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ABSTRACT 

The presence of harmonics in voltage and current waveforms is a result of an increase in use 

of nonlinear loads in power systems. Utility and end users are in disagreement over who is 

responsible of polluting the Point of Common Coupling (PCC) and therefore poor power 

quality. Hence, there is a need for dedicated techniques of analysis to determine the 

contributions of harmonics between utility and customer.  

This thesis sought to determine the contribution of harmonics at the PCC between utility and 

end users in the electrical distribution network. To assess such contributions, both the utility 

and customers’ systems must be fully characterised by their equivalent Thevenin sources and 

impedances. Their contributions can then be calculated. This study developed a methodology 

for determining the parameters of the Thevenin equivalent circuit at different points in time 

“A” and “B”. Power descriptions such as IEEE 1459-2010 deals with one measurement slice 

in time and cannot provide the Thevenin equivalents necessary to determine harmonic 

contribution at the PCC. This study rather looks at the voltage and current at the PCC at 

different times. Before establishing this method, it is demonstrated how a Thevenin equivalent 

circuit for a resistive network can be determined without shorting and opening the source. 

Instead, two points are used on the load line. This demonstrates the approach used in this study.  

This study suggested three steps to follow in determining contribution at the PCC: firstly, 

determine the dominant harmonics at the PCC by selecting the larger magnitudes that the 

transducers could measure with accuracy. Secondly, determine the Thevenin equivalent circuit 

per dominant harmonic by selecting two operating points in time (i.e time A and time B) for 

both the utility and customers when loads change. Lastly, define the main contributor of 

harmonics at the PCC per harmonic number by applying the principle of superposition to the 

Thevenin equivalents.  

To demonstrate the effectiveness of the developed model, a case study is conducted at a 

metropolitan municipality; whereby a numerical analysis of current and voltage harmonics is 

performed in order to support the mathematical analysis and to verify the experimental results. 

The analysis conducted in the network involving two customers, a sport stadium and 

Johannesburg metropolitan company, indicated that that the sport stadium was the main 

contributor of harmonics at the PCC. 
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The main advantage of the proposed approach is that we wait for the load to change in time in 

order to calculate the system Thevenin equivalents. This is opposed to using injecting of 

currents and/or open circuit measurement that is normally done.   
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CHAPTER 1: INTRODUCTION 

1.1 Background 

The term power quality “embraces all aspects associated with the amplitude, phase and 

frequency of the voltage and current waveforms existing in the power circuit” [1], [2]. Poor 

power quality in the power systems may occur due to transient conditions or from the 

installation of non-linear loads. Under normal conditions, power systems are designed to 

operate at a constant frequency and under perfect sinusoidal voltage and current waveforms 

[3], [4]. This operation, however, appears to be practically impossible because of the continued 

presence of non-linear loads.  

Non-linear loads are loads characterised by a non-constant resistance during the applied voltage 

waveform. The associated non-linear current causes nonlinear voltages due to supply 

impedance. Switch Mode Power Supply (SMPS) loads for example are supplied by a 50 Hz 

sinusoidal voltage waveform and convert alternating current (AC) to direct current (DC). This 

draws current in short, high-amplitude pulses, which occur around the positive and negative 

peaks of voltage. Due to current rapid cycles on and off, the cyclic power draw distorts the 

original shape of the current waveform, carving the sinusoidal shape and imposing new 

waveforms of an entirely different shape called harmonics. The combination of the 

fundamental sine waves and its multiple causes harmonic distortion. These harmonics are 

reflected in the electrical installation. Harmonic current travels through the electrical system 

and distorts the voltage at the Point of Common Coupling (PCC) through the system 

impedance. The quality of supply delivered by the utility to end users is then affected by the 

harmonic distortions. Since the utility and end users are connected to the same PCC, studies 

have been conducted in this field in order to determine the responsibility of polluting the PCC 

[5], [6], [7]. In practice, however, these studies are not widely used. The quality of power 

delivered is currently a major issue worldwide. This makes harmonic analysis a novel 

analytical and modelling tool for the assessment of loads and systems connected to the same 

PCC, and their interaction at harmonic frequencies [8]. 

Due to an increased use of non-linear loads in power systems, power harmonics studies have 

become an important component of power system analysis. This chapter provides the basic 

introductory concepts of power quality and harmonics and analysis methods for power systems, 

particularly for degrading the Point of Common Coupling between Utilities and end users. The 

chapter also discusses the research aims, objectives, methodology and main contribution of the 

thesis. 
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1.2 Rationale and Motivation 

Harmonic analysis is becoming a more complex problem than in the past for two reasons: (a) 

the existence of loads generating harmonics and distorting the Point of Common Coupling, and 

(b) the existence of other loads, which are sensitive to the harmonics produced by other loads.  

Non-linear current drawn by loads causes voltage harmonics. These voltage harmonics 

propagate through the system and then interfere with equipment. It has been shown that a load-

producing harmonic can adversely affect the loads that are very sensitive if “significant voltage 

distortion” is caused [18]. The voltage distortion caused by the load generating harmonic is a 

function of both the system impedance and the amount of harmonic current generated. This 

does not always mean that a distorted load current will adversely affect other loads connected 

to the same PCC. The problem becomes an issue in the presence of resonance with for example, 

power factor capacitors. This can cause erratic operation of telecommunication systems, 

computers, electronic test equipment, generators, or motor drives. A part from being a possible 

cause of harmonics, generators can be affected by other harmonic sources; for example, in 

terms of efficiency losses or overheating. One of the main reasons for this phenomenon is the 

high impedance of generators, which transfer current harmonic distortion into voltage 

harmonic distortion (i.e., affecting other loads supplied from that source). It has been shown, 

on the other hand, that a customer having large adjustable speed motor drives and compensating 

shunt capacitors can find himself billed for high harmonic currents and voltages levels 

emanating from another customer in case of resonance even though he does not have any 

significant non-linear load [10]. 

More and more end-users are better informed about such power issues that challenge the 

utilities to improve the quality of the power delivered. Both utilities and end-users of electric 

power are increasingly concerned about the quality of electric power. Although many studies 

have been conducted to assess power harmonics in the distorted power systems [5-7], [11-15], 

[17], [19], there is a need for dedicated techniques of analysis applicable to determine who is 

contributing with harmonics at the PCC between utility and end users. The challenge in 

measuring harmonic contributions at the PCC and therefore evaluating the responsibility of 

polluting the PCC is in determining the utility side and customer side Thevenin equivalent 

circuit [67]. This work focuses on this important issue. 
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1.3 Problem Identification 

A simple and well-used manner of setting responsibility between utility and end user as well 

as the costs of power quality problems, including reactive power, is to state that voltage is the 

responsibility of the utility and current is the responsibility of the customer [7], [8], [9]. This 

statement is true and works well as long as the voltage and current characteristics do not interact 

excessively. In many cases, the customer pays the extra bill without being responsible for 

polluting the PCC. This is unfair because, at the PCC, three aspects need to be separated: (a) 

the customer produces non-sinusoidal currents leading to voltage harmonics, -which is the 

customer fault-. (b) The existence of voltage harmonics is only made possible by the presence 

of a network source impedance, -which is the supplier’s fault. (c) Voltage harmonics can be 

caused by other customers. This is eventually due to their non-sinusoidal currents, and the 

utility’s network impedance, -which is the other customers’ fault-. The problem however 

resides in the unfair current billing of two or more nearby customers, say one with an inductive 

load and the other with the capacitive load. In practice, one or both customers might have to 

pay a fine for the reactive power, which in reality, cancels and causes no problem for the 

supplier. Moreover, the connection of a customer to the PCC with a perfect resistive load causes 

voltage harmonics and higher power components drawn by the load for which the customer 

cannot be charged. Therefore, the blame should be on the utility and on other customers, who 

should pay for their fault.  

A major part of the impedance of harmonic current sources emerges from distribution 

transformers, which will, to some extent, act as a harmonic current barrier.  Customers sharing 

a distribution transformer generally may have higher harmonic current amplitudes in their 

metering points. They might experience more substantial harmonic current interactions than 

consumers not sharing the same transformer might. However, the situation might be 

complicated further by the risks of resonance. The compensation of the fundamental reactive 

power produced by capacitors generally reduces most of the harmonic voltage levels in the 

system due to its ability to offer a low-impedance path for the current harmonics. In case of 

resonance, however, the harmonic current and/or the harmonic voltage will increase instead, at 

least locally. It has been demonstrated in [10] that a customer with a motor load and 

compensating shunt capacitors can find himself part of a resonance circuit for some harmonic 

currents emanating from another consumer. Therefore, a high harmonic current level and a 

high harmonic voltage level can be attributed to him without him having any significant 

nonlinear load.  
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Analyzing the responsibility of polluting the PCC between utility and customers can be done 

in two ways. The first and simplest way of analysing pollution at the PCC emerges from the 

recommendation of IEEE Std. 519-1992 [9], [11] that the current and voltage harmonics can 

always be billed for a set limit. Such analysis however seems problematic, as this simplest 

solution, as stated earlier, may sometimes be unfair in the presence of resonance between two 

customers in close proximity. Furthermore, determining distortion power components with 

IEEE Std. 1459 only provides indications of the total distortion at the PCC, which in reality is 

the combined effect of harmonics from both the utility and customers [67].  

The second way is to carry out a comprehensive and accurate measurement of harmonic power 

to distinguish the current flowing at the customer and utility sides. According to [6], [9] this 

way alone does not provide a full characterisation of loads and system impedance.  

The best option is the measurement of harmonic impedance at the customer side as well as 

harmonics generated by the customer’s loads and the system. In practice, this might be difficult. 

Many studies have developed methods based on the injection of disturbances into the power 

system [15-17], [20-25]. These studies recognise that the subject might not be feasible when 

switching is not allowed in practical installations and needs. As a result, this work intends to 

develop a methodology for determining the Thevenin equivalent impedances and sources 

voltages based on the measured current and voltage at different points in time and to evaluate 

the contribution of harmonics at the PCC.  

1.4 Research Aims and Objectives 

This work aims to contribute to the determination of harmonic interference at the PCC by end 

users and utilities.  

The specific objectives to be achieved are as follows: 

 a) To evaluate the characteristics of current and voltage harmonics components 

measured both at the utility and at the customers’ sides, 

 b) To evaluate the Thevenin equivalent impedances and voltage sources for the utility 

and end-users,  

c) To quantify the contribution of harmonics current at the PCC between utility and 

customers.   
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 1.5 Study Methodology 

To achieve these objectives, a series of measurements is carried out to evaluate the 

characteristics of current and voltage harmonics components. All measurements are performed 

in the substation at the PCC and at the customers’ side. To accomplish the first two objectives, 

an array of existent devices and equipment are selected for measurement and analysis. To 

undertake the evaluation and analysis, the characteristic of current and voltage harmonics 

measured at the PCC and at the customers’ side are numerically assessed using a harmonic 

analysis method based on a Fast Fourier Transform (FFT). To clearly quantify the contribution 

of harmonic characteristics between utility and customers, a Thevenin equivalent circuit based 

approach is used where the impedance and source voltage characteristics both at the utility and 

at the customers’ sides are calculated using the measured values of voltage and current 

occurring at different times. From the Thevenin equivalent circuits, the main contributor is 

determined by using the principle of superposition. 

 1.6 Main contribution of the thesis 

Determining the contribution of harmonic pollution at the PCC between utility and end user 

has been a challenge for the decades. Analysing harmonic distortion with IEEE 1459 std 1459 

only provides the combined effects of harmonics from the utility and the customers. A 

comprehensive and accurate measurement of harmonic powers should be carried out to analyse 

the current flowing at both utility and customer sides. In this regard, many studies have 

attempted to carry out a measurement of harmonic impedances at both the utility and end users’ 

sides as well as the currents drawn by the customers’loads and the system. Other methods 

developed focused on the injection of disturbances. All these methods recognise that such 

measurement might not be a feasible in practical network.  

The main contributions of the thesis are that: 

1) A methodology is developed to overcome the shortcomings of the injection of 

disturbances method. 

2) A model for calculating the Thevenin equivalent circuit parameters is developed for 

both the utility and end users’ sides from measured values of current and voltage 

occurring at different time instances. 
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1.7 Outline of the thesis 

This thesis consists of six chapters. Chapter 1 provides the basic concepts of power system 

harmonics and associated impacts on the power quality. It also discusses the problem 

identification, the adequate method to address the issue discussed, and the contribution of the 

study.  

Chapter 2 presents a literature review of concepts, definitions and theories of power. The key 

points under discussion are basic concepts on power theories, harmonics identification methods 

based on power flow and on voltage-current used on power systems, measurement techniques 

and instruments. Different methods, their respective advantages and disadvantages are 

reviewed. 

Chapter 3 discusses harmonics in power systems. The Harmonics, definitions, sources and 

effects of distortion are explored. The three main equipment groups, which are reviewed as 

source of harmonic are magnetic core equipment, conventional equipment and electronic and 

power electronic equipment. The review of the effects of harmonic distortion mainly focusses 

on the overheating of phase and neutral conductors, skin effect, motors and generators, 

transformers, capacitors, measuring instruments, relays and contactor protective systems and 

telecommunication interference. The general harmonic indices, power quality standards and 

recommended guidelines set to limit a certain amount of harmonic distortion generated either 

by the power utility or by the end user are reviewed.  

Chapter 4 develops a model for calculating the Thevenin equivalent impedance and source 

voltages and presents an approach to evaluate the contribution of harmonic current based on 

the Thevenin equivalent circuits. A methodology is proposed to overcome the shortcoming of 

harmonic injection to evaluate the harmonic impedance.  

Chapter 5 presents a case study. Numerical analysis of current and voltage harmonics 

components is performed out in order to support the mathematical analysis and to verify the 

experimental results and assess the contribution of harmonic current at the PCC between the 

utility and customers.  

Chapter 6 discusses the results obtained in chapter four and five, concludes the study and makes 

suggestions for future research.  

Four appendices are included at the end of the thesis. They contain the characteristics of current 

and voltage harmonics components measured at both utility and customers’ sides. Numerical 

analysis of the current and voltage waveforms using IEEE 1459-2010 are also included. The 
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statistical data of voltage, current, active power and reactive power over time per harmonic 

selected are also provided. 

1.8 Summary 

This chapter introduces the basic concepts of power system harmonics and its associated impact 

on power quality. It also presents the problem identification and discusses the way forward and 

the method to address the issue. It then highlights the specific contributions of the study.  

A literature review of harmonic analysis methods is carried out in chapter 2 before embarking 

into an investigation of power systems. 
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CHAPTER 2: LITERATURE REVIEW 

2.1 Overview 

This chapter provides a literature review of power theories and definitions. The main points 

include basic power theories, the harmonic identification methods based on power flow and 

voltage-current used on power systems, as well as the measurement techniques and 

instruments. 

2.2 Introduction to Power Theory 

This section discusses the fundamental and basic power theories related to power systems. 

2.2.1 Single-Phase Voltage and Current for Perfect Sinusoidal Conditions 

The instantaneous voltage and current in an electrical power network for perfect sinusoidal 

voltages and currents can generally be expressed as 

                                                    )cos()(  += tVtv m                                                         (2.1) 

And 

                                                      )cos()(  += tIti m                                                       (2.2) 

Where mV and mI are the maximum voltage and current magnitude respectively,   is the 

angular frequency in radians per second (rad/s) and can be expressed as 

                                                          f 2=                                                                       (2.3) 

Where f is the frequency. The initial phase shifts of the voltage and current waveforms are 

given by α and β respectively. The time that the waveforms take to complete one cycle is called 

the period of the waveforms and is represented by T. 

2.2.2 Single-Phase Power Definitions for Perfect Sinusoidal Waveforms 

For sinusoidal quantities in single-phase electrical networks, electrical power can be separated 

into active, reactive and apparent powers. The instantaneous power absorbed by a load in a 

network can be defined by the following: 

                                                               )()( titvp =                                                             (2.4) 

2.2.2.1 Active Power 

The active power is defined as “the time average of the instantaneous power over one period 

of the wave” [64]. At any time 0t , the active power is expressed as follows:  
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P                                                           (2.5) 

Where P represents the active power 

 p : The instantaneous power 

 T : The period 

For sinusoidal voltage and current, the active power is defined as the product of the Root Mean 

Square (RMS) of the voltage (V ), the RMS of the current ( I ), and the cosine of the angle (

) between voltage and current [64] 

                                                                 cosVIP =                                                          (2.6) 

Where the phase angle between the voltage and the current waveforms is expressed as: 

                                                                  )(  −=                                                          (2.7) 

The cosine of the phase angle is generally known as the power factor angle. 

                                                                )cos(  −=pf                                                    (2.8) 

The power factor defined in (2.8), is always positive. If the load is inductive, then the current 

phasor lags the voltage phasor,    and the load is said to have a lagging power factor. On 

the other hand, if the load is capacitive the current phasor leads the voltage phasor,    

resulting in a leading power factor. 

2.2.2.2 Reactive Power 

The reactive power is defined for sinusoidal quantities as the product of the voltage, the current, 

and the sine of the phase angle between RMS values of voltage and current [64]. 

                                                                      sinVIQ =                                                     (2.9) 

Where Q expresses the average value of the power that oscillates between the load and the 

source without carrying out any net energy transfer 

2.2.2.3 Apparent Power 

The apparent power is defined for sinusoidal quantities as the square root of the sum of the 

squares of the active and reactive powers.  Apparent power is the maximum quantity of power 

available in a system when the power factor is unity [64] 

                                                                        22 QPS +=                                             (2.10) 

The following espression (2.11) can be obtained if the voltage and current are both sinusoidal 

and have the same period: 

                                                                         VIS =                                                         (2.11) 
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2.2.3 Three-Phase Voltage and Current Definitions for Perfect Sinusoidal Waveforms 

Three-phase network are comparable to single-phase systems regarding voltage and current 

definitions. Three-phase network consist of three phases which are generally represented by 

phase a, b and c. The angle between each phase is equal to 120˚. If a positive phase sequence 

system is assumed, the voltage and current phasors are expressed by the following equations: 

                                                )cos()( max tVtv aa =                                                           (2.12) 

                                                 )120cos()( max −= tVtv bb                                                 (2.13) 

                                                 )120cos()( max += tVtv cc                                                 (2.14) 

Where maxaV , maxbV and maxcV are the maximum value of the phase voltages measured from line 

to neutral. The phase currents are: 

                                                 )cos()( max aaa tIti  +=                                                    (2.15) 

                                                 )120cos()( max −+= bbb tIti                                          (2.16) 

                                                  )120cos()( max ++= ccc titi                                          (2.17) 

Where maxaI , maxbI and maxcI are the maximum value of the phase currents in each phase. The 

phase difference (power factor angle) between each phase voltage and its resulting current are 

represented by a , b  and c   

2.2.4 Three-Phase Power Definitions for Perfect Sinusoidal Waveforms 

The total power dissipated in a three-phase network is equal to the sum of the powers in each 

phase. From (2.6), (2.9), (2.11), the total power dissipated can be expressed: 

                                                      cbaTotal SSSS ++=                                                       (2.18) 

                                                      cbaTotal PPPP ++=                                                       (2.19) 

                                                       cbaTotal QQQQ ++=                                                    (2.20) 

In a balanced three-phase network, the voltages across each phase and the currents in each 

phase are equal. Therefore, the powers in each phase are equal. 

                                                        cba SSS ==                                                                (2.21) 

                                                        cba PPP ==                                                                 (2.22) 

                                                         cba QQQ ==                                                              (2.23) 

Equations (2.18), (2.19) and (2.20) can be simplified to: 

                                                        *3 aaTotal IVS =                                                               (2.24) 
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                                                        )cos(3 aaaTotal IVP =                                                   (2.25) 

                                                       )sin(3 aaaTotal IVQ =                                                    (2.26) 

Where *

aI  is the conjugate of phase current a 

It should be noted that the definitions given in this section 2.2.4 are applicable to symmetrical 

and sinusoidal waveforms. In systems with asymmetrical and non-sinusoidal waveform 

conditions, these definitions are not applicable [33]. 

2.2.5 IEEE Standard 1459-2010 

The IEEE working group on “nonsinusoidal situations: Effects on meter performance and 

definition of power” has suggested practical definitions for powers [30]. The main difference 

found between IEEE definition and other standards definitions is that it separates the 

fundamental quantities of active power P
1 

and reactive power Q
1 

from the rest of the apparent 

power components. The standard focuses rather on revenue metering than on compensation. 

The starting point emphasised in these definitions is a separation of the fundamental voltage 

and current harmonics from the total RMS values. 

A number of researchers who followed up on the work of Budeanu [68] proposed more 

appropriate definitions by means of which distortion powers can be calculated [34], [35], [36], 

[38]. The IEEE Standards 1459-2010 suggest the decomposition of current and voltage signals 

into fundamental (I1 and V1) and harmonic contents [8-9]: 

                                                               
22

1

2

HIII +=                                                         (2.27) 

                                                               
22

1

2

HVVV +=                                                       (2.28) 

Where HV , HI represent respectively RMS of the voltage and current harmonics and are 

expressed as follow: 

                                                                




=
1

22

h

hH VV                                                          (2.29) 

                                                                




=
1

22

h

hH II                                                           (2.30) 

The active power is expressed as below:  

                                                                 HPPP += 1                                                         (2.31) 

The fundamental and harmonic active power respectively ( 1P ) and ( HP ) are expressed below: 

                                                    1111 cosIVP =                                                     (2.32) 
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hh

h

hH IVP cos
1






=                                             (2.33) 

2.3 Harmonic Identification Methods 

The identification of harmonic distortion sources is problematic in power systems due to the 

connection of the utility and customers to the same point of common coupling (PCC). In recent 

years, many studies have been conducted in order to settle the dispute between the utility and 

customers over who is responsible of polluting the PCC. 

This section studies the harmonic source identification methods based on the direction of active 

power flow, reactive power flow and voltage-current method. Four methods considered to be 

related to the voltage-current are presented in this section. These include the voltage-current 

ratio method, the harmonic vector method, the current injection method and the Norton 

equivalent circuit model. The analysis of the harmonics source criterion and the reliability of 

these methods are discussed. 

2.3.1 Harmonic Active Power Method 

The harmonic active power method has been used in power systems to identify the dominant 

harmonic source at the PCC [58]. In this method, the utility is defined as the dominant harmonic 

generator if harmonic active power flows from utility to end user, and vice versa. This approach 

had been applied in electrical installations for many years, and later on its validity, which is 

based on the direction of harmonic active power, was called into question [26], [51]. It has been 

demonstrated that the method based on the flow of harmonic active power is theoretically 

incorrect [59]. 

The problems associated with the harmonic active power direction method between two 

sources AC circuits can be examined by simply using the case of jXZ =  in Fig. 2.1 and 2.2 

below.  
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Iu Zu Zc Ic

Ipcc

Vpcc

 

Fig. 2.1: Norton equivalent circuit for harmonic source detection 

 

Z=Zc+Zu

PCC

cE 0uE

I

 

Fig. 2.2: Thevenin equivalent circuit for harmonic source detection 

The active power flowing into sources can be determined with the classical power equation as: 

                                                  sincos
X

EE
IEP cu

u ==                                                (2.34) 

Where uE utility voltage source 

 cE Customer voltage source 

  The phase angle difference between customer and utility side voltage sources 

 X reactance of the impedance 

An analysis of (2.34) above indicates that the direction of active power depends rather on the 

phase angle difference between customer and utility side voltage sources than on the 

magnitudes of the voltage sources. Moreover, this method is unable to reveal the difference 

between the magnitudes of the two sources. Therefore, the active harmonic power direction 
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method is incorrect theoretically and cannot be a dedicated indicator to identify the dominant 

source of harmonics [26], [59]  

2.3.2 Harmonic Reactive Power Method 

It is known that the flow of active power is mainly affected by the phase angles of bus voltages 

while the flow of reactive power depends on the magnitudes of bus voltages [51]. One would 

therefore ask whether the reactive power direction could indicate the relative magnitudes of 

two sources of harmonics. An analysis of the reactive power Q flowing into utility voltage 

source uE  of figure 2.2 above indicates that the direction of reactive power depends on the 

voltage magnitudes between two harmonics sources 

                                          )cos(sin uc

u

u EE
X

E
IEQ −==   [51]                                  (2.35) 

 An analysis of (2.35) indicates two effects: the utility side absorbs reactive power )0( Q , and 

the utility side generates reactive power )0( Q . In the case of utility side absorbing reactive 

power, uE  in (2.35) must be smaller than cE .  In order words, one can say that the customer 

contribute more with the current flowing at the PCC. It is true that the reactive power that uE  

absorbs must originate from cE .  Since the impedance is reactive, cE must have “a sufficiently 

high magnitude in order to push” the reactive power into source uE . On the other hand, the 

utility side generating reactive power does not necessarily mean that the utility is the dominant 

source. In many cases, the generated reactive power may not reach the customer side due to 

power losses along the line. However, it has been proven that the method based on reactive 

power flow alone is not enough strong to clearly identify the dominant source of harmonics 

since the phase angle difference between two sources is still playing a role in the power flow. 

In any case, the active power method is improved at least by one direction of reactive power 

providing a theoretically correct conclusion [28]. 

To improve on this method, a new concept based on critical impedance has been proposed in 

[28]. This method is described in the following section.  

2.3.2.1 Reactive Power Based Critical Impedance Method 

The reactive power based critical impedance method here under discussion is part of reactive 

power flow. This approach has been proposed in the literature to address the case of reactive 

power ( 0Q ). The critical impedance method is used to determine the main contributor of 

harmonic between the utility and the end-user. The process consists of an assessment of the 
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impedance required to completely absorb the reactive power produced by the equivalent 

voltage source 0uE  and further compare it to half of harmonic impedance of both sides. 

The different steps of this method are summarised as follows [28]: 

1. Evaluate utility source voltage   

As per Fig.2.2, equivalent voltage source uE can be expressed by uPCCPCCu ZIUE −=

assuming that uZ  is known  

2. Assess the reactive power Q and critical impedance )(CI . The reactive power (Q) to be 

absorbed by the equivalent voltage source defined above is expressed by sinIEQ u= where 

  is the phase angle between uZ  and I . A new index proposed in [28] and called critical 

impedance CI is expressed by
2

2
I

Q
CI = ; the main contributor of harmonic can be identified 

as follows: 

a). If 0CI , the customer side is the main contributor; 

b). If 0CI , there is no evidence that utility would be the only main contributor. To address 

this issue, the method suggests looking at the maximum and minimum values of the impedance 

as follows: 

    - if maxZCI  , the utility side is considered as the main contributor . 

     -if minZCI  , the customer side is considered as the main contributor; 

     -if Z ǀ min  CI | Z ǀ max  , no specific conclusion here can be drawn. In this case, the method 

proposes to consider the maximum and minimum values of the reactance X from uE to the 

lowest voltage point. 

|CI |> maxX , would mean that the utility is the main contributor while |CI |< maxX , would mean 

that the end-user is the main harmonic source.  

Analysis of (2.35) indicates that the utility side delivers reactive power if )0( Q , cu EE  will 

hold. Hence, the conclusion for the capacitive impedance is generally true for the 1st harmonic 

and not likely true at the harmonic frequencies. The second interesting case is RZ =  In this 

case, [28] demonstrated that the reactive power is a technical indicator of harmonic source 

identification. However, such a case rarely exists in a real electrical network. 

Theoretically, the critical impedance method is more reliable than the active power direction 

method, and to a certain extend it addresses the shortcoming of reactive power direction 
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method. However, some concerns instead raised with the critical impedance method. In 

practice, this method needs firstly to predict the information relating to the approximate 

impedance before starting the algorithm, and secondly the characteristic of system harmonic 

impedance should be the same everywhere in the power system to avoid a large error. The 

dominant source of harmonic can be identified, though the contribution of each side remains a 

challenge to determine. Furthermore, the method needs to perform practical experiments in 

order to determine the typical values of the impedance. 

2.3.3 Voltage-Current Method 

2.3.3.1 Voltage-Current Ratio Method 

The voltage-current ratio method is a new concept used to identify not only the dominant source 

of harmonics at the PCC, but also to assess the contribution of harmonic distortion between the 

utility and the customer [60], [61], [62], [63]. The key principle of this method is the 

measurement of voltage and current at the PCC as well as the equivalent harmonic impedance 

of both the utility and the customer sides. The method allows for the determination of the 

magnitude of the harmonic voltage contribution ratio and the corresponding phase angle. This 

phase angle is necessary to investigate the weakness or the force of the utility or the customer 

side.  The method is developed to identify the dominant equivalent harmonic voltage source. 

By defining the ratio of the equivalent harmonic voltages, this approach determines the 

dominant equivalent harmonic voltage source as follows:  

The ratio of the equivalent harmonic voltage for each harmonic order considered is defined by: 

                                                                        
c

u

V
V

V
K =                                                      (2.36) 

Where VK represents the complex number of the ratio of the utility and customer equivalent 

harmonic voltages. Using the magnitude and phase angle, (2.36) can be expressed as

IVVV KK −=  , with 

c

u

V
V

V
K = : The magnitude of the utility and customer equivalent harmonic voltages. 

:IV − The phase angle difference between the equivalent harmonic voltages of utility and 

customer  
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The magnitude VK  determines the dominant harmonic voltage side in one of these conditions: 

(a) If 1VK , the equivalent harmonic voltage source of the utility side is dominant, and (b) If

1VK , the equivalent harmonic voltage source of the customer side is dominant. 

Similarly, the method allows for the determination of the ratio of the equivalent harmonic 

current and identification of the dominant harmonic current side as follows: 

                                                                            
c

u

I
I

I
K =                                                   (2.37) 

Where IK represents the complex number of the ratio of the equivalent harmonic current. 

Using the magnitude and phase angle, (2.37) can be expressed as IVII KK −=  , with  

c

u

I
I

I
K =  which represents the magnitude of the utility and customer equivalent harmonic 

current. 

:IV − The phase angle difference between the equivalent harmonic current of utility and 

customer. 

The magnitude IK  determines the dominant harmonic current side in one of these conditions: 

(a) If 1IK , then the equivalent harmonic current source of the utility side is dominant, and 

(b) If 1IK , the equivalent harmonic current source of the customer side is dominant. 

The validity of the method is based on the knowledge of the harmonic impedance at both utility 

and customer sides, whereas the harmonic voltage and current at the PCC are measured. In 

other words, these impedances are assumed to be known. In addition, the evaluation of 

customer impedance and utility impedance by comparing the position of the voltage/or current 

ratio in the complex plan cannot be carried out easily and accurately when this ratio is equal to 

one. 

2.3.3.2 Harmonic Vector Method 

The harmonic vector method is used not only to locate but also to quantify the existence of 

harmonic distortion by using one-time measurement [7], [27]. The harmonic voltage phasor 

across the load and the harmonic current phasor through the source connection are modelled as 

in Figure 2.3 below, where 0hE represents the harmonic voltage phasor at utilty side and hV  is 
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the measured harmonic voltage phasor across the load at the point of connection to the load. 

hI Indicates the harmonic current phasor flowing in the opposite direction of the electrical 

installation through the source connection.  hZ , the impedance of the complex supply network 

and hcZ the impedance of complex load. hcI , represents the generated harmonic current by the 

source of distortion. 

 

           Fig. 2.3: Equivalent Network Circuit for harmonic analysis 

According to [6], [7], [8], the harmonic vector method uses the principle of harmonic voltage 

at utility side and measured harmonic voltage across the load at customer side. To be able to 

use this method, one condition is required: hV < 0hE . The magnitude of the harmonic voltage 

phasor hcE  is defined as the emitted harmonic voltage from the distorting load into the supply 

network. This is represented in Figure 2.4 below 

 

Ih

Eh0

Ehc

Vh

 

Fig. 2.4: Harmonic pollution: Phasor representation 

 

From Fig. 2.4, the harmonic voltage phasor due to this emission is defined as: 
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                                                   0hhhhhc EVIZE −==                                                      (2.38) 

It is clear (2.38) that the system impedance hZ  affects the contribution made by the non-linear 

load to the harmonic voltage distortion at the point of common coupling. Studies [34], [35] 

concluded that it is not always easier to obtain the actual value of the supply impedance in 

practical installations. Hence, the use of a reference network impedance refhZ −   to represent 

the network impedance in (2.38) is utmost required. In this condition, the emitted harmonic 

voltage is then defined as the magnitude of the harmonic voltage phasor hcE . It is showed that 

the harmonic vector method is valid only if 0hh EV   [4]. Otherwise, the harmonic emission is 

taken as zero. This is one of the limitations of this method. 

2.3.3.3 Current Injection Method 

The current injection method analysed in this section, is one of the methods among the so called 

voltage-current method in power system harmonic analysis between the utility and the end-

user [36]. The method uses the frequency-domain matrix equations for each harmonic emission 

to determine the harmonic voltage components. These components are expressed by the 

following equation: 

                                                                nnn IZV .=                                                            (2.39) 

Where nZ  and nI  are respectively impedance matrices and harmonic current components at 

harmonic order n . 

The values obtained in (2.39) are converted in time-domain by applying the superposition 

principle for each network bus m  using the following equation:  

                                                      
=

+=
N

n

m

n

m

nm tnVtV
1

1 )sin()(                                        (2.40) 

Where N , the highest harmonic order under consideration. 

The magnitude and phase angle of harmonic current source ( nI  & n ) are determined using the 

following relationships [64]: 

                                                              
1

1.
I

I
II sh

n =                                                            (2.41) 

Where ( 1I ) represents the distorting load current at the fundamental frequency and shI  is the 

standard harmonic current spectrum (to be measured, calculated or obtained from 

manufacturer’s data) of the distorting power electronics load. 
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The concern with this method is found in the case of several sources of harmonics involving 

converters. Studies showed that, in most cases, however, the phase angles of the harmonic 

current source might often be ignored, restricting the assessment method to the magnitude 

analysis only [24], [36], [37], [38]. Further analysis of this method was conducted in several 

studies on the topic [36], [40], [41] and [42]. 

2.3.3.4 Norton Equivalent Circuit Model 

In this method, a Norton equivalent circuit at each harmonic frequency represents the harmonic 

source.  

The Norton equivalent model is expressed following the equation below:   

                                                                  )(VfI =                                                            (2.42) 

Where V and I represent current and voltage harmonic vectors respectively [31], [32]. 

Equation (2.42) can be made linear at any given operating point (V, I) of harmonic order n to 

obtain the equation below: 

                                                                nnNN IVYI −=                                                    (2.43) 

Where ( NI ) is the Norton equivalent current and ( nY ) represents the Norton admittance. 

The Norton equivalent circuit model provides a direct solution for the interaction between the 

harmonic source and the network. It facilitates a better convergence in terms of its solution 

process. This modelling technique forms the backbone of a number of software-based methods 

of harmonic computation (Frequency scan, Harmonic power flow analysis, and so on). This 

model is iteratively improved by solving the network nodal equations for each harmonic 

involved, whereas the solution process should stop, as the changes in the Norton equivalent 

current sources are sufficiently small.  However, this model would be difficult to implement in 

practical installations if the source of harmonic is a converter, due to switching mechanism 

[36].  An analysis of the Norton equivalent circuit model as extended to three-phase circuits is 

discussed in the existing literature [35], [40], [43], [44], [45], [46]. 

2.4 Harmonics Measurement Techniques and Instruments 

2.4.1 Harmonics Measurement Techniques 

2.4.1.1 Measurement Techniques for Assessing Harmonic Contribution in Power System  

One of the approaches widely used is a long-duration simultaneous measurement of harmonic 

voltage and current magnitudes. According to this approach, the magnitude of harmonic 

impedance at both sides, power supply and customer load must be known and remain constant. 
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However, these conditions may be problematic in practice. Studies [31] demonstrated that the 

system impedance (Zh) might be obtained by means of simulation while the end user 

impedance (Zhc) is calculated as being equal to the impedance of the transformer of distribution 

connecting the network to the end user. As shown in Fig. 2.5 below, the dominant source of 

harmonic will depend on the clustering of measurement points around either the Zh impedance 

or the Zhc impedance. Jaeger [31] considers three scenarios: (a) the end user is the dominant 

source of harmonic if the measurement points are clustered around the Zh impedance line. (b) 

The installation is absorbing harmonic from the network, if the measurement points are 

clustered around the Zhc impedance line. (c) Combined network and installation contributions 

are considered if the points are scattered over the area delimited by the two straight lines drawn 

on a voltage vs. current plot.  These cases can be seen in Fig. 2.5 a, b and (c) below.  

Vh (V)

Ih (A)

Zhc

Zh

 

(a) Installation dominant source 

Vh (V)

Ih (A)

Zhc

Zh

 

(b) Installation absorbing network harmonics 

 



39 
 

Vh (V)

Ih (A)

Zhc

Zh

 

(c) Combined network and installation contributions 

Fig. 2.5: Long-duration simultaneous measurement of harmonic voltages       and currents   

method [50] 

Alternatively, the emission voltage phasor can be assessed by the harmonic vector method if 

the harmonic voltage phasor measurements are available [29]. Harmonic power is one of an 

interesting approach used to assess the origin of harmonic emissions. In this approach, the 

customer is not responsible for polluting the PCC if the harmonic active power is in the same 

direction as the fundamental active power (Fundamental active power is considered positive 

when flowing from the utility side into PCC).  The customer is considered responsible when 

the harmonic active power is in the opposite direction to the fundamental active power. It has 

been proved that this method is unsuitable in the harmonic source identification. The harmonic 

active power depends on the phase angle between voltage and current harmonic, which can 

lead to uncertainty in relation to the sign when this phase angle approaches 90˚ [50] [51] [52].  

Further, many studies including the work done by Li, Xu and Tayjasanant [28], demonstrated 

that in identifying the source of the harmonic, the harmonic reactive power measurement 

approach is more accurate than the harmonic active power method. Unfortunately, the method 

does not work for the quantification of harmonic contribution in the power system [28] [53] 

[54].  

2.4.1.2 Harmonic Impedance Measurement Techniques 

➢ Non-invasive methods  

Non-invasive methods are one of the two groups of methods defined by the CIGRE-CIRED 

Working Group C4, 109 for the estimation of the harmonic impedance. The methods do not 

need to disrupt the operating conditions of the network. To calculate the impedance, the only 
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requirement is the use of the event occurring naturally as a source of the disturbance. One of 

the non-invasive methods uses the significant harmonic source in the power system i.e. arc 

furnace or cycloconverter to vary the harmonic voltages and currents at the point of interest. 

This variation can be concluded by changing the operating conditions without disconnecting 

the loads from the network. The shortcoming of this approach is that the accuracy of the results 

is improved after multiple measurements of voltage and currents [31]. Studies [55], [56] 

proposed a linear regression approach or more advanced statistical methods, including the 

graphical representation and statistaical method to estimate the impedance based on the 

measurement data.  

Another approach used utilises a switching transient or a natural variation as a source of 

disturbance in the power system or a natural variation. It has been shown that currents from the 

switching operations i.e capacitor banks may be unsymmetrical depending on the switching 

duration and then may affect the accuracy of the results [35] [50].   

A further method dealing with the estimation of the harmonic impedance at the customer and 

utility sides, the “natural variations in harmonic currents and voltages over a given time 

interval”, is described in the literature [31] [55] [57]. The method is based on the sign of the 

ratio of harmonic voltage and harmonic current to determine the dominant source of the change 

in harmonic current and voltage. The network impedance is determined by changes caused by 

the customer installation while the customer installation impedance can be estimated based on 

changes caused by other sources in the network. Although these methods apparently provide 

accurate results, the approach needs a significant variation in harmonic levels, which requires 

the variations of upstream and downstream parameters. This appears to be a drawback [31]. 

➢ Invasive methods 

Invasive methods form the second group of methods defined by the CIGRE-CIRED Working 

Group C4, 109. These methods use the injection process of harmonic or interharmonic current 

into the power system. Various harmonic sources like saturated transformers, dedicated 

harmonic generators are proposed as a means to inject harmonic or interharmonic current into 

the system.   

2.4.2 Instruments 

To ensure accurate measurements in harmonic analysis method, the recorded data need to 

conform to the requirements of IEC 61000-4-30 on equipment [47]. In this regard, accurate 

voltage and current transformers, with a wide bandwidth must be used in order to measure 
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higher order harmonics.  However, in practical installations, this becomes a challenge since 

most power utilities install their own instruments following their design specifications.  

2.4.2.1 Sampling Frequency 

The minimum sampling frequency for an instrument required by the IEEE 1459-2010 should 

at least be 4900 Hz or 2500 Hz for a fundamental frequency, while harmonic measurement 

should be done up to the 49th harmonic or the 25th, if the 49th is no concern.  

2.4.2.2 Synchronisation 

The synchronisation of instruments is required when comparing data measured at different 

locations in power system. This process is fulfilled using time synchronised signal sources. In 

the literature, there exist many time-setting systems among them: The Earth-based radio signal, 

Global positioning System (GPS), and the time-setting signals via the internet used in setting 

the computers time. The well-known and most used system is the GPS [48].  The time setting 

via Internet requires computers to have a dedicated software and Internet connection. This 

system is easier and faster than the other methods. The working conditions of radio signals 

system depend on certain regions, as the Electromagnetic Interference (EMI) may often 

interfere in a high voltage power environment. However, these disadvantages render this 

method inaccurate.    

2.5 Summary 

This Chapter presented a literature review of the definitions, concepts and theories of power, 

harmonics identification methods based on power flow and on voltage-current. Different 

methods including a harmonic injection approach to calculate harmonic impedance, their 

respective advantages and drawbacks were reviewed. It showed that the current injection 

process is a time consuming method. A recent theory conducted by Safargholi et al. [60], [61] 

for calculating the harmonic contributions at the PCC, when the Thevenin equivalents are 

known, was discussed. Instruments synchronization was also discussed. The analysis of 

different methods used in harmonics identification indicated that there is still a need for a 

dedicated method in harmonic impedance measurement. Before embarking in a new dedicated 

method for harmonic impedance determination, the following chapter reviews the concepts 

related to power harmonics disturbances. 
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CHAPTER 3: POWER HARMONICS DISTURBANCES 

3.1 Overview 

For the past decades, the quality of power provided has been poor due to harmonic voltage and 

current problems. Lately, these problems have worsened due to an increase in the use of non-

linear loads in power systems. Understanding the harmonic phenomenon in power systems 

becomes crucial before embarking on any harmonic data collection. The harmonic operating 

function and definitions are discussed in section 3.2; while sources of harmonic distortion are 

presented in section 3.3. This section is divided into three main equipment groups: magnetic 

core equipment, conventional equipment and electronic and power electronic equipment. The 

effects of harmonics are discussed in section 3.4. These include effects on the following 

equipment: phase and neutral conductors, skin effect, motors and generators, transformers, 

capacitors, measuring instruments, relays and contactor protective systems and 

telecommunication. Section 3.5 presents the general harmonic indices. The total harmonic 

distortion (THD) as the most common index is defined in this section. The power quality 

standards related to harmonic distortion or recommended guidelines, used to limit the amount 

of harmonics generated by either power utility or end users, are presented in section 3.6. 

3.2 Harmonic Definitions 

 The term “Harmonics” is defined as “sinusoidal components of a periodic wave with a 

frequency, which is an integral multiple of the fundamental frequency” [69], [70]. Therefore, 

the frequency of the nth  order harmonics is 0nf  where 0f  is called fundamental frequency. In 

many cases, harmonics in power systems are used to define distorted currents and voltages of 

different amplitudes and frequencies. As stated in Chapter 1, harmonics are generated by non-

linear loads. The current drawn by this type of loads is non-linear. The non-linear current causes 

a non-linear voltage due to system impedance. The nonsinusoidal waveform voltage or current 

can be decomposed into sinusoidal waveforms of different frequencies by means of a Fourier 

Transform.  The nonsinusoidal waveform will therefore be represented by the sum of these 

individual sine waves and can be expressed by the equation below:          

                                     )cos(...)2cos()cos()( 21 tnVtVtVtv n  +++=                     (3.1) 

Where 1V  is the peak magnitude of the fundamental frequency and nVV ...2 are the peak 

magnitudes of the harmonic frequencies present in the waveform. A Square waveform and 

some of its harmonic components are presented in Fig. 3.1 below:  
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Fig. 3.1: Representation of harmonic waveforms [39] 

3.3. Sources of Harmonics 

Non-linear loads draw a non-linear current in instantaneous pulses, which is disproportionate 

to the applied voltage. These results in the imposition of new waveforms, which are multiples 

of the original signal and called harmonics. A distorted current, as shown in Fig.3.2 below, is 

the sum of superimposed harmonics. 
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Fig. 3.2: Harmonic waveforms and its harmonics orders: harmonic waveforms (left); complex 

waveform (right) [39] 

The sources of harmonic currents and voltages in power systems can be classified into three 

main groups of equipment [71], [72].  

1) Magnetic core equipment: this include transformers, electric motors, generators, etc.  

2) Conventional equipment: Arc furnaces, arc welders, high-pressure discharge lamps, 

etc.  

3) Electronic and power electronic equipment.  

Further information on these sources is provided in the following: [70], [73], [75], [76].  

3.3.1 Magnetic core equipment 

3.3.1.1 Transformers 

The transformer is one of the iron core devices and source of harmonics. Under a certain range 

of flux density, the magnetic characteristics of iron are almost linear, but quickly saturate as 

the flux density increases. The magnetic field intensity and the resulting exciting current will 

not be sinusoidal due to the non-linear relationship between the flux density and the magnetic 

field intensity. This non-linear magnetic characteristic is known as a hysteresis curve. As a 

result of the nonlinearity of a hysteresis curve, the excitation current waveform is not sinusoidal 
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and contains many harmonics. Studies of the excitation current waveform have revealed the 

existence of a significant third harmonic component, typically approaching 40% of the total 

RMS exciting current. Other non-tripplen, odd harmonics is present in the excitation current 

waveform, but to a lesser degree. Fig3.3 below shows the hysteresis curve of a transformer.  

 

Fig. 3.3: Hysteresis curve of transformer 

Traditionally transformers are operated near the knee of the saturation curve, where the 

excitation is at most 1 or 2% of the full load current. They do not cause harmonic problems 

under normal operating conditions. However, the contribution of harmonics to the system by 

transformers can be significant during sustained periods of system over voltage.  As the voltage 

applied to the transformer’s primary terminals is increased above its rating, the magnetic field 

increases to the point where the core becomes saturated. Studies have revealed that in this 

saturated state, even a small increase in voltage applied to the primary terminals of the 

transformer will result in a large increase in excitation current to produce the required magnetic 

field [73] [78], [80]. 

To eliminate the problem of third harmonic distortion in secondary voltages, industrial plants 

use delta-wye connected transformer connections to form a low impedance path for the third 

harmonic excitation current through the delta winding [78]. In this case, the third harmonic 

component will circulate in the delta winding of the transformer and cannot propagate 

throughout the rest of power system. Further information on the sources of harmonics due to 

transformers is provided in [73].    
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3.3.1.2 Motors and generators 

The contribution of motors in generating harmonics is minimal compared to the transformers 

described above. It has been shown that the motor magnetising characteristic is much more 

linear than that of the transformer. This is due to the presence of an air gap in the motor. The 

pitch of motor winding can also cause the harmonic currents. Motors with five to seven slots 

per poles can generate the fifth or seventh harmonic. The third harmonic is produced during 

motor starting and changes. This is due to the excitation current required to produce a rotating 

magnetic field in the magnetic core of the stator. 

Generators are also a source of harmonics. They generate the fifth harmonic voltages due to 

the distortions of magnetic flux occurring near the stator slots and nonsinusoidal flux 

distribution across the air gap.  The third harmonic is usually found to be dominant in generator 

voltage.   

3.3.2 Conventional equipment 

3.3.2.1 Arc Furnaces 

Arcing devices are among harmonic producers as a result of the non-linear characteristics of 

both the arcing and voltage that occur in these devices [72]. Arc furnaces operate at a lower 

power factor than in the past and are presently an important issue because of their common 

usage in power systems. Distortion of arc furnace currents and voltages has an impact in the 

increasing rated power of the compensating capacitors. This, however results in a lowering of 

the resonant frequency. Arc furnaces present the most severe problems and a relatively large 

source of harmonics especially when concentrated in one geographical location. Thus, steel or 

other kinds of scrap metal are melted and refined by means of a high-energy arc [78]. During 

the initial period when the scrap steel is being melted down, the dominant second and third 

harmonics can each have magnitudes approaching 25% of the fundamental frequency 

magnitude. After the initial period, when the scrap is being redefined, the surface of the metal 

is relatively smooth and the arc is therefore more stable. The dominant second and third 

harmonics now have magnitudes of 7-8% of the fundamental frequency magnitude [77]. It has 

been shown that due to the rectifying action and the single-phase characteristic of the arc, all 

harmonics are produced, including even and triplen harmonics [73], [77]. 

3.3.2.2 Fluorescent lighting 

The fluorescent lamp (FL) belong to the category of discharge type lightings. These devices 

have become popular due to their improved energy efficiency compared to incadescent bulbsi. 
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Unfortunately, they generate a considerable amount of harmonics in the supply system current. 

Today, compact fluorescent lamps (CFLs) are sold in the market as replacements for the so-

called tungsten filament bulbs. The key element in these lamps is a small electronic ballast, 

installed in the connector casing and controlling a folded 8 mm diameter fluorescent tube. 

These types of lamps widely used today lead to serious harmonic problems. Intrinsically 

compact fluorescent lamps are non-linear in nature as they rectify the voltage to produce direct 

current (DC) and power electronics produce high frequency harmonics due to a switching 

converter. 

Studies have shown that the harmonic characteristics of compact fluorescent lamps remain 

dependent on their circuit topology. There are four groups of CFLs, namely, excellent, good, 

average and poor CFLs. Although these devices provide similar energy savings, more harmonic 

losses are caused by the poor compact fluorescent lamp. It is essential to ensure that in the 

installation the CFLs inject the lowest level of harmonics and that the device is at a reasonable 

price. Some papers have found that though compact fluorescent lamps reduce power 

consumption in the power system, the observed increase in core loss and hysteresis effects are 

harmful to the fuses and relays in the network [111]. 

3.3.3 Electronic and Power Electronic Equipment 

This group of equipment includes Switched mode power supplies, Rectifiers, Static VAR 

compensators etc.  

3.3.3.1 Switch Mode Power Suppliers (SMPS) 

Switch mode power supplies (SMPS) generate significant harmonic voltages as they “abruptly 

chop voltage waveforms” in the period between conducting and cut off phases [111]. The 

Switch Mode Power Supplies (SMPS), together with single-phase rectifiers and direct 

controlled rectification of the supply are used in power electronics to feed the major part of 

electronic devices to obtain output voltage and current. It should be pointed out that although 

the main advantage is that the weight, size and cost are reduced, a large amount of third and 

higher order harmonics that these devices draw cannot go unnoticed. Instead of drawing a 

continuous current from the supply, these devices draw pulses of current containing harmonics.  

3.3.3.2 Three Phase Rectifier 

Three-phase bridges, also known as six-pulse bridges produce current harmonics of order

16 n (n=1,2,3, 4,..)  with decaying amplitude for increasing harmonic order in their supply 
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networks as there are six voltage pulses per cycle on the DC output. Studies conducted in [79] 

demonstrated that the magnitude of each harmonic produced should be theoretically equal to 

the reciprocal of the harmonic number, so there would be an amount of distortion around 20% 

of the 5th harmonic and 9% of the 11th harmonic.  There exists two rectifting systems for three-

phase bridges. One called rectifying topology and another called rectifying mode. The 

rectifying topology is essentially used in higher applications and consists of a front end for the 

connection of three phases. The rectifying mode is defined in terms of controlled or non-

controlled. The first mode is related to diodes as key elements and the second related to 

thyristors or transistors. Fig. 3.4 below shows the connection of three-phase thyristor 

controllers with resistive load. 

 

 

Fig. 3.4: Three phase Thyristor controllers with Resistive load 

The amplitudes of the harmonics produced by the three -phase rectifier are similar to those for 

a single- phase rectifier. However, the only difference is their phase angles. To illustrate this, 

simulations indicated that the phase angles for the fifth and seventh harmonics have opposite 

sign at 180 degrees’ phase angle difference compared to those of a single- phase rectifier [79]. 

3.3.3.3 Static VAR Compensator 

Static VAR compensators (SVCs) fall under the converter category. SVCs are used in 

transmission systems to provide a continuous control of the reactive power compensation level. 

Basic SVCs consist of static switch connected in series with an inductor. Most SVCs use a 

thyristor-controlled reactor (TCR), which is a reactor in series with two parallel inverse 

thyristors gated symmetrically. The purpose of this configuration is to allow the thyristors to 
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control the time for which the reactor conducts and thus controls the fundamental current 

component. The thyristor-controlled reactor due to its non-linear characteristics generates 

harmonic currents because thyristors only allow conduction in the reactor for a portion of the 

cycle. The thyristor firing angle plays a key function in the variation of harmonic current 

magnitudes. Harmonic current magnitudes vary as long as the firing angle of the thyristors 

vary. An increase of the firing angle of the thyristor reduces the current value and causes this 

current to discontinue [112]. The filtering of harmonics is achieved through capacitors 

connected in parallel to the Thyristors controlled reactor (TCR), as shown in Fig.3.5 below. 

This configuration, referred to as Static Var Compensator (SVC), is used to stabilise any 

continuous decrease of source voltage in a system due to an increase in load demand. SVCs 

are essential in the power system for their contribution to the balancing of the three-phase 

systems.  

 

 

Fig. 3.5: Static Var Compensator (SVC) 

3.4 Effects of Harmonics 

The effects of harmonics on the power system are numerous [70-71]. Harmonic emissions 

affect the equipment connected to the electrical network in different ways. This reduces the 

ideal operational conditions and the efficiency of the power system. Therefore, it becomes 

important to describe the different effects of harmonics in electrical networks, to understand 

the concept and mechanism of harmonic emission in power networks. The effects of harmonics 

on different equipment are discussed in this section of the thesis. 
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3.4.1 Overheating of Phase and Neutral Conductors 

Harmonics currents can affect both the phase conductors and neutral conductors leading to 

overheating problems. It is shown that in low voltage networks where harmonic emissions are 

a serious issue, the neutral conductor may be overloaded even though the neutral current does 

not exceed the nominal phase current circulating in the single-phase loads [73]. In addition, 

instead of summing to zero as it is the case in balanced fundamental currents and other 

harmonic currents, triplen harmonic currents increase arithmetically in the neutral conductors. 

Therefore, neutral currents experience more overloading problems than the phase currents. As 

a result, the neutral current is significantly higher than the currents circulating in the conductor 

phases. It is important to notice that a current flow in the neutral conductor when the star-loads 

connected in a three-phase system is not balanced because of the sum of vectors of the three-

phase currents.  

3.4.2 Skin Effect 

Skin effect is defined as the tendency for higher frequency currents to flow near the surface of 

the conductor. Harmonic currents produced by harmonic voltages at higher frequencies 

encounter much higher impedances as they flow through the installation than the fundamental 

frequency current does. The resistance of conductors therefore become nonlinear. The more 

the frequency rises, the more the current tends to flow on the outer skin of a conductor. As a 

negligible amount of the high-frequency current penetrates far beneath the surface of the 

conductor, less cross-sectional area is used by the current. In the power system with the 

presence of high-order harmonics, it is necessary to consider skin effect for any design process 

because it affects the life of cables. Significant additional heating and loss are of concern when 

the skin effect is above the frequency of 350 Hz. The ratio between the AC resistance and the 

DC resistance depends on the radius of the conductor. The latter depends on the current 

penetration thickness (𝛿). The current penetration can be defined by the expression,  2=  

where μ express the magnetic permeability (H/m), 𝜔 the frequency (rad/sec); and 𝜌 the 

resistivity (Ωm/m2) [2]. This current penetration 𝛿 depends on the frequency and decreases as 

the frequency increases. As result, in a harmonic rich environment, cable design should be done 

properly and skin effect taken into consideration. The design of multiple cable cores or 

laminated busbars is becoming an alternative solution to overcome the effect of harmonics on 

skin effect.  
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3.4.3 Motors and Generators 

Harmonics in motors and generators can cause an increase in the RMS value of current 

resulting in an increase of the loss in stator and rotor windings. The effect of harmonics in 

electric motors is a great concern as even a minimal distortion in harmonic voltage can lead to 

an increase in additional magnetic and currents in both core and rotor winding. It can also lead 

to an additional active power, an increase in temperature and a decrease in machine efficiency. 

Harmonic voltages are caused by non-linear currents drawn and run through the generators. A 

synchronous machine is not exempted from the impact of harmonics. The stator windings and 

damping cage are mainly subjected to additional losses associated with high harmonics. The 

most significant harmonics forming a negative-sequence system (5th, 11th, 17th, 23rd…) are 

present in the synchronous stator winding. Compared to sine wave current, harmonic currents 

can increase the acoustic noise emission [73], [77].  

3.4.4 Transformers 

Harmonic voltage and currents cause an increase in the hysteresis and eddy current losses 

within the transformer, which in turn increases the heat, which the transformer insulation has 

to dissipate. This additional heat can lead to overstress of the insulation. Harmonic voltages 

increase iron losses. The harmonic currents through a transformer also cause an increase of 

copper losses [73] and [80].  

Higher frequency harmonic currents in the transformer are of greater concern than in a 

conventional conductor because the “resistive skin effect” is enhanced within closely spaced 

transformer windings. This is referred to as proximity effect. 

3.4.5 Capacitors 

The effects of harmonics on capacitors in the power system depends on the harmonic voltages 

in the system [10]. In low voltage, capacitors are usually affected by harmonic overcurrents 

rather than by harmonic overvoltages. However, in high voltage, capacitors are usually more 

sensitive to harmonic voltage than to harmonic overcurrents. Harmonic overvoltages stress the 

capacitor dielectric, while harmonic overcurrents cause heat due to the equivalent series 

resistance.  [10], [80], [81]. A phenomenan like harmonic resonance, which is the combination 

of harmonics and capacitors usually leads to the shortening of the life of capacitors. Capacitors, 

even if installed in the electrical power system as power factor correction devices to filter 

harmonics (aside from the reactor), are not free from the negative effects of harmonics. In the 

presence of high harmonic distortion levels, capacitor banks are vulnerable to damage. 
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Harmonic currents, which mainly originate from non-linear loads increase, the conduction and 

dielectric losses in the capacitor plates. These losses can be expressed by the total power 

equation of the capacitor as follows [73]: 
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Equation (3.2) shows that the total power loss in the capacitor strongly depends on both the 

magnitude and harmonic frequency of the distorted voltage. Capacitors subjected to higher 

harmonic frequencies, higher voltage amplitudes will overheat, and eventually breakdown. 

Therefore, the design of capacitors becomes critical in power systems with harmonic content. 

3.4.6 Measuring Instruments 

Harmonics may affect meters and other instrumentation devices to make errors in the readings. 

This is particularly observed in induction-type devices such as ammeter, voltmeter and energy 

meters, which are still mostly used in industry. These induction-type devices rely on the torque 

produced because of the interaction between the magnetic field of the current to be measured 

and that of eddy currents induced in the metal disc or drum. 

The deflecting torque produced in induction-type metering devices requires a similarity 

between the frequency of the current to be measured and the instrument-calibrated frequency. 

In the presence of harmonic components to be measured, the device can provide errors in its 

readings. The scenario will be similar at any time if such a device is in use because of frequent 

distorted waveforms [14], [15]. Further information on instances of incorrect meter reading is 

provided in the following studies: [10], [80], [82], [83-84]. 

3.4.7 Relay and Contactor Protective Systems 

Studies conducted in [85] show that both three-phase electromechanical or static overcurrent 

(O/C) relays, mostly used for earth fault protection or other purposes, are prone to misbehaving 

when subjected to non-sinusoidal operating conditions. There are negative effects of current 

harmonics on relays. It has been shown that under harmonic distortion, O/C relays pick up 
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either at 100 %10  of the nominal RMS sinusoidal current value and produce a time delay or 

45% shorter or up to 26% longer than the nominal time delay under no harmonic conditions 

[85].  

The under-frequency relay is another type of relay, which can be affected by harmonic 

disturbances. The design of such a relay is intended to detect a severe generation deficit and 

shed load when the frequency decays below a certain set point on the system. The measurement 

of power line frequency can be done in many ways, usually by counting the number of zero 

crossing in the waveform. The under-frequency relay is sensitive in the presence of harmonic 

voltages and can thus develop additional zero crossings within one measured voltage or current 

cycle [85]. This would cause miscounting of the power line waveform (current or voltage) 

frequency and possibly the disagreement of the protective device in question. 

3.4.8 Telecommunications Interference 

Studies conducted in [86], [87], [88] have shown that communication interference is caused by 

magnetic (or electrostatic) coupling between electrical power circuits and communication 

circuits. The principle of communication interference dictates that a current flowing in the 

power circuit produces a magnetic (or electrostatic) field, which will induce a current (or 

voltage) in the nearby conductors of the communication circuit. Hence, the amount of 

interference will depend on the magnitude of the induced current (or voltage), frequency, and 

the efficiency of the magnetic (electrostatic) coupling. The main concern is that the small signal 

electronics can be saturated and malfunction [88]. Among the most prominent causes of 

interferences with communication and control circuits cited in the literature are high frequency 

currents resulting from converters and voltage fluctuations induced by electric arc furnaces or 

static power converters [89]. For example, the energising of a large rectifier can trigger severe 

noise in the circuit, which eventually leads to an interruption of telephone conversations [10], 

[80], [84]. In the recent years, telephone interference was one of the biggest problems caused 

by harmonics when using the telephone influence factor (TIF). In [9], the IEEE 519 definie the 

TIF as a measure of the “sensitivity of the telephone system and the human ear” to noise at 

various discrete frequencies.  

3.5 General Harmonic Indices 

Under normal operating conditions, voltage/current distortion in the power systems can be 

defined in either the time or the frequency domain. To describe the distortion current/voltage 

in the time domain requires finding the differences between the actual distorted waveform 
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values and the reference sine wave values. This is however difficult to accurately assess. In 

many cases, the description of distortion in the frequency domain is mostly used to determine 

the magnitude and phase angle of the signal.  

3.5.1 Total Harmonic Distortion 

The total harmonic distortion (THD) is the most common harmonic index used in power 

systems. It is defined as the ratio of RMS value of the sum of all the harmonic components up 

to a specified order to the RMS value of the fundamental component and can be expressed in 

terms of the voltage or the current [5]: 
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Where nV and nI  are respectively the single frequency RMS voltage and RMS current at the 

harmonic n ; N is the maximum harmonic order to be considered; 1V and 1I are respectively the 

fundamental RMS voltage and fundamental RMS current. It is sufficient to consider the harmonic 

range from the 2nd to the 25th for most applications if risk of resonance is less at higher orders, 

but most standards specify up to the 50th. 

3.5.2 Distortion power Factor 

The distortion power factor is one of the general harmonic indices. This index is used to 

quantify how a load efficiently utilises the current drawn from the AC power system. 

Therefore, the distortion power factor (dpf) is described as: 
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Where 1I  is the fundamental RMS current 

  RMSI , the total RMS current component is defined by: 
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The distortion power factor can be expressed in terms of the total harmonic distortion defined 

in (3.4) above. Therefore, this indice becomes 
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With respect to the total harmonic distortion, it can be assumed for this definition that the 

voltage remains non-distorted. This assumption can be considered as a good approximation in 

the distribution network where voltage sources should not be affected by any change in loads 

downstream.  

3.6 Power Quality Standards Related to Harmonic Distortion 

Standards in general were created in order to specify limits for the adverse effects of harmonic 

distortion in the power plant equipment of utilities and their customers. The most commonly 

used are IEEE 519, 1159 and IEC 61000-series.   

3.6.1 International Standards 

3.6.1.1 IEEE Standards 519 and 1159 

The current IEEE standard 519 (IEEE Std. 519-1992) originated in 1981 and was then updated 

in 1992. The purpose of these standards was to provide a recommended limit for total harmonic 

voltage and current distortion. Today, this standard is being used for harmonic and reactive 

power control in industrial and commercial facilities. Additionally, this standard includes limits 

to the various disturbances recommended to the power distribution system.  The basic themes 

of IEEE Standard 519 are designed into two-fold. Firstly, the power utility has the 

responsibility of producing good quality voltage sine waves. Secondly, end-user customers 

have the responsibility to limit the harmonic currents their circuits draw from the line. The 

limits set in these standards are based on the ratio of available short circuit current ( scI ) to the 

maximum demand load current ( LI ). Analysis in the context of IEEE standards is often 

performed at the point where a facility power system is connected to the power utility system. 

This point is referred to as the Point of Common Coupling (PCC). This point is also called the 

point of common connection. Morever, the standard allows one to evaluate the harmonics at 

any point within the installation, where linear and non-linear loads meet. This point may be the 

secondary of a supply transformer. Overall IEEE standard 519-1992 represents a consensus of 

guidelines and recommended practices by the utilities and their customers intended to minimise 
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and control the impact of harmonics generated by nonlinear loads. Table 3.1 below shows the 

standards limits for current where TDD  represent the total demand distortion. 

Table 3.1: IEEE- Standards-519-Current distortion limits (in % of LI ) [9] 

L

SC

I
I

ratio 

11  1711  h  2317  h  3523  h  h35  ITDD−  

limits 

<20 4.0 2.0 1.5 0.6 0.3 5% 

20<50 7.0 3.5 2.5 1.0 0.5 8% 

50<100 10.0 4.5 4.0 1.5 0.7 12% 

100<1000 12.0 5.5 5.0 2.0 1.0 15% 

1000Up 15.0 7.0 6.0 2.5 1.4 20% 

 

The distortion limits in Table 3.1 is for odd harmonics only. They are only permissible if the 

transformer supplying the customer from the utility side do not exceed, in harmonics, 5% of 

the transformer rated current. The standards address the case of even harmonics by limiting 

them to 25% of the odd harmonics within the same range [9]. IEEE 519-1992 also established 

a set of criteria for voltage distortion limits. The standards recommend an acceptable amount 

of harmonic voltage limits.  These limits are designed to ensure that the consumers' equipment 

will operate satisfactorily. Based on the current distortion limits provided in Table 3.1, it is 

assumed that the voltage distortion limits will not exceed those given in Table 3.2 below. It has 

been established that any consumer who “degrades the voltage” at the PCC would be required 

to correct the problem. However, the problem of distorting the PCC with the voltage is not only 

for the consumer, but also for the power utility [9]. IEEE-519 sets harmonic limits on voltage 

at 5% for total harmonic distortion and 3% for the fundamental voltage of any single harmonic. 

          Table 3.2: IEEE- STD 519-Voltage distortion limits (in % of 1V ) 

PCC 

Voltage 

Individual Harmonic Magnitude (%) 
VTHD  

kV69  3 5 

69-161kV 1.5 2.5 

kV161  1 1.5 
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The problem of voltage distortion at the PCC is a concern in power systems. The quality of 

power delivered to end-users is affected by the level of voltage distortion at the PCC. Voltage 

distortion is the result of harmonic current through the impedance of the power system. 

Therefore, voltage distortion will always be higher downstream where the harmonic currents 

are generated and where system impedance is highest.  

The IEEE has also released IEEE Standard 1159 (IEEE Std. 1159-1995), which establishes 

recommended methods for measuring and monitoring power quality standards and defines 

recommended limits for events, which can degrade power quality.  

3.6.1.2 IEC 61000-Series 

The International Electro-Technical Commission (IEC) presents standards on electromagnetic 

compatibility (EMC) in several publications covering types of electrical disturbances. With 

regards to harmonic current emissions, the IEC standards published three different studies: two 

publications deal with emissions in the LV network and one presents emission in MV and HV 

networks [98]. The standards IEC 61000-3-2 and IEC 61000-3-4 concern harmonic emission 

in LV Networks. The standards IEC 61000-3-2 considers emissions in LV network of 

equipment of which the input current is less than 16A. Therefore, the equipment manufacturer 

is requested to take steps to reduce harmonic current. Therefore, the manufacturer has an 

obligation to manufacture the equipment with emission levels within the standard limits. It is 

important to notice that the standard IEC 61000-3-2 is not concerned by the size of the system 

at the PCC as suggested by the IEEE 519. To limit the input current correctly, IEC 61000-3-2 

have classified equipment into four classes: 

Class A: this class includes balanced three-phase equipment, household equipment, tools 

(excluding portable tools), dimmers and audio equipment. Class B: this class deals with 

portable tools and arc welding equipment, which is not falling into professional equipment. 

Class C: this class is related to lighting equipment. Class D: the class includes all personal 

computers, personal computer monitors and television receivers designed for a rated input 

current, which is less than or equal to 600W. Further information on these four classes is 

detailed in [31].  

The IEC 61000-3-4 specifies for equipment with input current higher than 16A. Therefore, the 

equipment user is requested to get approval or consent from the supply authority for the 

connection of the equipment to the supply system. Before connecting the equipment to the 

supply system, the standards are based on three assessment stages. Further information on the 
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recommended emission limit for equipment with input current higher than 16A is provided in 

[98].  

IEC 61000-3-6 is related to harmonic emissions in MV and HV networks. The standard is 

designed to ensure that the allocation of all harmonic emission rights to customers is equitable 

for all connected to the same PCC [99]. In other words, every customer having the same agreed 

power ( iS ) and connected to the same point of common coupling has the right to draw equal 

distorted current from the power supply. The agreed power iS  is defined as the size of a load, 

which a particular consumer is supposed to have. The principle of equitable emissions is based 

on the global available harmonic voltage available ( hG ) for MV loads to be allocated to all 

customers connected and potential future customers [100-101]. More about the IEC 61000-3-

6 are furnished in the following literature [47], [53], [97], [100]. 

3.6.2 National Standards 

3.6.2.1 South African Power Quality Standards (NRS 048-2 & NRS 048-4) 

The quality of supply standard NRS 048 [91] is the South African standard that defines a 

framework for management of power quality. In 1996, the National Electricity Regulator-NER 

(now the National Energy Regulator of the South Africa-NERSA) introduced the first 

regulator, power quality standard (NRS 048-2 Edition 1) as a licence condition. Afterwards, 

several changes to the standard have been effected. In order to address these concerns, the NER 

developed a framework for power quality management in 2003 and included in the NER power 

quality directive of 2003 [95]. Part 2 of the NRS 048 guidelines and specifications sets 

“minimum standards” for the quality of the electricity supplied by South African utilities to 

end customers. These “minimum standards” include limits for voltage harmonics and inter-

harmonics, voltage flicker, voltage unbalance, voltage regulation, and frequency [93]. 

Voltage harmonic distortion limits 

Voltage harmonic distortion limits are described in NRS 048-2 [91]. These standards contain 

the compatibility levels for voltage harmonic distortion limits and planning that the network in 

South Africa ideally shall not exceeds. The NRS 048 has not established limits for harmonics 

voltage for HV and EHV systems, the customers supplied at those systems will have 

compatibility levels into contracts based on recommended planning levels given by IEC 61000-

3-6 planning levels [92], [96]. 
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3.7 Summary 

This chapter discusses harmonics in power systems and their associated problems, starting from 

their definition, to the harmonic-pollution sources, in which three main groups were explored: 

the magnetic core equipment, conventional equipment and electronic and power electronic 

equipment. The increased use of these non-linear loads in power systems has an enormous 

impact in harmonic distortion, which cannot be neglected in power quality.  

The effects due to the presence of harmonics distortion in power networks were also discussed. 

Starting from overheating of phase and neutral conductors to the communications interference, 

passing by motors and generators, transformers, capacitors, measuring instruments, relays and 

contactor protective systems, the study showed the negative impact of harmonics on such 

instruments in power systems. 

General harmonic indices were established to serve as the assessment techniques to the 

requirements of harmonic measuring equipment. Standards were also presented with focus on 

international and national standards. IEEE Standard 519, 1159 and IEC were dealt with as the 

main international standards dealing with harmonic emission. Within the national standards, 

South African power quality standards, namely, the NRS 048-2 and NRS 048-4 were discussed. 

It was found that any network ideally should not exceed a certain amount of harmonic voltage 

and current in the limits prescribed by the standards in order to comply with the permissible 

harmonic level in the network to minimise the impact on the system performance.  

As nonlinear loads generate harmonics, the current drawn by this type of loads are nonlinear. 

The nonlinear current drawn by the nonlinear loads flows through the installation and causes 

nonlinear voltage due to system impedance. To analyse the presence and then a contribution of 

harmonics at the PCC of both power utility and end users, Chapter 4 undertakes the 

development of a model to calculate the Thevenin equivalent circuits parameters. 
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Chapter 4: Development of a Model for Calculating Thevenin 

Equivalent Circuit Parameters 

4.1. Introduction  

 This chapter proposes a new model for the calculation of the Thevenin equivalents impedance 

and voltage source necessary to assess the contribution of harmonics current at the PCC 

between the utility and the customers. Measuring harmonics at a single point in time at the 

PCC does not determine the contribution of harmonics between the utility and the customer 

[30]. This important issue might be solved by looking at the voltage and current at the PCC at 

different times. Before establishing a calculation model, a harmonic analysis based Fourier 

analysis method is used to assess the dominant harmonic order injected at the PCC for which 

the Thevenin equivalents impedance and voltage sources will be determined. 

4.2. Evaluation of Voltage and Current Components Based on IEEE 1459-2010 using 

Fourier Analysis Method 

The IEEE 1459-2010 presents practical definitions for power. This includes measures on how 

to deal with distortion power. Study [102] presents IEEE Std. 1459-2010 as the “most useful 

and powerful tool” for calculating power distortion. Though the standards do not specify a 

calculation method for harmonics components of a waveform [103], [104], [105], [106], this 

thesis uses an approach based on the Fourier analysis method to calculate the components of a 

voltage and current waveforms measured at the PCC customers’ side. This approach 

decomposes the signal into different signals containing different frequencies. The results in the 

Fourier analysis are obtained by combining Fourier series and the Discrete Fourier Transform 

(DFT).  

A. Fourier Series 

Fourier components are used in the identification of frequencies carried in a given continuous 

and periodic distorted waveform [8]. Eq. (4.1) below define Fourier’s theorem: 

                                       
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Where 0C is DC component and is zero for AC power systems, T (sec) is the period and na , nb

are called Fourier coefficients. Fourier analysis method uses the Discrete Fourier Transform 

(DFT) to analyze the frequencies and amplitudes, which are not visible in the time domain 

waveform. 
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B. Discrete Fourier Transform (DFT) 

The DFT and Fourier series are interrelated and the Fourier coefficients found in (4.1) can be 

expressed as: 

                )},(Re{
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C. Fourier’s Theorem in terms of Sum of Sinusoidal Components  

Equation (4.1) can be expressed with only sinusoidal terms as according to [105] as: 
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The Fourier series coefficients in (4.1) can be calculated by equations depicted in (4.6) and 

(4.7) below in the time domain representation as: 
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Based on (4.1) and (4.3), the signals of voltage and current can be expressed as in (4.8), (4.9), 

and their respective phase angle as in (4.10) and (4.11). This needs to have the measured 

voltage and current samples as well as the harmonic contents from the DFT.  
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Where na and nb  are Fourier coefficients calculated based on current and voltage waveforms. 
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n  and n are phase angle of voltage and current respectively. 

The RMS values (fundamental and harmonics) of (4.8) and (4.9) are expressed in (4.12) 

below:   

                                          
2

nV

n

C
V = and

2

nI

n

C
I = , ,...1=n                                               (4.12) 

Where nV and nI , represent the RMS voltage and current respectively 

These RMS values are used to calculate the IEEE 1459-2010 power indices as developed in 

this work. 

4.3. Evaluation of the utility and the customer Thevenin Equivalent Circuit Parameters 

In recent years, the evaluation of harmonic impedance characteristics has been a challenge. 

Several studies have proposed various methods to determine the harmonic impedance in a 

power system [11], [12], [13], [28]. However, these methods suggest either the determination 

of the short-circuit network impedance and the open circuit voltage, which might not be 

feasible in practical installations particularly when switching operation is not allowed. Other 

studies proposed the direct injection of harmonics sources into the power system [15], [108], 

[109]. However, the results of these studies found that the accuracy of the measurement might 

not be achieved. The proposed sources of injection such as saturated transformers, harmonic 

generated or ripple control systems may contribute to an increase in harmonics, which might 

affect the measurement data. Several methods, which cannot result in a disruption of the 

operating conditions, are suggested in the literature. The most common sources of disturbance 

considered in these methods are naturally occurring events. These methods calculate the 

harmonic impedance by adjusting the harmonic voltage and current at the point of evaluation 

[31]. However, the disadvantage of these methods is that accurate results may only be obtained 

by carrying out multiple measurements of voltage and current at the point of evaluation.  

This thesis develops a methodology to determine the Thevenin equivalent impedance and 

source characteristics of both utility and customers at different points in time. The 

determination of the equivalent circuits can allow for an accurate assessment of the contribution 

of harmonics at the PCC. It should be noted that the respective contributions of the utility or 

the customer could not be determined by conducting the measurements at a single point in time 

at the PCC. Measuring at a single point in time at the PCC provides an accurate indication of 

the total harmonics present at the PCC combining the effect of harmonics from both the utility 
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and the customers [9] [67]. Determining the utility and customers’ sides Thevenin equivalent 

circuits pose a challenge for the measurement of harmonics contributions at the PCC. 

The method used in this thesis is illustrated as follows: when we consider the resistive Thevenin 

circuit as represented in Fig. 4.1 with voltage V  and current I , the single port network can 

contain a number of sources and resistances. According to the theory of linear circuits, voltage 

V  is considered as the equivalent Thevenin voltage ThV  if the port is open. This equivalent 

Thevenin voltage is the combination of all the voltage sources that the network represents. A 

current I  limited by an equivalent Thevenin resistance ThR  flows when the port is shorted. ThR

, represents the combination of all the resistors present in the one port network.  

VVTh

RTh I +

-
-

+

   

Fig. 4.1: Thevenin equivalent resistive circuit [67] 

When the load is connected to Fig. 4.1, the characteristics of the Thevenin equivalent resistive 

circuit can be determined along a load line as depicted in Fig. 4.2 below. 

A Thevenin equivalent is usually determined by its open circuit voltage ( OCTH VV = at )0=I  

and by the short circuit current at 0=V   
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V

I

VTh=Voc

A

B

RTh=Voc/Isc

Isc=VTh/RTh

 

         Fig. 4.2: Load line of the Thevenin equivalent resistive circuit 

Where: 

ThV : Thevenin equivalent voltage 

ocV : Voltage at open circuit 

scI : Short circuit current 

ThR : Thevenin equivalent resistive 

The line intercepting voltage and current in the Fig. 4.2 above is called a load line. 

In a practical installation, it might not be feasible to have a network open (no-load) or shorted 

to determine the Thevenin equivalent circuit of a utility or a customer network. During normal 

operation, a network measurement may vary on the load line between point time A and point 

time B as per Fig. 4.2. Therefore, if the voltages and currents at the points A and B in time are 

known, ThV can be determined by extrapolation and then ThR by determining the slope of the 

load line. This understanding is true in a network where the Thevenin equivalent impedance is 

purely resistive. Unfortunately, in a practical installation with reactance, ThV  and ThR cannot be 

determined in this way. This is because the Thevenin equivalent impedance is complex with a 

Thevenin equivalent resistive ( ThR ) and Thevenin equivalent reactive ( ThX ) parts. Fig.4.2 

indicates the Thevenin equivalent circuits of a network using a load operating at a point in time 

A and waiting for the load to change to obtain the voltages and currents at point in time B. 
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Considering that, IEEE 1459-2010 [30] cannot provide the Thevenin equivalents required to 

determine harmonic contributions at the PCC. Looking at the voltage and current at the PCC 

at different times might be the solution. For this to be achieved at least two points in time are 

needed. To obtain these two points, we need statistical data on behaviour over time, as 

described in chapter 5.  

In Fig.4.3 below, two operating points in time A and B are used to determine the Thevenin 

equivalents circuits for the utility and two customers called “ 1C ”and “ 2C ” connected to the 

same PCC with resistive and reactive (i.e. complex) impedances.  

 

Vc1Vu

Zu Zc1

VPCC

Zc2

Vc2

IC1

IC2

I

P1+jQ1

P2+jQ2

 

Fig. 4.3: Thevenin equivalent model of utility and customers. 

Where uuu jXRZ += : represent utility impedance 

111 CCC jXRZ += :  Customer 1 equivalent Thevenin impedance 

222 CCC jXRZ += : Customer 2 equivalent Thevenin impedance  

ImRe −− += uuu jVVV : Utility equivalent Thevenin voltage source 

Im1Re11 −− += CCC jVVV  : Customer 1 equivalent Thevenin voltage source 
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Im2Re22 −− += CCC jVVV  : Customer 2 equivalent Thevenin voltage source  

 ImRe −− += PCCPCCPCC jVVV : Voltage at the PCC 

 
ImRe jIII += : Current flowing at utility side. 

From Fig.4.3, the study first needs to determine the model of the Thevenin equivalent circuit 

at the customer’s side and then at the utility side with the assumption that the load changes 

between time instant A and time instant B. This model is defined by the components, 1CZ , 2CZ

, 1CV  , 2CV , uZ , and uV . 

To evaluate these components, we assume that the voltage and current harmonic at the PCC 

are complex, as stated earlier. We also assume that the real and imaginary part of respective 

voltages and current harmonics, ,Re−PCCV  Im−PCCV , ReI , and 
ImI , are known at two instants 

time A and B. We should first determine the Thevenin equivalent harmonic circuit at customer 

1 and then at the customer 2 and finally at the utility side. 

a) Customer 1 

For this customer 1, it is necessary to determine the Thevenin equivalent harmonic voltage 

and Thevenin equivalent impedance. The model needs at least two changing instants times A 

and B.  

At point in time A: 

In Fig. 4.3, the following equation can be determined 

                                         ACACACACAPCC VIjXRV −−−−− ++= 1111 )(                                    (4.13) 

Where APCCAPCCAPCC jVVV −−−−− += ImRe   

ACACAC jIII −−−−− += Im1Re11  

 ACACAC jVVV −−−−− += Im1Re11   

The subscript “A” denotes the point in time A 
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Re−PCCV  , and Im−PCCV represent PCCV real and imaginary part of the measured voltage at the 

PCC, of which the contribution of the sources, customer1 and customer 2, will be determined 

in chapter 5. 

Re1−CI , and Im1−CI represent 1CI  real and imaginary part of the customer 1 current.  

Re1−CV , and Im1−CV represent 1CV real and imaginary part of the customer 1 voltage.  

The development of (4.13) leads to the equation below: 

ACACACCACCACCACCAPCCAPCC jVVIjXIjRIXIRjVV −−−−−−−−−−−−−−−− ++++−=+ Im1Re1Re11Im11Im11Re11ImRe  

The following equations can be obtained when we separate real and imaginary parts from the 

equation above: 

                                        1Im11Re1Re1Re .. CACCACACAPCC XIRIVV −−−−−−−− −+=                     (4.14) 

                                        1Re11Im1Im1Im ... CACCACACAPCC XIRIVV −−−−−−−− ++=                     (4.15) 

Equations (4.14) and (4.15) are valid for a single point in time, here point A. In these equations, 

there are two measured quantities with their associated complex components: ,Re−PCCV  Im−PCCV

, Re1−CI , and 
Im1−CI and four quantities ( ACV −−Re1 , ACV −−Im1 , 1CR  and 1CX ) to be determined. 

Equations (4.14) and (4.15) form a system of two equations and four quantities to be 

determined. The theory of linear circuits reveals that this kind of system of equations is 

impossible to solve. To obtain a system of four equations, another instant in time i.e point in 

time B needs to be measured. Then a customer can be fully characterised by its Thevenin 

voltage and impedance. 

At point in time B,  

It is assumed that the load changes between time A and B. 

From Fig.4.3, the following equation can be obtained: 

                                                       BCBCBCBCBPCC VIjXRV −−−−− ++= 1111 )(                      (4.16) 

Where BPCCBPCCBPCC jVVV −−−−− += ImRe  

BCBCBC jIII −−−−− += Im1Re11  
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 BCBCBC jVVV −−−−− += Im1Re11  

The subscript “ B ” denotes the point in time B 

The development of (4.16) as for the time instant A leads to the two following equations: 

                                     1Im11Re1Re1Re .. CBCCBCBCBPCC XIRIVV −−−−−−−− −+=                        (4.17) 

                                      1Re11Im1Im1Im ... CBCCBCBCBPCC XIRIVV −−−−−−−− ++=                       (4.18) 

To make the process simple, we assume that voltage PCCV  at the PCC is complex and its 

components are ReV  and ImV . The harmonic current components at the PCC are ReI  and ImI .   

Depending on the side from which analysis is done, ReI  and ImI  will be identified as current 

flowing into customer 1 or customer 2. The real sign of current at customer 1 or customer 2 

will be defined after the development of a model 

With regard to the subscripts denoted for a customer 1, the quantities in (4.14), (4.15), (4.17) 

and (4.18) can be expressed as follows: 

AAPCC VV −−− = ReRe   AAPCC VV −−− = ImIm   BBPCC VV −−− = ReRe  

ReRe1 −− = ThC VV    ImIm1 −− = ThC VV    BBPCC VV −−− = ImIm  

RRC =1    AAC II −−− = ReRe1   BBC II −−− = ReRe1  

XX C =1    AAC II −−− = ImIm1   BBC II −−− = ImIm1  

From the expressions above, the Thevenin equivalent circuit parameters to determine are 

jXRZTh += and ImRe −− += ThThTh jVVV .  

From (4.14), (4.15), (4.17) and (4.18) it follows:  

At point in time A 

                                                     XIRIVV AAThA .. ImReReRe −−−− −+=                                 (4.19) 

                                                     XIRIVV AAThA .. ReImImIm −−−− ++=                                 (4.20) 

At point in time B 

                                                      XIRIVV BBThB .. ImReReRe −−−− −+=                                (4.21) 
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                                                      XIRIVV BBThB .. ReImImIm −−−− ++=                                (4.22) 

We obtain a system of four equations at two different points in time A and B with four 

variables: Re−ThV , Im−ThV , R and X to be determined. The measurements of voltages and currents 

of harmonics at the PCC after the loads have changed are known. By determining, the complex 

harmonic components of voltage and current at the PCC, the Thevenin equivalent source 

voltage and impedance for the customer can be determined. 

The four variables Re−ThV , Im−ThV , R and X  can be determined by solving (4.19) -(4.22) above. 

To solve these equations, we use Cramer’s method. 

Equations (4.19) -(4.22) above can be arranged in terms of Re−ThV , Im−ThV , R and X  as follows: 

                                   XIRIVVV AAThThA ...0.1 ImReImReRe −−−−− −++=                                 (4.23) 

                                   XIRIVVV BBThThB ...0.1 ImReImReRe −−−−− −++=                                 (4.24) 

                                    XIRIVVV AAThThA ...1.0 ReImImReIm −−−−− +++=                                (4.25) 

                                    XIRIVVV BBThThB ...1.0 ReImImReIm −−−−− +++=                                (4.26) 

The following matrix can be deducted from the system of four equations above: 
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Where A  matrix of coefficients 

            y Column matrix of unknown variables. 

            B Column matrix of known quantities. 

Any system of equations can be expressed in the form of ByA =.  

ByA =. yields as follows: 
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Since the system of these four equations is linear, the Cramer’s method can be used to find the 

unknown variables ( Re−ThV , Im−ThV , R and X  ). This leads to the following results: 
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  (4.27) 

Where A represents the determinant of the matrix A . It should be pointed out that the model 

made above is per harmonic. 

From Fig, 4.3, the sign of the quantities in different matrix above can be defined as follows: 

)Re( 1Re ACA II −− −=    )Im( 1Im ACA II −− −=  

)Re( 1Re BCB II −− −=    )Im( 1Im BCB II −− −=  

Similarly, voltage components are defined as: 

)Re(Re APCCA VV −− =    )Im(Im APCCA VV −− =  

)Re(Re BPCCB VV −− =    )Im(Im BPCCB VV −− =  






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−

−

Re

Imtan
Th

Th

V

V
a , phase angle of Thevenin voltage sources 

Once the voltage and current at the PCC are measured at two different time instances “A” and 

“B” (after loads have changed) and the complex harmonic components of the PCC voltage and 
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current have been calculated, (4.27) can determine the Thevenin equivalent circuit parameters 

of the power system. In other words, once the current components ( AI −Re , AI −Im , BI −Re , and 

BI −Im ) and voltage components ( AV −Re , AV −Im , BV −Re , and BV −Im ) are known, the Thevenin 

voltage ( Re−ThV , Im−ThV ) and Thevenin impedance ( R , X ) of customer 1 can be calculated by 

(4.27). 

b) Customer 2 

To determine the Thevenin equivalent voltage ( Re−ThV , Im−ThV ) and the Thevenin equivalent 

impedance ( R , X ) of the customer 2 side, an equivalent process to that of the customer 1 side 

in Fig. 4.3 is followed. Two time instants “A” and “B” are needed and analysis is performed at 

customer 2 side. Since customer 2 is connected to the same PCC with customer 1, (19) -(22) 

remain a valid development applicable to the determination of the Thevenin equivalent circuit 

of customer 2. 

From Fig. 4.3, the harmonic current components are defined (opposite sign to that of the PCC 

current) as: 

)Re( 2Re ACA II −− −=    )Im( 2Im ACA II −− −=  

)Re( 2Re BCB II −− −=    )Im( 2Im BCB II −− −=  

Similarly, voltage components are defined as: 

)Re(Re APCCA VV −− =    )Im(Im APCCA VV −− =  

)Re(Re BPCCB VV −− =    )Im(Im BPCCB VV −− =  






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−

Re

Imtan
Th

Th
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V
a , phase angle of Thevenin voltage sources. 

Again, as for Customer 1, once the current components ( AI −Re , AI −Im , BI −Re , and BI −Im ) and 

voltage components ( AV −Re , AV −Im , BV −Re , and BV −Im ) are determined, the Thevenin voltage (

Re−ThV , Im−ThV ) and Thevenin impedance ( R , X ) of Customer 2 can be calculated by (4.27) 

above. 

c) The utility 
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To determine the Thevenin equivalent voltage ( Re−ThV , Im−ThV ) and the Thevenin equivalent 

impedance ( R , X ) circuit for the utility, an equivalent process to that of the customer 1 and 2 

side in Fig. 4.3 is followed. At the utility side, the current from the PCC into the utility is equal 

to the sum of all customers’ currents.   

Therefore, the current components ( AI −Re , AI −Im , BI −Re , and BI −Im ) and voltage components (

AV −Re , AV −Im , BV −Re , and BV −Im ) can be expressed as follows: 

)Re()Re( 21Re ACACA III −−− +=    )Im()Im( 21Im ACACA III −−− +=  

)Re()Re( 21Re BCBCB III −−− +=    )Im()Im( 21Im BCBCB III −−− +=  

Similarly, voltage components are defined as: 

)Re(Re APCCA VV −− =    )Im(Im APCCA VV −− =  

)Re(Re BPCCB VV −− =    )Im(Im BPCCB VV −− =  



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−

−

Re

Imtan
Th

Th

V

V
a , phase angle of the Thevenin voltage sources. 

The Thevenin voltage ( Re−ThV , Im−ThV ) and Thevenin impedance ( R , X ) of the utility can be 

calculated by (4.27).  

To generalise this approach to harmonic frequencies, The Thevenin voltage ( Re−ThV , Im−ThV ) and 

Thevenin impedance ( R , X ) of the utility when customers 1 and 2 are connected to the PCC 

can be calculated at any frequency by (4.27). Therefore, the current components ( AI −Re , AI −Im ,

BI −Re , and BI −Im ) and voltage components ( AV −Re , AV −Im , BV −Re , and BV −Im ) at harmonic 

frequencies will be expressed as follows: 

)Re()Re( 21Re AnCAnCA III −−−−− +=    )Im()Im( 21Im AnCAnCA III −−−−− +=  

)Re()Re( 21Re BnCBnCB III −−−−− +=    )Im()Im( 21Im BnCBnCB III −−−−− +=  

Similarly, voltage components are defined as: 

)Re(Re AnPCCA VV −−− =    )Im(Im AnPCCA VV −−− =  

)Re(Re BnPCCB VV −−− =    )Im(Im BnPCCB VV −−− =  
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Where the subscript “ n ” indicates the harmonic order and ,...1=n  
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a , phase angle of the Thevenin voltage sources 

4.4. Contribution of Harmonics Current at the PCC 

Once the Thevenin equivalent circuits of the power systems of the utility and customers are 

determined, the contribution of harmonic currents at the PCC can be assessed by using the 

principle of superposition to Fig.4.3. This theorem states that any linear circuit with two or 

more independent sources can be separated into a number of single linear circuits based on the 

statement of the superposition theorem. In Fig. 4.3, we do have voltage independent sources. 

Therefore, we apply the voltage superposition principle. According to the theorem, in every 

single linear circuit, an independent source acts alone, and all the other independent sources 

are replaced by their internal impedance, here equals to zero. The principle applied leads to the 

Fig. 4.4 below:  

 

ZC1

ZC2 ZuVC1

IC1-PCC

PCC

VC2

IC2-PCC

ZC1

ZC2

PCC

Zu

 

Fig. 4.4: Harmonic contribution of customers for the Thevenin equivalent circuit model 

 

From Fig. 4.4 above, when customer 1 voltage source acts alone, 2CZ  and uZ  are in parallel 

and the two parallel impedances are in series with 1CZ . When customer 2 source voltage acts 

alone, 1CZ  and uZ  are in parallel. The two parallel impedances are in series with 2CZ . Using 

Kirchoff’s law, the harmonic contribution of the customers can be calculated as follows in 

(4.28a) and (4.28b): 
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                                                  (4.28b) 

For harmonic contribution of a utility, an equivalent process to that of the customers is applied. 

An independent utility voltage source acts alone in the one side while in the other side, the 

customers’ independent voltage sources are replaced by their internal impedances. This yields 

to the Fig. 4.5 below: 

 

Zc1ZC2

Iu-PCC

Zu

Vu

VPCC

 

          Fig. 4.5: Harmonic contribution of utility for the Thevenin equivalent circuit model 

 

From Fig. 4.5 above, when utility source voltage acts alone, impedances 1CZ  and 2CZ  are in 

parallel and the two parallel impedances are in series with impedance uZ  . Using Kirchoff’s 

law, the harmonic current contribution of a utility at the PCC leads to the following expression:             
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The harmonic current at the PCC can be separated into customers and utility parts as follows: 

PCCuPCCCPCCCPCC IIII −−− −+= )( 21 . This is referred to as the harmonic current contribution of 

the utility and customers’ sides. As stated earlier, the current flowing to the utility from the 

PCC is equal to the sum of the currents from the customers. The contribution of harmonic 

current at the PCC depends on the harmonic impedance, which varies over time [28].  

According to (4.28 (a), (b), (c)), the more the combined utility and customer equivalent 

harmonic impedance is larger, the less the contribution of harmonic current at the PCC  

4.5. Summary 

This chapter introduced a linear model at each harmonic for calculating the Thevenin 

equivalent impedance and voltage source. This model can be used to assess the contribution of 

harmonics current at the PCC between the utility and the customers. As IEEE 1459-2010 deals 

with one measurement slice in time, it cannot provide the Thevenin equivalents necessary to 

determine harmonic contribution at the PCC. As a result, this chapter focussed on the voltage 

and current at the PCC at different times A and B. Before establishing the model, this chapter 

demonstrated that determining ThV by extrapolation and then ThR by the slope of the load line 

is only valid in a network where the Thevenin equivalent impedance is purely resistive. 

Unfortunately, this cannot be used in practical installation with reactance, as the Thevenin 

equivalent impedance of such installation is complex with Thevenin equivalent resistive ( ThR

) and Thevenin equivalent reactive ( ThX ) parts. This chapter further provides the theory of 

determining the complex Thevenin equivalents of the utility and customers from measured 

values. It also shows that once the Thevenin equivalents are known, the individual harmonic 

contributions at the PCC can be calculated. 
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Chapter 5: Case study  

5.1. Introduction  

A case study was conducted at a Metropolitan municipality power utility in Johannesburg to 

investigate the effectiveness of the developed linear model. It determines the Thevenin 

equivalent circuit parameters necessary to assess the contribution of harmonic currents at the 

PCC between the utility and the customers in a distribution electrical network. A numerical 

analysis of current and voltage harmonics waveforms components was performed in order to 

complement the practical assessment. This chapter deals with the assessment of the 

contribution of harmonic current at the PCC between the utility and two customers and the 

identification of the main contributor of harmonic currents. The study uses the Thevenin 

equivalent circuits of both the utility and customers connected to the PCC per harmonic 

identified.   

5.2. Power System Analysis and Measurement Set up 

5.2.1. Power System Analysis  

To assess the contribution of harmonics in a practical electrical network, measurements were 

carried out in a substation of a power utility in South Africa where one 132/11kV incomer 

supplies two customers through two single feeders, as shown in Fig. 5.1 below: 
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Fig. 5.1: Practical Network for Power Harmonic Assessment 

5.2.2. Measurement and Instruments 

During the practical experiments, power quality instruments were used to measure the voltage 

and current at the PCC and at two customers’ sides. All the multipoint measurements carried 

out were synchronised in order to ensure the reliability and accuracy of the data collected. This 

process was done to ensure that the practical experiment is carried out in the same conditions 

to facilitate the comparison of the results from the power utility and customers connected to 

the same PCC.  

5.2.2.1. Instrument Specifications 

To assess, three groups of power quality meters were installed for measurement. One group 

was placed in the substation 132kV/11kV and the other two groups were positioned at each 

line connecting the two local customers. Each group of power quality meters used was designed 

to measure three-phase voltage and current waveforms sampled over 10 to 12 cycles of the 50 

Hz electrical distribution system before averaging. Utility rules and regulations did not allow 

us to install private current transformers (CTs). Voltage and current waveforms were measured 

by the power quality meter G4430 installed by the power utility. The power quality PQSCADA 

software collected the data. The compression on board was done using the power quality 

PQElspec patented PQZip technology for data analysis.  

The Elspec G4400 Power Quality instruments used for the measurements were power quality 

recorder compliant to the requirements of IEC 61000-4-30 [47] and with the South African 

standards NRS048-2 [91]. 
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 The ELspec G4400 power Quality data center used in this work is an accurate electronic power 

meter designed to sample voltage and current waveforms, calculate relevant power quality 

parameters, and compress and store the waveforms using the technology called Elspec patented 

PQZip for collection by PQSCADA software.  

Data from every phase, including current and voltage are saved by the power quality meter at 

a resolution of up to 1024 samples per cycle.  

The Power Quality Data Center is designed with an integral web server. All the equipment in 

the extensive system forms a package. This includes the power meter for collecting the data, 

PQSCADA software for collecting and storing the data from the instruments on a system wide 

server network and the investigator software for analysing the gathered data. Fig.5.2 below 

represents one of the power quality instruments used in this work. 

 

Fig. 5.2: ELspec G4100 LCD Remote Display (left) and Power Meter G4430 (right) 

The system topology is presented as follows: The G4430 Power Quality instrument is 

connected to the electrical system via current and voltage transformers. These instruments are 

designed with one purpose; to constanltly record the voltage and current waveforms. The data 

collected are compressed on board using the Elspec patented PQZip. The PQZip files are 

transferred to a PNode designed to run on a server managed by the Site Manager. The G4400 

series instrument hosts an on-board website and the power meter G4430 used in this work is 

designed to access to data from any web browser. The configuration of the G4400 series 

instrument can be fulfilled via the Website or via the G4100 Remote Display Unit shown in 

Fig.5.2 above.  
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The Elspec G4400 series power meters available in the market are in three models. These 

models are designed to offer “cost efficient application” across an electrical distribution 

system. The selection of power meter Elspec G4430 for this thesis is based on the performance 

of this meter as indicated in Table 5.1 below: 

 Table 5.1: Comparison of three power meters’ models specifications  

Real Time Measurements Elspec 

G4410 

Elspec 

G4420 

Elspec 

G4430 

Voltage/Current: per phase, average, unbalance + + + 

Power: real, reactive, apparent, power factor, frequency + + + 

Energy: bi-directional, import, export, net, total + + + 

Demand: window, sliding window + + + 

Sampling rate: samples/cycle Current 256 512 1024 

Harmonic calculations unit 127th 255th 511th 

Measurement according to IEC 61000-4-30 + + + 

Cycle by cycle RMS, frequency and harmonics - + + 

Measurement during overloading X2 X10 X10 

5.2.2.2 Instrument Synchronisation 

This thesis used the time-setting signals. This method is mostly used over the internet to set the 

time on computers. The process is fast and easy to implement.  The time synchronisation of 

instrument indicates the quality of the simple network time protocol (SNTP) connection. The 

connection supplies the instrument with world time either from a reference clock server, or 

from an Elspec power quality G4400 device serving as the reference clock. The display of the 

time synchronisation, as shown in Figure 5.3 below, is necessary for the PQZip coherent file 

generation.  
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Fig. 5.3: Web based remote display unit 

A group of three power quality meters were installed for measurement, and synchronised by 

time-setting signals.  

5.3. Measured Waveforms  

To optimise the PQ analysis, IEC 61000-4-30 is used to define measurements. The plots shown 

in Fig. 5.4, 5.5 and 5.6 represent the measured waveforms of current collected by the power 

quality PQSCADA software. 
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Fig. 5.4: Example of currents flowing in the incomer supplying power to substation bus 

 

Fig. 5.5: Example of currents drawn by customer 1 
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Fig. 5.6: Example of currents drawn by customer 2 

5.4. Harmonic current and voltage amplitudes and power components  

The magnitude of voltage and current and phase angle of harmonic order (5th, 7th, and 11th), 

both at the utility side and customer side are assessed by computing (4.6) and (4.7). Fourier 

coefficients, RMS voltages and currents, phase angle difference as well as IEEE Std 1459-

2010, based voltages and current components are calculated using (4.10) -(4.12) and (2.28) -

(2.30). Results in the three locations are presented in the appendices 1, 2 and 3. The following 

Tables 5.2, 5.3, 5.4 and 5.5 summarise the results for a single phase L1. 

For the phase L1, Fourier analysis method provides Table 5.2 below: 

    Table 5.2: Fourier coefficients phase L1: Voltage- incomer/substation  

index 
na   nb  nc  n  

1 108011.960 14855.358 109028.7355 82.1689902 

5 -263.009 -980.693 1015.34846 15.0127057 

7 -115.349 -133.858 176.7013185 40.75235032 

11 -213.510 -90.292 231.8170946 67.07681199 

 

Where na  and nb  represent the Fourier coefficients; 
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nc and n  represent respectively the amplitude of the Fourier coefficients and phase angle. 

The RMS amplitude for the phase L1 is calculated using (4.12) and results are as follows: 

958.770941 =V V 

959.7175 =V V 

946.1247 =V V 

919.16311 =V V 

For the phase L1, Fourier analysis provides Table 5.3 below for current incomer supplying 

power to substation bus:  

Table 5.3: Fourier coefficients phase L1: Current- incomer supplying power to substation bus 

index 
na   nb  nc  n  

1 287.655 155.884 327.1776589 61.54615785 

3 -2.965 -2.431 3.834186485 50.65171395 

7 -1.686 -2.326 2.872781231 35.93646036 

11 -10.298 9.496 14.0079556 -47.32020282 

 

The RMS amplitude current for the phase L1 is calculated following (4.12) and results are as 

follows: 

349.2311 =I A 

711.25 =I A 

031.27 =I A 

905.911 =I A 

At customer 1 side, Fourier analysis for the phase L1, is as the table 5.4 below: 
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Table 5.4: Fourier coefficients phase L1: Current-customer 1 

index 
na   nb  nc  n  

1 -0.751 85.889 85.89228325 -0.500972579 

5 -7.352 -1.509 7.505263819 78.40111324 

7 3.839 -0.507 3.872333922 -82.4767331 

11 1.946 -0.133 1.950539669 -86.09018153 

 

The RMS amplitude current for the phase L1 is calculated following (4.12) and results are as 

follows: 

735.601 =I A 

307.55 =I A 

738.27 =I A 

379.111 =I A 

At customer 2 side, Fourier analysis provides for the phase L1 the table 5.5 below: 

Table 5.5: Fourier coefficients phase L1: Current-customer 2 

index 
na   nb  nc  n  

1 48.248 52.890 71.59065305 42.37210067 

5 0.104 0.054 0.117183617 62.56027205 

7 0.553 0.422 0.69562418 52.65237403 

11 0.356 -0.658 0.748131005 -28.41486997 

 

The RMS amplitude current for the phase L1 is calculated following (4.12) and results are as 

follows: 

622.501 =I A 

082.05 =I A 

492.07 =I A 
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529.011 =I A 

5.5. Dominant harmonic voltages and currents 

The dominant harmonics were analysed using the frequency spectrums of the voltages and 

currents measured at the PCC as depicted in the Fig. 5.7 and 5.8 below together with the 

calculated values. These dominant harmonics have the larger magnitudes that the transducers 

were able to measure.  

 

             Fig. 5.7: Spectrum of harmonics voltage order at the PCC 
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Fig. 5.8: Spectrum of current harmonics order/substation-incomer 

 

An analysis of the frequency spectrum of the voltages and currents of Fig.5.7 and 5.8 above 

indicates that the 5th, 7th and 11th harmonic order are dominant. The 5th, 7th and 11th current 

harmonics drawn by the loads flow through impedances in the system and voltage harmonics 

are seen across the impedances at the PCC. It should be pointed out that other harmonic 

frequencies have also been found, but not analysed due to their insignificant values.     

Therefore, only the dominant characteristic harmonics (5th, 7th and 11th harmonics) are 

evaluated. The magnitudes of dominant harmonics are calculated using (4.6), (4.7) and (4.12). 

Eq. (4.10) and (4.11) calculate the phase angle of voltage and current respectively. In the tables 

5.6, 5.7, 5.8 and 5.9 below, )(ha , )(hb  and )(hc are respective voltage phase angles of line 

a, b and c where h is the harmonic order.  )(ha , )(hb  and )(hc  are respective current 

phase angle of line a, b and c. )(hVa , )(hVb and )(hVc are the voltage magnitude of respectively 

line a, b and c. )(hI a , )(hIb  and )(hI c  are current magnitudes respectively of line a, b and c. 

h indicates harmonic order. All the results regarding the dominant harmonic components 

obtained are summarised in the tables 5.6, 5.7, 5.8 and 5.9 below: 
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Table 5.6: Dominant harmonic voltage magnitudes and phase angle at the PCC 

h  )(hVa  )(ha  )(hVb  )(hb  )(hVc  )(hc  

1 77094.95 82.169 77490.479 -37.944 77215.339 21.926 

5 717.96 15.013 133.830 -68.267 617.924 12.785 

7 124.94 40.752 673.035 -72.908 500.394 -50.660 

11 163.91 67.077 445.283 -81.559 248.054 -76.825 

 

Table 5.7: Dominant harmonic current magnitudes and phase angles at utility side 

h  )(hI a  )(ha  )(hIb  )(hb  )(hI c  )(hc  

1 231.350 61.546 244.026 -59.314 233.557 -1.828 

5 6.262 -70.213 2.706 -50.068 4.829 35.163 

7 2.031 35.936 2.061 35.419 1.653 34.982 

11 9.905 -47.320 1.715 -73.516 1.717 -65.788 

 

Table 5.8: Dominant harmonic current magnitudes and phase angles towards customer 1 

h  )(hI a  )(ha  )(hIb  )(hb  )(hI c  )(hc  

1 60.735 -0.501 53.011 62.680 59.999 -52.813 

5 5.307 78.401 5.653 33.247 6.287 -28.892 

7 2.738 -82.477 1.373 65.124 0.824 35.601 

11 1.380 -86.090 0.587 77.404 0.712 86.757 

 

Table 5.9: Dominant harmonic current magnitudes and phase angles towards customer 2 

h  )(hI a  )(ha  )(hIb  )(hb  )(hI c  )(hc  

1 50.622 42.372 49.102 -76.818 50.510 -16.000 

5 0.083 62.560 0.700 -57.854 1.050 -28.309 

7 0.492 52.652 0.243 21.121 0.635 -44.729 

11 0.529 -28.415 0.490 -4.062 0.485 10.081 
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5.6. Evaluation of Currents and Voltages Complex Components  

This section evaluates the currents and voltages complex components needed to calculate the 

Thevenin equivalents impedance and source voltages described in paragraph 4.2. 

Measurements were carried out at both the utility and the two customers’ sides. Appendix 3 

shows the customer 1 results for 5th, 7th and 11th harmonic over time. Measurements for both 

utility and two customers (5th, 7th and 11th) are saved in the Microsoft excel files. To calculate 

the variables ( AI −Re  , AI −Im , BI −Re  BI −Im , AV −Re , AV −Im , BV −Re , BV −Im ), we need first to 

determine the values of the following quantities in time instant A and time instant B:   

)Re( 1 ACI −    )Im( 1 ACI −           

)Re( 1 BCI −    )Im( 1 BCI −  

For this exercise, we need to calculate phase angle and since currents, active power and reactive 

power values are measured, the above quantities can be calculated. 

The two points in time instance A and B used are selected based on 10 minutes’ data aggregate 

interval on voltage.  This requirement applies to power quality instruments complying with 

IEC 61000-4-30 [47] as used in this work. The data aggregation interval is defined as “the time 

period over which the sampled data is combined to produce an average” [19] [47].  The range 

of aggregation intervals commonly used includes 3 seconds, 10 seconds, 10 minutes, 15 

minutes, 1 hour and 2 hours.  The non-appropriate selection of data aggregation interval can 

lead either to the loss of important detail due to the process of averaging of the RMS if this 

interval is too long or too large amounts of data, which is in reality difficult to assess if this 

interval is too short. The measurements were recorded at fundamental frequency and harmonic 

frequencies (5th, 7th and 11th) for every 10 minutes’ aggregate interval. The results of this 

evaluation are developed below for customer 1, customer 2 and utility for single phase: 

a) Customer 1: 

Fundamental frequency:  

At time instance A 

The measured RMS active power, reactive power and current at time instance A recorded at 

07:30:42.016 are as follows: 

6.376626=P W 
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7.149268−=Q VAR 

063.63=I A 

The phase angle between reactive power and active power, )(tan 1

P

Q−=  

Thus −= 62.21  

To determine a real part of a complex current of customer 1 ( )Re( 1 ACI − ), we use RMS current 

as follows: 

cos)Re( 1 II AC =−  

63.58)Re( 1 =−ACI A 

Similarly, for the imaginary part of the complex current of customer 1 )Im( 1 ACI − , we use RMS 

current as follows: 

sin)Im( 1 II AC =−  

24.23)Im( 1 −=−ACI A 

At time instance B 

The measured RMS values of active power, reactive power and current at time instance B 

recorded at 07:40:39.859 for the fundamental are as follows: 

6.385001=P W 

146379−=Q VAR 

73.63=I A 

The phase angle between reactive power and active power, )(tan 1

P

Q−=  

Thus −= 82.20  

To determine a current complex current of customer 1 )Re( 1 BCI − , we use RMS current as 

follows: 

cos)Re( 1 II BC =−  
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57.59)Re( 1 =−BCI A 

Similarly, for imaginary part of a complex current of Customer 1, )Im( 1 BCI − , we use RMS 

current as follows: 

sin)Im( 1 II BC =−  

65.22)Im( 1 −=−BCI A 

The current complex components of customer 1 (Fig. 4.3) are calculated as: 

)Re( 1Re ACA II −− −= = -58.63A   )Im( 1Im ACA II −− −= = 23.24A 

)Re( 1Re BCB II −− −= = -59.57A    )Im( 1Im BCB II −− −= = 22.65A 

The process used for current is applied to the measured voltage at the PCC to obtain the 

following results in time instances A and B: 

)Re(Re APCCA VV −− = = 6114.18V  )Im(Im APCCA VV −− = = 1933.66V 

)Re(Re BPCCB VV −− = = 6124.46V  )Im(Im BPCCB VV −− = = 2027.49V 

As stated earlier, due to a high amount of data, the measurement carried out at different 

locations of evaluation are computed and saved in the Microsoft excel files. The following 

results are obtained following the same process as for the fundamental frequency  

5th Harmonic 

The current complex components of customer 1 (Fig. 4.3) at fifth harmonic are calculated as: 

)Re( 1Re ACA II −− −= = -0.09A              )Im( 1Im ACA II −− −= = -7.29A 

)Re( 1Re BCB II −− −= = -0.80A               )Im( 1Im BCB II −− −= = -7.27A 

Similarly, voltage complex components are defined as: 

)Re(Re APCCA VV −− = =45.85V   )Im(Im APCCA VV −− = =57.56V 

)Re(Re BPCCB VV −− = = 64.06V   )Im(Im BPCCB VV −− = = 34.20V 

7th Harmonic 
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The current complex components of customer 1 (Fig. 4.3) at seventh harmonic are calculated 

as: 

)Re( 1Re ACA II −− −= = -1.00A   )Im( 1Im ACA II −− −= = 1.51A 

)Re( 1Re BCB II −− −= = -1.45A   )Im( 1Im BCB II −− −= = 1.25A 

Similarly, voltage complex components are defined as: 

)Re(Re APCCA VV −− = = 39.36V   )Im(Im APCCA VV −− = =4.65V 

)Re(Re BPCCB VV −− = = 37.21V   )Im(Im BPCCB VV −− = = -9.30V 

11th Harmonic 

The current complex components of customer 1 (Fig. 4.3) at 11th harmonic are calculated as: 

)Re( 1Re ACA II −− −= = -1.29A             )Im( 1Im ACA II −− −= = -1.96A 

)Re( 1Re BCB II −− −= = -1.70A   )Im( 1Im BCB II −− −= = -1.50A 

Similarly, voltage components are calculated as: 

)Re(Re APCCA VV −− = = 0   )Im(Im APCCA VV −− = = 1.62V 

)Re(Re BPCCB VV −− = =0   )Im(Im BPCCB VV −− = =0 

b) Customer 2 

Fundamental Frequency 

The measured RMS active power, reactive power and current at time instance A recorded at 

07:30:42.016 for the fundamental are as follows: 

4.445697=P W 

387364=Q VAR 

4634.54=I A 

Whereas, the recorded data at 07:40:39.859 at time instance B are: 

6.443041=P W 
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9.400518=Q VAR 

93914.54=I A 

Similarly, to customer 1, an equivalent process is applied here to find the current components 

of customer 2. 

The current complex components of customer 2 (Fig. 4.3) at fundamental frequency is 

calculated as: 

)Re( 1Re ACA II −− −= = -41.11A   )Im( 1Im ACA II −− −= = -26.97A 

)Re( 1Re BCB II −− −= = -40.75A   )Im( 1Im BCB II −− −= = -36.84A  

Similarly, voltage complex components are calculated as: 

)Re(Re APCCA VV −− = = 6114.18V   )Im(Im APCCA VV −− = = 1933.66V 

)Re(Re BPCCB VV −− = = 6124.46V   )Im(Im BPCCB VV −− = = 2027.49V 

5th Harmonic 

The current complex components of customer 2 at fifth harmonic are calculated as: 

)Re( 1Re ACA II −− −= = 0   )Im( 1Im ACA II −− −= = 0 

)Re( 1Re BCB II −− −= = -0.06A   )Im( 1Im BCB II −− −= = -0.10A 

Similarly, to customer 1 an equivalent process is applied to fifth harmonic to determine the 

voltage complex components as follows: 

)Re(Re APCCA VV −− = = 45.85V   )Im(Im APCCA VV −− = = 57.56V 

)Re(Re BPCCB VV −− = = 64.06V   )Im(Im BPCCB VV −− = = 34.20V 

7th Harmonic 

The current complex components of customer 2 at seventh harmonic is calculated as: 

)Re( 1Re ACA II −− −= = -0.50A   )Im( 1Im ACA II −− −= = 0.82A 

)Re( 1Re BCB II −− −= = -0.48A   )Im( 1Im BCB II −− −= = 0.79A 
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Similarly, to customer 1 an equivalent process is applied to seventh harmonic to determine 

the voltage complex components as follows: 

)Re(Re APCCA VV −− = = 39.36V   )Im(Im APCCA VV −− = = 4.65V 

)Re(Re BPCCB VV −− = = 37.21V   )Im(Im BPCCB VV −− = = -9.30V 

11th Harmonic 

The current complex components of customer 2 at 11th harmonic are calculated as: 

)Re( 1Re ACA II −− −= = -0.02A   )Im( 1Im ACA II −− −= = 0.19A 

)Re( 1Re BCB II −− −= = 0   )Im( 1Im BCB II −− −= =0 

Similarly, to customer 1 an equivalent process is applied to11th harmonic to determine the 

voltage complex components as follows: 

)Re(Re APCCA VV −− = =0   )Im(Im APCCA VV −− = = 1.62V 

)Re(Re BPCCB VV −− = =0   )Im(Im BPCCB VV −− = = 0 

c) Utility 

The process of determining the Thevenin equivalent circuit parameters of utility has been 

explained in detail in chapter 4. This section calculates the values of the Thevenin equivalent 

impedances and sources voltage for the fundamental frequency and harmonic order (5th, 7th, 

11th) 

Fundamental Frequency  

Taking into account the measurements of active power, reactive power and current at time 

instances A and B performed, the current complex components at utility side (Fig. 4.3) for 

fundamental frequency is calculated as: 

=− )Re( APCCV 6114.18V 

=− )Im( APCCV 1933.66V 

=− )Re( BPCCV 6124.46V 
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=− )Im( BPCCV 2027.49V 

At the utility side, the current from the PCC to the utility is equal to the sum of customers’ 

currents.   

Therefore, the current components ( AI −Re , AI −Im , BI −Re , and BI −Im ) and voltage components 

( AV −Re , AV −Im , BV −Re , and BV −Im ) can be expressed as follows: 

)Re()Re( 21Re ACACA III −−− += = 99.74A  )Im()Im( 21Im ACACA III −−− += = 3.73A 

)Re()Re( 21Re BCBCB III −−− += = 100.32A  )Im()Im( 21Im BCBCB III −−− += = 14.19A 

Similarly, voltage complex components are calculated as: 

)Re(Re APCCA VV −− = = 6114.18V   )Im(Im APCCA VV −− = = 1933.66V 

)Re(Re BPCCB VV −− = = 6124.46V   )Im(Im BPCCB VV −− = = 2027.49V 

5th Harmonic 

The current components at the utility for fifth harmonic are given by: 

=− )Re( APCCV 45.85V 

=− )Im( APCCV 57.56V 

=− )Re( BPCCV 64.06V 

=− )Im( BPCCV 34.20V 

Similarly, as for the fundamental frequency, the current from the PCC to the utility is equal to 

the sum of customers’ currents.   

Therefore, the current components ( AI −Re , AI −Im , BI −Re , and BI −Im ) and voltage components 

( AV −Re , AV −Im , BV −Re , and BV −Im ) can be expressed as follows: 

)Re()Re( 21Re ACACA III −−− += = 0.09A  )Im()Im( 21Im ACACA III −−− += = 7.29A 

)Re()Re( 21Re BCBCB III −−− += = 0.86A  )Im()Im( 21Im BCBCB III −−− += =7.37A 
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Similarly, to the fundamental frequency an equivalent process is applied to fifth harmonic to 

determine the voltage complex components as follows: 

)Re(Re APCCA VV −− = = 45.85V   )Im(Im APCCA VV −− = = 57.56V 

)Re(Re BPCCB VV −− = = 64.06V   )Im(Im BPCCB VV −− = = 34.20V 

7th Harmonic 

The current complex components at the utility for seventh harmonic are given by: 

=− )Re( APCCV 39.36V 

=− )Im( APCCV 4.65V 

=− )Re( BPCCV 37.21V 

=− )Im( BPCCV -9.30V 

Similarly, the current from the PCC into utility is equal to the sum of customers’ currents.   

Therefore, the current components ( AI −Re , AI −Im , BI −Re , and BI −Im ) and voltage components 

( AV −Re , AV −Im , BV −Re , and BV −Im ) can be expressed as follows: 

)Re()Re( 21Re ACACA III −−− += = 1.50A  )Im()Im( 21Im ACACA III −−− += = -2.33A 

)Re()Re( 21Re BCBCB III −−− += = 1.93A  )Im()Im( 21Im BCBCB III −−− += = -2.04A 

Similarly, to the fifth harmonic an equivalent process is applied to the seventh harmonic to 

determine the voltage complex components as follows: 

 )Re(Re APCCA VV −− = = 39.36V   )Im(Im APCCA VV −− = = 4.65V 

)Re(Re BPCCB VV −− = = 37.21V   )Im(Im BPCCB VV −− = = -9.30V 

11th Harmonic 

The current complex components at the utility side for 11th harmonic are given by: 

=− )Re( APCCV 0 
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=− )Im( APCCV 1.62V 

=− )Re( BPCCV 0 

=− )Im( BPCCV 0 

Similarly, the current from the PCC to the utility is equal to the sum of customers’ currents.   

Therefore, the current components ( AI −Re , AI −Im , BI −Re , and BI −Im ) and voltage components 

( AV −Re , AV −Im , BV −Re , and BV −Im ) can be expressed as follows: 

)Re()Re( 21Re ACACA III −−− += = 1.31A  )Im()Im( 21Im ACACA III −−− += =1.77A 

)Re()Re( 21Re BCBCB III −−− += = 1.70A  )Im()Im( 21Im BCBCB III −−− += =1.50A 

Similarly, to seventh harmonic an equivalent process is applied to 11th harmonic to determine 

the voltage complex components as follows: 

)Re(Re APCCA VV −− = = 0   )Im(Im APCCA VV −− = = 1.62V 

)Re(Re BPCCB VV −− = = 0   )Im(Im BPCCB VV −− = = 0 

5.7. Evaluation of Thevenin Equivalents Parameters  

The Thevenin equivalent impedances and source voltages are evaluated on the basis of the 

variables ( AI −Re  , AI −Im , BI −Re  BI −Im , AV −Re , AV −Im , BV −Re , BV −Im ) developed in the paragraph 

4.2 using (4.27). This section determines the values of the Thevenin equivalent circuits of the 

customers and utility    

a) Customer 1 

Fundamental frequency 

The values of current complex components ( AI −Re , AI −Im , BI −Re and BI −Im ) of customer 1 at 

fundamental frequency and voltage complex components at the PCC ( AV −Re , AV −Im , BV −Re and 

BV −Im ) in two times instances A and B are evaluated in the section 5.6 above. Using (4.27), the 

Thevenin equivalent circuit parameters can be expressed as follows: 
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A
VTh





















−

−

−−

−−

=−

57.5965.22149.2027

63.5824.23166.1933

65.2257.59046.6124

24.2363.58018.6114

Re  
A

VTh





















−

−

−−

−−

=−

57.5965.2249.20270

63.5824.2366.19330

65.2257.5946.61241

24.2363.5818.61141

Im  

A
R





















−

−

−

−

=
57.5949.202710

63.5866.193310

65.2246.612401

24.2318.611401

          
A

X





















−

−

=
49.202765.2210

66.193324.2310

46.612457.5901

18.611463.5801

   

Where:  

R , represents the Thevenin equivalent resistance at fundamental frequency. 

X The Thevenin equivalent reactance at fundamental frequency. 

A , represents the determinant of the matrix A  at fundamental frequency below: 





















−

−

−−

−−

=

57.5965.2210

63.5824.2310

65.2257.5901

24.2363.5801

A  

23.1−=A  

5th Harmonic 

The Thevenin equivalent circuit parameters at 5th harmonic follow an equivalent process to 

that applied for the fundamental frequency with the values related to 5th harmonic calculated 

in the section 5.6 above as follows: 

A
VTh





















−−

−−

−

−

=−

80.027.7120.34

09.029.7156.57

27.780.0006.64

29.709.0085.45

Re   
A

VTh





















−−

−−

−

−

=−

80.027.720.340

09.029.756.570

27.780.006.641

29.709.085.451

Im  
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A
R





















−

−

=
80.020.3410

09.056.5710

27.706.6401

29.785.4501

          
A

X





















−

−

−

−

=
20.3427.710

56.5729.710

06.6480.001

85.4509.001

   

Where A represents the determinant of the matrix A  at the fifth harmonic. 

The matrix A at fifth harmonic is given by: 





















−−

−−

−

−

=

80.027.710

09.029.710

27.780.001

29.709.001

A  

50.0−=A  

7th Harmonic 

Similarly, to fifth harmonic, an equivalent process is applied to seventh harmonic. The 

Thevenin equivalent circuit parameters can be expressed using (4.27) as follows: 

A
VTh





















−−

−

−−

−−

=−

45.125.1130.9

00.151.1165.4

25.145.1021.37

51.100.1036.39

Re   
A

VTh





















−−

−

−−

−−

=−

45.125.130.90

00.151.165.40

25.145.121.371

51.100.136.391

Im  

A
R





















−−

−

−

−

=
45.130.910

00.165.410

25.121.3701

51.136.3901

         
A

X





















−

−

−

=
30.925.110

65.451.110

21.3745.101

36.3900.101

   

Where A represents the determinant of the matrix A  at the seventh harmonic. 

The matrix A at seventh harmonic is given by: 
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



















−

−

−−

−−

=

45.125.110

00.151.110

25.145.101

51.100.101

A  

19.0−=A  

11th Harmonic 

The Thevenin equivalent circuit parameters at 11th harmonic can be expressed using (4.27). 

The values related to 11th harmonic are calculated in the section 5.6 above. 

A
VTh





















−−

−−

−

−

=−

70.150.110

29.196.1162.1

50.170.100

96.129.100

Re   
A

VTh





















−−

−−

−

−

=−

70.150.100

29.196.162.10

50.170.101

96.129.101

Im  

A
R





















−

−

=
70.1010

29.162.110

50.1001

96.1001

          
A

X





















−

−

−

−

=
050.110

62.196.110

070.101

029.101

   

Where A represents the determinant of the matrix A at 11th harmonic. 

The matrix A at 11th harmonic is given by: 





















−−

−−

−

−

=

70.150.110

29.196.110

50.170.101

96.129.101

A  

38.0−=A  

b) Customer 2 
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Customer 2 and customer 1 have the same components of the voltage at the PCC ( AV −Re , AV −Im

, BV −Re and BV −Im ) per harmonic since both are connected to the same PCC, but not the same 

current complex components ( AI −Re , AI −Im , BI −Re and BI −Im ). 

Fundamental frequency 

The Thevenin equivalent circuit parameters at fundamental frequency can be expressed using 

(4.27) as follows: 

A
VTh





















−−

−−

−

−

=−

75.4084.36149.2027

11.4197.26166.1933

84.3675.40046.6124

97.2611.41018.6114

Re   

A
VTh





















−−

−−

−

−

=−

75.4084.3649.20270

11.4197.2666.19330

84.3675.4046.61241

97.2611.4118.61141

Im  

A
R





















−

−

=
75.4049.202710

11.4166.193310

84.3646.612401

97.2618.611401

          
A

X





















−

−

−

−

=
49.202784.3610

66.193397.2610

46.612475.4001

18.611411.4101

   

Where A represents the determinant of the matrix A  at fundamental frequency. 

The matrix A at fundamental frequency at customer 2 side is given by: 





















−−

−−

−

−

=

75.4084.3610

11.4197.2610

84.3675.4001

97.3611.4101

A  

15.1=A  
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5th Harmonic 

At fifth harmonic, the Thevenin equivalent circuit parameters of customer 2 can be expressed 

using (4.27) as follows: 

A
VTh





















−−

−

=−

06.010.0120.34

00156.57

10.006.0006.64

00085.45

Re   
A

VTh





















−−

−

=−

06.010.020.340

0056.570

10.006.006.641

0085.451

Im  

A
R





















−
=

06.020.3410

056.5710

10.006.6401

085.4501

          
A

X





















−

−

=
20.3410.010

56.57010

06.6406.001

85.45001

   

Where A represents the determinant of the matrix A  at fifth harmonic. 

The matrix A at fifth harmonic at customer 2 is given by: 





















−−

−
=

06.010.010

0010

10.006.001

0001

A  

01.0−=A  

7th Harmonic 

At seventh harmonic, the Thevenin equivalent circuit parameters of customer 2 can be 

expressed using (4.27) as follows: 

A
VTh





















−−

−

−−

−−

=−

48.079.0130.9

50.082.0165.4

79.048.0021.37

82.050.0036.39

Re   
A

VTh





















−−

−

−−

−−

=−

48.079.030.90

50.082.065.40

79.048.021.371

82.050.036.391

Im  
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A
R





















−−

−

−

−

=
48.030.910

50.065.410

79.021.3701

82.036.3901

         
A

X





















−

−

−

=
30.979.010

65.482.010

21.3748.001

36.3950.001

   

Where A represents the determinant of the matrix A at seventh harmonic. 

The matrix A at seventh harmonic is given by: 





















−

−

−−

−−

=

48.079.010

50.082.010

79.048.001

82.050.001

A  

0013.0−=A  

11th Harmonic 

The Thevenin equivalent circuit parameters of customer 2 at fundamental frequency is 

expressed using (4.27) as follows: 

A
VTh





















−

−−

=−

0010

02.019.0162.1

0000

19.002.000

Re   
A

VTh





















−

−−

=−

0000

02.019.062.10

0001

19.002.001

Im  

A
R





















−

−

=
0010

02.062.110

0001

19.0001

          
A

X



















 −

=
0010

62.119.010

0001

002.001

   

Where A represents the determinant of the matrix A at 11th harmonic at customer 2 side. 

The matrix A at 11th harmonic following the values of the currents complex components of 

customer 2 in two time instances A and B is as follows: 
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



















−

−−

=

0010

02.019.010

0001

19.002.001

A  

036.0−=A  

c) Utility 

The utility Thevenin equivalent circuit representation follows an equivalent process to that 

applied for customer 1 and customer 2.   

Fundamental frequency 

The Thevenin equivalent circuit parameters of the utility at fundamental frequency is 

expressed using (4.27) with the related values calculated in the section 5.6 above: 

A
VTh





















−

−

=−

32.10019.14149.2027

74.9973.3166.1933

19.1432.100046.6124

73.374.99018.6114

Re   

A
VTh





















−

−

=−

32.10019.1449.20270

74.9973.366.19330

19.1432.10046.61241

74.374.9918.61141

Im  

A
R





















−

−

=
32.10049.202710

74.9966.193310

19.1446.612401

73.318.611401

          
A

X





















=
49.202719.1410

66.193374.310

46.612432.10001

18.611474.9901

   

Where A represents the determinant of the matrix A  at fundamental frequency at utility side. 

The matrix A at fundamental frequency following the values of the currents complex 

components of utility is as follows: 
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



















−

−

=

32.10019.1410

74.9973.310

19.1432.10001

73.374.9901

A  

75.109−=A  

5th Harmonic  

At the fifth harmonic, the Thevenin equivalent circuit parameters of the utility is expressed 

using (4.27). The values of complex components of current and voltage related to fifth 

harmonic are calcultated in the section 5.6 above. 

A
VTh





















−

−

=−

86.037.7120.34

09.029.7156.57

37.786.0006.64

29.709.0085.45

Re  
A

VTh





















−

−

=−

86.037.720.340

09.029.756.570

37.786.006.641

29.709.085.451

Im  

A
R





















−

−

=
86.020.3410

09.056.5710

37.706.6401

29.785.4501

          
A

X





















=
20.3437.710

56.5729.710

06.6486.001

85.4509.001

   

Where A represents the determinant of the matrix A at fifth harmonic. 

The matrix A at fifth harmonic following the values of the currents complex components of 

the utility is as follows: 





















−

−

=

86.037.710

09.029.710

37.786.001

29.709.001

A  

60.0−=A  

7th Harmonic 
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The Thevenin equivalent circuit parameters of the utility at the seventh is expressed using 

(4.27). An equivalent process to fifth harmonic is applied. The complex components of current 

and voltage related to the seventh harmonic are calculated in the section 5.6 above. 

A
VTh





















−−

−

=−

93.104.2130.9

50.133.2165.4

04.293.1021.37

33.250.1036.39

Re   
A

VTh





















−−

−

=−

93.104.230.90

50.133.265.40

04.293.121.371

33.250.136.391

Im  

A
R





















−
=

93.130.910

50.165.410

04.221.3701

33.236.3901

          
A

X





















−−

−

=
30.904.210

65.433.210

21.3793.101

36.3950.101

  

Where A represents the determinant of the matrix A at the seventh harmonic. 

The matrix A at seventh harmonic following the values of the currents components of the 

utility is as follows: 





















−

−
=

93.104.210

50.133.210

01.293.101

33.250.101

A  

28.0−=A  

11th Harmonic 

At the 11th harmonic, the Thevenin equivalent circuit parameters of the utility is expressed 

using (4.27). The values of complex components of current and voltage at the 11th harmonic 

are calculated in the section 5.6 above. This gives the following result: 

A
VTh





















−

−

=−

70.150.110

31.177.1162.1

50.170.100

77.131.100

Re   
A

VTh





















−

−

=−

70.150.100

31.177.162.10

50.170.101

77.131.101

Im  
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A
R





















−

−

=
70.1010

31.162.110

50.1001

77.1001

          
A

X





















=
050.110

62.177.110

070.101

031.101

   

Where A represents the determinant of the matrix A at 11th harmonic. 

The matrix A at 11th harmonic for utility is as follows: 





















−

−

=

70.150.110

31.177.110

50.170.101

77.131.101

A  

23.0−=A  

The results of the above calculations are summarised in the Tables 5.10 and 5.11 below. 

Table 5.10: Thevenin equivalent impedances 

Harmonic 

order 

1st  5th  7th  11th  

Utility 8.99-j0.483 20.25-j32.40 -17.75-j19.19 1.90-j2.74 

Customer 1 -52.86-j66.77 -26.79+j32.44 24.18+j30.09 -1.96+j1.74 

Customer 2 802.08-j117.60 124.34+j322.26 288.84-j264.23 8.55-j0.9 

 

Table 5.11: Thevenin equivalent voltages sources 

Harmonic 

order 

1st  5th  7th  11th  

Utility 5214.9+j1948.32 -192.27-j87.24 109.166-j8.09 -7.353+j1.81 

Customer 1 1471.32-j750.20 -192.65-j134.32 125.582+j0.19 -5.956+j0.03 

Customer 2 -4824.7-j1472.2 62.35+j78.28 -32.88-j364.31 0.007+j0.003 
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5.8. Evaluation of Contribution of Harmonic Current at the PCC 

This section evaluates the contribution of harmonic current at the PCC between customers and 

the utility as described in section 4.3.  

To generalise this evaluation to harmonic frequencies, the contribution of harmonic current at 

the PCC described in section 4.3 between the utility and customers can be calculated at any 

frequency by the following equations (5.1a), (5.1b) and (5.1c): 

                                        












+
+
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−−

−−

−

−

−−
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                                           (5.1a) 
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                                           (5.1b) 

                                          












+
+

=

−−

−−

−

−

−−

nCnC

nCnC

nu

nu

PCCnu

ZZ

ZZ
Z

V
I

21

21 .
                                           (5.1c) 

Where the subscripts, 

nc −1
  Denotes the Thevenin voltage and impedance of customer 1 at thn harmonic order.  

pccnc −−1
 Denotes the contribution of the customer 1 at the PCC at thn  harmonic order.  

nc −2
 Denotes the Thevenin voltage and impedance of customer 2 at thn harmonic order. 

pccnc −−2
 Denotes the contribution of the customer 2 at the PCC at thn  harmonic order.  

nu −  Denotes the Thevenin voltage and impedance of utility at thn harmonic order. 

pccnu −− Denotes the harmonic current contribution of the utility at thn harmonic order.  

,...1=n  

Therefore, the contribution of harmonic current components will be expressed as follows:  

5th Harmonic 
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The harmonic current contribution at the PCC of both customers and the utility at 5th, 7th and 

11th harmonic can be expressed by using 5=n , 7=n and 11=n  in (5.1a), (5.1b) and (5.1c) 

respectively.  

Tables 5.10 and 5.11 are used to assess (5.1a) - (5.1c). Calculations made and saved in 

Microsoft excel files give the following results. 

5th Harmonic 

The harmonic current contribution at the PCC of customers 1 and 2 at the fifth harmonic gives:                             

=−− 68.3992.13751 PCCCI A    

 =−− 18.4805.052 PCCCI A                                     

The harmonic current contribution of the utility at the PCC leads to the following result:     

=−− 48.3686.25 PCCuI A 

7th Harmonic 

The harmonic current contribution at the PCC of customers 1 and 2 at the seventh harmonic 

gives:                           

−=−− 46.5104.1071 PCCCI  A   

−=−− 48.2984.072 PCCCI A                                    

The harmonic current contribution of the utility at the PCC leads to the following result:      

−=−− 64.4809.27 PCCuI A 

11th Harmonic 

The harmonic current contribution at the PCC of customers 1 and 2 at the 11th harmonic gives:                             

=−− 42.1494.164111 PCCCI  A   

0112 =−− PCCCI                                     

The harmonic current contribution of the utility at the PCC leads to the following result:     
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=−− 95.4899.011 PCCuI A 

The results of contribution of harmonic current at the PCC between the utility and two 

customers are summarised in Fig.5.9 below: 

 

Fig. 5.9:  Individual harmonic current contribution at the PCC 

An analysis of the results obtained in Fig.5.8 above indicates that customer 1 is the main 

contributor. This outcome corroborates the results obtained from the measurements. In Fig. 

5.5, the customer 1 current is considerably distorted while customer 2’s current appears more 

sinusoidal. 

5.9. Summary 

A case study was carried out in this chapter to demonstrate the effectiveness of the proposed 

methodology for calculating the Thevenin equivalent impedance and sources voltages using 

two different times instances. The data analysis of measurements was conducted as well as 

numerical analysis. The numerical analysis was based on the current and voltage waveforms 

using IEEE 1459-2010 to determine the harmonic content.  Based on the target harmonic order 

(5th, 7th and 11th), the Thevenin equivalent impedances and source voltages for both the utility 

and two customers connected to the PCC was calculated.  The Thevenin equivalent circuit 

parameters were calculated in two different points in time A and B selected based on 10 

minutes’ data aggregate interval on voltage. An assessment of the contribution of harmonic 

currents at the PCC between the utility and customers was also carried out in this chapter. The 

assessment per harmonic was conducted by applying the principle of superposition to the 

Thevenin equivalent circuit of both the utility and customers. The identification of the main 

contributor was achieved using the value of harmonic current contribution at the PCC between 
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the utility and the two customers. The study found that customer 1 was the main contributor of 

harmonics at the PCC for the 5th, 7th and 11th harmonic. The next chapter is an analysis and 

interpretation of the results obtained in this chapter.   
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Chapter 6: Discussion of Results and Conclusion 

6.1. Introduction  

This chapter analyses and interprets the results obtained in chapter 5. It also discusses the 

usefulness of the dominant harmonic order analysis and the Thevenin harmonic impedances 

and sources voltages characteristics, as well as the contributions of harmonic currents. 

Additionally, it discusses the strengths of the proposed methodology.  

6.2. Discussion of Results  

6.2.1 Instrument setup 

The instruments were setup according to the recommendations of IEC 61000-4-30 [47] and 

NRS 048-2 [49], time synchronised and connected to the network. The PQ instruments in 

differents points of measurement were synchronized in order to compare the measured data in 

real time. During the measurements, the time was set via the internet. The implementation is 

simple and requires only a dedicated software and internet connection. The process was 

achieved via the power quality PQCADA and PQElspec software.  

6.2.2. Dominant Harmonic Order 

Prior to the evaluation of the Thevenin equivalent impedances and sources voltages, the 

dominant harmonics were investigated based on the magnitudes of harmonics currents. 

Analysis of the spectrums of voltages and currents measured in Fig. 5.6 and Fig. 5.7 as well as 

the calculated values indicated the presence of the dominant harmonic orders, the 5th, 7th and 

11th at the PCC. These harmonics represent currents with higher frequency components that 

the transducers could measure with high accuracy level. The currents and voltage transformers 

used are manufactured primarily for the fundamental frequency. According to the literature, a 

lower accuracy level should be expected at higher frequencies with smaller harmonic 

magnitudes [33] [110]. Therefore, only dominants harmonics order with the larger magnitudes 

were investigated in order to obtain a good result with negligible error. The harmonics found 

at the PCC are the result of currents drawn by the loads and flowing through impedances in the 

system. Other harmonics were also found, but their magnitudes were smaller and therefore 

negligible.    
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6.2.3. Aggregate data interval and measurement accuracy 

The two points in time “A” and “B” were selected based on a 10 minutes’ data aggregate 

interval on voltage. Among the ranges of aggregation intervals commonly used are, 3 seconds, 

19 seconds, 10 minutes, 15 minutes, 1 hour and 2 hours [19] [47].  Appropriate data aggregation 

interval plays a key function in data measurements. Due to the process of averaging the RMS 

values, a long interval can lead to the loss of an important detail of current and voltage 

measurement, whereas a considerably short aggregation data interval can lead to excessive 

amounts of measurement data, which might be difficult to assess. The 10 minutes of 

aggregation interval were enough for the reliability and accuracy of the data assessment. The 

analysis of data recorded by the PQElspec meters showed that beyond 10 minutes’ period 

interval, the recorded RMS values was either too close and making tough the process of data 

assessment or subjected in losing an important detail of RMS averaging [19].  

6.2.4. Load line between two different points in time of a real power system 

Before establishing the linear model of the Thevenin equivalent circuit parameters, this study 

demonstrated that determining ThV by extrapolation and then ThR by the slope of the load line 

is valid in a network where the Thevenin equivalent impedance is purely resistive. It illustrates 

the concept of having two work points (“A” and “B”). It cannot be used in a practical 

installation with reactance. Traditionally, a load connected to a circuit has a Thevenin 

equivalent determined by its open circuit voltage and its short circuit. However, this is difficult 

in practical installations. This thesis found that between two different points in time A and B, 

for a power system with reactance, a load might vary during a normal operation. Therefore, the 

Thevenin equivalent circuit parameters can be determined by using a load operating at time 

instance A and waiting for the load to change at time instance B to obtain voltages and currents.  

6.2.5. Contribution of Harmonic Currents at the PCC 

Prior to the evaluation of the contribution of harmonics at the PCC, this thesis assessed the 

Thevenin equivalent impedances and source voltages of customers and utility. The load of 

customer 1 consisted of several fluorescent lamps, which might have influenced the 

characteristics of harmonic impedances evaluated.  

The contribution of harmonic current at the PCC depends on the harmonic impedance, which 

varies over the time. In practice a certain range of the total utility and customer equivalent 

harmonic impedance needs to be considered. This study found that the harmonic current 
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contribution at the PCC depends on the equivalent harmonic impedance of customers and 

utility as well as the range of harmonic voltage associated for each harmonic value considered. 

Therefore, the larger the combined utility and customer equivalent harmonic impedance, the 

less the contribution of harmonic current at the PCC. Analysis of the individual harmonic 

current (5th, 7th and 11th) indicated that customer 1 is the main contributor at the PCC.  This 

latter result is qualitatively confirmed by the current drawn by customer 1 in Fig. 5.5, as it 

shows more distortion than that of customer 2. 

6.2.6. Usefulness of the Proposed Methodology 

The proposed methodology provides a useful evaluation of the Thevenin equivalent impedance 

and source voltages by the measurement of harmonic voltage, harmonic current without using 

the harmonic current injection processes.  

6.2.7. Summary 

The determination of the Thevenin equivalent impedance and source voltages of customers and 

utility were assessed using two operating points in time called “time A” and “time B”. Instead 

of injecting currents, measurements were taken after waiting for the loads to change. 

Instruments were setup according to IEC 61000-4-30 and NRS 048-12, timed synchronised 

and connected to the network. The selection of the two points in time A and B was based on 

10 minutes’ data aggregate interval on voltage and current. This time interval was enough to 

handle the reliability and the accuracy of the data measurement. Prior to the evaluation of the 

Thevenin equivalent parameters, the dominant harmonic order was assessed. It was found that 

the 5th, 7th, and 11th injected at the PCC were significant, while other harmonics magnitudes 

were found to be smaller and negligible.  The analysis of the 5th, 7th and 11th harmonic order 

indicated that customer 1 was the main contributor of harmonics at the PCC.  

6.3 Conclusion and Future Work  

6.3.1. Conclusion  

This study sought to determine the respective contributions of harmonics at the PCC between 

the utility and end users. It proceeded by developing a methodology for determining the 

parameters of the Thevenin equivalent circuits at different points in time “A” and “B”. IEEE 

1459-2010 deals with one measurement slice in time, and cannot provide the Thevenin 

equivalents necessary to determine harmonic contribution at the PCC. Hence, the study rather 

looked at the voltage and current at the PCC at different times. Before establishing this model, 
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this thesis demonstrated that determining ThV by extrapolation and then ThR by the slope of 

the load line is only valid in the network where the Thevenin equivalent impedance is purely 

resistive and cannot unfortunately be used in practical installation with reactance. The 

methodology proposed in this thesis is as follows:  

a. Determine the dominant harmonics at the PCC by selecting the larger magnitudes of 

high frequency components that the transducers could measure with accuracy. Better 

results were obtained with harmonics having larger magnitudes at lower frequencies 

since the transducers are mostly manufactured to measure the fundamental frequency. 

b. Determine the Thevenin equivalent circuit per dominant harmonic by selecting two 

operating points in time (i.e time A and time B) for both the utility and customers when 

loads change. 

c. Determine the main contributor of harmonics at the PCC per harmonic number by 

applying the principle of superposition to the Thevenin equivalents. 

The analysis conducted in the network involved two customers, a sport stadium and 

Johannesburg metropolitan company connected to the utility. It was shown that the 5th, 7th and 

11th harmonic order were injected to the PCC from customers to the utility. In the case study, 

the corresponding Thevenin equivalent circuits showed that the sport stadium was the main 

contributor of harmonics at the PCC. 

The study supported its findings using the concepts of power theories definitions, harmonics 

identification methods based on power flow and on voltage-current used in power systems, 

measurement techniques and instruments, as discussed in chapter 2. Harmonics in power 

systems, their associated problems, effects and standards dealing with harmonic distortion were 

presented in chapter 3. Chapter 4 dealt with the design process of the model for determining 

the Thevenin equivalent circuit impedance and voltage sources, and described the important 

steps and different points in time. Chapter 5 proposed a practical case of real installation to 

demonstrate the application of the model used. A discussion of results obtained were presented 

in chapter 6, as well as the conclusion about this study and the recommendation for the future 

research. 

6.3.2. Future Work  

• The measurements in this study focused on single-phase analysis even if the PQSCADA 

instruments carried out measurements both in single and three phases. The proposed 
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methodology however can be extended to three-phase systems. This might allow for 

different results in the behaviour of the Thevenin equivalent circuit impedance and voltage 

sources.  

• In general, the currents drawn by non-linear loads might not be in phase with each other. 

These harmonic currents can possibly interact in a different manner, which causes the 

harmonic impedance of the power system to vary in time. As observed in this study, the 

resistive part of the impedance can vary up to the negative value for some harmonic 

frequencies. Therefore, a complete evaluation of the characteristics of these non-linear 

loads might be required in the future.  

• The contribution of harmonic currents at the PCC has always been attributed to the end 

users, and not to the power utility. Heavy harmonic current interaction between two or more 

end users make the assessment of the main contributor more complicated in power systems. 

An accurate measurement of harmonic current using the method of this study can shed light 

on the contribution of harmonic currents at the PCC between two or more end users with 

interacting loads currents. 
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APPENDICES 

Appendix 1 

Substation 132 kV/11 kV- Incomer: Harmonic analysis  

a) Voltage measurement 

Incomer  

Harmonic analysis gives the following results in the table below for harmonic voltage 

components: 

Phase a (L1): Voltage 

index 
na  nb  nc  n  rmsV  

1 108011.960 14855.358 109028.7355 82.1689902 77094.95822 

5 -263.009 -980.693 1015.34846 15.0127057 717.959781 

7 -115.349 -133.858 176.7013185 40.75235032 124.9467006 

11 -213.510 -90.292 231.8170946 67.07681199 163.9194396 

 

Phase b (L2): Voltage 

index 
na   nb  nc  n  rmsV  

1 -67384.820 86422.420 109588.0862 -37.94406162 77490.47892 

5 -175.812 70.080 189.2645391 -68.26739803 133.830239 

7 909.776 -279.748 951.8147476 -72.90780425 673.0346624 

11 622.904 -92.435 629.7250372 -81.55926718 445.2828441 

 

Phase c (L3): Voltage 

index 
na   nb  nc  n  rmsV  

1 -40775.830 -101300.290 109198.9792 21.9259842 77215.33872 

5 193.389 852.209 873.8761268 12.78541405 617.9237352 

7 -547.300 448.609 707.663285 -50.65932889 500.3935076 

11 -341.569 79.954 350.8019725 -76.82548746 248.0544536 

 

b) Current measurement: 

Harmonic analysis gives the following results in the table below:  
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Phase a-L1: Current 

index 
na   nb  nc  n  rmsI  

1 287.655 155.884 327.1776589 61.54615785 231.3495413 

5 8.333 -2.998 8.855895946 -70.21256785 6.262064077 

7 -1.686 -2.326 2.872781231 35.93646036 2.031363089 

11 -10.298 9.496 14.0079556 -47.32020282 9.905120393 

 

Phase b-L2: Current 

Index 
na   nb  nc  n  rmsI  

1 -296.783 176.117 345.1048345 -59.31425423 244.0259687 

5 2.934 -2.456 3.826263451 -50.06788911 2.705576833 

7 1.689 2.375 2.914334572 35.4188355 2.060745739 

11 2.325 -0.688 2.424658533 -73.51577803 1.714492491 

 

Phase c-L3: Current 

Index 
na   nb  nc  n  rmsI  

1 10.537 -330.132 330.3001147 -1.828119489 233.557451 

5 3.933 5.583 6.829229678 35.16316266 4.828994616 

7 1.340 1.915 2.337268705 34.98197888 1.652698551 

11 -2.215 0.996 2.428629449 -65.7883901 1.717300352 

 

The following harmonic voltages and currents were obtained with harmonic analysis method 

of Fourier series coefficients: The rms amplitude voltage, current and phase angle is calculated 

following (4.12) and results are as follows: 

a) For Voltage 

 

1Va = 77094.95822  
1Vb = 77490.47892  

1Vc = 77215.33872   

5Va = 717.959781  5Vb = 133.830239  5Vc = 617.9237352 

7Va = 124.9467006  7Vb = 673.0346624  7Vc = 500.3935076 

=11Va   163.9194396              =11Vb  445.2828441               =11Vc 248.0544536 

                                                                                                                                

1aV = 82.1689902  
1bV = -37.94406162  

1cV = 21.9259842 

5aV = 15.0127057             5bV = -68.26739803             5cV = 12.78541405 
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7aV = 40.75235032             7bV = -72.90780425             7cV = -50.65932889 

=11aV  67.07681199            =11bV -81.55926718             =11cV -76.82548746 

b)  For current 

 

1Ia = 231.3495413  
1Ib = 244.0259687  

1Ic = 233.557451   

5Ia = 6.262064077             5Ib = 2.705576833             5Ic = 4.828994616  

7Ia = 2.031363089  7Ib = 2.060745739  7Ic = 1.652698551 

=11Ia 9.905120393             =11Ib 1.714492491                 =11Ic 1.717300352 

 

1aI = 61.54615785  
1bI = -59.31425423  

1cI = -1.828119489 

5aI =  -70.21256785              5bI = -50.06788911  5cI = 35.16316266 

7aI =  35.93646036              7bI = 35.4188355  7cI = 34.98197888 

=11aI  -47.32020282             =11bI -73.51577803             =11cI -65.7883901 

c)  Phase angle  

 

Phase a Phase b Phase c 

1a = 

20.6228323 
 

1b = 21.37019261 
1c = 23.75410369 

5a = 85.225273 
 

5b = -

18.19950892 

5c = -22.37774861 

7a = 4.81588996 7b = -

108.3266398 

7c = -85.64130777 

 

=11a 114.3970148 =11b -8.04348915 =11c -11.03709736 
 

 

IEEE 1459-2010: Voltage and Current indices 

 

The following rms voltages and currents were obtained for each phase 

Phase a (L1): 

 

)(
2

11

2

7

5

5

2

1 VaVaVaVaVa +++=  

=Va 77098.93687 

)(
2

11

2

7

2

5

2

1 IaIaIaIaIa +++=  

=Ia 231.6709132 

 

Phase b (L2): 
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)(
2

11

2

7

2

5

2

1 VbVbVbVbVb +++=  

=Vb 77504.09967 

  )(
2

11

2

7

2

5

2

1 IbIbIbIbIb +++=  

  =Ib 244.072213 

Phase c (L3): 

)(
2

11

7

7

2

5

2

1 VcVcVcVcVc +++=  

=Vc 77228.63692 

)(
2

11

2

7

2

5

2

1 IcIcIcIcIc +++=  

=Ic 233.6397767 
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Appendix 2 

Customer 1: Harmonic analysis 

a) Voltage measurement 

Harmonic analysis gives the following results in the table below for harmonic voltage 

components: 

Phase a: Voltage-customer 1 

index 
na   nb  nc  n  rmsV  

1 -3359.281 8340.694 8991.770973 -21.93750407 6358.14223 

5 47.926 -9.416 48.84222079 -78.88469841 34.53666553 

7 48.555 -56.419 74.43582193 -40.71575865 52.63407445 

11 36.278 35.819 50.98131074 45.36476424 36.04923054 

 

Phase b-L2: Voltage-customer 1 

index 
na   nb  nc  n  rmsV  

1 -

5584.078 

-7121.402 9049.657096 38.10092454 6399.0739 

5 13.085 0.543 13.09626183 87.62370899 9.26045555 

7 -11.669 32.358 34.39775756 -19.83040884 24.32288763 

11 -42.614 -8.612 43.47550506 78.57479482 30.74182444 

 

Phase c-L3: Voltage 

index 
na   nb  nc  n  rmsV  

1 8917.948 -1234.241 9002.952148 -82.12033921 6366.048514 

5 -80.554 -15.795 82.0879342 78.90620984 58.04493493 

7 -2.593 24.890 25.02470278 -5.947527251 17.69513703 

11 8.357 -7.952 11.53575975 -46.42252882 8.157013945 

 

a) Current measurement 

 

Harmonic analysis gives the following results in the table below for harmonic current 

components: 
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Phase a-L1: Current 

index 
na  nb  nc  n  rmsI  

1 -0.751 85.889 85.89228325 -0.500972579 60.73501594 

5 -7.352 -1.509 7.505263819 78.40111324 5.307022941 

7 3.839 -0.507 3.872333922 -82.4767331 2.738153575 

11 1.946 -0.133 1.950539669 -86.09018153 1.379239827 

 

Phase b-L2: Current 

Index 
na   nb  nc  n  rmsI  

1 -66.607 -34.408 74.96934649 62.67992233 53.01133328 

5 4.383 6.686 7.994578475 33.24680136 5.653020653 

7 -1.762 -0.817 1.942197982 65.12389962 1.373341363 

11 0.810 0.181 0.829976506 77.40380314 0.586882015 

 

Phase c-L3: Current 

Index 
na   nb  nc  n  rmsI  

1 67.598 -51.286 84.8513017 -52.81273357 59.99893082 

5 4.296 -7.785 8.891672565 -28.89125102 6.287361967 

7 0.678 0.947 1.164685795 35.6005836 0.823557223 

11 -1.006 -0.057 1.007613517 86.7570862 0.712490351 

 

The following harmonic voltages and currents were obtained with harmonic analysis method 

of Fourier series coefficients:  

d) For Voltage 

 

1Va =  6358.14223            1Vb = 6399.0739          1Vc = 6366.048514   

5Va = 34.53666553            5Vb = 9.26045555          5Vc = 58.04493493 

7Va = 52.63407445            7Vb = 24.32288763          7Vc = 17.69513703 

=11Va 36.04923054                 =11Vb  30.74182444               =11Vc 8.157013945     

                                                                       

1aV = -21.93750407            1bV =  38.10092454          1cV = -82.12033921 

5aV = -78.88469841             5bV = 87.62370899            5cV = 78.90620984 
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7aV = -40.71575865             7bV = -19.83040884             7cV = -5.947527251 

=11aV  45.36476424              =11bV 78.57479482                =11cV -46.42252882 

e)  For current 

 

1Ia = 60.73501594  1Ib = 53.01133328  1Ic = 59.99893082   

5Ia = 5.307022941             5Ib = 5.653020653             5Ic = 6.287361967 

7Ia = 2.738153575              7Ib = 1.373341363  7Ic = 0.823557223 

=11Ia  1.379239827              =11Ib 0.586882015                  =11Ic 0.712490351 

 

1aI = -0.500972579  1bI = 62.67992233           1cI = -52.81273357 

5aI = 78.40111324              5bI = 33.24680136  5cI = -28.89125102 

7aI = -82.4767331                   7bI = 65.12389962  7cI = 35.6005836 

=11aI   -86.09018153               =11bI  77.40380314              =11cI 86.7570862 

f)  Phase angle  

 

Phase a Phase b Phase c 

1a = -

21.43653149 
 

1b = -24.57899779 1c = -29.30760564 

5a = -

157.2858117 
 

5b = 54.37690763 5c = 107.7974609 

7a = 41.76097445 7b = -84.95430846 7c = -41.54811085 
 

=11a 131.4549458 =11b 1.17099168 =11c -133.179615 
 

 

 

IEEE 1459-2010 Voltage and Current indices 

 

The following RMS voltages and currents were obtained for each phase 

Phase a: 

 

)(
2

11

2

7

5

5

2

1 VaVaVaVaVa +++=  

=Va 6359.155968 
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)(
2

11

2

7

2

5

2

1 IaIaIaIaIa +++=  

=Ia 61.05034467 
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Appendix 3 

Customer 2: Harmonic analysis 

a) Voltage measurement 

Harmonic analysis gives the following results in the table below for harmonic voltage 

components: 

Phase a-L1: Voltage-customer 2 

index 
na   nb  nc  n  rmsV  

1 15236.498 1309.376 15292.6563 85.0882512 10813.54097 

5 8.630 47.019 47.80442721 10.40046995 33.80283465 

7 37.318 -21.637 43.13690871 -59.89481512 30.50240067 

11 41.861 -132.591 139.0421397 -17.52170094 98.31763983 

 

Phase b-L2: Voltage-customer 2 

index 
na   nb  nc  n  rmsV  

1 -14.258 31.538 34.61121217 -24.32722833 24.47382283 

5 4.223 -0.404 4.242280637 -84.53533882 2.999745406 

7 7.343 1.684 7.533624957 77.08347931 5.327077294 

11 -7.765 -26.364 27.48373557 16.41130509 19.4339358 

 

Phase c-L3: Voltage-customer 2 

index 
na   nb  nc  n  rmsV  

1 8621.757 -12200.025 14939.05297 -35.24884672 10563.50566 

5 -148.316 234.573 277.5286079 -32.30438095 196.2423606 

7 24.198 147.445 149.4174395 9.320039381 105.6540847 

11 -54.277 -137.182 147.5292983 21.58656863 104.3189672 

 

b) Current measurement 

Harmonic analysis gives the following results in the table below for harmonic current 

components: 

Phase a-L1: Current 

index 
na   nb  nc  n  rmsI  

1 48.248 52.890 71.59065305 42.37210067 50.62223624 

5 0.104 0.054 0.117183617 62.56027205 0.08286133 

7 0.553 0.422 0.69562418 52.65237403 0.491880575 

11 0.356 -0.658 0.748131005 -28.41486997 0.529008507 
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Phase b-L2: Current 

Index 
na  nb  nc  n  rmsI  

1 -67.611 15.836 69.44081089 -76.81768621 49.10206827 

5 -0.802 0.504 0.947216976 -57.85355764 0.669783547 

7 -0.124 -0.321 0.344117712 21.12118934 0.243327968 

11 0.049 -0.690 0.691737667 -4.062011557 0.489132395 

 

Phase c-L3: Current 

Index 
na   nb  nc  n  rmsI  

1 19.690 -68.665 71.43233389 -16.00048427 50.51028769 

5 -0.704 1.307 1.484542017 -28.3085977 1.049729727 

7 -0.632 0.638 0.898035634 -44.72931329 0.635007087 

11 -0.120 -0.675 0.685583693 10.08059799 0.484780878 

 

The following harmonic voltages and currents were obtained with harmonic analysis method 

of Fourier series coefficients:  

a) For Voltage 

 

1Va = 10813.54097           1Vb = 24.47382283          1Vc = 10563.50566  

5Va = 33.80283465                5Vb = 2.999745406          5Vc = 196.2423606 

7Va = 30.50240067            7Vb = 5.327077294          7Vc = 105.6540847 

=11Va  98.31763983               =11Vb  19.4339358              =11Vc 104.3189672    

                                                                       

1aV = 85.0882512             1bV = -24.32722833          1cV = -35.24884672 

5aV = 10.40046995                         5bV = -84.53533882           5cV = -32.30438095 

7aV = -59.89481512                          7bV = 77.08347931           7cV = 9.320039381 

=11aV  -17.52170094                        =11bV  16.41130509            =11cV 21.58656863 

b)  For current 

 

1Ia = 50.62223624  1Ib = 49.10206827  1Ic = 50.51028769   
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5Ia = 0.08286133             5Ib = 0.669783547             5Ic = 1.049729727 

7Ia = 0.491880575              7Ib = 0.243327968  7Ic = 0.635007087 

=11Ia  0.529008507              =11Ib  0.489132395                 =11Ic 0.484780878 

 

1aI = 42.37210067  1bI = -76.81768621             1cI = -16.00048427 

5aI = 62.56027205              5bI = -57.85355764  5cI = -28.3085977 

7aI = 52.65237403                  7bI = 21.12118934             7cI = -44.72931329 

=11aI  -28.41486997             =11bI -4.062011557             =11cI 10.08059799 

c)  Phase angle  

 

Phase a Phase b Phase c 

1a = 

42.71615053 
 

1b = 52.49045788 1c = -19.24836245 

5a = -

52.1598021 
 

5b = -

26.68178118 

5c = -3.99578325 

7a = -112.5471892 7b = 55.96228997 7c = 54.04935267 
 

=11a 10.89316903 =11b 20.47331665 =11c 11.50597064 
 

 

IEEE 1459-2010 Voltage and Current indices 

 

The following RMS voltages and currents were obtained for each phase 

Phase a: 

 

)(
2

11

2

7

5

5

2

1 VaVaVaVaVa +++=  

=Va 10814.21693 

)(
2

11

2

7

2

5

2

1 IaIaIaIaIa +++=  

=Ia 50.62817242 

 

Phase b: 

)(
2

11

2

7

2

5

2

1 VbVbVbVbVb +++=  

=Vb 32.22987748 

  )(
2

11

2

7

2

5

2

1 IbIbIbIbIb +++=  

  =Ib 49.11536371 
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Phase c: 

)(
2

11

7

7

2

5

2

1 VcVcVcVcVc +++=  

=Vc 10567.77108 

)(
2

11

2

7

2

5

2

1 IcIcIcIcIc +++=   
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Appendix 4  

Customer 1:  5th statistical data of voltage, current, active power and reactive power  

Period Start Period End H5, L1 

Active 

Power 

Harmonic

s (Cycle 

by 

Cycle), 

Customer 

1@Utilit

y 1 

Average 

H5, L1 

Reactive 

Power 

Harmonic

s (Cycle 

by 

Cycle), 

Customer 

1@Utilit

y 1 

Average 

H5, L1 

Harmonic

s Current 

(Cycle by 

Cycle), 

Customer 

1@Utilit

y 1 

Average 

H5, L1 

Harmonic

s Voltage 

(Cycle by 

Cycle), 

Customer 

1@Utilit

y 1 

Average 

26/06/2017 

07:30:37.776 

26/06/2017 

07:30:41.961 

1.436789 112.4072 7.294281 15.50502 

26/06/2017 

07:30:41.961 

26/06/2017 

07:30:46.147 

-16.7522 99.94878 6.849981 15.50502 

26/06/2017 

07:30:46.147 

26/06/2017 

07:30:50.332 

27.56916 105.9616 7.190777 15.50502 

26/06/2017 

07:30:50.332 

26/06/2017 

07:30:54.518 

-14.207 116.4398 7.473725 15.93391 

26/06/2017 

07:30:54.518 

26/06/2017 

07:30:58.703 

13.13525 163.7291 7.615393 21.70703 

26/06/2017 

07:30:58.703 

26/06/2017 

07:31:02.888 

-14.2518 162.4156 7.68649 21.43272 

26/06/2017 

07:31:02.888 

26/06/2017 

07:31:07.073 

-0.32865 161.44 7.71746 21.49773 

26/06/2017 

07:31:07.073 

26/06/2017 

07:31:11.259 

7.1793 180.3742 7.785334 23.41635 

26/06/2017 

07:31:11.259 

26/06/2017 

07:31:15.444 

-4.41136 172.2145 7.972906 21.70703 

26/06/2017 

07:31:15.444 

26/06/2017 

07:31:19.630 

-9.72074 163.2758 7.771985 21.3306 

26/06/2017 

07:31:19.630 

26/06/2017 

07:31:23.815 

4.620683 157.9663 7.659163 20.80217 

26/06/2017 

07:31:23.815 

26/06/2017 

07:31:28.000 

7.186779 165.4692 7.858083 21.98332 

26/06/2017 

07:31:28.000 

26/06/2017 

07:31:32.185 

13.32463 178.0655 7.909554 22.57565 

26/06/2017 

07:31:32.185 

26/06/2017 

07:31:36.371 

-12.1703 173.9666 7.760967 22.53404 

26/06/2017 

07:31:36.371 

26/06/2017 

07:31:40.556 

-4.23965 165.3465 7.619691 21.70703 

26/06/2017 

07:31:40.556 

26/06/2017 

07:31:44.742 

-33.0888 165.3465 7.78816 21.70703 

26/06/2017 

07:31:44.742 

26/06/2017 

07:31:48.927 

-50.7047 151.6086 7.804233 20.96953 
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26/06/2017 

07:31:48.927 

26/06/2017 

07:31:53.112 

-8.17848 130.3474 7.506554 17.54193 

26/06/2017 

07:31:53.112 

26/06/2017 

07:31:57.297 

-13.2062 134.5882 7.496624 18.21742 

26/06/2017 

07:31:57.297 

26/06/2017 

07:32:01.483 

-11.0888 148.7829 7.673014 19.61247 

26/06/2017 

07:32:01.483 

26/06/2017 

07:32:05.668 

-18.0643 165.9889 7.847135 21.72747 

26/06/2017 

07:32:05.668 

26/06/2017 

07:32:09.854 

-2.34581 169.7635 7.796205 22.14073 

26/06/2017 

07:32:09.854 

26/06/2017 

07:32:14.039 

-10.8732 171.5224 7.901133 21.92741 

26/06/2017 

07:32:14.039 

26/06/2017 

07:32:18.224 

-42.1041 167.6647 7.950029 21.92741 

26/06/2017 

07:32:18.224 

26/06/2017 

07:32:22.409 

-10.7976 191.169 7.927172 24.58935 

26/06/2017 

07:32:22.409 

26/06/2017 

07:32:26.595 

-1.23952 185.5053 7.902915 23.669 

26/06/2017 

07:32:26.595 

26/06/2017 

07:32:30.780 

-5.31313 179.702 7.999543 22.93633 

26/06/2017 

07:32:30.780 

26/06/2017 

07:32:34.966 

-9.23679 172.4159 7.913967 22.15885 

26/06/2017 

07:32:34.966 

26/06/2017 

07:32:39.151 

18.82203 167.1557 7.771448 21.70703 

26/06/2017 

07:32:39.151 

26/06/2017 

07:32:43.337 

-15.8471 166.2384 7.708215 21.70703 

26/06/2017 

07:32:43.337 

26/06/2017 

07:32:47.521 

14.66435 158.9891 7.662896 20.93529 

26/06/2017 

07:32:47.521 

26/06/2017 

07:32:51.707 

15.46405 167.3552 7.967019 21.93111 

26/06/2017 

07:32:51.707 

26/06/2017 

07:32:55.892 

38.18835 191.2715 7.9008 25.00109 

26/06/2017 

07:32:55.892 

26/06/2017 

07:33:00.078 

-13.0289 197.3847 7.928219 25.00109 

26/06/2017 

07:33:00.078 

26/06/2017 

07:33:04.263 

32.77654 164.2925 7.778122 21.77664 

26/06/2017 

07:33:04.263 

26/06/2017 

07:33:08.449 

22.90307 183.0042 7.90227 23.57863 

26/06/2017 

07:33:08.449 

26/06/2017 

07:33:12.634 

-12.0818 186.9615 8.414803 22.77542 

26/06/2017 

07:33:12.634 

26/06/2017 

07:33:16.819 

-8.00409 172.4842 8.394467 20.80217 

26/06/2017 

07:33:16.819 

26/06/2017 

07:33:21.004 

-27.4156 180.6508 8.42498 21.959 

26/06/2017 

07:33:21.004 

26/06/2017 

07:33:25.190 

-17.9994 192.1599 8.010593 24.48173 

26/06/2017 

07:33:25.190 

26/06/2017 

07:33:29.375 

-0.6245 151.6833 7.717711 19.85611 



141 
 

26/06/2017 

07:33:29.375 

26/06/2017 

07:33:33.561 

14.93744 121.0889 7.552392 16.75039 

26/06/2017 

07:33:33.561 

26/06/2017 

07:33:37.746 

6.355286 134.7513 7.444074 18.52948 

26/06/2017 

07:33:37.746 

26/06/2017 

07:33:41.931 

15.52184 171.8692 7.666799 22.57565 

26/06/2017 

07:33:41.931 

26/06/2017 

07:33:46.116 

-2.00504 172.975 7.688635 22.57565 

26/06/2017 

07:33:46.116 

26/06/2017 

07:33:50.302 

-38.1569 171.4031 7.778245 22.57565 

26/06/2017 

07:33:50.302 

26/06/2017 

07:33:54.487 

-3.34726 173.2502 7.776007 23.16045 

26/06/2017 

07:33:54.487 

26/06/2017 

07:33:58.673 

-4.21777 186.8389 7.768633 24.21961 

26/06/2017 

07:33:58.673 

26/06/2017 

07:34:02.858 

-26.6493 187.1504 7.805172 24.21961 

26/06/2017 

07:34:02.858 

26/06/2017 

07:34:07.043 

-37.3345 182.3007 7.83732 23.96138 

26/06/2017 

07:34:07.043 

26/06/2017 

07:34:11.228 

-36.5687 181.8465 7.88209 23.61654 

26/06/2017 

07:34:11.228 

26/06/2017 

07:34:15.414 

-37.923 164.5584 7.68905 22.2168 

26/06/2017 

07:34:15.414 

26/06/2017 

07:34:19.599 

-18.1999 172.9498 7.836505 23.26385 

26/06/2017 

07:34:19.599 

26/06/2017 

07:34:23.785 

-23.9944 189.7397 7.955479 24.21961 

26/06/2017 

07:34:23.785 

26/06/2017 

07:34:27.970 

-8.92526 177.6075 7.817854 23.21358 

26/06/2017 

07:34:27.970 

26/06/2017 

07:34:32.155 

18.77561 175.0371 7.797838 22.57565 

26/06/2017 

07:34:32.155 

26/06/2017 

07:34:36.340 

-6.74947 171.5337 7.622028 22.57565 

26/06/2017 

07:34:36.340 

26/06/2017 

07:34:40.526 

-31.0073 166.9467 7.604234 22.50909 

26/06/2017 

07:34:40.526 

26/06/2017 

07:34:44.711 

2.468849 147.0404 7.553558 19.61247 
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Customer 1: 7th statistical data of voltage, current, active power and reactive power  

Period Start Period End H7, L1 

Active 

Power 

Harmonic

s (Cycle 

by 

Cycle), 

Customer 

1@Utilit

y 1 

Average 

H7, L1 

Reactive 

Power 

Harmonic

s (Cycle 

by 

Cycle), 

Customer 

1@Utilit

y 1 

Average 

H7, L1 

Harmonic

s Current 

(Cycle by 

Cycle), 

Customer 

1@Utilit

y 1 

Average 

H7, L1 

Harmonic

s Voltage 

(Cycle by 

Cycle), 

Customer 

1@Utilit

y 1 

Average 

26/06/2017 

07:30:37,776 

26/06/2017 

07:30:41,928 

-42,3517 64,14121 1,810451 43,76902 

26/06/2017 

07:30:41,928 

26/06/2017 

07:30:46,079 

-60,8258 69,54006 2,039122 45,62111 

26/06/2017 

07:30:46,079 

26/06/2017 

07:30:50,230 

-60,913 58,80696 1,935732 46,74164 

26/06/2017 

07:30:50,230 

26/06/2017 

07:30:54,381 

-46,2297 63,07796 1,852897 42,71288 

26/06/2017 

07:30:54,381 

26/06/2017 

07:30:58,533 

-56,5856 33,71662 1,578461 42,54673 

26/06/2017 

07:30:58,533 

26/06/2017 

07:31:02,684 

-40,1792 51,54301 1,57466 43,07795 

26/06/2017 

07:31:02,684 

26/06/2017 

07:31:06,835 

-51,2875 36,86525 1,57466 40,84739 

26/06/2017 

07:31:06,835 

26/06/2017 

07:31:10,986 

-55,5852 11,80812 1,49774 40,3143 

26/06/2017 

07:31:10,986 

26/06/2017 

07:31:15,138 

-48,0329 29,39328 1,487456 37,95354 

26/06/2017 

07:31:15,138 

26/06/2017 

07:31:19,289 

-45,9254 25,54632 1,487456 37,83722 

26/06/2017 

07:31:19,289 

26/06/2017 

07:31:23,440 

-51,3805 26,86266 1,487456 39,6382 

26/06/2017 

07:31:23,440 

26/06/2017 

07:31:27,591 

-33,3157 39,84379 1,501982 37,8884 

26/06/2017 

07:31:27,591 

26/06/2017 

07:31:31,743 

-56,413 16,85324 1,57466 37,46501 

26/06/2017 

07:31:31,743 

26/06/2017 

07:31:35,894 

-48,8095 30,71967 1,57466 37,38985 

26/06/2017 

07:31:35,894 

26/06/2017 

07:31:40,045 

-39,3624 42,95214 1,57466 37,38788 

26/06/2017 

07:31:40,045 

26/06/2017 

07:31:44,196 

-45,6841 19,59721 1,523304 37,46957 

26/06/2017 

07:31:44,196 

26/06/2017 

07:31:48,348 

-52,9284 12,05442 1,487456 37,32135 

26/06/2017 

07:31:48,348 

26/06/2017 

07:31:52,499 

-33,6774 41,35099 1,487456 36,80481 
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26/06/2017 

07:31:52,499 

26/06/2017 

07:31:56,651 

-50,2799 23,84303 1,559952 37,73644 

26/06/2017 

07:31:56,651 

26/06/2017 

07:32:00,802 

-48,0366 37,20103 1,57466 39,25191 

26/06/2017 

07:32:00,802 

26/06/2017 

07:32:04,953 

-33,6974 48,12986 1,582068 40,35426 

26/06/2017 

07:32:04,953 

26/06/2017 

07:32:09,105 

-50,816 29,83183 1,610588 37,73212 

26/06/2017 

07:32:09,105 

26/06/2017 

07:32:13,256 

-38,1844 44,74266 1,595532 37,46957 

26/06/2017 

07:32:13,256 

26/06/2017 

07:32:17,407 

-49,0589 8,614188 1,310196 38,60447 

26/06/2017 

07:32:17,407 

26/06/2017 

07:32:21,558 

-39,386 29,90431 1,321933 40,6022 

26/06/2017 

07:32:21,558 

26/06/2017 

07:32:25,710 

-54,5098 14,8404 1,381068 41,34943 

26/06/2017 

07:32:25,710 

26/06/2017 

07:32:29,861 

-44,8259 33,3436 1,381068 41,0713 

26/06/2017 

07:32:29,861 

26/06/2017 

07:32:34,012 

-41,4289 26,70185 1,450325 40,00773 

26/06/2017 

07:32:34,012 

26/06/2017 

07:32:38,163 

-56,675 19,32439 1,525439 39,98005 

26/06/2017 

07:32:38,163 

26/06/2017 

07:32:42,315 

-46,2919 39,71187 1,525439 40,39814 

26/06/2017 

07:32:42,315 

26/06/2017 

07:32:46,466 

-51,3316 28,64967 1,543436 40,64682 

26/06/2017 

07:32:46,466 

26/06/2017 

07:32:50,617 

-62,8023 9,970838 1,5625 40,72594 

26/06/2017 

07:32:50,617 

26/06/2017 

07:32:54,768 

-48,7072 31,11361 1,5625 38,19217 

26/06/2017 

07:32:54,768 

26/06/2017 

07:32:58,920 

-50,7936 15,30446 1,450141 40,38552 

26/06/2017 

07:32:58,920 

26/06/2017 

07:33:03,071 

-52,7346 19,04711 1,408418 40,23895 

26/06/2017 

07:33:03,071 

26/06/2017 

07:33:07,222 

-35,4731 45,89711 1,408418 42,14369 

26/06/2017 

07:33:07,222 

26/06/2017 

07:33:11,373 

-66,3443 28,75675 1,839374 40,04521 

26/06/2017 

07:33:11,373 

26/06/2017 

07:33:15,525 

-74,7094 25,20088 1,973884 41,38433 

26/06/2017 

07:33:15,525 

26/06/2017 

07:33:19,676 

-68,9589 33,62455 1,919131 41,2235 

26/06/2017 

07:33:19,676 

26/06/2017 

07:33:23,827 

-61,2494 24,71064 1,746928 38,74515 

26/06/2017 

07:33:23,827 

26/06/2017 

07:33:27,978 

-42,826 43,41639 1,687507 39,87022 

26/06/2017 

07:33:27,978 

26/06/2017 

07:33:32,130 

-51,863 36,78825 1,5625 41,23025 
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26/06/2017 

07:33:32,130 

26/06/2017 

07:33:36,281 

-57,2286 31,98541 1,630572 43,464 

26/06/2017 

07:33:36,281 

26/06/2017 

07:33:40,432 

-63,1148 35,91027 1,668751 43,61043 

26/06/2017 

07:33:40,432 

26/06/2017 

07:33:44,583 

-49,0589 46,03053 1,668751 40,31305 

26/06/2017 

07:33:44,583 

26/06/2017 

07:33:48,735 

-58,8224 4,147186 1,495121 40,20525 

26/06/2017 

07:33:48,735 

26/06/2017 

07:33:52,886 

-54,5098 21,80393 1,487456 39,46934 

26/06/2017 

07:33:52,886 

26/06/2017 

07:33:57,037 

-43,9119 34,32877 1,487456 38,88365 

26/06/2017 

07:33:57,037 

26/06/2017 

07:34:01,188 

-43,0617 36,33669 1,530743 39,25637 

26/06/2017 

07:34:01,188 

26/06/2017 

07:34:05,340 

-62,865 16,24375 1,610588 40,34969 

26/06/2017 

07:34:05,340 

26/06/2017 

07:34:09,491 

-59,3552 30,28324 1,610588 41,37255 

26/06/2017 

07:34:09,491 

26/06/2017 

07:34:13,643 

-44,3794 43,89755 1,610588 40,31409 

26/06/2017 

07:34:13,643 

26/06/2017 

07:34:17,794 

-60,0598 14,78644 1,574935 40,2875 

26/06/2017 

07:34:17,794 

26/06/2017 

07:34:21,945 

-52,4158 30,66979 1,57466 38,71966 

26/06/2017 

07:34:21,945 

26/06/2017 

07:34:26,096 

-43,7422 44,23432 1,580098 41,2267 

26/06/2017 

07:34:26,096 

26/06/2017 

07:34:30,248 

-66,6231 19,38128 1,610588 43,08052 

26/06/2017 

07:34:30,248 

26/06/2017 

07:34:34,399 

-58,1296 39,55337 1,610588 43,95209 

26/06/2017 

07:34:34,399 

26/06/2017 

07:34:38,550 

-54,6238 44,70526 1,610588 44,19569 

26/06/2017 

07:34:38,550 

26/06/2017 

07:34:42,701 

-42,3127 57,31361 1,627833 46,07331 
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Customer 1: 11th statistical data of voltage, current, active power and reactive power  

Period Start Period End H11, L1 

Active 

Power 

Harmonic

s (Cycle 

by 

Cycle), 

Customer 

1@Utilit

y 1 

Average 

H11, L1 

Reactive 

Power 

Harmonic

s (Cycle 

by 

Cycle), 

Customer 

1@Utilit

y 1 

Average 

H11, L1 

Harmonic

s Current 

(Cycle by 

Cycle), 

Customer 

1@Utilit

y 1 

Average 

H11, L1 

Harmonic

s Voltage 

(Cycle by 

Cycle), 

Customer 

1@Utilit

y 1 

Average 

26/06/2017 

07:30:37,776 

26/06/2017 

07:30:41,952 

-23,7612 -35,9299 2,346347 18,69578 

26/06/2017 

07:30:41,952 

26/06/2017 

07:30:46,127 

-39,4995 -30,483 2,351874 21,5397 

26/06/2017 

07:30:46,127 

26/06/2017 

07:30:50,303 

-31,0039 -32,3813 2,346728 20,18587 

26/06/2017 

07:30:50,303 

26/06/2017 

07:30:54,479 

-24,4305 -34,4464 2,350579 18,60602 

26/06/2017 

07:30:54,479 

26/06/2017 

07:30:58,654 

-15,8991 -30,3868 2,348102 15,68031 

26/06/2017 

07:30:58,654 

26/06/2017 

07:31:02,830 

-24,0832 -24,5068 2,349563 14,91718 

26/06/2017 

07:31:02,830 

26/06/2017 

07:31:07,005 

-14,7302 -23,5304 2,277959 13,01279 

26/06/2017 

07:31:07,005 

26/06/2017 

07:31:11,181 

-18,3236 -20,0688 2,31344 13,19668 

26/06/2017 

07:31:11,181 

26/06/2017 

07:31:15,356 

-17,2065 -21,6111 2,226905 13,13982 

26/06/2017 

07:31:15,356 

26/06/2017 

07:31:19,532 

-19,6028 -23,0938 2,310599 13,84057 

26/06/2017 

07:31:19,532 

26/06/2017 

07:31:23,707 

-23,9415 -22,9841 2,309516 15,11784 

26/06/2017 

07:31:23,707 

26/06/2017 

07:31:27,883 

-24,552 -20,2881 2,304933 14,45816 

26/06/2017 

07:31:27,883 

26/06/2017 

07:31:32,059 

-22,3456 -28,5481 2,278209 16,69942 

26/06/2017 

07:31:32,059 

26/06/2017 

07:31:36,234 

-24,6177 -23,8355 2,209709 16,08919 

26/06/2017 

07:31:36,234 

26/06/2017 

07:31:40,410 

-24,882 -25,8755 2,2812 16,4099 

26/06/2017 

07:31:40,410 

26/06/2017 

07:31:44,585 

-29,0719 -29,0719 2,34375 17,54193 

26/06/2017 

07:31:44,585 

26/06/2017 

07:31:48,761 

-21,9301 -27,5153 2,24349 16,33082 

26/06/2017 

07:31:48,761 

26/06/2017 

07:31:52,936 

-23,1569 -19,7322 2,327355 14,39217 
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26/06/2017 

07:31:52,936 

26/06/2017 

07:31:57,112 

-26,9484 -18,0849 2,297483 14,41717 

26/06/2017 

07:31:57,112 

26/06/2017 

07:32:01,287 

-27,6513 -15,152 2,228999 15,50502 

26/06/2017 

07:32:01,287 

26/06/2017 

07:32:05,463 

-24,8486 -25,2698 2,301246 15,50502 

26/06/2017 

07:32:05,463 

26/06/2017 

07:32:09,638 

-26,712 -21,1387 2,297939 15,50502 

26/06/2017 

07:32:09,638 

26/06/2017 

07:32:13,814 

-27,2549 -24,2266 2,351874 15,50502 

26/06/2017 

07:32:13,814 

26/06/2017 

07:32:17,990 

-21,491 -27,9021 2,240325 16,96437 

26/06/2017 

07:32:17,990 

26/06/2017 

07:32:22,165 

-29,283 -34,6496 2,357172 20,19345 

26/06/2017 

07:32:22,165 

26/06/2017 

07:32:26,341 

-36,5427 -34,61 2,374837 22,09 

26/06/2017 

07:32:26,341 

26/06/2017 

07:32:30,516 

-29,3997 -34,0685 2,306035 20,76361 

26/06/2017 

07:32:30,516 

26/06/2017 

07:32:34,692 

-33,3504 -26,2118 2,300734 18,85876 

26/06/2017 

07:32:34,692 

26/06/2017 

07:32:38,867 

-34,0102 -16,6768 2,340795 16,9069 

26/06/2017 

07:32:38,867 

26/06/2017 

07:32:43,043 

-21,1983 -27,2549 2,226905 15,50502 

26/06/2017 

07:32:43,043 

26/06/2017 

07:32:47,218 

-27,3008 -19,1279 2,271631 15,50502 

26/06/2017 

07:32:47,218 

26/06/2017 

07:32:51,394 

-21,8039 -29,0719 2,34375 15,50502 

26/06/2017 

07:32:51,394 

26/06/2017 

07:32:55,570 

-9,00029 -28,4403 2,253951 15,83509 

26/06/2017 

07:32:55,570 

26/06/2017 

07:32:59,745 

-16,1374 -34,7385 2,333339 16,69942 

26/06/2017 

07:32:59,745 

26/06/2017 

07:33:03,921 

-17,8718 -33,7997 2,292182 17,58535 

26/06/2017 

07:33:03,921 

26/06/2017 

07:33:08,096 

-21,0139 -27,4095 2,288454 16,38875 

26/06/2017 

07:33:08,096 

26/06/2017 

07:33:12,272 

-18,9795 -33,0211 2,233549 18,23472 

26/06/2017 

07:33:12,272 

26/06/2017 

07:33:16,447 

-28,3064 -28,5154 2,321267 18,41183 

26/06/2017 

07:33:16,447 

26/06/2017 

07:33:20,623 

-15,4315 -39,0066 2,351874 18,15182 

26/06/2017 

07:33:20,623 

26/06/2017 

07:33:24,798 

-22,2512 -32,9731 2,347195 18,18596 

26/06/2017 

07:33:24,798 

26/06/2017 

07:33:28,974 

-14,9922 -31,9738 2,351874 16,05168 

26/06/2017 

07:33:28,974 

26/06/2017 

07:33:33,149 

-18,9201 -30,7082 2,328426 15,56883 
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26/06/2017 

07:33:33,149 

26/06/2017 

07:33:37,325 

-28,5541 -14,8451 2,280584 15,55277 

26/06/2017 

07:33:37,325 

26/06/2017 

07:33:41,501 

-23,9924 -27,227 2,351874 15,62684 

26/06/2017 

07:33:41,501 

26/06/2017 

07:33:45,676 

-18,7756 -32,1002 2,351874 15,81208 

26/06/2017 

07:33:45,676 

26/06/2017 

07:33:49,852 

-18,7756 -32,1002 2,351874 15,81208 

26/06/2017 

07:33:49,852 

26/06/2017 

07:33:54,027 

-27,0343 -24,9235 2,349044 16,6511 

26/06/2017 

07:33:54,027 

26/06/2017 

07:33:58,203 

-20,7218 -27,6543 2,272053 16,07856 

26/06/2017 

07:33:58,203 

26/06/2017 

07:34:02,378 

-19,3813 -29,0719 2,209709 15,81208 

26/06/2017 

07:34:02,378 

26/06/2017 

07:34:06,554 

-25,2029 -23,4439 2,220716 16,26803 

26/06/2017 

07:34:06,554 

26/06/2017 

07:34:10,729 

-32,2582 -31,9093 2,34375 20,33956 

26/06/2017 

07:34:10,729 

26/06/2017 

07:34:14,905 

-37,802 -29,0379 2,149999 23,50564 

26/06/2017 

07:34:14,905 

26/06/2017 

07:34:19,081 

-36,1777 -27,7718 2,283178 21,72826 

26/06/2017 

07:34:19,081 

26/06/2017 

07:34:23,256 

-28,6207 -30,9417 2,306949 19,61247 

26/06/2017 

07:34:23,256 

26/06/2017 

07:34:27,432 

-31,5334 -19,4988 2,226905 16,80132 

26/06/2017 

07:34:27,432 

26/06/2017 

07:34:31,607 

-23,1493 -27,7266 2,287197 16,69942 

26/06/2017 

07:34:31,607 

26/06/2017 

07:34:35,783 

-25,121 -25,7549 2,34375 15,83858 

26/06/2017 

07:34:35,783 

26/06/2017 

07:34:39,958 

-16,9252 -27,8773 2,277531 15,50502 

26/06/2017 

07:34:39,958 

26/06/2017 

07:34:44,134 

-17,1086 -27,6053 2,254481 15,6974 

 

 

 

 

 


