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Abstract—Data acquisition and qualitative precipitation 

estimation (QPE) via disdrometers play an important role in 

estimating rain-induced attenuation in wireless networks. 

However, existing disdrometer observations do not provide 

sufficient information for modelling intelligent wireless 

networks. The design of intelligent wireless networks requires 

that QPE parameters for a location be known at different epochs. 

This requires that disdrometers with spatial variability should be 

capable of multi-temporal QPE observations. A disdrometer 

architecture that addresses this challenge is presented in this 

paper. The proposed multi–temporal disdrometer incorporates a 

computing payload for storing QPE related data at multiple 

epochs. Performance evaluation shows that the use of the 

proposed multi–temporal disdrometer in QPE related data 

acquisition increases data suitable for QPE related modelling by 

up to 52.2% and 49.4% in the short term and long term 

respectively. 

  
Keywords: Remote Sensing; Quantitative Precipitation Estimation; 
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I. INTRODUCTION 

Data acquisition for precipitation studies plays an important 
role in wireless network design. Wireless systems that 
incorporate earth to space links transmitting in high frequency 
bands are subject to rain attenuation [1-2]. Rainfall studies 
require equipment enabling the determination of key 
parameters. The disdrometer is an important instrument that is 
used to study rainfall pattern and acquiring rain data.  

The disdrometer enables the determination of important 
parameters such as the rain rate at a given location. The rain 
rate enables the computation of rain induced attenuation for 
space to earth network links with coverage over different 
regions [1-2].  

    The use of the disdrometer enables the observation of 
rain drop size distribution. It plays an important role in studying 
the microphysics associated with rain events at different 
locations [3-4]. The data acquired by the disdrometer is used 
for observing different rainfall events and microphysical 
behavior. Data acquired by the disdrometer is used for 
modelling rain attenuation in earth to space links.  

         Wireless networks benefit from the use of intelligent 
mechanisms and should be able to make decisions as regards 
data transmission while considering the effect of rain 
attenuation. This requires having access to rain data across time 
and space. The specific rain attenuation is currently determined 
largely via the radio propagation models from the international 
telecommunications union (ITU–R) model. The ITU-R model 
considers the geographical coordinates and the rainfall rates as 
important parameters in determining the rain induced 
attenuation. The model does not incorporate the temporal 
dimension (considering seconds, and milliseconds) for rainfall 

variation at a given geographical location. Instead, a uniform 
rainfall rate for a given location observed at an epoch is 
assumed and used for computing the rain attenuation. A 
temporal consideration of rainfall events and associated 
parameters is important for designing intelligent 
communication networks. This is because a temporal 
consideration enables the designer to obtain more information 
from data. This enables the intelligent networks to make more 
accurate intelligent network decisions. The ability to obtain 
information in the scale of seconds and milliseconds helps to 
make decisions as regards predicting rain attenuation that 
influences choice of operational parameters in intelligent 
wireless networks. This is beneficial for wireless networks 
where the latency is in the order of seconds and milliseconds 
duration.  
 

 A knowledge of the rainfall rate at a given location and 
epoch is important in making an estimate of rain-induced 
attenuation in wireless networks. Therefore, the disdrometer to 
be used in conducting studies with relation to the design of 
future networks should be able to acquire and process 
additional data. Data acquisition is important in modelling the 
temporal and spatial variation of rainfall and its influence on 
wireless networks.  This requires novel disdrometer 
architecture. The novel disdrometer incorporates the ability to 
acquire rainfall data at multiple epochs i.e. considering the 
temporal dimension.  

Disdrometer applications benefit from the incorporation of 
concepts from artificial intelligence and machine learning [5–
9]. However, existing consideration has not incorporated the 
temporal dimension.     

     This paper discusses the capabilities required to enhance the 
disdrometer’s data acquisition capabilities while enhancing 
rainfall prediction in relation to modelling rain induced 
attenuation in wireless networks.  
    The paper makes the following contributions:   
 

1) First, the paper proposes disdrometer architecture with 
spatial and multi-temporal observation capability. The 
proposed disdrometer enables the evaluation of 
quantitative precipitation estimation (QPE) at a given 
location (spatial dimension) and multiple epochs 
(multi-temporal observation). The output of the 
proposed disdrometer enables the computation of 
desired parameters at selected epochs at a given 
location.  
 

2) Second, the paper investigates how the use of the 
proposed disdrometer enhances QPE related data. This 
is because the use of the proposed disdrometer 
enhances the availability of data accessible for QPE. 
The paper formulates the total QPE related data 
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accessible before and after incorporating the proposed 
disdrometer architecture.  

 
3) Third, the paper investigates the amount of QPE 

related data that is accessible from a disdrometer 
network. The disdrometer network comprises non-
video and video disdrometers with and without the 
proposed architecture.  
 

   The remaining section of this paper is organized as 
follows. Section II describes the existing work on the use of the 
disdrometer in hydrometeor and rainfall modelling for wireless 
networks.  Section III describes the problem statement being 
addressed. Section IV presents the proposed mechanisms and 
data processing framework. Section V formulates the 
performance model. Section VI discusses the simulation 
results. Section VII concludes the paper.  

II. DISDROMETER USE - EXISTING WORK.   

   The study of rainfall and precipitation can be done via 
radar meteorology. Weather radar systems can be used to 
derive rainfall measurements and retrieval algorithms can be 
used to derive different parameters. Radar measurements can 
be combined via different mathematical relationships to obtain 
the rainfall rate, drop size distribution and specific attenuation. 
However, the use of weather radar to obtain these parameters 
is done in an indirect manner. This is done using expressions 
that enable the computation of the rainfall intensity from rain 
reflectivity as seen in [10-11].    

    The disdrometer plays an important role in determining the 
micro-structural properties of rainfall. This is because the 
disdrometer enables the measurement of rain rate and drop size 
distribution. The drop size distribution determined by the 
disdrometer is used to conduct the QPE. This estimation is 
useful in determining parameters such as specific rain 
attenuation.  
 

Rainfall and precipitation studies require the acquisition of 
location specific information. For example, the rainfall 
distribution for Durban receives consideration in [12].  In [12], 
it is recognized that different statistical variations such as the 
Marshall-Palmer model, modified gamma distribution model 
and the tropical lognormal model can be used to model the rain 
drop size distribution.  

 The study in [12] focuses on rainfall modelling to 
determine the rain induced attenuation in wireless networks. 
The evaluation of the QPE for wireless networks is done with 
the aim of determining the associated rain-induced attenuation. 
This perspective can also be found in [13-16]. The study in [12] 
examines the process of estimating rainfall attenuation.  

 The estimation of rainfall attenuation requires having 
values for the rainfall drop-size distribution computed via the 
disdrometer. Additional parameters that are used are raindrop 
fall velocity, raindrop diameter interval, disdrometer sampling 
area and disdrometer sampling time (disdrometer hardware 
specific). In [15], the focus is on finding the rainfall attenuation 
for communication systems with frequencies beyond 10 GHz.  
The rainfall parameters are measured via a Joss-Waldvogel 
RD-80 disdrometer. Some of the parameters that are measured 
in this case are the rainfall rate, number of rainfall drops and 
the radar reflectivity.  

    Research on the role of QPE in wireless networks aim to 
determine the rainfall attenuation. However, the influence of 
rainfall is not only limited to the aspect of rain attenuation at a 
given location in wireless networks. It also varies with time i.e. 

temporal dimension. However, existing consideration neglects 
the temporal dimension and does not consider rainfall rate at 
multiple epochs (temporal dimension) and in a given location.  

     The disdrometer is used to conduct observations enabling 
the QPE. Significant factors such as high costs limit the use of 
disdrometer in QPE. Different approaches such as the use of 
synthetic rain fields have been recognized to be suitable. The 
use of synthetic rain fields also addresses challenges such as 
the occurrence of incomplete and uncertain information in 
rainfall measurement. However, the realization of synthetic 
rain fields requires the use of measured rain fall data and drop 
size distribution. The existing method considers only the spatial 
dimension i.e. location. This implies that the use of synthetic 
rain fields does not consider the temporal dimension i.e. 
seconds and milliseconds variation of rainfall events.   

III. PROBLEM DESCRIPTION   

     This section describes the problem being addressed. The 
scenario being considered is that of a wireless network with 
earth to space or earth to aerial links. In an earth to space link, 
the space segment comprises communication satellites that 
transmit to a ground segment entity i.e. earth station. The earth 
to aerial link comprises high altitude platforms transmitting to 
a ground segment entity.  

Let 𝛼 denote the set of locations where satellite and high 
altitude platform i.e. aerial platforms provide network 
coverage.  

               𝛼 = {𝛼1, 𝛼2, … , 𝛼𝐼}                                                    (1)

In addition, let 𝑓 denote the set of operational frequencies 
for satellites and high altitude platforms.   

            𝑓 = {𝑓1, 𝑓2, … , 𝑓𝐽}                                                       (2) 

The current use of disdrometer enables the determination of 

the rainfall rate at the 𝑖𝑡ℎ location 𝛼𝑖  , 𝛼𝑖  𝜖 𝛼. The rainfall rate 
at the location 𝛼𝑖 is denoted  𝑟(𝛼𝑖). The rainfall rate at location 
𝛼𝑖 i.e. 𝑟(𝛼𝑖) is used to determine the specific rain attenuation 
at frequency 𝑓𝑧 , 𝑓𝑧 𝜖 𝑓 where the specific rain attenuation for 
location 𝛼𝑖 at frequency 𝑓𝑧 is denoted  𝛾(𝛼𝑖 , 𝑓𝑧).  

The derivation of the specific rain attenuation 𝛾(𝛼𝑖 , 𝑓𝑧) 
requires the parameters obtained from the disdrometer.  

Given that a non-terrestrial platform has cognitive radio 
capability and utilizes different frequencies. The non-terrestrial 
platform also seeks to transmit in a frequency with the least rain 
attenuation.  In this case, the cognitive radio aboard the non-
terrestrial platform transmitting in frequencies 𝑓1, 𝑓2 and 𝑓𝑧; 
𝑓1 𝜖 𝑓 , 𝑓2 𝜖 𝑓 at an epoch 𝑡𝑒, 𝑡𝑒𝜖 𝑡 , 𝑡 = {𝑡1, 𝑡2, . . , 𝑡𝐸} should 
have access to the data on 𝛾(𝛼𝑖 , 𝑓1), 𝛾(𝛼𝑖 , 𝑓2) and 𝛾(𝛼𝑖 , 𝑓𝑧) at 
epoch 𝑡𝑒. Incorporating the role of the epoch 𝑡𝑒, the specific 
rain attenuation is re-written as  𝛾(𝛼𝑖 , 𝑓1, 𝑡𝑒), 𝛾(𝛼𝑖 , 𝑓2, 𝑡𝑒) and 
𝛾(𝛼𝑖, 𝑓𝑧 , 𝑡𝑒) for frequency 𝑓1, 𝑓2 and 𝑓𝑧 respectively.  

The values of  𝛾(𝛼𝑖, 𝑓1, 𝑡𝑒), 𝛾(𝛼𝑖 , 𝑓2, 𝑡𝑒) and 𝛾(𝛼𝑖 , 𝑓𝑧, 𝑡𝑒) are 
required to enable the non-terrestrial platform with cognitive 
radio capability determine the frequency suitable at each epoch 
i.e. with the least rain attenuation.  

    Furthermore, wireless network design requires a rain 
fading margin and should consider the value of the rainfall rate 
at a given location and epoch. Designing the link budget 
requires having knowledge of the probability that the rainfall 
rate is at a given value in a given location 𝛼𝑖 for a specified 
epoch.  



    Since the rainfall rate is acquired for different locations, 
it is feasible to estimate the probability that the rainfall rate of 
a given value is obtainable at a certain location. In this case, the 
probability 𝑃(𝑟(𝛼𝑖)) is that of obtaining a rainfall rate of 𝑟(𝛼𝑖) 
at location 𝛼𝑖. However, to develop a more accurate estimation 
of the rain fade margin in the link budget; the probability of 
obtaining a rainfall rate 𝑟(𝛼𝑖) at epoch 𝑡𝑒 and denoted as 
𝑃(𝑟(𝛼𝑖), 𝑡𝑒) is required.  

     The determination of the precipitation related 
parameters 𝛾(𝛼𝑖 , 𝑓1, 𝑡𝑒),   𝛾(𝛼𝑖 , 𝑓2, 𝑡𝑒),   𝛾(𝛼𝑖 , 𝑓𝑧, 𝑡𝑒) and 
𝑃(𝑟(𝛼𝑖), 𝑡𝑒) requires that the disdrometer should be capable of 
incorporating the temporal dimension in its observation 
procedure. However, the availability of these parameters is 
currently challenging from the perspective of QPE estimation.  

   The incorporation of the temporal dimension (time 
domain) into disdrometer measurement campaigns is required 
to realize 𝛾(𝛼𝑖, 𝑓1, 𝑡𝑒), 𝛾(𝛼𝑖 , 𝑓2, 𝑡𝑒), 𝛾(𝛼𝑖 , 𝑓𝑧, 𝑡𝑒) and 
𝑃(𝑟(𝛼𝑖), 𝑡𝑒). This also leads to the emergence of more data 
from the disdrometer. In a case where multiple disdrometers 
are used, the data resulting from the measurement procedure 
becomes significant and should be processed to enhance 
decision making with the goal of improving the quality of data 
transmission in wireless networks. The considered wireless 
networks incorporate non-terrestrial communication nodes.  

 A representation of disdrometers and how they enable the 
realization of QPE related observation and computation is 
shown in Fig.1. The scenario on the left in Fig. 1 shows the 
disdrometer with existing capabilities. In this case, the 
disdrometer observes the rain rate at location 1 on Day 1. In 
this case, observation is conducted for three epochs i.e. 𝑡1 , 𝑡2 
and 𝑡3.  

    The figure on the right in Fig. 1 shows the case describing 
the disdrometer being proposed. In this case, the epochs 𝑡1 , 𝑡2 
and 𝑡3 now comprise sub-epochs (realized after incorporating 
the proposed temporal dimension).  Each initial epoch 
comprises a total number of a sub-epochs. The proposed 
disdrometer can execute QPE related observation as presented 
in the scenario shown on the right in Fig.1.  

 
 
 
 
 
 
 
 
 
 
 
Fig.1: Scenarios with disdrometers (Left) existing disdrometers and 
(Right) proposed disdrometer capability.  

 

IV. PROPOSED MECHANISM  

This section presents the proposed mechanism that enables 
the conduct of disdrometer measurement campaigns while 
incorporating temporal dimension.  The consideration of the 
temporal dimension is done for two reasons.  

    The first reason is that it enables an increased amount of 
QPE related data to be accessed by disdrometers. This has the 
benefit of increasing the amount of data accessible for the QPE 
modelling process. This is because the accuracy of QPE models 
aiming to predict rain induced attenuation improves when more 
data is available and accessible from disdrometers.   

    The second reason is to enable the determination of 
𝛾(𝛼𝑖, 𝑓1, 𝑡𝑒), 𝛾(𝛼𝑖 , 𝑓2, 𝑡𝑒), 𝛾(𝛼𝑖 , 𝑓𝑧, 𝑡𝑒) and 𝑃(𝑟(𝛼𝑖), 𝑡𝑒). The 
goal of determining these parameters can be realized by 
incorporating time stamps in the disdrometer.  

    In monitoring the precipitation related parameters, a 
single disdrometer can be used as seen in [17]. The use of 
disdrometer networks is also feasible. Disdrometer networks 
enable the consideration of spatial and temporal variability in 
QPE.  

   Jameson et al [18] propose a disdrometer network 
comprising 21 optical disdrometers. The two-dimensional 
observation enables the consideration of different factors that 
interact in a rainfall event. The discussion in [18] considers the 
role of a disdrometer network in enabling a two dimensional 
study of rainfall events. The scenario in [18] considers 21 
disdrometers with a separating distance of up to 100m. The 
disdrometer network is intended to cover a distance of up to 2.1 
km.  

     The discussion in [19] utilizes a network of disdrometers 
to examine the variability of drop size distributions for rainfall 
in space. Raupach et al [19] have identified that disdrometer 
networks find widespread applications in the study of different 
precipitation patterns. The discussion in [19] examines the 
existing work from the perspective of QPE via disdrometer 
networks.  

   Disdrometer networks have the benefit of enabling the 
conduct of observations that capture the spatial variability of 
rainfall events. They also have the benefit of capturing the 
effect of spatial and temporal variability. This implies that 
rainfall events can be observed for similar epochs at different 
locations but challenging for close epochs at the same location. 

    However, the use of disdrometers does not incorporate 
time stamps in precipitation observation and estimation. QPE 
evaluation via disdrometer networks also enhances the 
resolution associated with precipitation estimation. This is 
especially in the case where disdrometer networks comprise 
multiple disdrometers covering a large geographical region 
with a high overall baseline. In such a disdrometer network, 
individual disdrometers have a temporal resolution that 
influences the sampling epoch and the duration associated with 
ongoing estimation.  

  The temporal resolution in the disdrometer is not related 
to capturing the details at the epoch of precipitation 
observation.  

    The use of a disdrometer network is recognized to be 
advantageous for QPE estimation.  The disdrometer network 
being proposed considers the conduct of quantitative 
precipitation estimation in two contexts. The context being 
considered address challenges related to obtaining data from 
the proposed disdrometer for processing.  

   The rest of the discussion in this section is divided into 
two parts.  The first part presents the architecture of the 
proposed disdrometer. The second part discusses data 
transmission aspects of the proposed disdrometer architecture.  

A. Proposed Solution – Disdrometer Architecture  

     The proposed disdrometer incorporates a computing 
payload. The computing payload hosts resources and captures 
details associated with the onset of executing sampling 
algorithm aboard the disdrometer. The disdrometer also 
acquires details on the epochs associated with the completion 
of sampling.  

Location 1, Day 1   

 
Epoch  { 𝒕𝟏, 𝒕𝟐. 𝒕𝟑} 

Location 1, Day 1   

 
Epoch 

𝒕𝟏 =  {𝒕𝟏
𝟏, 𝒕𝟏

𝟐, . . , 𝒕𝟏
𝒂}     

𝒕𝟐 =  {𝒕𝟐
𝟏, 𝒕𝟐

𝟐, . . , 𝒕𝟐
𝒂}     

𝒕𝟑 =  {𝒕𝟑
𝟏, 𝒕𝟑

𝟐, . . , 𝒕𝟑
𝒂}     

 

 

 



    The disdrometer also captures details on the following 
parameters: (i) epoch at which sampling begins, (ii) epoch at 
which sampling ends and (iii) delay between rain sensing and 
onset of sampling process for a given computation procedure.  
These additional details are associated with the precipitation 
related details and computed at the concerned epochs.  

    The architecture of the proposed disdrometer is shown in 
Fig. 2.  In Fig. 2, the QPE payload hosts components that enable 
the monitoring of important rainfall parameters. It also hosts 
the sampling entity enabling the computation of QPE related 
parameters associated with different temporal resolution.  

     The computing payload hosts the resources enabling the 
aggregation of the details captured by the disdrometer. The 
computing payload supports the execution of algorithms and 
enables the creation of the precipitation record. The data 
storage entity stores the resulting precipitation record.  

   The precipitation record being stored in the data storage 
entity is transferred to the processing entity (not shown in Fig. 
2 being external to the proposed disdrometer) via the 
communication module. The communication module interacts 
with wireless networks. It relates with external networks and 
ensures that a low amount of onboard disdrometer power is 
used for data transmission.   

 

 

 

 

 

 

 
      

 

 

 Fig. 2: Architecture block diagram of the proposed disdrometer.  

 

The relations between sub–epochs in existing disdrometer 
and proposed disdrometer are shown in Fig. 3 and Fig. 4 
respectively. Fig. 3 shows an observation epoch for the 
disdrometer. The disdrometer observes rainfall related data 
useful for QPE during the considered epoch.  Fig. 4 shows the 
relations between epochs and sub–epochs as considered in the 
proposed disdrometer architecture. The single epoch in Fig. 3 
has only one unique QPE related data point.  

     In Fig. 4, the single epoch previously considered in Fig. 3 

now has three sub–epochs. Though, three sub–epochs have 

been considered in Fig. 4; multiple sub–epochs are possible.  

The case for three sub–epochs is only considered for the 

purpose of illustration in this paper. The proposed disdrometer 

architecture can support a variable number of sub– epochs. 

Each sub–epoch corresponds to a QPE data point.  

 

 

 

 

 
Fig. 3: Observation epoch for existing disdrometer.   

 

 

 

Fig.4: Observation epoch with three sub–epochs in proposed 

disdrometer.   
 
    The flowchart showing the functionality of the proposed 
disdrometer is presented in Fig. 5. The sub–epochs are 

specified in the scale of milliseconds while the epochs are 
specified in definition of real time i.e. the format of hours, 
minutes and seconds. In Fig. 5, the disdrometer is deployed in 
a location experiencing rainfall and selects multiple epochs 
lying within a given duration. The disdrometer observes QPE 
related data for a given sub–epoch and stores the data in 
onboard disdrometer memory. In the event that QPE related 
data is not observed and stored onboard disdrometer memory, 
the disdrometer tries to re–capture the concerned data. 
However, the epoch is flagged as lacking the required data in 
the onboard memory in the disdrometer when the start and stop 
epochs are no longer valid. The data observed by the proposed 
disdrometer are stored for later access onboard the disdrometer 
memory.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

                       Fig.5: Flowchart of the proposed disdrometer.  

B. Data Transmission Aspects   

The considered disdrometer is installed in a location with 
wireless network coverage. The communication module 
aboard the proposed disdrometer transfers the precipitation 
record from the data storage entity to processing platform 
through terrestrial wireless networks.  

  The disdrometer’s communication module can also 
transmit the precipitation record to wireless sensor networks. 
The transmission of data to the wireless sensor network is 
preferable because of the low power requirements. However, 
the communication module transmits the data to terrestrial 
wireless networks if wireless sensor networks are not detected.  

   The transmission of data to the wireless sensor network 
or terrestrial wireless network is intended to deliver the 
acquired precipitation record to the cloud computing platform. 
The precipitation record comprises information on the (i) 
precipitation related parameters evaluated by the disdrometer 

QPE Payload  Computing 

Payload  

Data Storage 

Entity   

Communication Module  

Disdrometer is deployed in a location with rainfall incidence.  

QPE related data in 

onboard memory 

for all sub – 

Disdrometer selects duration (start and stop epochs) of rainfall 

observation and data acquisition.  

Disdrometer selects multiple sub–epochs (greater than or equal 

to 3) within selected duration.  

Disdrometer selects another duration with pre-defined 

multiple sub–epochs (greater than or equal to 3) within 

selected duration.  

The disdrometer re–attempts to capture data before 

expiration of concerned duration.   

Captured data is stored in disdrometer onboard memory. 

Sub–epochs for which data is not captured are flagged in 

the data record that is stored aboard disdrometer 

memory.  

Yes 

No 



in the QPE procedure, (ii) epoch at which sampling begins and 
(iii) epoch at which sampling is completed. The data on the 
epoch at which sampling begins and at which sampling ends is 
stored in the proposed disdrometer.  

   The precipitation record is transmitted in the following 
manner. In the case where disdrometers transmit to the wireless 
sensor network; the wireless sensor network transmits the 
precipitation record to the terrestrial wireless network such as 
the long term evolution-advanced (LTE–A). The use of the 
wireless sensor networks is suitable when disdrometers have 
severe power constraints.  This arises in the case where 
disdrometers are battery powered.  

V. PERFORMANCE FORMULATION  

The use of the proposed disdrometer in a standalone 
manner and in a disdrometer network enhances the QPE.  This 
is considered due to two reasons. The first is that the proposed 
disdrometer acquires QPE data across spatial and multi-
temporal dimensions. A multi-temporal dimension implies that 
the same parameter is observed across multiple epochs and 
averaged across multiple epochs for a given spatial dimension 
i.e. location. In existing disdrometers, only the spatial 
dimension is considered. This implies that QPE related 
parameters are evaluated for multiple epochs and averaged for 
a given location.  

  Performance formulation considers the size of QPE 
related data before and after using the proposed disdrometer 
architecture. Let d denote the set of disdrometers such that: 

         𝑑 = {𝑑𝑜, 𝑑𝑛}                                                                        (3) 

       𝑑𝑜 = {𝑑𝑜
1, … , 𝑑𝑜

𝑄}                                                                 (4)  

                             𝑑𝑛 =
{𝑑𝑛

1 , … , 𝑑𝑛
𝑃}                                                                (5) 

𝑑𝑜 and 𝑑𝑛 are the set of existing disdrometers and proposed 
disdrometers respectively.  

𝑄 and 𝑃 are the total number of existing disdrometers and 
proposed disdrometers respectively.  

The size of the data acquired by the 𝑞𝑡ℎ existing 

disdrometer 𝑑𝑜
𝑞

 , 𝑑𝑜
𝑞

 𝜖 𝑑𝑜  at location 𝛼𝑖 is denoted 𝑁(𝛼𝑖 , 𝑑𝑜
𝑞

 ). 

The data acquired by 𝑑𝑜
𝑞
 at location 𝛼𝑖 is that observed at 

different instants and averaged.  

In the case of the 𝑝𝑡ℎ proposed disdrometer 𝑑𝑛
𝑝

 , 𝑑𝑛
𝑝

 𝜖 𝑑𝑛 , 
the size of the data acquired by the disdrometer 𝑑𝑛

𝑝
 at location 

𝛼𝑖 and epoch 𝑡𝑒 is denoted  𝑁(𝛼𝑖, 𝑑𝑜
𝑞

, 𝑡𝑒). In this case, QPE 

related data is acquired by the disdrometer 𝑑𝑛
𝑝
 at location 𝛼𝑖 for 

multiple epochs. The variable 𝑁(𝛼𝑖 , 𝑑𝑜
𝑞

, 𝑡𝑒) describes the QPE 

related data acquired at epoch 𝑡𝑒 by the disdrometer 𝑑𝑛
𝑝
 at 

location 𝛼𝑖.  

For the existing disdrometer (without spatial multi-
temporal observation capability), the total size of acquired QPE 
data is denoted  𝑍1 and given as: 

 𝑍1 =  ∑ ∑ 𝑁(𝛼𝑖 , 𝑑𝑜
𝑞

 )

𝐼

𝑖=1

𝑄

𝑞=1

                                                          (6) 

    The total size of QPE related data acquired when the 
proposed disdrometer (incorporating spatial multi-temporal 
resolution observation capability) is used is denoted 𝑍2 and 
given as:  

   𝑍2 =  ∑ ∑ ∑ 𝑁(𝛼𝑖 , 𝑑𝑜
𝑞

, 𝑡𝑒)                                             (7)

𝐸

𝑒=1

𝐼

𝑖=1

𝑄

𝑞=1

 

VI. SIMULATION AND DISCUSSION  

The simulation procedure investigates how the use of the 
proposed disdrometer enhances the size of the QPE related data 
that is obtained from the network. A high QPE data size is 
beneficial.  

   In the simulation procedure, video disdrometers and non– 
video disdrometers are utilized. Both disdrometers are 
considered with and without the proposed architecture.  
Simulation parameters are shown in Table I. It is assumed that 
disdrometers have varying data processing capabilities.  

 TABLE I: SIMULATION PARAMETERS  

Parameter Value 

Number of non-video disdrometers (NVDs) 25 

Number of video disdrometers (VDs) 25 

Maximum size of QPE data from NVDs at an epoch(in 
absence of proposed mechanism)  

9.03 Mbytes 

Minimum size of QPE data from NVDs at an epoch(in 

absence of proposed mechanism)  

0.30 Mbytes 

Mean size of QPE data from NVDs at an epoch (in 
absence of proposed mechanism) 

4.68 Mbytes 

Maximum size of QPE data from VDs at an epoch(in 

absence of proposed mechanism)  

194.12 Mbytes 

Minimum size of QPE data from VDs at an epoch(in 
absence of proposed mechanism)  

7.14 Mbytes 

Mean size of QPE data from VDs at an epoch (in 

absence of proposed mechanism) 

127.95 Mbytes 

Maximum size of QPE data from VDs at an epoch(in 
absence of proposed mechanism)  

190.03 Mbytes 

Minimum size of QPE data from VDs at an epoch(in 

absence of proposed mechanism)  

23.56 Mbytes 

Mean size of QPE data from VDs at an epoch (in 
absence of proposed mechanism) 

100.87 Mbytes 

Maximum size of QPE data from NVDs at first  epoch 

(incorporating proposed mechanism) 

8.41 Mbytes 

Minimum size of QPE data from NVDs at first 
epoch(incorporating proposed mechanism)  

0.11 Mbytes 

Mean size of QPE data from NVDs at first epoch 

(incorporating proposed mechanism) 

4.23 Mbytes 

Maximum size of QPE data from VDs at second   
epoch (incorporating proposed mechanism) 

189.27 Mbytes 

Minimum size of QPE data from VDs at second epoch 

(incorporating proposed mechanism)  

0.88 Mbytes 

Mean size of QPE data from VDs at second epoch 
(incorporating proposed mechanism) 

93.43 Mbytes 

Maximum size of QPE data from NVDs at second   

epoch (incorporating proposed mechanism) 

6.83 Mbytes 

Minimum size of QPE data from NVDs at second 
epoch (incorporating proposed mechanism)  

0.57 Mbytes 

Mean size of QPE data from NVDs at second epoch 

(incorporating proposed mechanism) 

3.07Mbytes 

 
The simulation parameters presented in Table I are used to 

investigate the size of QPE related data and the cummulative 
QPE related data before and after incorporating the proposed 
disdrometer architecture. The data is used for the conduct of 
the QPE related studies. The results for the size of QPE related 
data and cummulative QPE related data obtained via 
simulations is shown in Fig. 6 and Fig. 7 respectively. In Fig. 6 
and Fig. 7, each epoch corresponds to a unique time instant.  

 The results in Fig. 6 and Fig. 7, show that the incorporation 
of the proposed disdrometer architecture (with multi-temporal 
dimension) capability enhances the QPE related data that is 
obtained from the disdrometer network.  

      The use of the proposed disdrometer architecture for a 

varying number of epochs (with up to 3 epochs) enhances the 



size of QPE related data in comparison to existing disdrometer 

architecture (existing scheme). This increases the QPE data 

available for modelling. The developed model is used for 

determining rain induced attenuation in wireless networks.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

    The result in Fig. 6 enables the increase in QPE related 
data to be determined for disdrometer pairs. In the simulation, 
a disdrometer pair comprises two disdrometers. The two 
disdrometers are a non-video disdrometer and a video 
disdrometer. In addition, the result in Fig. 7 enables the 
simulation procedure to evaluate how the use of the proposed 
disdrometer architecture enhances the total QPE related data 
that is accessed in the long term. This enables the simulation of 
the long term performance benefit of using the proposed 
architecture in disdrometer pairs.  

  Analysis of the performance results in Fig. 6 shows that 
the use of disdrometers with spatial and multi-temporal 
variability (Proposed Scheme–1 Epoch) instead of the 
disdrometers with existing spatial and temporal variability 
capability does not enhance the QPE related data. This is 
because the proposed disdrometer is not used to obtain QPE 
data at multiple epochs.   

 In addition, the simulation parameters show that the 
existing disdrometer has higher data sizes than the proposed 
disdrometer at only one epoch. However, in the case where the 
proposed disdrometer observes QPE related data at 2 and 3 
epochs, the amount of QPE related data is obtained. Analysis 
shows that the use of the proposed disdrometer enhances the 
QPE related data by an average of 26.9% and 52.2% when the 

proposed disdrometer acquires QPE related data for 2 and 3 
epochs in comparison to existing disdrometers respectively.    

 The result in Fig. 7 enables the increase in cummulative 
QPE related data to be determined for disdrometer pairs. This 
aspect of the simulation is suitable for determining the 
cummulative QPE related data obtained from the disdrometer 
network in the long run. In this case, the use of the proposed 
disdrometer architecture enhances the QPE related data 
obtained by 49.4% on average. Therefore, the use of the 
proposed disdrometers for 2 epochs and 3 epochs instead of the 
existing disdrometer increases the QPE related data obtained 
by 22.5% and 49.4 % on average respectively.  

VII. CONCLUSION 

This paper addresses the challenge of obtaining data from 

quantitative precipitation estimation procedures to improve 

rainfall modelling. It proposes an architecture that aims to 

equip disdrometers with multi-temporal and spatial variability 

capacity. The disdrometers with multi-temporal and spatial 

variability enable the observation of hydrometeors at the same 

epochs in a given location. The proposed disdrometer also 

develops an epoch based average of the concerned precipitation 

parameter for a given location. This advances the observation 

capability in existing disdrometers with temporal and spatial 

variability observation capability. The use of the proposed 

disdrometers increases the QPE related data obtained from 

disdrometer networks. This increases the ability to accurately 

model precipitation behaviour and also obtain additional 

parameters from the quantitative precipitation estimation 

procedure. Evaluation shows that the use of the proposed 

disdrometer instead of existing disdrometer in disdrometer 

networks enhances the QPE related data in the short term and 

in the long term. Future work aims to explore the technologies 

required to realize the physical design of the proposed 

disdrometer. Additional work also aims to investigate how the 

use of the proposed disdrometer enhances QPE related 

modelling.  
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