R = 1, 2, 4 ... 2^P, where P is the smallest integer such that 

% MAX(SIZE(C)) <= 2^P. If the sizes of C over each dimension are smaller 

% than 2^P, C is padded with zeros to size 2^P over each dimension (e.g., 

% a 320-by-200 image is padded to 512-by-512). The output vectors N and R 

% are of size P+1. For a RGB color image (m-by-n-by-3 array), a summation 

% over the 3 RGB planes is done first. 

% 

% The Box-counting method is useful to determine fractal properties of a 

% 1D segment, a 2D image or a 3D array. If C is a fractal set, with 

% fractal dimension DF < D, then N scales as R^(-DF). DF is known as the 
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% Minkowski-Bouligand dimension, or Kolmogorov capacity, or Kolmogorov 

% dimension, or simply box-counting dimension. 

% 

% BOXCOUNT(C,'plot') also shows the log-log plot of N as a function of R 

% (if no output argument, this option is selected by default). 

% 

% BOXCOUNT(C,'slope') also shows the semi-log plot of the local slope 

% DF = - dlnN/dlnR as a function of R. If DF is contant in a certain 

% range of R, then DF is the fractal dimension of the set C. The 

% derivative is computed as a 2nd order finite difference (see GRADIENT). 

% 

% The execution time depends on the sizes of C. It is fastest for powers 

% of two over each dimension. 

% 

% Examples: 

% 

%  % Plots the box-count of a vector containing randomly-distributed 

%  % 0 and 1. This set is not fractal: one has N = R^-2 at large R, 

%  % and N = cste at small R. 

%  c = (rand(1,2048)<0.2); 

%  boxcount(c); 

% 

%  % Plots the box-count and the fractal dimension of a 2D fractal set 

%  % of size 512^2 (obtained by RANDCANTOR), with fractal dimension 

%  % DF = 2 + log(P) / log(2) = 1.68 (with P=0.8). 

%  c = randcantor(0.8, 512, 2); 

%  boxcount(c); 

%  figure, boxcount(c, 'slope'); 

% 

% F. Moisy 

% Revision: 2.10, Date: 2008/07/09 

  

  

% History: 

% 2006/11/22: v2.00, joined into a single file boxcountn (n=1,2,3). 

% 2008/07/09: v2.10, minor improvements 

  

% control input argument 

error(nargchk(1,2,nargin)); 

  

% check for true color image (m-by-n-by-3 array) 

if ndims(c)==3 

 if size(c,3)==3 && size(c,1)>=8 && size(c,2)>=8 

  c = sum(c,3); 

 end 

end 

  

warning off 

c = logical(squeeze(c)); 

warning on 

  

dim = ndims(c); % dim is 2 for a vector or a matrix, 3 for a cube 

if dim>3 

 error('Maximum dimension is 3.'); 

end 
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% transpose the vector to a 1-by-n vector 

if length(c)==numel(c) 

 dim=1; 

 if size(c,1)~=1  

  c = c'; 

 end  

end 

  

width = max(size(c)); % largest size of the box 

p = log(width)/log(2); % nbre of generations 

  

% remap the array if the sizes are not all equal, 

% or if they are not power of two 

% (this slows down the computation!) 

if p~=round(p) || any(size(c)~=width) 

 p = ceil(p); 

 width = 2^p; 

 switch dim 

  case 1 

   mz = zeros(1,width); 

   mz(1:length(c)) = c; 

   c = mz; 

  case 2 

   mz = zeros(width, width); 

   mz(1:size(c,1), 1:size(c,2)) = c; 

   c = mz; 

  case 3 

   mz = zeros(width, width, width); 

   mz(1:size(c,1), 1:size(c,2), 1:size(c,3)) = c; 

   c = mz;    

 end 

end 

  

n=zeros(1,p+1); % pre-allocate the number of box of size r 

  

switch dim 

  

 case 1  %------------------- 1D boxcount ---------------------% 

  

  n(p+1) = sum(c); 

  for g=(p-1):-1:0 

   siz = 2^(p-g); 

   siz2 = round(siz/2); 

   for i=1:siz:(width-siz+1) 

    c(i) = ( c(i) || c(i+siz2)); 

   end 

   n(g+1) = sum(c(1:siz:(width-siz+1))); 

  end 

  

 case 2   %------------------- 2D boxcount ---------------------% 

  

  n(p+1) = sum(c(:)); 

  for g=(p-1):-1:0 

   siz = 2^(p-g); 
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   siz2 = round(siz/2); 

   for i=1:siz:(width-siz+1) 

    for j=1:siz:(width-siz+1) 

     c(i,j) = ( c(i,j) || c(i+siz2,j) || c(i,j+siz2) || c(i+siz2,j+siz2) ); 

    end 

   end 

   n(g+1) = sum(sum(c(1:siz:(width-siz+1),1:siz:(width-siz+1)))); 

  end 

  

 case 3   %------------------- 3D boxcount ---------------------% 

  

  n(p+1) = sum(c(:)); 

  for g=(p-1):-1:0 

   siz = 2^(p-g); 

   siz2 = round(siz/2); 

   for i=1:siz:(width-siz+1), 

    for j=1:siz:(width-siz+1), 

     for k=1:siz:(width-siz+1), 

      c(i,j,k)=( c(i,j,k) || c(i+siz2,j,k) || c(i,j+siz2,k) ... 

       || c(i+siz2,j+siz2,k) || c(i,j,k+siz2) || c(i+siz2,j,k+siz2) ... 

       || c(i,j+siz2,k+siz2) || c(i+siz2,j+siz2,k+siz2)); 

     end 

    end 

   end 

   n(g+1) = sum(sum(sum(c(1:siz:(width-siz+1),1:siz:(width-siz+1),1:siz:(width-siz+1))))); 

  end 

  

end 

n = n(end:-1:1); 

r = 2.^(0:p); % box size (1, 2, 4, 8...) 

  

if any(strncmpi(varargin,'slope',1)) 

 s=-gradient(log(n))./gradient(log(r)); 

 semilogx(r, s, 's-'); 

 ylim([0 dim]); 

 xlabel('r, box size'); ylabel('- d ln n / d ln r, local dimension'); 

 title([num2str(dim) 'D box-count']); 

elseif nargout==0 || any(strncmpi(varargin,'plot',1)) 

 loglog(r,n,'s-'); 

 xlabel('r, box size'); ylabel('n(r), number of boxes'); 

 title([num2str(dim) 'D box-count']); 

end 

if nargout==0 

 clear r n 

end 
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A4 – Image segmentation and Centroid location  

close all; 

clear all; 

clc; 

warning off 

UniDisp=rgb2gray(imread('UniformDispCon.jpg')); 

figure, imshow(UniDisp); 

% Fliping of Image 

flippedImage = flipud(UniDisp); 

figure, imshow(flippedImage); 

 %% 

imData=reshape(UniDisp,[],1); % Conversion into an array 

imData=double(imData); % Conversion from unit8 to double 

[IDX nn]=kmeans(imData,4); %Perform kmean with 4 clusters 

imIDX=reshape(IDX, size(UniDisp)); % (256*256) matrix of indexes 

%% 

figure, 

imshow(imIDX,[]),title('index image'); 

%% 

figure, 

subplot(3,2,1),imshow(imIDX==1,[]); 

subplot(3,2,2),imshow(imIDX==2,[]); 
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subplot(3,2,3),imshow(imIDX==3,[]); 

subplot(3,2,4),imshow(imIDX==4,[]); 

%% 

bw=(imIDX==2); 

se=ones(2); 

bw=imopen(bw,se); 

bw=bwareaopen(bw,10); 

figure,imshow(bw); 

%% Agglomeration Quantity (Aq) 

Agglomeration = sum(bw(:)) / numel(bw); 

numWhitePixels = nnz(bw); % Sum of non-zero pixels. 

 %% Introduction of bounding box to locate centroids 

figure, 

flippedImage = flipud(bw); 

 % Count particles and label them 

[L Ne]=bwlabel(flippedImage); 

imshow(label2rgb(L)); 

 % Find the properties of the image 

prop=regionprops(L); 

 % Rectangular bounding boxes to locate centroids 

hold on 
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for n=1:length(prop) 

 rectangle('Position',prop(n).BoundingBox,'EdgeColor','g','LineWidth',2) 

 x=prop(n).Centroid(1); 

 y=prop(n).Centroid(2); 

 plot(x,y,'*') 

end 

  

hold off 

  

%% New Centroid Location to factor in the influence of particle size variation 

% Count elements and label them 

figure, 

[L Ne]=bwlabel(bw); 

prop=regionprops(L,'Centroid'); 

allCentroids = [prop.Centroid]; 

xCentroids = allCentroids(1:2:end); 

yCentroids = allCentroids(2:2:end); 

scatter(xCentroids,yCentroids) 

CentroidLocation=[xCentroids,yCentroids]; 

%% feature extraction - size distribution (area, pixels) 

stats = regionprops(L); 
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A = [stats.Area]; % Calculates individual particle sizes 

histfit(A) 

 %% New Centroid Location 

figure, 

xCentroidsTransposed=xCentroids.'; 

yCentroidsTransposed=yCentroids.'; 

ATransposed=A.'; 

CentroidLocation=[xCentroidsTransposed,yCentroidsTransposed]; 

TransformedCentroid=(ATransposed.*CentroidLocation); 

scatter(TransformedCentroid(:,1),TransformedCentroid(:,2)) 
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A5 – Elemental Ananlysis Results 
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A6 – Test Equipment and Test Samples 

 

 Instron impact testing machine 

 

 

KB-45 Band Saw 
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Thermolyne Thermo Scientific Furnace for Post oxidation 
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A7 – Waterjet Test Samples 

 

 
 

 

 

STN TN 

  
CF-TN CF-STN 

 


