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Abstract

Metrology is one of the many applications of machine vision, which has
the advantage that allows for the analyzing of a total production batch
that leaves an assembly line without supposing a bottleneck. As a result,
quality control become a priority in the inspection processes of industrial
manufacturing. Due to the advancement of technology and the realizations
of Industry 4.0, smart factories demand high precision and accuracy in
the measurements and inspection of industrial products. Machine vision
technology provide image-based inspection and analysis for such demanding
applications. With the use of software, sensors, cameras and robot guidance,
such integrated systems can be realized. Machine vision highlights a growing
trend in industrial systems. As camera sensors become smarter, the quality
of data produced offers accuracy into the systems operations.

This thesis is a study of the typical vision system pipeline, in the
different phases, necessary to achieve optimal inspection in an industrial
operation. The first step is the study of the light alignment to monitor and
achieve an optimal light alignment system, in order to eliminate the effects
of misalignment. The algorithm was tested with a not-optimal system to
ascertain its effeciency and effectiveness. In the second phase, a deep study
of the calibration process is carried out to address the effect of different
parameters as the camera focus among others. Endocentric and telecentric
lenses are used in the image acquisition and a comparative analysis is
obtained using a multivariable statistical analysis to study the influence
of each parameter in the calibration process: camera focus, exposure time,
calibration plate tilt and number of images used. In the third proposal,
an object alignment algorithm is developed to address the challenge of
object alignment during a measurement process. Object plane alignment
is key point for achieving good repeatability of object measurements in
all orientations. A complete study of the impact of every single pipeline
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phase is carried out in the proposals validation chapter. Finally, a complete
2D machine vision application is developed to determine the precise
measurement of gears, at subpixel level, with the potential to improve
quality control, reduce downtime and optimize the inspection process. The
calibrated vision system was verified by measuring a ground-truth sample
gear in a Coordinate Measuring Machine (CMM), using the parameter
generated as the nominal value of the outer diameter. A methodical study
of the global uncertainty associated with the process is carried out in order
to know better the admissible zone for accepting gears.

This thesis try to reach the optimal values in every single phase of the
pipeline in order to improve the accuracy of the inspection. The different
studies and algorithms developed in this thesis show that it is worthwhile
to invest on achieving the optimal values during the different phases of an
industrial inspection process.
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Chapter 1

Introduction

Metrology and machine vision are two fields that have been considered
jointly by other authors, due to the versatility of artificial vision to
solve industrial problems. Metrology is one of the many applications of
machine vision, which has the advantage that allows for the analyzing of
a total production batch that leaves an assembly line without supposing a
bottleneck in production. These topics are the basis for the elaboration
of this dissertation, as well as to understand the need for a good
metrology system based on artificial vision. The advancement of technology
and the realizations of Industry 4.0 in modern world applications has
amplified the research possibilities in the field of machine vision and
industrial inspections. Image-based inspection and automatic applications
analysis, such as robot guidance, process control and automatic inspection
are the mainstream technologies of machine vision in today’s industries
(Sanz, 2012) (Steger et al., 2018). These conventional technologies usually
involves a stream of integrated systems, hardware products, methodologies
and expertise that uses software algorithms across sensors, cameras and
hardware processing to automate mundane and complex inspections that
guides the precise handling of tasks and equipment during the assembly
of products. The distinctions of such applications vary from verification,
positioning, flaw detection, identification and measurement. In the bit
to improve control quality, low production cost and higher yields, a
machine vision system can work pertinaciously accomplishing very low
error rates during inspection processes (Pedreschi et al., 2006). The system
configuration involves diverse components, ranging from the sensor cameras
to image acquisitions for inspection, critical to the processing framework
that provides and communicates the outcome. With the rapid development
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4 Chapter 1. Introduction

of image processing and pattern recognition, machine vision technology has
attracted more attentions. In addition, it is widely used in the industrial
field, for its simplicity, non-contact and robustness (Jurkovic et al., 2005). It
is a pre-eminent tool for quality control inspection of a variety of products
such as industrial components and manufacturing tools.

1.1 Machine Vision System

Machine vision is the technology and method used to provide imaging-based
automatic inspection and analysis for applications such as automatic
inspection, process control, and robot guidance, usually in the industry
(Sanz, 2012). It integrates image capture systems with digital input/output
devices and computer networks to provide real time quality control and for
general control of manufacturing equipment such as robots. Manufacturing
industries favour machine vision for visual inspections that require
high-speed, high-magnification, 24-hour operation, and repeatability of
measurements. A typical machine vision system will be a part of an
automated production process consisting of the following components:

� One or more digital cameras (monochrome or color) with suitable
optics for acquiring images, such as lenses to focus the desired field of
view onto the image sensor, suitable light sources and where necessary
filters, to help minimize glare and reflections, enhance colors, reduce
light coming into the lens.

� A synchronizing sensor for part detection to trigger image acquisition
and processing and some form of actuators to sort, route or reject
defective parts.

� A computer program to process images, detect, measure and compare
in order to confirm that a quality criterion has been met to provide
type verification or robot control to another control system.

� Input/Output hardware or communication links to report results and
to automatically reject components.

Figure 1.1 illustrates the components of a typical machine vision system.
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Figure 1.1: An outline of a machine vision system

A machine vision system can work tirelessly performing 100%
inspection, resulting in improved product quality, higher yields and lower
production costs (Pedreschi et al., 2006). It consists of several critical
components, from the sensor camera that captures a picture for inspection,
to the processing engine itself (vision application) that renders and
communicates the result (Peng et al., 2016). It is an excellent tool for
inspecting a variety of items such as industrial components, and machine
tools. Machine vision traditionally refers to the use of Computer Vision
in an industrial or practical application or process where it is necessary
to execute a certain function or outcome based on the image analysis
done by the vision system. The vision system uses software to identify
pre-programmed features. The system can be used to trigger a variety of
set actions based on the findings (Beyerer et al., 2015).

Often thought to be one in the same, Computer Vision and Machine
Vision are different terms for overlapping technologies: Computer Vision
refers in broad terms to the capture and automation of image analysis
with an emphasis on the image analysis function across a wide range
of theoretical and practical applications (Szeliski, 2010). Machine Vision
methods has been implemented to develop specific quality control
application and algorithms in a manufacturing industry process.
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In inspection tasks (measures, check gaps) and metrology (dimensional
inspection of parts) it is very important to study the best technology
to inspect the element (camera, optics, illumination) and machine vision
brings benefits with respect to other mechanical solutions (for example,
probe clocks, three-dimensional machines, etc.). There are many solutions
in the market and companies dedicated to implementing solutions. However,
there are still niches where machine vision solutions are not applied for
several reasons:

� Ignorance of current hardware and software and its possibilities and
limitations.

� Too complex problem and/or ignorance of the underlying theory in
technology.

� Accuracy requirements too high.

� Knowledge gap in evaluating and performing uncertainty analysis.

1.2 The Benefits of Machine Vision Technology

The following are some of Machine Vision Technology benefits:

� Machine vision inspection is widely recognised as a key technology
for the automation of production lines. Utilising the correct camera
system with optics and lighting together with a proven vision
analysis software package can provide the solution for the most
challenging inspection requirements, be it high speed or difficult image
components.

� The adoption of inline inspection increases customer satisfaction and
reduces waste. It is key to product and batch integrity, as well as
batch mix prevention.

� Vision systems improve product quality. Machine Vision technology
enables the manufacturer to replace sample testing with one hundred
percent quality checks done via a camera system. This means
that every single batch produced can be reliably checked for flaws
during the production process and without interruption. A rapid and
thorough inspection that guarantees a superior product.
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� Vision systems reduce the cost of production. By employing a vision
inspection system in the early production stages, defective parts
are immediately removed from the process. Faulty products never
continue to subsequent manufacturing stages and therefore incur no
further costs. Defected products can be re-introduced back into the
production process at a later stage, thus saving materials. Through
analysis, problems can be rectified at the point of origin, resulting in
increased system productivity and availability.

Machine vision technology is unique in its ability to enhance quality
whilst simultaneously cutting costs and protecting the brand from recalls,
fines and adverse negative publicity. For these opportunities, current
hardware may not meet required performance requirements, but in-depth
knowledge of machine vision theory may result in new methods that achieve
greater accuracy than existing ones.

1.3 Research Objectives

When preparing an optical set-up for an inspection system, there is usually
a pipeline (Figure 1.2) that many times the process has to follow, sometimes
quickly, sometimes subjectively, and not much attention is paid because
the measurement results are good enough for the application. However,
it is possible to achieve better results optimizing every single step of this
pipeline.

Figure 1.2: Pipeline of an optical set-up

The main objectives of this dissertation was to investigate the following
research questions associated to each of the identified phases:

� How does light alignment affect and influence the accuracy of
measurement? (Chapter 3)
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The effects of lens misalignment can be highly pronounced. If the lens
is not mounted correctly then the result will be an image that is not
perfectly focused. If the lens is tilted, part of the image captured by
the sensor may be in focus while another part of the image will be
blurred. Proposal 1 presents a light alignment algorithm to track and
monitor acquired image planes to verify an optimal light alignment
system.

� How do different calibration parameters influence the calibration
process? (Chapter 4)

Due to the importance and complex nature of an efficient calibration
process, several factors are involved for a successful calibration. Each
of these factors play a significant role in determining the accuracy of
the error generated. The level of accuracy of the calibration process
determines to a large extent the accuracy of the measurement results
desired. Proposal 2 presents the results from this study, in which the
effects of the different parameters, such as camera focus, exposure
time, calibration plate tilt and number of images, were analysed to
determine how they influence the calibration process.

� How does an object alignment affect the measurement? (Chapter 5)

As a result of adjustments and motions during a measuring process, it
becomes important to have an alignment system to avoid any possible
errors that may result from a lack of alignment. In order to obtain
the best possible alignment conditions, it is necessary to check if the
object to be measured is well placed. Proposal 3 presents the results
from this study, in which an algorithm was developed to determine
the challenges of object alignment in a measurement system.

� Does quality control inspection play a role in determining industrial
production process? Is the uncertainty of the machine vision system
known? (Chapter 6)

Quality control has become a priority in the inspection processes of
industrial manufacturing. Chapter 6 presents the results in which an
improved machine vision application is developed to perform a precise
measurement of industrial gears (at subpixel level), and making a deep
study of the uncertainty of the measurement.
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1.4 Dissertation Organization

The rest of this thesis is organized as follows.

Chapter 2 reviews the most relevant studies presented about this
topic. It briefly summarizes the post-process and on-process dimensional
measurement tools. It discusses the implications of error in a measurement
system. And finally, it introduces the various cameras and softwares that
were used in the experiments for the realization of the dissertation.

Chapter 3 presents an optimal light alignment algorithm, developed
to monitor and achieve an optimal light alignment, in order to eliminate
the effects of misalignment and it’s consequences. This proposal aims to
demonstrate the effects of using an optimal lighr alignment algorithm
against a not-optimal light aligned system.

Chapter 4 performs a deep study of the influence of different parameters
in the calibration process.

Chapter 5 discusses an optimal object alignment algorithm, developed to
address the challenges of object alignment during measurement.

Chapter 6 discusses the experiments performed for each of the proposed
algorithms, comparing the impact of optimizations accomplished to every
single pipeline phase.

In Chapter 7, a 2D machine vision application is developed to determine
the precise measurement of gears, at subpixel level, with the potential
to improve quality control, reduce downtime and optimize the inspection
process. A deep study of the uncertainty of the measurement is carried out
in order to evaluate the goodness of the algorithm.

Finally, Chapter 8 discusses the conclusions of this thesis as well as
its possible future works.
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Chapter 2

State of the art

2.1 Introduction

Visual inspection is to identify whether a particular attribute is present
or properly located in a predetermined area (Dowling et al., 2006). As
described in (Newman and Jain, 1995), inspection is to determine whether
an object deviates from a given set of specifications. Machine vision systems
are designed to release human operators in industrial inspection process and
achieve a more robust and high quality of performance of manufacturing
process and quality control. Different from computer vision, which refers to
a broad terms of the capture and automation of image analysis, machine
vision needs an engineering to system design with additional hardware I/O
and computer networks to transmit information (Batchelor, 1999). One
of the most common applications of machine vision is the inspection of
products, such as integrated circuits, vehicle parts and components, food
and pharmaceuticals (Sanz, 2012). An early survey reported automated
visual inspection systems and techniques from 1988 to 1993 (Newman and
Jain, 1995). Both the benefits and challenges on using of CAD data or
models, which contain exact specifications of an object, in inspection are
highlighted and discussed. Based on the inspected features, the inspection
tasks can be categorized into four basic groups: dimensional characteristics,
surface characteristics, structural quality, and operational quality (Newman
and Jain, 1995). A variety of software and hardware solutions for the
machine vision system development are reviewed in the year 2003 (Malamas
et al., 2003). In the review (Thomas et al., 1995), real-time performance
and verification of industrial machine vision systems as well as the temporal
reliability were discussed and described. The flexibility and complexity
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of modern manufacturing process brings challenges for the assurance of
speed of production and quality of product. The increasing demands on
constant precision and reliability need sophisticated machine vision systems
to take significantly varied inspection tasks. Machine vision systems are
evolving with the technology advances, such as imaging sensors, digital
interfaces, illumination, computational capability, artificial intelligence,
communication, and network. The emerging of low-cost and high-efficient
embedded vision systems and smart cameras makes it possible to build
a scalable machine vision system for varied industrial applications. The
integration of multiple cameras and multi-modal imaging systems offers
a more robust solution for the difficulties in industrial inspection. Fusing
the visual information and those beyond visual spectrum can achieve a
comprehensive inspection with less uncertainty. Industrial inspection is
benefiting from such advances for improved accuracy and performance.

Modern machine vision system consists of digital input/output devices
and computer networks for automatic operation of equipment or quality
control systems. There are basically three categories: PC-based vision
system, embedded vision system, and smart cameras. Figure 2.1 shows the
three types of machine vision systems. The smart camera-based systems
cover a wider range of applications, while embedded vision and PC-based
systems offer less flexibility and higher performance due to the increased
complexity of the overall system.

Figure 2.1: Overview of typical machine vision systems

A typical PC-based machine vision system consists in several
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components illustrated in Fig. 1.1 (Gregory, 2015):

� Cameras and optics

� Lighting

� Frame grabber

� PC platform

� Inspection software

� Digital I/O and network connection

The PC-based machine vision system employs one or more cameras and
lenses to capture a picture of the object under inspection (Gregory, 2015).
Different types of cameras can be used, such as monochrome camera, RGB
color camera, and progressive-scan or line-scan camera. To assure a better
quality of the image, the object is illuminated with the lighting device.
The lighting of high-frequency fluorescent, light-emitting diode (LED),
incandescent, and quart-halogen fiber optic can be configured in various
shapes, colors and sizes with a variety of intensities (Gregory, 2015). Frame
grabbers or video capture cards provide low-level interface capabilities with
other system components and host computer (Malamas et al., 2003). It
can also control the camera by setting the triggering, exposure/integration
time, shutter speed, etc. The PC platform runs the inspection software
to process acquired image data and even make a binary decision, e.g.,
accept/reject. For varied inspection tasks, algorithms need to be tailored
with proper software tools. The data exchange and communication with
outside systems and databases are done through the digital I/O interface
and/or network connection. The PC-based machine vision system should
be configured based on the specific requirements and goal of the inspection
task.

Embedded vision is the merging of computer vision and embedded
systems. The low-cost, powerful, and energy-efficient processors makes
it possible to incorporate vision capabilities into a wide range of
embedded systems for using of visual inputs (Bier, 2011) (Gardner, 2015).
Embedded vision becomes a key technology for the automated inspection
in manufacturing and quality control systems. Embedded vision is usually
implemented with a combination of processing elements, such as CPU,
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high-performance digital signal processor (DSP), and highly parallel engine.
The popular types of processors used in embedded vision system include
high-performance embedded CPU, graphics processing unit (GPU) + CPU,
DSP + accelerators + CPU, field-programmable gate array (FPGA) +
CPU, and application-specific standard product (ASSP) + CPU (LIVE
et al., 2014). As described in (Gardner, 2015), embedded vision systems
are facing a number of challenges and constrains in the compute resources.
Embedded vision has been widely adopted in the industrial inspection
applications and is proliferating broad markets with the emergence
of high-performance, low-cost, energy-efficient programmable processors
(LIVE et al., 2014) (Dibert and Khan, 2013).

Smart cameras integrate lenses, sensors, processors,
camera-to-computer interfaces, and software in one camera system.
As described by Wolf et al. in (Wolf et al., 2002), smart cameras output
processed image data with high-level descriptions of a scene and perform
real-time analysis of what they see. The overall architecture of a smart
camera is illustrated in Figure 2.2. The application-specific processing
(ASP) is performed by embedded algorithms on a per channel basis (Shi
and Lichman, 2005)(Bramberger et al., 2003).

Figure 2.2: Architecture of a smart camera
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Generally, in vision industry, conventional PC-based vision systems are
being replaced by smart cameras due to its relatively low cost, simplicity,
integration, and reliability (Bramberger et al., 2003) (Nair et al., 2013). The
smart camera-based systems can carry out real-time processing operations
within the camera at high speeds and lower cost (Bramberger et al.,
2003). In (Malik et al., 2013), an investigation was conducted to compare
three smart camera architectures for real-time machine vision system.
Processing speed and power consumption appear to be the most important
metrics. Vision-systems-on-chip is the trend for the future (Elouardi et al.,
2006)(Rodŕıguez-Vázquez et al., 2010).

2.2 Machine Vision and Metrology

Metrology is one of the many applications of machine vision. It is an
advance analysis of a production line without becoming a bottleneck in
the process (Batchelor, 2012). It is the science of calibrating and using
physical measurement equipment to quantify the physical size or distance
of any given object. It requires the use of a variety of physical scales
to determine dimension and distance based on a combination of touch
and/or optics. Traditionally, there are two kind of dimensional metrology
techniques: post-process and on-process dimensional measurement.

In the called post-process, the measurements are made after the part
has been produced. The inspection can be made over a percentage of the
production or over the 100% of the parts. On the first case, if the dimensions
are not within the given tolerance zone, correction actions (modifications
or even rejections) have to be made over the whole batch. On the other
hand, 100% inspection ensures the non-zero defects production modifying
or rejecting just the single defective parts. The inconvenience of the 100%
inspection is that the inspection has to ensure the production cycle time as
well as the required accuracy.

When the manufactured parts are big, with higher material cost and
longer cycle times, on-process measurement is required to monitor the
process, improve the productivity and reduce the cost. In the on-process
measurement, parts are measured while they still are on the manufacturing
process.

In the next subsections, there is a brief summary of the most classical
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metrology systems:

2.2.1 Mechanical devices

2.2.1.1 Caliper type

A caliper is a device used to measure the distance between two opposite
sides of an object. A caliper can be as simple as a compass with inward or
outward-facing points. The tips of the caliper are adjusted to fit across the
points to be measured, the caliper is then removed and the distance read
by measuring between the tips with a measuring tool, such as a ruler. The
measured work piece diameter range with this method reaches 5-190mm.

Figure 2.3: Digital caliper

2.2.1.2 Micrometer

The micrometer is commonly used for measuring the thickness and inside
or outside diameters of parts. It is a gauge which measures small distances
or thicknesses between its two faces, one of which can be moved away from
or towards the other by turning a screw with a fine thread. Micrometers
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are also available for measuring depths. Micrometers can be equipped with
digital readout to reduce errors in reading.

Figure 2.4: Micrometer

Both calibers and micrometers are used to be calibrated with gauge
blocks. They are individual square, rectangular, or round metal blocks of
various sizes. Their surfaces are lapped and are flat and parallel within
a range of 1-5 micro inch. Gauge blocks are available in sets of various
sizes. The blocks can be assembled in many combinations to obtain desired
lengths. The gauge block assemblies are used as an accurate reference length
to measure the part’s length.

Figure 2.5: Gauge Blocks

2.2.1.3 Coordinate Measurement Machine (CMM)

Today it is the most accurate and widely used mechanical device in the
manufacturing industry. A coordinate measurement machine (CMM) is an
advanced, multi-purpose quality control system used to help inspection
keep pace with modern production requirements. It replaces long, complex
and inefficient conventional inspection methods with simple procedures. A
CMM provides instant measurement results without complicated setup and
operating procedures. It combines surface plate, micrometer and Vernier
type inspection methods into one easy to use machine. CMM can check
the dimensional and geometric accuracy of everything from small engine
blocks, to sheet metal parts, to circuit boards.
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Figure 2.6: Coordinate Measurement Machine

2.2.2 Optical methods

An optical method measurement is defined as one in which the transmitter
module produces and emits a light, which is collected and photo electrically
sensed through the object to be measured, by a receiver module. This
produces the signals which can be converted into a convenient form and
displayed as dimensional information. The principal advantages of optical
methods are:

� Direct mechanical contact between the sensor and the object to be
measured is not required.

� The distance from the object to be measured to the sensor can be
large.

� The response time is limited only to the electronics used in the sensor.

� The light variations can be directly converted into electrical signals.
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2.2.2.1 Microscopy

Microscopy is the technical field of using microscopes to view objects and
areas of objects that cannot be seen with the naked eye (objects that are
not within the resolution range of the normal eye).

Figure 2.7: Microscopy

2.2.2.2 Profile projector

The profile projector, also known as an optical comparator, or even called a
shadow-graph, is used for measuring two-dimensional contours of precision
specimens and other work pieces produced. The part to be measured is
magnified by an optical system and projected on a screen. The reading on
the screen gives the dimension of the part.

Figure 2.8: Profile Projector



20 Chapter 2. State of the art

2.2.2.3 Laser Tracker

Laser trackers are instruments that accurately measure large objects by
determining the positions of optical targets held against those objects.
The targets are known as ”retro-reflective” because they reflect the laser
beam back in the same direction it came from (in this case, back to the
laser tracker). One type of target in common use is called a spherically
mounted retro-reflector (SMR), which resembles a ball bearing with
mirrored surfaces cut into it. The accuracy of laser trackers is of the order
of few microns even in distances of several meters. It is considered one of
the best optical systems.

Figure 2.9: Laser Tracker from FARO

2.2.2.4 Camera-based systems

This classification would include all machine vision systems composed of
a set of cameras, lenses and lighting systems. Depending on the used
sensors and the object size, the accuracy of these systems can be close
to the laser tracker. Machine Vision necessarily involves the harmonious
integration of mechanical handling, lighting, optics, video cameras, image
sensors (visible, UV, IR and X-ray sensor arrays, as well as laser
scanners), digital, analogue and video electronics, signal processing, image
processing, computer systems architecture, software, industrial engineering,
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human-computer interfacing, control systems, manufacturing, existing work
practices and quality assurance methods. Machine Vision is not a scientific
endeavor; it is a branch of Systems Engineering. Hence, consideration of
application requirements pays a key role in the design of practical vision
systems.

Figure 2.10: Different hardware involved in a camera-based system

In many situations, one of the most common task of vision systems
is achieving dimensional measure on a 2D plane. In a broad range of
applications 2D measuring is applied to get spatial information about
planar objects or object parts that are extracted from images. In this case,
a single camera with the suitable optic and light can be used (Figure 2.10).
Measuring in images corresponds to the extraction of specific features of
objects. 2D features that are often extracted comprise:

� the area of an object, i.e., the number of pixels representing the object

� the orientation of the object

� the angle between objects or segments of objects

� the position of an object

� the dimension of an object, i.e., its diameter, width, height, or the
distance between objects or parts of objects

� the number of objects

However, 3D inspection systems are currently being used every time due
to their lower cost, accuracy and compactness of the solution. In these cases,
the 3D information is reconstructed by means of projecting a structured
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light (laser, light pattern,...) and visualizing that light with a pre-calibrated
camera (or several cameras) with respected to the projector.

Figure 2.11: Gocator products catalog from LMI

2.3 Error in Measurement

In any measurement, there is always a degree of uncertainty resulting from
measurement error, i.e. all measurements are inaccurate to some extent.
Measurement error is the difference between a reference value and actual
values of the measurand. The error can be expressed either as an absolute
error or on a relative scale, most commonly as a percentage of full scale.
It is important to examine fully the errors in measurement systems that
cause these uncertainties, the meaning and interpretations of these errors
and methods of reducing or circumventing of errors. Each component
of the measuring system has sources of errors that can contribute to
measurement error. Instrument or indication errors may be caused by
defects in manufacture of adjustment of an instrument, imperfections in
design, etc.

It is important to bear in mind the measurement error, as it
is going to be the decisive factor when choosing the best hardware,
software, illumination conditions, etc. In addition to measurement error, the
tolerances are also important. Tolerance is the total amount a dimension
may vary and it’s the difference between the upper (maximum) and lower
(minimum) limits. Tolerances are used to control the amount of variation
inherent in all manufactured parts.
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2.4 Cameras

Machine vision systems has one or more digital cameras that record color,
monochrome, or wide-spectrum images. Just like consumer cameras, the
optics/lenses attached deliver a specific field of view and available light.
To pick the proper lens it is prior to know the field-of-view (FOV) and
the working distance. The FOV is the size of the area to be captured. The
working distance is approximately the distance from the front of the camera
to the part being inspected. A more detail of parameters related to camera
sensors and lens can be found in Appendix A.

2.5 Machine vision software

There is a wide range of Machine Vision software aimed at inspection
applications. Depending on the user requirements, the software can be
simpler, with a straightforward user interface, or software designed for more
advanced users. As there is a wide range of software, it is important to
analyze each software, focusing on those features that are useful for the
present project. Some example of different softwares from MVTec company
are: iNspect, Sherlock, Merlic and Halcon. iNspect and Sherlock come as
embedded software with the BOA cameras, while Merlic and Halcon are
external softwares for which a license is required.

2.5.1 iNspect

iNspect is a vision application software specifically designed to simplify
the design and deployment of automated inspection on the factory floor.
iNspect offers new and experienced users alike a practical tool delivering
uncompromising functionality that can be readily applied to a wide range
of manufacturing tasks. iNspect’s simple, straightforward setup allows users
to quickly configure and deploy an application. Each of the inspection tools
have been carefully designed to extract the relevant information from the
object image. No programming or extensive training is required.
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Figure 2.12: iNspect software

In Figure 2.12 the main window of iNspect can be seen. There is a left
panel where the many actions can be selected. There are several tools that
can be applied to the live image, as it can be seen in Figure 2.13.

Figure 2.13: Tools in iNspect
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All these tools, like caliper measurement, circle detection or angle
measurement, can be applied to the image grabbed from the camera, and
the user can see immediately the effect on the image. iNspect offers the
tools and the ideal features for inspection applications. It is interesting
to note the extensive literature provided by the manufacturer. There are
several tutorials and examples of the different tools, all well documented.
Thanks to the fact that there is also an offline emulator, the programmer
can familiarize himself and train with these examples. A program developed
from the emulator can be saved and run later with the camera connected
to the software. There is also a light version of the software, called iNspect
IDR, that has a selection of tools focused only in identification.

2.5.2 Sherlock

Sherlock is an advanced machine vision software interface that can be
applied to a wide variety of automated inspection applications. It offers
maximum design flexibility and provides a rich suite of proven tools
and capabilities that have been deployed in thousands of installations
worldwide. Like iNspect, this software comes embedded in some BOA
cameras. In this case, Sherlock is more advanced software than the previous
one, being able to develop more complex applications and covering a
wider range of them. Unlike iNspect, this software is based on floating
windows, so the user can resize, hide and move them to suit its liking.
This system makes the software very easy to any inexperienced user. The
way in which the program works is by defining regions of interest (ROI) and
applying different tools on that regions. One can also use the script window,
customizing the code wanted to be run. The predefined functions existing
in Sherlock make up a complete language (with loops, conditions, etc.) and
in most applications, it’s more than enough to cover the needs of most
users. The fact that this program includes two different ways of working
(by graphical tools and by scripting/programming) makes it ideal to any
kind of application, either simple or advanced. As in iNspect, the user has
the option to save the images and to work offline thanks to an emulator.
Similarly, there is the possibility of establishing a user registration system to
protect the level of access under passwords. Sherlock also offers the option
to save backups.
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Figure 2.14: Sherlock main window

2.5.3 Halcon

Halcon is the programming library for machine vision application
development most well-known worldwide. Its flexibility enables rapid
development of applications at a reduced cost. As an easily configurable
software, it provides solutions for both the needs of industrial machine
vision and image processing. The diversity of Halcon libraries includes
more than 2000 image processing functions and more than 1000 examples
in HDevelop (Halcon’s integrated development environment), it allows
to develop vision applications for the morphological analysis of objects,
pattern recognition, bar codes / matrix, OCR, applications of color
classification, as well as a complete 3D application analysis library. Unlike
other visual programming softwares, Halcon’s open software architecture
allows to access defined data structures and thus to integrate Halcon with
further software components such as a user interface. Halcon offers various
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interfaces to access all its operators from programming languages like C,
C++, and .NET languages like C# or VB.NET.

Figure 2.15: Halcon software

2.5.4 Merlic

Merlic is an all-in-one software for quickly building machine vision
applications without programming. It is based on MVTec’s extensive
machine vision expertise and combines reliable, fast performance with ease
of use. The vision engine of Merlic is based on Halcon so, it is a good
choice if the application is not very complex thanks to its visual approach
programming.

An image-centered user interface and intuitive interaction concepts like
easy-touch provide an efficient workflow, which leads to time and cost
savings. The very clear and reduced interface presents a large view on the
processed image in the center of the program. The tool library on the left
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side provides many standard vision tools such as acquisition, calibration,
alignment, measuring, counting, checking, reading, position determination,
and defect detection. It can also be extended with customized tools.
Each tool has its own graphical representation in the workspace, which
allows you to see and review every step of your vision application. The
image-centered design allows you to configure the application directly via
the image without the need to write source code or to adjust lots of
parameters. While most common machine vision programs require extensive
programming knowledge, Merlic was created to build a machine vision
application without programming a single line of code. So instead of coding
line by line, you can simply step through your application and rely on the
many standard machine vision tools. The vision tools in the Merlic are
connected automatically. Alternatively, you can simply reconnect them by
drag and drop. Figure 2.16 shows the software interface.

Figure 2.16: Merlic development interface
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Chapter 3

Proposal I: Optimal Light
Alignment

3.1 Introduction

Usually an industrial camera does not have its own lens. Instead, they
come with a standardized mount and a wide range of lenses available for
that mount. However, it is fundamental to ask the question; how is a
suitable lens chosen? There are three main factors that affect this choice
notably: the camera sensor size, the working distance and the field of
view of the camera. The illumination setup is also an aspect to take into
consideration. The focal length can be determined directly from the field
of view and the working distance, as shown in Equation 3.1, where h is the
horizontal sensor dimension (number of horizontal pixels multiplied by the
pixel size) and f is the focal length of the lens, the horizontal field of view
(HFOV) and the working distance (WD). Some amount of flexibility to the
system’s working distance should be factored in, as the above equation is
only a first-order approximation and does not take distortion into account.

f =
h ∗WD

HFOV
(3.1)

There are a lot of manufacturers who sell industrial lenses, so one must
be clear about what lens is appropriate for each application. Even so, it
is not easy to choose the best lens. In fact, many times the choice of the
lens does not lead to the expected or optimal results. The only detail to
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be considered is that most of the industrial lenses that are marketed are
fixed focus lenses. There are various types of lenses: standard or endocentric
lenses, telecentric lenses, lenses with motorized zoom capability, autofocus
lenses, macrolenses, and perferic lenses, among others. In this thesis we
focus our studies on endocentric and telecentric lenses.

3.1.1 Standard or endocentric lenses

Standard lenses are the most often used in machine vision systems. They
have a wide range of focal distance, ranging from around 3mm to 200mm.
They are optimized to focus the desired object from very close distances to
very far distances. In this kind of lenses, a minor distortion or aberration
effect is present. This distortion can affect the image in three ways:

� Barrel distortion: image magnification decreases with distance from
the optical axis. The apparent effect is that of an image which has
been mapped around a sphere (or barrel), as shown in Figure 3.1(a).

Figure 3.1: Optical distortions

� Pincushion distortion: image magnification increases with the
distance from the optical axis. The visible effect is that lines that do
not go through the center of the image are bowed inwards, towards
the center of the image, like a pincushion, as shown in Figure 3.1(b).

� Mustache distortion: a mixture of both types, sometimes referred to
as mustache distortion or complex distortion, is less common but
not rare. It starts out as barrel distortion close to the image center
and gradually turns into pincushion distortion towards the image
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periphery, making horizontal lines in the top half of the frame look
like a handlebar mustache, as shown in Figure 3.1(c).

Distortion is a key effect to take into account in Computer
Vision applications, because it can lead to completely wrong results or
measurements. The degree of distortion of each lens is often specified by
the manufacturer. Moreover, there are distortion correction techniques that
can be applied by the use of software, which are discussed a little further.

3.1.2 Telecentric lenses

Software engineers requiring precise measurement of mechanical parts
need high contrast images with the lowest possible geometrical distortion.
Perspective effects, causing change of magnification when the object is not
precisely positioned or is highly 3-dimensional, must also be minimized or
canceled. Besides image processing problems, vision system designers must
take into account that common endocentric optics introduce several factors,
which limit measurement accuracy and repeatability such as:

� non-constant magnification with object displacement

� image distortion

� perspective errors

� poor image resolution

� uncertainty in determining object edge position

Telecentric lenses reduces or even cancel most of these problems, and
for this reason have become a key component for developing high accuracy
gauging applications. A telecentric lens is a compound lens that has its
entrance or exit pupil at infinity; in the prior case, this produces an
orthographic view of the subject. This means that the chief rays (oblique
rays that pass through the center of the aperture stop) are parallel to the
optical axis in front of or behind the system, respectively. This kind of
lenses help a great deal in reducing the level of perspective distortion.
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3.1.2.1 Magnification constancy

In measurement applications, an orthonormal view of the object is
frequently needed so that correct linear measurements may be performed.
As often is the case, because of vibration, many mechanical parts cannot
be precisely positioned, or a measurement must be performed at different
depths or the object thickness may vary. Nevertheless, there is the need to
do a perfect correlation between imaged and real dimensions, as shown in
Figure 3.2.

Figure 3.2: On the left an image of an internal spline on a
cylindrical object taken with a telecentric lens (top) and the same
object viewed by an ordinary lens (bottom). On the rigth an image
of two identical machine screws set 100mm apart, taken with a
telecentric lens (top) and with an ordinary lens (bottom)

Common lenses give different magnifications at different conjugates,
such as when the object is displaced, the size of its image changes almost
proportionally with the object distance. With telecentric lenses the image
size is left unchanged with object displacement, provided the object stays
within a certain range often referred to as depth of field or telecentric range.
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3.1.2.2 Low distortion

Distortion is one of the worst problems limiting measurement accuracy,
even the best performing optics are affected by some grade of distortion,
while often even a single pixel of difference between the real image and
the expected image could be critical. Distortion is simply defined as the
percentage difference between the distance of an image point from the image
center and the same distance as it would be measured in a distortion-free
image; it can be thought of as a deviation between the imaged and the
real dimensions of an object. High quality telecentric lenses normally show
a very low distortion degree, in the range of 0.1%, although this amount
seems to be very small it would actually result into measurement errors
approaching the size of one pixel of a high-resolution camera. For this
reason, in most applications, distortion has to be software calibrated.

Figure 3.3: on the left an image of a distortion pattern taken
with a telecentric lens, where no radial or trapezoidal distortion
is present. In the middle the image of the same pattern showing
strong radial distortion. On the right an example of trapezoidal
distortion.

Figure 3.3 shows the effect of an image of a distortion pattern taken
with a telecentric lens.
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3.1.2.3 Perspective errors limitation

When using common optics to image objects, far objects will look smaller
than closer objects. As a consequence, when objects like a cylindrical cavity
are imaged, the top and the bottom crown edges will appear to be concentric
although the two circles are perfectly identical. On the contrary, by means
of a telecentric lens, the bottom crown edge will disappear because the two
crown edges are perfectly overlapping. Figure 3.4 shows the distortion effect
of endocentric lenses against the same effect present in telecentric lenses. It
can be seen the improvement of the telecentric lenses in terms of distortion.

Figure 3.4: On the left endocentric lens showing image perspective
error. On the right, a telecentric lens is able to cancel any
perspective effect.

However, telecentric systems also have some disadvantages: as only light
that enters in parallel can reach the image plane, and only objects placed
directly in front of the lens are visible. Also, telecentric lenses are usually
significantly more expensive than regular endocentric lenses. Furthermore,
as the light rays are parallel to the optical axis, there is a need to have
larger lens diameters, which makes them considerably larger and heavier
than standard lenses.
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Figure 3.5: Comparison between standard and telecentric lenses

3.2 Optical Axis Alignment

The performances of a lens setup is achieved when working with high
contrast not-saturated images. To achieve optimal illumination, there is
the need to change the exposure time on the camera panel and/or light
intensity on the back-light. Optical axis alignment is conducted by tilting
the lens illuminator around the X and Y axis, assuming the optical axis
corresponds with the Z axis. Figure 3.6 shows a scheme of the tilt. The
effects of lens misalignment can be highly pronounced. If, for example,
the lens is shifted in the x, y plane from its optimum position, the image
captured by the sensor will also be shifted by a corresponding amount. If
the lens is not mounted correctly in the z plane, then the result will be an
image that is not perfectly focused. If the lens is tilted, part of the image
captured by the sensor may be in focus while another part of the image
will be blurred. The alignment process increases the homogeneity in order
to achieve image improvement.
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Figure 3.6: Scheme of the optical axis alignment

3.3 Experiment and Analysis

In this proposal, we have developed a light alignment algorithm using
Halcon development framework to track different regions of interest (ROI)
of an acquired image plane to verify if the image plane reaches an optimal
or a not-optimal light alignment. This observation is necessary because,
often times, the effect of light alignment is taken for granted, or not taken
into consideration at all. It is often assumed that there is little or no
error derived from this consideration. However, the experiments revealed
that the effects of a badly aligned lighting system can have an impact
on the calibration process, and hence on the measurement result. Several
experiments were performed to determine the effects of a well aligned
lighting system against the other parameters, like calibration error and
object alignment (see Chapter 6 for more details of the proposals validation
experiments). Figure 3.7 shows the flowchart process of the algorithm.
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Figure 3.7: Flowchart of the light algorithm

The light alignment algorithm creates different ROIs in the acquired
image. The pixel intensity mean of each of the ROI is calculated. If the
mean of the ROI is greater than an specific threshold, a decision is made
on whether to color the borders of the ROI green or red for giving a
user feedback. A good exposure value is set when the average indicator
on the lens-light alignment interface is green. This process is applied to all
the created ROIs. The best position is achieved when most of the region
rectangles are maximizing their mean values.

The experiments were performed using the endocentric and telecentric
lenses to ascertain for optimal light alignment and observing that the
results are exactly the same for both kind of lens. Figure 3.8 shows the
instrumentation used to perform the experiments and Figure 3.9 shows a
summary of the hardware specifications.
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Figure 3.8: Devices and instruments used for the light alignment
experiments

Figure 3.9: Devices’ specifications used for the light alignment
experiments
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The first set of experiments to this effect was to test the effect
of a not-optimal light alignment system. The illuminator was set at
certain angles to cause an angular light deflection. Figure 3.10 shows the
not-optimal system configuration.

Figure 3.10: Not-optimal light alignment setup

The second set of experiments was performed to test the effect of an
optimal alignment system. In these experiments, the light illumination was
set at a perfect alignment with the lenses. The level of alignment was
achieved with the aid of the developed light alignment algorithm. Figure
3.11 shows the optimal light alignment configuration. The effect of the
deflection is observed in Figure 3.12(a).

Figure 3.11: Optimal light alignment setup
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Figure 3.12: (a) Optimal light alignment. (b) Not-optimal light
alignment

Three ROIs have been used for the purpose of the experiments. The
number of ROIs used could depend on the particular interest of the research,
as the same algorithm is implemented for each ROI. For the purpose of
this proposal, we considered three ROIs sufficient to track and monitor
the effects of the tilt angles and light deflection on the image plane for
the calibration process. Table 3.1 shows the summary of the experiments
performed with the algorithm to test the ROIs.

Table 3.1: Summary of the light alignment experiments

ROI\Tilt
Angle

0◦ 10◦ 15◦ 20◦

1 255.000 253.984 251.829 245.999
2 255.000 252.655 251.758 234.958
3 255.000 252.995 251.965 244.996

Average 255.000 253.211 251.851 244.984

Figure 3.13 shows some examples of the light alignment experiments.
The figure shows the mean pixel values of the three ROIs and the
corresponding tilt angle of the back-light.
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Figure 3.13: Chart of the experimental

3.4 Discussion

The light alignment algorithm was developed to monitor and achieve an
optimal alignment system, in order to eliminate the possible effects of
misalignment, which could lead to significant errors in the calibration
process and measurement system. The impact that misalignment have on
the calibration and measurement process is described in detail in Chapter
6. However, several observations can be made so far:

� It is observed that the mean value of the pixel at the ROIs have
no significant difference at 0◦, 10◦ and 15◦ tilt angles respectively.
However, a notable decline is observed at 20◦ tilt angle. This could
be a result of a significant change in the working distance between
the camera and the illuminator.

� Although 0◦, 10◦ and 15◦ tilt angles seem to have similar alignment
values, the fact is that they don’t. Even these small changes could
produce differences in the measurement process.

� The light alignment algorithm performs equally for both the
telecentric and endocentric lens. This is as a result of the sensor
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exposure of the camera and the principal calculations of the mean
and the standard deviation of the ROIs, which has the same tolerance
regardless of the lenses.

The goal of Chapter 6 is to proof that although visually a misalignment
of 10◦ or 15◦ is good enough, it is worth looking for the optimal in order
to demonstrate the effects of an optimal and a not-optimal light alignment
system in the calibration process and measurement system.



Chapter 4

Proposal II: Optimal
Camera Focus and

Calibration Parameters
Study

A synthesis of this chapter is under review in:

Moru, D. K. and Borro, D. ”Analysis of different parameters of
influence in industrial cameras calibration processes”. Measurement 2020.
(Quartil Q1).

4.1 Introduction

The effect of a good calibrating procedure cannot be over-emphasized
enough, due to the benefits it gives to the system. In machine vision,
calibration is used to convert dimensions in the image coordinate plane
to the world coordinate plane. This conversion primarily affects the
metrological system. For accurate and precise measurement to be taken,
the calibrated system has to possess very little or no error. However, as this
is almost impossible to achieve, due to several factors, the evaluation of the
degree of uncertainty is used to determine the accuracy of the calibrated
system (Moru and Borro, 2020).

Image formation process has been a trending research for over 20
years. This process is intrinsic to the end target of image processing. It

45
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is important to understand the different techniques often used to form
digital images. The processing advances and their affiliated algorithms when
reviewing digital image techniques, are highlighted in (Ekstrom, 2012).
The determination of light exposure from a point on an image to the
observer is vital to understanding how images are composed. Camera sensor
exposure can be perplexing to comprehend but it is fundamental to pay
attention to how lighting affect the acquisition of the image, because the
most essential precondition for a camera system is to give consistent image
quality (Shirvaikar, 2004). The proper understanding of exposure makes
possible the acquisition of images of ideal brightness, high levels of details
in shadows, translation and rotation, where applicable.

Automatic camera focus revolutionized the digital image world.
With automatic focus, quality images can be acquired from a wider
range of camera quality specification. This has proven to be reliable in
a non-industrial setting. However, in industrial inspections, automatic
focused cameras are not broadly used because most applications have
a fixed working distance. Although there are lens products with
programmable focus, the use of a manual camera focus has been mainly
adopted. With a manual camera focus, more control can be achieved
regardless of the change or random nature of the working distance.
Nevertheless, this option poses a great challenge in the achievement of
a good-focused image. The human eye is visually capable of determining
when a camera image is well-focused but it is not capable of determining the
optimal one. This proposal addresses the challenge to discover the effects
of four parameters in the determining the error in a calibration process.

There are previous works that study the influence of different
parameters in the calibration process. For instance, (Chen et al., 2014)
study the influence of corner detection, noise, and number of used pattern
image; and (Muruganantham et al., 2008) study factors like illumination
intensity, length of extender tube, number of control points, and region of
interest. However, in this proposal other different parameters have been
taken into account like camera focus, exposure time, calibration plate tilt
and number of images used. The experiment performs calibration on the
images taken with endocentric and telecentric lenses. A sample of 2176
images was used to generate the population analysis.

The analysis of the camera focus on the calibration process shows that
the human eye cannot visually determine an optimal focus of an image.
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This means that it is difficult to visually determine when an image is
100% focused from when it is 95% focused for example. However, the
existence of a difference, even if negligible, plays a vital role and has an
effect in the calibration error, and therefore in the measurement error. In
this proposal, we determine the comparative difference in the calibration
results among the focus of 95%, 97% and 99%. The experiments show
that the calibration error reduces, with a statistically significant effect,
as the focus tends toward 100%. The difference, even though small, has
an impact in the accuracy of the calibration process. The paper also study
other calibration parameters like exposure time, tilt angle of the calibration
plate and number of images used. A multivariable statistical analysis was
performed to study the influence of each parameter in the calibration error.

4.2 Focus computation algorithm

In an industrial calibration process, where the working distance is constant,
the use of a manual focus camera is necessary due to several factors such as,
the distance between the object and the camera, which usually affects the
focus and focal length of the lens, the size of the object, which determines
the field of view (FOV), the camera exposure, which determines how the
lighting can be controlled or if the object is luminous or not (Kepf, 2016).
These parameters make selecting the proper lens a challenge. A focused lens
manifests the manner in which the image from the world is reproduced on
the sensor, which could be adjusted manually or automatically, as shown
in Fig.4.1.

The criteria for quantifying the focus of an image are usually based on
the evaluation of the gradient function (Chern et al., 2001). In the past,
several experimental evaluation on focus measures have been researched
(Shirvaikar, 2004) (Li et al., 2004) (Zhang et al., 2000). D. Wang et
al. (Wang et al., 2013a) demonstrated a fast auto-focusing technique,
which employed internal optical elements to directly sense the deviations
in back focal distance of the lens and restore the imaging system to a
best-available focus. Y. Tian (Tian, 2011) proposed a focus measure using
phase congruency, by addressing the key issue in passive autofocus, choosing
robust focus measures to judge optical blur in defocused images. W. Martin
(Martin, 2019) developed a system and method for installing security
cameras on a security network. The cameras include an autofocus routine,
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with manually adjustable lenses, and a feedback mechanism. The autofocus
routine calculates the degree to which the field of view is out of focus and the
feedback mechanism provides feedback to the installer during installation.

For our experiments, we follow the well-known approach of measuring
the sharpeness of an image using edge gradients (Chern et al., 2001). For
the edge detection, the Sobel operator is used and the sharpeness quantity
is computed as the standard deviation of the grey values of the image.
Moving the focus ring of the lens, the most focused image will be the one
with the highest sharpeness value.

Figure 4.1: The relationship between field of view, focal length
and image plane

From now on, when the term ”focus level” is used, it implies to
the percentage of the maximum value computed with the edge gradient
algorithm.

4.3 Camera Model Representation

The pinhole (Wang et al., 2013b) (Chen et al., 2012) (Hartley and
Zisserman, 2003) is the most common camera model. It projects a 3D point
P(xw, yw, zw) on an image plane p(uu, vu) in the given mathematical
equation:
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where s is a non-zero scale factor (Liu et al., 2015), (fx, fy) are the scale
factors along the image axes u and v, and (cx, cy) is the principal point. (fx,
fy, cx, cy) are the four intrinsic parameters. While the extrinsic parameters
R and t, are the rotation matrix and the translation vector from the world
coordinate system to the camera coordinate system.

Within a camera, distortion of the lens, especially radial distortion, is
often present. Many digital cameras are made from lenses with spherical
surfaces, and the latent radial distortions serves as unique identification
within the images (San Choi et al., 2006). Camera calibration determines
the intrinsic parameters, extrinsic paramenter and the lens distortion
coefficient.

Let pu(xu, yu) and pd(xd, yd) be the distortion-free image and the
distorted image coordinates respectively:

{
xu = xd(1 + k1r

2 + k2r
4 + k3r

6...)

yu = yd(1 + k1r
2 + k2r

4 + k3r
6...)

(4.2)

where r =
√
x2
d + y2

d; k1,2 , k3... are the coefficients of radial distortion.

The analysis of a computer vision system often leads to a decision on
the type of lens to be used for acquisition of the image. There are three
categories of lens options: endocentric, telecentric and hypercentric. The
endocentric lens captures images with the same perspective as the human
eye. It is commonly referred to as the standard fixed-focal-length lens. The
telecentric lens erases the perspective errors. The hypercentric lens reverses
the usual perspective to see nearly the entire surface of a tridimensional
object. However, this proposal does not consider the hypercentric lens.

4.3.1 Calibration Process

Camera calibration is an estimation method for generating the intrinsic
and extrinsic parameters (Zhang, 2000). As a result of different calibration
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processes, the intrinsic parameters of the camera are determined to define
the concept of imaging. There are different calibration techniques, but all of
them have a common objective, they try to minimize projection errors. The
perfect calibration of a camera would guarantee that the projected points
coincide with the points detected. In reality, however, there is a certain
projection error that is calculated as the Euclidean distance between the
two points. Therefore, the objective of the calibration process is to minimize
these errors to ensure the highest possible accuracy.

A distinctive feature of a calibration process is based on matching
specific measured positions on the camera sensor with the specific real world
position on a calibration target. A calibration target with accurately known
metrics properties is chosen to fill approximately 80% of the field of view.
Before calling the actual calibration, a series of images of the calibration
object in different orientations is obtained and care is taken to make sure
that the whole field of view or measurement volume is covered.

Figure 4.2 shows a point in space with known coordinates (X, Y, Z). For
that 3D point, a point (h,v) is detected in the image plane. In addition, 3D
points are projected through several initial intrinsic parameters. The point
detected (h,v) and the projected point do not occupy the same position
in the plane. In such a way that it is necessary to apply the correction of
distortions in order to obtain the point (p,q).
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Figure 4.2: Perspective projection model

After applying the correction to the detected points, it does not occupy
yet the same position in the image. Therefore, the difference between the
horizontal and vertical coordinates of the corrected points (p,q) and the
2D projected points, define the residual error terms (rp,rq) according to
Equation (4.3).

rp = (pi − 2DXi) (4.3)

rq = (qi − 2DY i)

By grouping the terms of residual errors in a vector (Equation (4.4)),
the vector that is intended to be minimized by calibration is achieved.

[
r
]
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·
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(p1 − 2DX1)
(q2 − 2DY 2)

·
(pN − 2DXN )
(qN − 2DY N )

 (4.4)

In this proposal we use HALCON software (Halcon HDevelop 13)
and its calibration procedure. For this, the known 3D model points are
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projected into the image and the sum of the squared distances between the
projected 3D-coordinates and their corresponding image point coordinates
is minimized (Equation (4.4)). For a successful calibration, at least one
calibration object with accurately known metric properties is needed (a
HALCON calibration plate like the one shown in Figure 4.3), taking a series
of images of the calibration object in different orientations and making sure
that the whole field of view or measurement volume is covered.

Figure 4.3: Calibration plate in Halcon development framework.
Note the white marks, useful to know the orientation of the plate.

As a direct result, only the calibration error is returned by the HALCON
calibration process. It corresponds to the average distance (in pixels)
between the back-projected calibration points and their extracted image
coordinates. HALCON documentation points out that an error of up to 0.1
pixels indicates that the calibration is successful.

4.4 Experiments and Analysis

The devices of the experiments are the same as the ones of previous chapter
(Figure 3.8). All images have been taken from a 145.1 mm and 157.8 mm
of working distance for endocentric and telecentric respectively, both using
a transparent calibration pattern of 80x60 mm.
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Figure 4.4: Optimal calibration plate alignment setup

Figure 4.5: Not-optimal calibration plate alignment setup

Figure 4.4 and Figure 4.5 show the optical set-up configuration. To
perform the calibration experiment, a total of 2176 image samples where
acquired from both endocentric and telecentric lenses. The images acquired
with endocentric lens are grouped into three categories:

� Center plate no tilt: In this experiment, 8 positions of the
calibration images was acquired with no angular tilt (i.e., flat with
the table), rotating each time 45◦ over the camera axis. The camera
exposures range between 5000:1000:8000, and the focus level at 95%,
97% and 99% respectively. A total number of 96 images are acquired.

� Corner plate 20◦ degree tilt: In this experiment, the angular
tilt of the calibration plate with respect to the table plane is 20◦,
changing the tilt in each of the four corners and between corners. For
each position of the tilt, 8 images of the calibration plate, using the
corresponding plate rotation are acquired. Besides, for each position
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of the tilt, the camera exposures range between 5000:1000:8000, and
the focus level at 95%, 97% and 99% respectively. A total number of
768 images are acquired.

� Corner plate 30◦ tilt: This experiment is exactly as the previous
one but with an angular tilt of the calibration plate of 30◦. A total
number of 768 images are acquired.

The images acquired with the telecentric lens are grouped into three
categories:

� Center plate no tilt: In this experiment, 8 positions of the
calibration plate was acquired with no angular tilt, rotating
45◦ over the camera axis. The camera exposures range between
6000:1000:9000. No focus level is required. A total number of 32
images are acquired.

� Corner plate 20◦ tilt: In this experiment, the angular tilt of
the calibration plate is 20◦. For each position of the tilt, 8 images
of the calibration plate, using the corresponding plate rotation
(previous point) are acquired. The camera exposures range between
6000:1000:9000. No focus level is required. A total number of 256
images are acquired.

� Corner plate 30◦ tilt: This experiment is exactly as the previous
one but with an angular tilt of the calibration plate of 30◦. A total
number of 256 images are acquired.

A summary of the number of images used for each calibration process
can be observed in Table 4.1. Note that for each number of images that
appear in the cells, the exposure time and focus level values have also been
varied with the ranges described above.

After the acquisition of the images, different calibration processes were
performed using the Halcon development framework. The camera focus
level was measured (following the method described in Section 4.2) by three
levels of focus percentages: 95%, 97% and 99% respectively. These focus
levels are visually well targeted and impossible to differentiate by the human
eye. The camera exposure is controlled and measured by changing the
sensor exposure within the Halcon framework for each percentage degree
of focus.
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Table 4.1: Number of images used in each calibration configuration

Lens No tilt
Tilt (for 20◦ and 30◦)
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Endocentric 8 8 8 8 8 8 8 8 8 32 32 64

Telecentric 8 8 8 8 8 8 8 8 8 32 32 64

The main goal of the experiment is to verify the analysis that
searching the real optimal focus gets better results than the ”visual-search”
optimal focus. To determine the quality and effectiveness with which the
experiment is carried out, the calibration error (in pixels) is taken as the
evaluation parameter. The lower this value, the better the calibration, which
subsequently imply a measurement closer to the real one.

Figure 4.6: Comparison between cumulative distribution functions
of the data and the standard normal distribution)
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Table 4.2: p-values of the experiments. Gray cells indicate that
the experiment is meaningless and white cells without data that
the experiment was not done because of few available data

Focus Exposure Tilt #images

Endocentric < 0.001

No tilt 0.0034 0.7609

Tilt 20 < 0.001 0.2329 0.0065

Tilt 30 < 0.001 0.7491 0.0027

Telecentric < 0.001

No tilt

Tilt 20 0.1638 0.1788

Tilt 30 0.938 < 0.001

For further statistical studies, all data has been normalized centering
the data to have a mean 0 and scaled to have a standard deviation 1.
A one-sample Kolmogorov-Smirnov test is used to verify adjustment to a
normal distribution. Fig. 4.6 proves the similarity between the empirical
cumulative distribution function (cdf ) of the centered and scaled data and
the cdf of the standard normal distribution.

In continuation, endocentric and telecentric lens experiments were
carried out and different variables were taken into consideration so that
their influence could be studied. Table 4.2 shows a summary of the results.

4.4.1 Endocentric experiments

4.4.1.1 Focus parameter

Figure 4.7a, Figure 4.7b and Figure 4.7c show the average calibration error
values for endocentric lens. In addition, it shows a graphical representation
of these results by means of a box diagram, that allows a comparison at a
glance of the distribution of the values obtained for each focus level. Each
box represents the ranges where 50% of the selected data is concentrated,
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whose ends come through quartiles 1 and 3. The inner line to the boxes
represents the medians of the data set. The 95% confidence interval of
the medians are represented by the notches. The lines that leave each
box indicate the position of the maximum and the minimum value of the
distribution (extreme values) eliminating the atypical values.

After an analysis of the results obtained, it can be concluded that in
general, focus level at 99% results considerably improve the calibration
error compared to the results obtained with the other two focus levels.

Figure 4.7: Box diagrams of endocentric experiments. First and
second rows show focus level and exposure time comparisons
respectively (the line inside the rectangles represents the
median values, and the asterisks the outliers). Third row shows
experiments studying the tilt degree (g), and number of images
(h) and (i)

As can be seen in Figure 4.7a, when the sample size is small, notches
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may extend beyond the end of the box. In the 20◦ tilt experiment, as the box
diagram shows, the range of values of the results obtained with a 95% focus
level is much wider than the other two remaining modalities. In this case,
the uncentainty of the calibration error is bigger due to worse focus. On the
contrary, it is observed that the size of the boxes in the other modalities
are smaller, indicating a more uniform distribution of the results obtained.
From this data, it follows that the two remaining modalities provides a
lower uncertainty error.

To find statistically significant differences, a one-way ANOVA analysis
has been performed. With no tilt option, the test result shows that
99% focus level does have a statistically significant effect on the average
calibration error (p=0.0034). For the 20◦ and 30◦ tilt, 99% focus level does
have a statistically high significant effect on the average calibration error
(p<0.001). A post-hoc Tukey’s Honestly Significant Difference procedure
has been carried out on the results. It is observed that there are significant
differences among all focus levels, although in no tilt option the significant
difference is only between 99% focus level and the other two levels.

4.4.1.2 Exposure time parameter

Figure 4.7d, Figure 4.7e and Figure 4.7f show the average calibration error
values for endocentric lens by comparing each exposure time. In this case, a
one-way ANOVA analysis did not have statistically significant results. That
means that the exposure time parameter does not change significantly and
therefore it is not possible to choose an optimal value.

Moreover, a two-way ANOVA analyis was performed as well in order
to verify if there is any statistically significant interaction between focus
level and exposure time. All results (for no tilt, 20◦ tilt and 30◦ tilt) were
negative with p values greater than 0.05.

4.4.1.3 Tilt angle parameter

Figure 4.7g shows the box diagram comparing all data for no tilt (12
calibration processes), 20◦ tilt (132 calibration processes) and 30◦ tilt (132
calibration processes). The one-way ANOVA analysis gives statistically
high significance (p<0.001) between 30◦ tilt and the other two groups.
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Table 4.3: Three-way ANOVA analysis in endocentric experiments

Source Sum Sq. d.f. Mean Sq. F Prob >F

Focus 0.00034 2 0.00017 43.48 0

Exposure 0.00001 3 0 1.14 0.3318

Tilt 0.00279 2 0.00139 360.97 0

Focus*Exposure 0.00001 6 0 0.35 0.912

Focus*Tilt 0.0003 4 0.00007 19.27 0

Exposure*Tilt 0.00001 6 0 0.6 0.7277

Focus*Exposure*Tilt 0.00002 12 0 0.49 0.9214

Error 0.00093 240 0

Total 0.00522 275

That means that high plate inclination is bad for the calibration process.
Meanwhile, it seems like there is no difference between the calibration with
no tilt and 20◦ tilt.

4.4.1.4 Number of images parameter

Taking the 20◦ tilt data with 99% focus level, a one-way ANOVA analysis
was performed in order to verify the effect of calibration processes using 8
images, 32 images and 64 images. Looking at the p-values of the results,
there is a statistical significance (p<0.05) between the 8 images group and
the other two groups. The same result is obtained performing the one-way
ANOVA analysis over the 30◦ tilt data with 99% focus level. Figure 4.7h
and Figure 4.7i show the box diagrams of both experiments.

Previous experiments studied the impact of individual variables. Table
4.3 shows the result of the three-way ANOVA analysis (studying focus
level, exposure and tilt parameters) performed in order to test the effects
of multiple factors on the mean in the calibration errors. The interaction
terms are represented by ’*’ symbol in the ANOVA table.

The ANOVA table shows the between-groups variation and
within-groups variation (Error row). ’Sum Sq ’ is the sum of squares and
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’d.f.’ is the degrees of freedom. ’Mean Sq.’ is the mean squared error, which
is Sum Sq/d.f. for each source of variation. The ’F -statistic’ is the ratio of
the mean squared errors. The last column is the p-value.

4.4.2 Telecentric experiments

A similar study was carried out for telecentric data and Figure 4.8 shows
the box diagrams. In this case, it did not make sense to study focus level
parameter due to the fact that telecentric lenses always work at a fixed
focus.

As it can be seen in Figure 4.8a and Figure 4.8b, and also in Table 4.2,
the one-way ANOVA analysis performed for the exposure time parameter
did not have statistically significant results. That means that the exposure
time parameter does not change significantly and is therefore not possible
to choose an optimal value. Concerning the number of images parameter,
Figure 4.8c and Figure 4.8d show no statistically significant results in 20◦

tilt configuration, while there is a statistically high significant effect on the
average calibration error (p<0.001) in 30◦ tilt configuration between the 8
images group and the other two groups.

Studying the tilt level, Figure 4.9 shows the box diagram comparing all
data for no tilt (4 calibration processes), 20◦ tilt (44 calibration processes)
and 30◦ tilt (44 calibration processes). The one-way ANOVA analysis
gives a statistically high significant (p<0.001) value. The post-hoc Tukey’s
Honestly Significant Difference procedure indicates that the significant
differences are only between no tilt and 30◦ tilt. It seems like there are
no differences between doing the calibration with no tilt and 20◦ tilt.
However, looking at the box diagrams it seems that there are differences in
the medians. The reason can be (as it has been observed previously) that
when the sample size is small (no tilt configuration case), the uncertainty is
bigger and the range of the values is wider causing an overlap with the 20◦

tilt group and therefore, causing a non-significant result in the ANOVA.
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Figure 4.8: Box diagrams of telecentric experiments. First row
shows exposure time comparisons (the line inside the rectangles
represents the median values, and the asterisks the outliers).
Second row shows experiments studying the number of images

Figure 4.9: Box diagram of telecentric experiments studying the
tilt angle parameter (the line inside the rectangles represents the
median values, and the asterisks the outliers)
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4.5 Discussion

Looking at all the results for endocentric and telecentric experiments, the
following conclusions can be drawn:

� Box plots show that the 99% focus level is always the best in terms
of calibration error and Table 4.2 shows that in all cases there are
statistical significant differences (p-values lower than 0.05).

� It is not clear that there exists an exclusive optimal exposure time
value (no significant differences). This could mean that the chosen
range is good enough for these experiments, as this parameter is very
dependent of every single application and configuration.

� The tilt angle is very important in the calibration process. Specifically,
it seems that the more flat and perpendicular the plate is, the lower
the calibration error will be. This result clarifies the way HALCON
recommends the calibration procedure, since a priori, it is said that
images should be obtained at different angles of rotation.

� In both endocentric and telecentric lenses, it seems that it is better to
perform the calibration process with fewer images. This goes beyond
what is suggested by HALCON documentation (that does not specify
any number of images to use).

This proposal studies the effect of different parameters in the calibration
error, specifically, camera focus, exposure time, tilt angle and number of
images. Endocentric and telecentric lenses are used for the experiments. A
sample of 2176 images is used to generate the population and the calibration
errors are obtained varying the parameters of interest. A multivariable
statistical analysis is performed to study the influence of each parameter
in the calibration error. The experiments show which parameters have
statistically significant results and the ones that do not.

In particular, special attention has been paid to the focus parameter,
as currently the procedure to find the focused image is done visually by
the user. However, in this work we demonstrate that using an algorithm
that detects the optimal focus, results in lower (and statistically different)
calibration errors.
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Although the results for the exposure time seem to be inconclusive, the
experiments have proven that HALCON calibration standard instructions
can be improved upon, concerning the tilt level and the number of images
used.
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Chapter 5

Proposal III: Optimal
Object Alignment

5.1 Introduction

Industrial dimensional metrology is the science of calibrating and using
physical measurement equipment to quantify the physical size of or distance
from any given object. An industrial metrology process is used on industrial
systems, components and objects to perform inspections, alignment and
measurement. Metrological systems are based upon the principle of a good
alignment system. Due to changes and movements during a measurement
process, the need to have an alignment system becomes imperative, in order
to avoid all possible errors that may arise from a lack of alignment. In the
effort to obtain the best possible conditions for alignment, it is necessary to
check whether the object to be measured is well-positioned. Good alignment
reduces down-time and should be part of the quality control process and
preventive maintenance program.

For the purpose of this proposal, an algorithm was developed to
determine the gray intensity pixel on the region of the acquired object.
An aligned region would be sharp and possess fewer or no gray pixels. An
unaligned region, on the other hand, would be unfocused, and would possess
more numbers of gray level pixels. Figure 5.1 shows the object alignment
scheme.

65
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Figure 5.1: Object alignment scheme

5.2 Setup Configuration

In order to have a stable control of the object tilting effect, a 5-Axis compact
stage setup configuration was used to mount the object for acquisition
and alignment experiment. The 5-Axis compact stage provides five axes
of adjustment in a package measuring 2.36” x 2.15” x 1.08” (59.9 mm
x 54.7 mm x 27.3 mm). It has five 100 TPI actuators for adjusting the
top platform’s pitch, yaw, X, Y, and Z positions. Two actuators together
control the yaw and Y-axis position, two actuators together control the
pitch and Z-axis position, and a single actuator controls the X-axis position.
The actuators have a 5/64” (2 mm) hex for adjustments with a hex key
thumbscrews. The base of the compact stage has two counter-bored 1/4”
(M6) slots for mounting the stage to an optical table as shown in Figure
5.2.
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Figure 5.2: a) Compact 5-Axis Pitch, Yaw, and Translation Stage.
b) The Mounting Base.

The translating top platform of the compact stage has a variety
of mounting holes and taps for compatibility with many mechanical
components. These holes allow the platform to be used for many different
applications. For instance, the eight 8-32 (M4) tapped holes and the 8
(M4) counter-bore on the underside of the top platform, accessible from the
bottom of the stage, allow optic mounts and other mechanical components
to be mounted on the platform. The eight 6-32 (M4) tapped holes are
compatible with our several clamping arms. The holes are positioned so
that the setscrew of the clamping arm is centered over the top platform.
Figure 5.3 shows the rest of the devices used for the experiments. Figure
5.4 shows the setup configuration for the object alignment.

Figure 5.3: Devices and instruments used for the object alignment
experiments
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Figure 5.4: Object alignment setup configuration

5.3 The Alignment Algorithm

The object alignment algorithm uses the gray value intensity function of
Halcon to calculate the mean and the standard deviation of the image
acquired. The mean value is used to evaluate the effect of tilting in the
acquired object. Fig.5.5 shows the flowchart. The algorithm works as
follows:
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Figure 5.5: Object alignment algorithm flowchart.

� Acquire image: The image is acquired from the camera configuration.

� Select edge contour: The select contours algorithm selects edges as
contours from the input image specified. Contours whose length are
far away from the parameter specified are not returned.

� Generate region: The generate region algorithm creates a region from
the selected contour. Open contours are closed before converting them
to regions.

� Transform region: Transforms the shape of the region to derive the
largest circle fitting into the region.
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� Intensity function: Uses the the gray value of each pixel of the region
to calculate the mean and the standard deviation of the transformed
region. The mean is used to determine the output.

5.4 Data Analysis

The experiment performed for this analysis entails the capture of images,
at different orientations, with a degree of tilt achieved by the use of the
compact 5-axis setup configuration. The algorithm calculates the mean and
standard deviation of the image pixels at each particular tilt orientation.
When the object is well aligned the mean of the pixels reaches its maximum
value. As the object experiences a tilt orientation away from the perfect
state, it begins to experience a loss in the mean-pixel value. Figure 5.6(a)
shows the object in the optimal alignment state. Figure 5.6(b) shows that
as the object experiences an angular tilt, it begins to gain more gray pixels,
and hence the mean value begins to reduce.

The experiments were performed several times to ascertain the
repeatability of the configuration and the algorithm. To implement this,
the 5-Axis compact configuration was setup to mount the gear object at
different angles, ranging from -20◦ to 20◦. When the gear was mounted
on the configuration at a particular angle, the vision application runs the
algorithm, several images are acquired, the mean and deviation is calculated
and stored.

Figure 5.6: (a) Object at optimal alignment. (b) Object at an
angular tilt of 20◦.

Table 5.1 shows the data generated from the experiments on the
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Table 5.1: Object Alignment Experiments (Endocentric)

Image Mean (pixels)

Exps -20◦ -15◦ -10◦ -5◦ 0◦ 5◦ 10◦ 15◦ 20◦

1 83.543 87.454 91.123 94.025 96.354 94.444 92.111 88.011 84.323

2 83.344 87.015 91.252 93.885 96.535 94.040 91.985 88.001 84.122

3 83.294 87.204 90.112 94.114 97.375 94.114 92.045 87.961 84.032

4 83.453 87.774 91.342 94.005 96.445 93.541 92.125 87.891 83.923

5 82.903 87.640 90.022 93.775 96.647 93.984 91.885 88.018 83.873

6 83.111 87.414 91.443 93.654 97.365 94.134 92.345 88.161 84.002

7 83.266 87.054 92.003 94.113 96.945 94.004 92.065 88.205 84.111

8 83.432 87.140 91.332 94.004 96.775 93.884 91.903 88.189 84.025

9 82.943 87.254 91.923 94.565 96.847 94.314 92.205 88.102 83.803

10 83.109 87.754 90.882 94.615 97.575 94.034 91.915 87.788 84.100

different angles when using the endocentric lens. Figure 5.7 shows the
graphical representation of the results.

Figure 5.7: The object alignment experiments for endocentric lens
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Table 5.2: Object Alignment Experiments (Telecentric)

Image Mean (pixels)

Exps -20◦ -15◦ -10◦ -5◦ 0◦ 5◦ 10◦ 15◦ 20◦

1 81.202 85.102 89.891 93.544 99.823 94.192 91.491 87.850 83.145

2 82.025 84.002 88.192 92.847 99.621 93.133 90.112 88.123 84.076

3 82.173 85.222 87.911 93.322 98.793 92.102 91.292 86.168 85.500

4 83.991 84.443 88.122 93.111 99.923 94.016 91.001 88.343 84.212

5 84.173 85.100 90.112 94.432 100.12 95.111 89.349 87.123 83.122

6 81.307 86.332 90.001 94.121 99.133 93.001 90.422 86.120 82.099

7 83.200 85.222 89.543 92.113 97.556 93.144 91.122 88.129 83.002

8 80.011 83.115 88.151 93.434 100.22 94.213 91.331 87.142 80.115

9 83.654 86.002 90.190 92.115 99.982 95.165 90.487 87.001 82.155

10 82.212 85.121 89.231 93.010 98.323 94.912 91.276 86.281 81.046

Table 5.2 shows the data generated from the experiments on the
different angles using the telecentric lens on the mounted configuration.
Figure 5.8 shows the graphical representation of the experiments.

Figure 5.8: The object alignment experiments for telecentric lens
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5.5 Discussion

The results from the experiments performed using the object alignment
algorithm proofs that the algorithm based on gray intensity level is able
to detect when the object peaks at 0◦. The experiments also exposes the
effects of misalignment on the object when there is an angular tilt. Several
images were acquired at different angles to demonstrate the effect. The
angles range between -20◦ and 20◦. The gray value intensity of the image is
used to derive the mean. When the object peaks at its optimal alignment,
the mean of the gray value reaches its maximum value. When the image
begins to experiences an angular tilt, the gray value of the image begins
to decline. This experiments demonstrates that the developed algorithm
can be used to obtain the desired optimal value for a successful object
alignment.
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Chapter 6

Proposals Validation

6.1 Analysis of Experiments

The experiments performed for each of the proposed algorithms culminates
with the measurements of the gear piece. The nominal diameter acquired
from a CMM with the ground-truth sample gear (62,014 mm) is used to
verify the values generated by the experiments. To verify the functionality
of the algorithms, two groups of experiments were performed (endocentric
and telecentric). For both groups, four different experiments were carried
out to track and measure the independent effects of every single proposed
algorithm in the previous chapters. Figure. 6.1 shows the flow of the
experiments of the proposals and Table 6.1 summarizes all configurations
and results. Note in the flow that in the case where a telecentric optic is
used, the focus stage is not considered due to the fact that telecentric optics
have a fixed focus distance.

75



76 Chapter 6. Proposals Validation

Figure 6.1: Flow of the experiments

The first group of experiments was performed using an endocentric lens:

� Experiment 1A: The purpose of the experiment was to simulate
a not-optimal scenario. A not-optimal scenario is mostly common
in industrial inspections, because many of the details are not
always put into consideration when inspection processes are on-going.
Sometimes, this could be as a result of workload and the urgency
of production. In this experiment, a not-optimal light alignment, a
not-optimal focus, a not-optimal calibration and a not-optimal object
alignment method was applied to the measurement process.

� Experiment 1B: These experiments were performed to achieve
an optimal measurement scenario. However, in this experiment an
attempt was put to differentiate the various conditions that could
affect the achievement of an optimal system. This experiment was
hence divided into three sub experiments:

– Experiment 1Bi: In this experiment, the endocentric optimal
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light alignment with not-optimal focus, not-optimal calibration
(32 images) and not-optimal object alignment was evaluated.

– Experiment 1Bii: In this experiment, the endocentric optimal
light alignment, optimal calibration (focus and 8 images),
not-optimal object alignment were evaluated.

– Experiment 1Biii: In this experiment, the optimal
configuration is set-up: endocentric optimal light alignment,
optimal calibration (focus and 8 images) and optimal object
alignment.

The second group of experiments was performed using a telecentric lens:

� Experiment 2A: Like experiment 1A, the purpose of the
experiment was to simulate a not-optimal scenario. In this
experiment, a not-optimal light alignment, a not-optimal calibration
and a not-optimal object alignment method was applied to the
measurement process.

� Experiment 2B: These experiments were performed to achieve an
optimal measurement scenario. This experiment was divided into
three sub experiments:

– Experiemt 2Bi: In this experiment, the telecentric
optimal light alignment, not-optimal calibration (32 images),
not-optimal object alignment were evaluated.

– Experiment 2Bii: In this experiment, the telecentric optimal
light alignment, optimal calibration (8 images), not-optimal
object alignment algorithms were evaluated.

– Experiment 2Biii: In this experiment, the optimal
configuration is set-up: telecentric optimal light alignment,
optimal calibration (8 images) and optimal object alignment.
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Table 6.1: Experiments configurations and results. The color
gradient indicates the level of optimized set-up pipeline phases
(red none, orange several phases optimized, green pipeline
optimized). The last column is the % of improvement with respect
to the not-optimal experiment, 1A or 2A.

Exp. Light
Align.

Focus
(%)

Calib.
Error
(px)

Object
Align.

Meas.
(mm)

Error
(mm)

Improv.
(%)

1A No 95 0.0582 No 62,258 0.244 -

1Bi Yes 95 0.0506 No 62,120 0.106 56.56

1Bii Yes 100 0.0275 No 62,109 0.095 61.07

1Biii Yes 100 0.0273 Yes 62,019 0.005 97.95

2A No - 0.1784 No 62,175 0.161 -

2Bi Yes - 0.0987 No 62,065 0.051 68,32

2Bii Yes - 0.0547 No 62,039 0.025 84,47

2Biii Yes - 0.0515 Yes 62,012 0.002 98,76

6.2 Discussion

Figure. 6.2(a) and Figure. 6.2(b) show the result from the calibration
experiments performed using both the endocentric and telecentric lenses.
When the developed optimal algorithms are implemented with the
endocentric optics, it could be observed that the calibration error is as
low as 0.027 pixels, as opposed to the calibration error achieved at 0.058
pixels, without using the algorithms. When the optimal algorithms are
implemented with the telecentric optics, it could be observed that the
calibration error is as low as 0.052 pixels, as opposed to the calibration error
achieved at 0.1784 pixels, without using the algorithms. These differences,
even though it could be further improved, clearly demonstrate that the
proposed algorithms provide a clear pathway for the achievement of a
preferred and improved calibration process.
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Figure 6.2: Calibration experiment chart

Figure 6.3: Alignment experiment chart

Figure. 6.3(a) and Figure. 6.3(b) show the summary of results from the
measurement experiments for both the endocentric and telecentric optics.
It could be observed that when the optimal algorithms are applied for
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the endocentric lens, the error value reduces to a minimum of 0.005 mm,
as opposed to the error value of 0.244 mm when no optimal algorithms
are considered. With the telecentric optics, it could be observed that
with the application of the optimal algorithms, the error value reaches a
minimum of 0.002 mm, as opposed to the error value of 0.161 mm when no
optimal algorithms are considered. The consistency of the results generated
by the proposed algorithms is obviously seen in the different phases of
implementation in improving the pipeline of an optical metrology system.

Therefore, given the number of experiments performed to verify the
different stages of the proposed algorithms, it can be evidently confirmed
that the implementation of the developed algorithms in a quality inspection
process is worth the while.

.



Chapter 7

Measurement and
uncertainty analysis

A synthesis of this chapter has been published in:

Moru, D. K. and Borro, D. ”A machine vision algorithm for quality
control inspection of gears”. The International Journal of Advanced
Manufacturing Technology, Vol. 106, N. 1-2, pp. 105-123. January 2020.
(Quartil Q2).

7.1 Introduction

Most industrial and haulage application use gears as common mechanism
for conveying power and motion. This element is important and frequently
used as fundamental component (Amarnath et al., 2009). As current
methodologies of gear measurement are expensive and time consuming,
precision and accuracy becomes evidently crucial in the measurement
and inspection of industrial products. There are very few methods
available of measuring gear parameters accurately, and at the same time,
minimizing error and production cost (Gadelmawla, 2004). As a key to
production and inspection, the utilization of machine vision applications
to develop accurate and precise measurement system with the ability to
perform appropriate inspection and measurement is fundamental to any
manufacturing process (Gadelmawla, 2017).

The aim of this chapter is to deploy an improved machine vision
application to determine the precise measurement of gears, at subpixel
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level, with the potential to improve quality control, reduce downtime and
optimize the inspection process.

7.2 The Proposed System

Figure 7.1: The proposed system configuration. a) Robot and
telecentric lens configuration. b) The inspection belt. c) The
vision2D application interface.

The Vision2D application has been developed to perform inspections and
measurements to determine the precise and accurate measurement of the
gear parameters to enhance quality inspection control. Fig.7.1(a) shows the
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proposed system configuration. The flow of the running system is as follows:

1. The gear was placed in a mechanical system configuration by an
M-10iA Fanuc robot. The robot is a six-axis, high performance
industrial robot. It weighs 130kg and provides 10kg payload with
the highest wrist moments and inertia in its class. The M-10iA can
be floor or wall mounted at any angle. For this experiment, the robot
was floor mounted.

2. A dynamic inspection belt was used to convey the gear piece from a
start state, during the inspection (Fig.7.1b). The belt configuration
is setup with a sensor. The sensor triggers when the gear is detected.
The robot receives the trigger signals from the sensor, automatically
picks the gear from the dynamic belt and places it on the mechanical
system.

3. When the gear has been placed on the mechanical system, a Manta
G-504 camera acquires the image of the gear. It is attached to a
telecentric lens TC12056 that can take advantage of high-resolution
detectors such as 5 MP - 2/3”, acquiring images with exceptional
fidelity and precision maximizing the performance of the proposed
system.

4. A high-performance telecentric illuminator specifically designed to
back illuminate objects imaged by telecentric lenses was used. The
telecentric illuminator offer higher edge contrast when compared to
diffused back light illuminator and therefore higher measurement
accuracy. This type of illumination is especially recommended for high
accuracy measurement of round or cylindrical parts where diffusive
back lighting would offer poor performances because of the diffuse
reflections coming from the edges of objects under inspection. Figure
7.2 shows the devices used for the experiment.

The Vision2D application was developed in-house in C# programming
and Visual Studio 2015, incorporating the Halcon 13 integration libraries.
C# programming was used to develop the user interface for a better touch
and feel. To perform the measurement process, several image processing
and machine vision algorithms are applied (explained in next Section) to
the acquired images.
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Figure 7.2: Devices used for the measurement experiment

In this chapter, a calibration target of 80 mm is used to generate the
coordinates of the calibration marks in the acquired image and to calculate
the estimation for the camera parameters. A root mean square error of 0.06
pixels (calibration error) was obtained.

7.3 The Algorithms

Figure 7.3: Nomenclature of gear
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The Vision2D application interface performs the measurement of all gear
parameter, as shown in Fig.7.3, by calculating only three parameters:
the outer diameter, the inner diameter (also called root diameter) and
the number of tooth. These three parameters are the most necessary
values needed to calculate the rest of the gear parameters. Many of the
gear parameters are well known to be correlated to each other by known
equations (Goch, 2003). For example, the pitch diameter is correlated to
the number of teeth and the module, while the module is correlated to
the pitch diameter and the number of teeth. In this situation, computer
vision algorithms were developed to calculate the outer diameter, the inner
diameter and the number of teeth of the gear to be measured, then the rest
of the gear parameters are calculated using their equations based on these
three parameters.

The image processing starts with the camera acquiring the image,
and several algorithmic steps are used for thresholding, segmentation,
detection and measurement of the gear. Fig.7.4 shows a block diagram of
the algorithms used. The next sections describes the algorithms in details.
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Figure 7.4: Flowchart of the Vision2D application.
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7.3.1 Image Segmentation

A. Bali et al (Bali and Singh, 2015) describes segmentation as a method
of partitioning an image or picture into different regions which has same
attributes like texture, intensity and gray level with the motive to yield
object of interest from the background. Image segmentation methods has
been extensively used in the identification of images and classification
of image in numerous fields (Zhang et al., 2008). Thresholding, because
of its clarity and direct nature, and clustering, because of its ability to
categorize images efficiently, are the very well known method for image
segmentation between image segmentation techniques (Cheng et al., 2001).
K. Singh et al further discussed the different types of image segmentation
thresholding techniques for the different application areas: pixel based, edge
based and region based segmentation techniques (Singh and Singh, 2010).
Pixel based segmentation is conceptually the simplest approach used for
segmentation. In this approach, information from the input image fuses in a
pixel-by-pixel basis either in the transform or in spatial domain. Edge based
segmentation is based on the fact that the position of an edge is given by an
extreme of the first-order derivative or a zero crossing in the second-order
derivative. Region based method focus attention on an important aspect of
the segmentation process missed with pixel based techniques: it classifies a
pixel as an object pixel judging solely on its gray value independently of
the context. This dissertation implements thresholding at sub-pixel level
using the edge base method.

7.3.2 Edge Detection Sub Pixel

In industrial applications, like measurement of gears with high precision, it
is sometimes necessary to detect edges with sub-pixel precision. The need of
sub-pixel accuracy in image processing and analysis was firstly pointed out
in the late 1970s (Nevatia, 1978). Since then, the issue of edge detection at
the sub-pixel level has gained attention of approaches of many scientists and
researchers (Fabijańska, 2012). Detection of edges with sub-pixel accuracy
improves the measurement accuracy and reduce hardware cost.
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Figure 7.5: The edge detection details. a) The edge pixel detection
of the gear tooth. b) The edge sub-pixel detection of the gear
tooth. c) The outer edge detection of gear. d) The intersection
points to determine the diameter of tooth.

M. Hagara et al (Hagara and Kulla, 2011) describes that most edge
detectors at sub-pixel level fall in three groups: fitting, moment-based
and interpolation-based methods. Fitting method use continuous functions,
such as hyperbolic tangent (Nalwa and Binford, 1986), to fit samples
of image function. Moment-based methods apply moment to determine
unknown edge model parameters. For example, gray level moments tangent
(Da and Zhang, 2010), spatial moments (Baozhang and Yanping, 2010),
Fourier-Mellin moments (Bin et al., 2008) or Zernike moments (Zhang
et al., 2010). Interpolation based methods achieve the sub-pixel accuracy
by interpolating the image data to obtain a finer grid of pixels.Thresholding
at the sub-pixel extracts segments from the image with sub-pixel accuracy.
A segmentation process develops with the analysis of the input image
as a surface, where the gray values are bi-linearly interpolated amid the
centers of the individual pixels. Each pixel is thus extracted forming a
segmented line, consistent with the image surface and then associated
into intact topological contours. The segmentation contours therefore are
accurately divided at intersecting points. Only image borders of areas
containing extended gray values are generated. Figures 7.5 (a), (b), (c)
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and (d) show the edge detection at different levels. Figure 7.5a shows the
edge pixel detection of the gear tooth. Figure 7.5b shows the edge sub-pixel
detection of the gear tooth. Figure 7.5c shows the principal outer edge
detected applying the threshold sub-pixel algorithm. Figure 7.5d shows the
diametric intersections generated to calculate the distance between two
points of the outer tooth edge across the area center. It also shows the
intersecting distance between two points in the inner circle across the area
center.

7.3.3 The Outer Diameter Algorithm

To calculate the external diameter of the gear from the extracted edge of
the outer contour, the outer diameter algorithm was developed. Figure 7.6
shows the flow process.

� Threshold the acquired image: The threshold sub-pixel algorithm
extracts segments of the input image with sub-pixel accuracy.

� Select edge contour: The select contours algorithm selects contours
from the input image according to a contour length specified. All
contours whose length is far away from the parameter specified are
not returned.

� Fit circle contour: The fit circle contour algorithm approximates the
contours by a circle. The operator returns the area center, and the
radius.

� For five tooth, generate a radius line from two points: the tooth edge
and the area center of the circle contour.

� Extending the radius lines, the intersection points at the edge contour
are generated for each teeth, and the corresponding distance diameter
computed.

Distance =
√

((R1−R2)2 + (C1− C2)2)

where R1 and R2 are the row coordinates of the first and second
point respectively, and C1 and C2 are the column coordinates of the
first and second point respectively.
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Figure 7.6: Flowchart of outer diameter algorithm.

� The average of all the computed distances is reserved as the outer
diameter.

7.3.4 The Inner Diameter Algorithm

The root diameter algorithm calculates the inner diameter from the
extracted edge pixels. Figure 7.7 illustrates the flow process.
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Figure 7.7: Flowchart of inner diameter algorithm.

� Generate region from contour: The generate region contour algorithm
creates a region from a sub-pixel contour. The contour is sampled
according to the Bresenham algorithm (Jia et al., 2008). Open
contours are closed before converting them to regions.

� The shape transform is used to transform the shape of the input
regions to derive the largest circle fitting into the region.

� Generate contour of region: The generate contour region algorithm
generates contours from the regions.

� Fit circle contour approximates the contours by circles. The operator
returns the contour area center and radius.

� Arbitrary lines are generated from the area center to intersect with
the circle contours.
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� The average of all intersection points are then used to calculate the
inner diameter across the area center of the circle contour.

7.3.5 The Tooth Number Algorithm

The tooth number algorithm counts the number of tooth in the gear image.
Figure 7.8 shows the flowchart. The algorithm works as follows:

Figure 7.8: Flowchart of tooth number algorithm.

� Threshold the acquired image: The threshold sub-pixel algorithm
extracts segments of the input image with sub-pixel accuracy.
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� Select edge contour: The select contours algorithm selects contours
from the input image according to a contour length specified. All
contours whose length is far away from the parameter specified are
not returned.

� Fit circle contour: The fit circle contour algorithm approximates the
contours by a circle. The operator returns the area center, and the
radius.

� Intersect contours: Generates intersecting points of the tooth edge
contour and circle contour which, if any, are returned.

� Select object: This algorithm selects all the intersecting points
generated.

� Count object: This algorithm counts the intersecting points and
determines as output parameter the average of the counted objects.
The average is considered as the output because the number of tooth
is twice the number of the intersection points.

7.3.6 The Other Parameters

The above three algorithms calculate the outer diameter, the inner diameter
and the number of teeth of the gear to be measured. Using these parameters,
all other gear parameters can be calculated. Table 7.1 describes the different
gear parameters and the subsequent formulas used to generate the values.

7.4 Inspection Process

To accomplish the desired quality inspection process, the measurement of
the gear acquired from the Vision2D application is compared with the
measurement of the nominal gear derived from the CMM analysis, within a
specified tolerance. The interface of the Vision2D application (Figure 7.9)
deals with this process. The inspection process performed uses the following
four steps:

� The standard gear parameters: The standard gear parameters is set
into the Vision2D application for automatic reference. The reference
values were obtained from a CMM analysis of a nominal gear.
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Table 7.1: The gear nomenclature and formulas

Domination Symbol Formula

Module m m = da
(z+2)

Clearance c c =
(( 1

6 )×m
(( 1

4 )×m

Pitch diameter d d = m× z

Addendum ha ha = m

Dedendum hf hf = ha+ c

Whole depth h h = ha+ hf

Circular pitch p p = m× π

Circular tooth thickness s;e s; e = p
2

Base circular diameter db db = d× cosα

Cordal addendum hac hac = m[1 + ( z2 )(1− ( cos90z ))]

� The tolerance: The tolerance is set in the Vision2D application.
The parameters to be inspected are verified and their allowable
tolerances assigned. Each parameter can be assigned unique tolerance
values. Alternatively, the same tolerance values can be applied to all
parameters.

� Measuring the gear to be inspected: The gear to be inspected is
acquired and measured by the Vision2D system, then the calculated
parameters are compared with the nominal gear parameters according
to the tolerances given.

� Taking an inspection decision: The inspection decision is displayed
automatically in the Inspection section. The inspection is accepted
if all inspected parameters for the gear satisfy the corresponding
parameter conditions from the nominal reference, within the specified
tolerances. Otherwise, the inspection is rejected.
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Figure 7.9: The main interface of the Vision2D application.

7.5 Measurement Error and Uncertainty Analysis

The existence of some degree of uncertainty in any given measurement
system is caused by different sources or error. Error is the discrepancy
between the ”true-value” and the measured value. Since it is impossible
to know the ”true-value” of a measurement, a measurement made with a
much more precise measurement system than the system being tested is
taken as the reference measurement.

The quality of the experiment of a measurement system is certain by
the minimization or eradication of as many sources of error. Measurement
errors are grouped as either random or systematic. Random error usually
emerges from unpredictable alterations of dominating quantities. It is
almost impossible to requite for the random error of measurement, however
an increase in the number of experimentation can often times minimize it. A
system error emerges from an observable effect of a dominating quantity on
a measurement. It is quantifiable. A level of rectification can be applied to
requite for the effect. Random and systematic errors are related to precision
and accuracy respectively. Precision denotes the quality of measurement,
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with no attestation that the measurement is right. While accuracy ascertain
that, there is an optimal value, normally referenced, to know how distant
the feedback is from the optimal value. According to GUM (ISO and OIML,
1995), uncertainty components are grouped into two categories based on
their method of evaluation ”A” and ”B”. Both types are different forms to
evaluate the uncertainty and are based on probability distributions. Type A
standard uncertainty is calculated from series of repeated observations and
is the square root of the statistically estimated variance (i.e., the estimated
standard deviation). This technique principally encompass random errors.
Type B standard uncertainty is also the square root of an estimated
variance, but rather than being evaluated by repeated measurement, it is
obtained from an assumed probability density function based on the degree
of belief that an event will occur. This technique encompasses systematic
errors and the other uncertainty factors considered important.

The individual uncertainty components ui (sometimes of Type A and
sometimes of Type B) should be combined using the law of propagation of
uncertainties, commonly called the ”root-sum-of-squares” or ”RSS” method
to obtain the combined standard uncertainty, denoted by uc.

uc =
√∑

u2
i (7.1)

However, when this is done, the combined standard uncertainty
should be equivalent to the standard deviation of the result, making this
uncertainty value correspond with a 68% confidence interval (with a normal
distribution). If a wider confidence interval is desired, the uncertainty can
be multiplied by a coverage factor (usually k = 2 or 3) to provide an
uncertainty range that is believed to include the true value with a confidence
of 95% (for k = 2) or 99,7% (for k = 3). This is called expanded uncertainty
and is denoted by Uc.

Uc = k
√∑

u2
i (7.2)

Another possibility is, instead of assuming a normal distribution in
all the uncertainties, calculate the coverage factor independently for each
uncertainty depending on its specific distribution.

Uc =
√∑

(kiui)2 (7.3)
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Table 7.2: Coverture factor for different probability distributions

Rectangular distribution Normal distribution

Level of
confidence
p (%)

Coverture
factor k

Level of
confidence
p (%)

Coverture
factor k

57,74 1 68,27 1
95 1,65 90 1,645
99 1,71 95 1,960
100 1,73 95,45 2

99 2,576
99,73 3

In this case, Table 7.2 can be used to obtain the parameter k looking for
a confidence of 95% that is the usual one in most of the industry processes.
As our uncertainties only fall in rectangular or normal distributions, we’ll
take k = 1, 65 and k = 1, 96 respectively.

In this work, the most significant uncertainties (ui) that have been
considered are:

� Resolution uncertainty (Type B)

� Pattern (plate) uncertainty (Type B)

� Calibration uncertainty (Type A)

� Measurement uncertainty (Type A)

7.5.1 Resolution uncertainty

One of the sources of uncertainty of an instrument is the resolution of the
device (if it is a digital instrument), or the uncertainty due to the resolution
of reading (if it is an analog instrument) that depends on the operator or
the way used in the reading.

If the resolution of the indicating device is δx, the input signal value
that produces an indication given X can be placed with equal probability
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at any point within the interval from (X − δx/2) to (X + δx/2). The input
signal can then be described by means of a rectangular distribution with
range δx and standard deviation (typical uncertainty) of:

ur =
δx

2
√

3
(7.4)

Taking into account that the theoretical sub-pixel object space
resolution is given by:

δx =
FOV

256 ∗#pixels
(7.5)

where FOV is the Field of View (70mm), #pixels is the number of pixels
and each pixel has 8 bits of depth.

7.5.2 Pattern uncertainty

The uncertainty of the pattern should be given by the calibration
laboratory, by a formula or simply by its value. In our case, the plate
calibration certificate points out that the maximum uncertainty of the
plate is 0, 15µm. That means an expanded uncertainty with a 100% level of
confidence U ′p. The typical uncertainty is obtained by dividing the expanded
uncertainty by the coverage factor. In this case k′ = 3 (normal distribution).

up =
U ′p
k′

(7.6)

Finally, to obtain the expanded uncertainty with a 95% level of
confidence, a k = 1, 96 should be used.

Up = kup (7.7)

7.5.3 Calibration uncertainty

In most cases, the best available estimate of the expected value of a
quantity that varies randomly (uncertainty Type A), and for which n
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independent observations qk have been obtained under the same conditions
of measurement, is the arithmetic mean or average q̄ of the n observations.
The estimate of variance and its positive square root σ (standard deviation),
characterize the variability of the observed values.

σ =

√√√√√ n∑
k=1

(qk − µ)2

n− 1
(7.8)

According to statistical theory, the best estimate for Type A standard
uncertainty is given by standard deviation of the mean:

ucalib =
σcalib√
n

=

√√√√√ n∑
k=1

(qk − µcalib)2

n(n− 1)
(7.9)

Knowing the nominal distance between two horizontal points in the
plate (2,58065 mm), a set of 18 distance measurements close to 62 mm
(roughly the size of the gear) were performed computing its µcalib =
65, 6610mm and σcalib = 0, 0017mm.

If q0 is the reference value, a calibration correction can also be computed
as follows:

∆qcorr = q0 − µcalib (7.10)

This calibration correction can be applied in two ways. On one hand
correcting the value of the measurements, each time a measurement is made,
with the deviation value obtained in the calibration correction ∆qcorr. On
the other hand (the chosen one in this work), including as a cause of
calibration uncertainty the term of the systematic correction, assuming
it is distributed according to a rectangular function (∆qcorr√

3
) according to

(Sevilla, 2001). This is more comfortable as it has an expression that already
introduces this systematic variation, although increases unnecessarily the
value of the global uncertainty.
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7.5.4 Measurement uncertainty

It is accepted that the variance obtained in the process of calibration be
the same as that obtained in the process of usual measurement, so, the
uncertainty associated with the measurement process will be the same as
ucalib with n = 1 , i.e., um = σcalib.

Before performing measurements, it’s important to check the system
error measuring the ground-truth nominal sample gear. Figure 7.10 shows
the measurement data of different camera exposures of the ground-truth
sample gear, in order to check the minimum system error. The minimum
error obtained is 0.002 mm at a exposure time of 7500 µs, very coherent to
the computed standard uncertainty um (see Table 7.4).

Figure 7.10: Graph to check the minimum system error

A summary of the different uncertainties involved in the combined
standard uncertainty is shown in Table 7.3.
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Table 7.3: Summary of involved uncertainties

Name Symbol Standard
uncertainty

Prob.
Distr.

Coverture
factor

Contribution
to
expanded
uncertainty

ui ki Ui

Resolution ur
FOV

512
√
3∗#pixels Rectangular 1,65 1,65∗FOV

512
√
3∗#pixels

Pattern up up Normal 1,96 1, 96up

Calibration ucalib
σcalib√

n
Normal 1,96 1, 96σcalib√

n

Calibration
correction

∆qcorr
q0−µcalib√

3
Rectangular 1,65 1, 65 q0−µcalib√

3

Measurement um σcalib Normal 1,96 1, 96σcalib

Combined uncertainty (uc) uc =
√∑

u2i

Expanded uncertainty (Uc) Uc =
√∑

U2
i

7.6 Validation and Analysis

For the proper verification of the gear system, the developed Vision2D
application inspected twelve gear pieces. The inspection process aimed
at ascertaining if each of the gear had any defective component. This is
to enhance the quality control inspection in the inspection process. The
Vision2D application applies the corresponding algorithms to the image
processed, and determines if the gear is non-defective or defective. If the
image processed meets all the required conditions, the Vision2D application
outputs ’accepted’, and sends a positive signal to the robot sensor. The
robot picks the gear piece from the configuration setup and delivers it to
the appropriate section. If the image processed fails the required condition
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Table 7.4: Summary of involved uncertainties with numerical
values

Name Symbol Standard
uncertainty

Prob.
Distr.

Coverture
factor

Contribution
to
expanded
uncertainty

(µm) (µm)

Resolution ur 0,0322 Rectangular 1,65 0,0531

Pattern up 0,05 Normal 1,96 0,098

Calibration ucalib 0,3966 Normal 1,96 0,7772

Calibration
correction

∆qcorr 1,7128 Rectangular 1,65 2,8261

Measurementum 1,6824 Normal 1,96 3,2976

Combined uncertainty (uc) 2,4341µm

Expanded uncertainty (Uc) 4,4133µm

set, the Vision2D application outputs ’rejected’, and sends a negative signal
to the robot sensor. The nominal value acquired from the CMM with the
ground-truth sample gear is used to verify the values generated by the
Vision2D application. The error margin sets as tolerance of the system is
±0.020 mm for a gear nominal diameter of 62,014 mm.

In order to compute the uncertainty of the process before the gears
measurement, Table 7.3 is filled with numerical values (shown in Table
7.4). This allows to conclude that if a measurement m is made close to 62
mm, and for instance 62,012 mm is obtained, the real value will be:

M = (62, 012± 0, 004mm) (7.11)
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where the number following the symbol ± is the numerical value
of an expanded uncertainty Uc, determined from a combined standard
uncertainty, uc, and the related coverture factors based on both, rectangular
and normal distributions, and defines an interval estimated to have a level
of confidence of 95%.

Once the measurement is made, the decision must be made to consider
the piece valid or not, according to the value of the nominal size (m0),
the specified nominal tolerance interval (t0) and the computed expanded
uncertainty (Uc). The admissible zone is shown in Figure 7.11 from the next
equations:

tas = m0 + t0 − Uc = 62, 014 + 0, 020− 0, 004 = 62, 030mm (7.12)

tai = m0 − t0 + Uc = 62, 014− 0, 020 + 0, 004 = 61, 998mm

Figure 7.11: Computation of the admissible zone



104 Chapter 7. Measurement and uncertainty analysis

Table 7.5: Inspection details of accepted Gear 1

Gear Teeth Outer Diameter (mm) Error (mm)

1 62,016 0,002
2 62,015 0,001
3 62,017 0,003
4 62,014 0,000
5 62,018 0,004

Average 62,016 0,002

Table 7.6: Inspection details of rejected Gear 12

Gear Teeth Outer Diameter (mm) Error (mm)

1 62,065 0,051
2 62,018 0,004
3 62,056 0,042
4 62,019 0,005
5 62,020 0,006

Average 62,036 0,022

Table 7.5 shows the inspection result details of an accepted gear. The
Vision2D application inspects and measures each tooth of the gear. It
performs the evaluation, and the measured values and difference between
the ground-truth value are generated. Vision2D application accepts the gear
because of the condition for verification is satisfied.

Table 7.6 shows the verification details of a rejected gear. In this
case, the Vision2D application rejects the gear because of the tolerance
limit (16µm), considering the nominal tolerance and the vision system
uncertainty, was exceeded.

The inspection result details of all twelve gears and the summary
verification chart are shown in Table 7.7 and Fig.7.12 respectively.
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Table 7.7: The Inspection Results

Nominal Value m0 (mm) 62,014

Tolerance t0 (mm) ±0,020

Expanded uncertainty Uc (mm) ±0,004

Gear Outer Diameter
(mm)

Error
(mm)

Decision

1 62,016 0,002 Accepted
2 62,006 0,008 Accepted
3 62,024 0,010 Accepted
4 62,040 0,026 Rejected
5 62,012 0,002 Accepted
6 62,028 0,014 Accepted
7 61,984 0,030 Rejected
8 62,025 0,011 Accepted
9 62,024 0,010 Accepted
10 62,015 0,001 Accepted
11 62,034 0,020 Rejected
12 62,036 0,022 Rejected

Figure 7.12: The Verification Chart
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7.7 Discussion

This chapter further exposes the development of an improved Vision2D for
quality control inspection. The experiments carried out with different gears
reveal the functionality of the developed Vision2D application taking into
account not only the nominal tolerance but also the computed uncertainty
of the process. Several emphasized considerations were implemented to
better enhance the results generated by the application, as follows:

� The use of a telecentric lens.

� An improved camera configuration and set-up.

� A high-quality system with a very low calibration error result.

� A greater amount of proofs done on an increased number of gear
inspections.

� A significantly low tolerance to enhance a limited error-prone system
for better quality control inspection

� A methodological study of the uncertainty associated with the
process.

The successful implementation of these emphasized considerations and
the achievements of the significant uncertainties that have been considered
are the contributions that distinguish this chapter.
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Chapter 8

Conclusions

In the case of an industrial inspection process, we were curious to pause
at each stage of the inspection to observe the effects of using an optimal
algorithm and a not-optimal algorithm to compare the effect on the
inspection process of the fabricated piece.

The main conclusions of this dissertation have been to investigate the
following research questions associated to each of the identified phases of
the optical set-up pipeline:

� The effects of lens misalignment can be highly pronounced. If the lens
is not mounted correctly then the result will be an image that is not
perfectly focused. If the lens is tilted, part of the image captured
by the sensor may be in focus while another part of the image
will be blurred. In the first proposal, we present a light alignment
algorithm to track and monitor acquired image plane regions to verify
an optimal light alignment system.

� Due to the importance and complex nature of an efficient calibration
process, several factors are involved for a successful calibration
process. Each of these factors play a significant role in determining
the accuracy of the error generated. The level of accuracy of the
calibration process determines to a large extent the accuracy of the
measurement results desired. Proposal 2 has presented the results
from this study, in which the effects of the different parameters, such
as camera focus, exposure time, calibration plate tilt and number of
images, were analyzed to determine how they influence the calibration
process. For the camera focus proposal, an algorithm that evaluates
focus range in real time is presented. Special attention has been paid

109
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to the focus parameter since currently, the procedure to find the
focused image is done visually by the user. However, in this thesis we
demonstrate that performing the search for the optimal focus results
in lower and statistically different calibration errors, which justifies
using this method for use in industrial vision systems.

� As a result of adjustments and motions during a measuring process, it
becomes important to have an alignment system to avoid any possible
errors that may result from a lack of alignment. In order to obtain
the best possible alignment conditions, it is necessary to check if
the object to be measured is well placed. In the third proposal, an
alignment algorithm was developed and used to track the changes that
occur in the image processing. Furthermore, several tilting position
of the object was used to verify and authenticate the algorithm. The
results shows the efficacy of the algorithm.

� The proposal validation chapter shows experiments in which all the
previous proposals were put together so that the impact on each one
in both, calibration error and measurement, can be evaluated. The
results show that even when visually, an optical set-up can be built
and it works, it is worthy to find optimal values in every single pipeline
stage.

� Quality control has become a priority in the inspection processes
of industrial manufacturing. Machine vision technology provide
image-based inspection and analysis for such demanding processes.
We present a chapter with the results from the study, in which an
improved machine vision application is developed to perform a precise
measurement of industrial gears (at sub pixel level), and making a
deep study of the uncertainty of the measurement.

8.1 Future research lines

Several research lines are open to continue with this work:

� All proposals of this Thesis have been coded and evaluated separately.
The first easiest and fastest work would be to put all proposals
together in one single application and enable a GUI to access each
one of the algorithms.
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� The study of more parameters involved in the calibration process like
depth-of-field, gamma, ISO, or even those involved in color cameras.

� The accomplished uncertainty study makes some assumptions or
simplifications or does not take into account other uncertainty sources
like temperature. A deeper uncertainty study could be done.

� This Thesis focus on static environments in which the product is
not moving. The following work would be the study of advanced
inspection and metrology techniques in a dynamic environment as
products move over belt system.

� The effects of vibration in the metrology and high precision
evaluations, especially in dynamic environments.
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Appendix A

Optical Set-Up Definitions

A.1 Understanding Focal Length and Field of View

A Fixed Focal Length Lens, also known as a conventional or endocentric
lens, is a lens with a fixed Angular Field of View (AFOV). By focusing
the lens for different working distances, differently sized Fields of View
(FOV) can be obtained, though the viewing angle is held constant. AFOV
is typically specified as the full angle (in degrees) associated with the
horizontal dimension (width) of the sensor that the lens is to be used with.
Fixed Focal Length Lenses should not be confused with Fixed Focus Lenses.
Fixed Focal Length Lenses have the ability to be focused for different
distances and Fixed Focus Lenses are intended for use at a single, specific
working distance. Examples of Fixed Focus Lenses are many Telecentric
Lenses and Microscope Objectives. The focal length of a lens defines the
lens’s angular field of view. For a given sensor size, the shorter the focal
length, the wider the angular field of the lens. Additionally, the shorter the
focal length of the lens, the shorter the distance needed to obtain the same
FOV compared to a longer focal length lens. For a simple, thin convex lens,
the focal length is the distance from the back of the lens to the plane of the
image formed of an object placed infinitely far in front of the lens. From
this definition, it can be shown that the angular field of view of a lens is
related to the focal length (Equation A.1), where f is the focal length in
millimeters and h is the horizontal dimension of the sensor in millimeters
as show in Figure A.1.

AFOV (◦) = 2× tan−1(
h

2f
) (A.1)
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Figure A.1: Focal length of AFOV

When using Fixed Focal Length Lenses, there are three ways to change
the field of view of the system (camera and lens):

� The first and often easiest option is to change the working distance
from the lens to the object; moving the lens farther away from the
object plane increases the field of view.

� The second option is to swap out the lens that is being used with one
of a different focal length.

� The third option is to change the size of the sensor that is being used;
a larger sensor will yield a larger field of view for the same working
distance.

A.2 Working Distance (WD) and Field of View (FOV)

The required distance from an object and the desired field of view (the size
of the object with additional buffer space) are typically known quantities.
This information can be used to directly determine the required angular
field of view via the formulas shown in Equation A.2, where WD is the
Working Distance from the lens and AFOV is the Angular Field of View.
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AFOV (◦) = 2× tan−1(
HorizontalFOV (mm)

2×WD(mm)
)

or

Horizontal FOV (mm) = 2×WD(mm)× tan(
AFOV (◦)

2
) (A.2)

Once the required AFOV has been determined, the focal length can be
approximated using Equation A.1 and the proper lens can be chosen from
a lens specification table or datasheet by finding the closest available focal
length with the necessary angular field of view for the sensor being used.
Alternatively if the sensor has already been chosen, the focal length can be
determined directly from the FOV and WD by substituting Equation A.1
in Equation A.2, as shown in Equation A.3,

FL = (
h×WD

HorizontalFOV
) (A.3)

where, h is the horizontal sensor dimension (number of horizontal pixels
multiplied by the pixel size) and FL is the focal length of the lens, both in
millimeters; the FOV and WD must be measured in the same unit system.
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Figure A.2: Relationship between HFOV, sensor size, and WD for
a given angular FOV

A.3 Lens Specifications and Resolution

Resolution is a measurement of an imaging system’s ability to reproduce
object detail and can be influenced by factors such as the type of lighting
used, the pixel size of the sensor, or the capabilities of the optics. The
smaller the object detail, the higher the required resolution. Dividing the
number of horizontal or vertical pixels on a sensor into the size of the object
one wishes to observe will indicate how much space each pixel covers on
the object and can be used to estimate resolution. However, this does not
truly determine if the information on the pixel is distinguishable from the
information on any other pixel. As a starting point, it is important to
understand what can actually limit system resolution. Figure A.3 shows
a pair of squares on a white background. If the squares are imaged onto
neighboring pixels on the camera sensor, then they will appear to be one
larger rectangle in the image (a) rather than two separate squares (b). In
order to distinguish the squares, at least one pixel needs to be between
them. This minimum distance is the limiting resolution of the system. The
absolute limitation is defined by the size of the pixels on the sensor as well
as the number of pixels on the sensor.
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Figure A.3: Resolving two squares. If the space between the
squares is too small (a) the camera sensor will be unable to resolve
them as separate objects

In order to determine the absolute minimum resolvable spot that can
be seen on the object, the ratio of the field of view to the sensor size needs
to be calculated. This is also known as the Primary Magnification (PMAG)
of the system.

PMAG = (
sensor size(mm)

FOV (mm)
) (A.4)

The ratio associated with system PMAG allows for the scaling of the
imaging space resolution which gives the resolution of the object.

object space resolution(lp/mm) = (image space resolution(lp/mm)×PMAG)
(A.5)

Generally when developing an application, a system’s resolution
requirement is not given in lp/mm, but rather in microns (µm) or fractions
of an inch:
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object space resolution(µm) = (
pixel size(µm)

PMAG
) (A.6)

A.4 Vignetting within a Lens

Vignetting is the result of light rays not making it through the entire lens
system to the sensor, due to being blocked by the edges of individual lens
elements or mechanical stops. This clipping of rays can be intentional or
unintentional, and in some case it is unavoidable. Vignetting is most often
seen at or in lower f/#s, short focal length lenses, or lenses where higher
resolutions need to be achieved at a lower cost. Figure A.4 demonstrates
clipping as it may occur for the same 16mm lens at different f/#s (f/1.8 and
f/4). Note the clipping of rays in Figure A.4a, as indicated with red circles;
these rays are not able to pass through all of the optics in the lens. Figure
A.4b, on the other hand, demonstrates an example without vignetting. The
vignetting in Figure A.4a could have several causes, including diameter
limitations of the optics or a need to eliminate the rays to block stray light.
Vignetting is sometimes purposely included in a lens design to improve
overall lens performance or reduce cost.

Figure A.4: A 16mm lens design at a) f/1.8 and b) f/4. At f/1.8
vignetting occurs where light rays are clipped by the edges of the
lens.
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A.5 Depth of Field and Depth of Focus

The Depth of Field (DOF) of a lens is its ability to maintain a desired
amount of image quality (spatial frequency at a specified contrast), without
refocusing, if the object is positioned closer to and farther from best focus.
DOF also applies to objects with complex geometries or features of different
heights. As an object is placed closer or farther than the set focus distance
of a lens, the object blurs and both resolution and contrast suffer. Because
of this, DOF only makes sense if it is defined with an associated resolution
and contrast.

Figure A.5: Geometric representation of DOF for high and low
f/# lenses.

Depth of focus is the image-space complement of depth of field and is
related to how the quality of focus changes on the sensor side of the lens as
the sensor is moved while the object remains in the same position. Depth
of focus dictates how much tip and tilt can be tolerated between the image
plane of the lens and the sensor plane itself. As f/# decreases, so too does
the depth of focus, which increases the impact that tilt has on achieving
the best focus across the sensor.
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A.6 Distortion

The term distortion is often applied interchangeably with reduced image
quality. Distortion is an individual aberration that does not technically
reduce the information in the image; while most aberrations actually mix
information together to create image blur, distortion simply misplaces
information geometrically. This means that distortion can actually be
calculated or mapped out of an image, whereas information from other
aberrations is essentially lost in the image and cannot easily be recreated.
Distortion is a monochromatic optical aberration that describes how the
magnification in an image changes across the field of view at a fixed working
distance; this is critically important in precision machine vision and gauging
applications. Distortion is distinct from parallax, which is a change in
magnification (field of view) with working distance. It is important to note
that distortion varies with wavelength, as shown in Figure A.6, and that
when calibrating distortion out of a machine vision system the wavelength
of the illumination needs to be taken into account. Curves like the one in
Figure A.6 are very helpful in determining how to calibrate out distortion.

Figure A.6: Distortion plot showing the variance of distortion with
respect to wavelength
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As with other aberrations, distortion is determined by the optical design
of the lens. Lenses with larger fields of view will generally exhibit greater
amounts of distortion because of its cubic field dependence. Distortion is
a third-order aberration that, for simple lenses, increases with the third
power of the field height; this means that larger fields of view (a result of
low magnification or short focal length) are more susceptible to distortion
than smaller fields of view (high magnification or long focal length). The
wide fields of view achieved by short focal length lenses should be weighed
against aberrations introduced in the system. On the other hand, telecentric
lenses typically have very little distortion: a consequence of the way that
they function. It is also important to note that when designing a lens to have
minimal distortion, the maximum achievable resolution can be decreased.
In order to minimize distortion while maintaining high resolution, the
complexity of the system must be increased by adding elements to the
design or by utilizing more complex optical glasses.

Figure A.7: An illustration of positive and negative distortion

Distortion is typically specified as a percentage of the field height.
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Typically, ±2 to 3% distortion is unnoticed in a vision system if
measurement algorithms are not in use. In simple lenses, there are two main
types of distortion: positive, barrel distortion, where points in the field of
view appear too close to the center; and negative, pincushion distortion,
where the points are too far away. Barrel and pincushion refer to the shape
a rectangular field will take when subjected to the two distortion types, as
shown in Figure A.7. Distortion can be calculated simply by relating the
Actual Distance (AD) to the Predicted Distance (PD) of the image using
Equation A.7. This is done by using a pattern such as dot target shown in
Figure A.8.

Distortion(%) = ((
AD − PD

PD
)× 100) (A.7)

Figure A.8: Calibrated target (red circles) vs. imaged (black dots)
dot distortion pattern.

It is important to note that while distortion generally runs negative or
positive in a lens, it is not necessarily linear in its manifestation across the
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image for a multi-element assembly. Additionally, as wavelength changes, so
does the level of distortion. Finally, distortion can be altered with changes
in working distance. Ultimately, it is important to individually consider
each lens that will be used for a specific application in order guarantee the
highest level of accuracy when looking to remove distortion from a system.

A.7 Telecentric and Perspective Error

Conventional lenses have angular fields of view such that as the distance
between the lens and object increases, the magnification decreases. This is
how the human vision behaves, and contributes to our depth perception.
This angular field of view results in parallax, also known as perspective
error, which decreases accuracy, as the observed measurement of the vision
system will change if the object is moved (even when remaining within
the depth of field) due to the magnification change. Telecentric Lenses
eliminate the parallax error characteristic of standard lenses by having
a constant, non-angular field of view; at any distance from the lens, a
Telecentric Lens will always have the same field of view. Figure A.9 shows
the difference between a non-telecentric and a telecentric field of view. A
Telecentric Lens’s constant field of view has both benefits and constraints
for gauging applications. The primary advantage of a Telecentric Lens is
that its magnification does not change in respect to depth. Figure A.10
shows two different objects at different working distances, both imaged by
a Fixed Focal Length (non-telecentric) Lens (center) and a Telecentric Lens
(right). Note that in the image taken with a Telecentric Lens, it is impossible
to tell which object is in front of the other. With the Fixed Focal Length
Lens, it is quite obvious that the object that appears smaller is positioned
farther from the lens. While Figure A.10 is drastic in terms of a working
distance shift, it illustrates the importance of minimizing parallax error.
Many automated inspection tasks are imaging objects that move through
the field of view of an imaging system, and the position of parts is rarely
perfectly repeatable. If the working distance is not identical for each object
that the lens is imaging, the measurement of each object will vary due to the
magnification shift. A machine vision system that outputs different results
based on a magnification calibration error (which is unavoidable with a
Fixed Focal Length Lens) is a non-reliable solution and cannot be used
when high precision is necessary. Telecentric Lenses eliminate the concern
about measurement errors that would otherwise occur due to factors such
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as a vibrating conveyor or inexact part locations.

Figure A.9: Field of view comparison of a conventional and
Telecentric Lens. Note the conventional lens’s angular field of view
and the Telecentric Lens’s zero angle field of view.

Figure A.10: The angular field of view of the Fixed Focal Length
Lens translates to parallax error in the image and causes the two
cubes to appear to be different sizes.

A.8 Telecentric Lenses and Depth of Field

It is a common misconception that Telecentric Lenses inherently have a
larger depth of field than conventional lenses. While depth of field is still
ultimately governed by the wavelength and f/# of the lens, it is true that
Telecentric Lenses can have a larger usable depth of field than conventional
lenses due to the symmetrical blurring on either side of best focus. As the
part under inspection shifts toward or away from the lens, it will follow the
angular field of view that is associated with it. In a non-telecentric lens,
when an object is moved in and out of focus, the part blurs asymmetrically
due to parallax and the magnification change that is associated with its
angular field of view. Telecentric Lenses, however, blur symmetrically since
there is no angular component to the field of view. In practice, this means
that features such as edges retain their center of mass location; an accurate
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measurement can still be made when the object is beyond best focus as
long as the contrast remains high enough for the algorithm being used
by the machine vision system to function properly. While it may seem
counter intuitive, blur can be used advantageously in certain applications
with Telecentric Lenses. For example, if a machine vision system needs to
find the center location of a pin, as shown in Figure 5.3a, the transition
from white to black is quite sharp when the lens is in focus. In Figure 5.3b,
the same pin is shown slightly defocused. Looking at a plot of the image
gray levels from a line profile taken across the edge of the part, as in Figure
5.4, the slope of the line is much shallower for the slightly defocused image,
as the pin edge is spread over more pixels. Due to the symmetric blurring of
the Telecentric Lens, this blur is still usable as the centroid has not moved
and the amount of sub-pixel interpolation needed is decreased. This reduces
sensitivity to grey level fluctuations caused by sensor noise and allows the
pin center location to be found more reliably and with higher repeatability.

Figure A.11: The same pin imaged both in and out of focus.
Note that the transition from white to black covers many more
pixels when the lens is slightly out of focus (b), which can be
advantageous.
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Figure A.12: Plot showing the difference in slope between a
focused and defocused edge. The defocused edge takes up many
more pixels; finding the edge becomes easier without relying on
sub-pixel interpolation.

A.9 Telecentricity and Distortion

Another advantage of using Telecentric Lenses in metrology applications is
that Telecentric Lenses typically have lower distortion values than Fixed
Focal Length Lenses. Distortion causes the actual position of an object to
appear as though it is in a different location, which can further decrease
measurement accuracy. Figure A.13a shows jumper pins on a circuit board
that has been imaged by a Fixed Focal Length Lens with high distortion.
The distortion, coupled with the parallax error inherent to non-telecentric
lenses, makes the pins toward the edge of the image appear as though
they are bent toward the center. When looking at the same pins with a
Telecentric Lens, as in Figure A.13b, it is apparent that the pins are indeed
straight. While it is true that distortion can be calibrated out of images to
partially improve the accuracy, the parallax is still present and will cause
error. The other advantage to not needing to calibrate out the distortion
from the Telecentric Lens is that the measurement process can run faster as
there is less computing that the software needs to do, reducing CPU load
and directly leading to higher system throughput and more parts measured
per minute. While the magnitude of the distortion is generally low enough
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to not have a significant impact on the measurement of the part under
inspection, it is still important to check the distortion specifications of the
Telecentric Lens and to properly calibrate the imaging system utilizing the
Telecentric Lens.

Figure A.13: Comparison of jumpers on a circuit board. a) shows
an image that has been taken with a Fixed Focal Length Lens.
b) shows an image that has been taken with a Telecentric Lens.
Note that the pins do not appear bent in the telecentric image.

In applications where the object plane is tilted, Telecentric Lenses
provide a good alternative to Fixed Focal Length Lenses due to their
low distortion and invariant magnification. The camera can also be tilted
to keep the tilted object in sharp focus; this is called the Scheimpflug
condition. The Scheimpflug condition is a way to extend the depth that
is being observed by the machine vision system by tilting the object plane
and the image plane. If a conventional lens is used this way, it will result
in distortion. Telecentric Lenses, however, will not demonstrate distortion,
as the magnification does not change with depth.
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