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Abstract 

Occurring in many geographical, geological and climatic environments, landslides represent a major 

geological hazard. In landslide prone areas, monitoring devices associated with Early Warning Systems 

are a cost-effective means to reduce the risk with a low environmental and economic impact, and in 

some cases, they can be the only solution. In this framework, particular interest has been reserved for 

Wireless Sensor Networks (WSNs), defined as networks of usually low-size and low-cost devices 

denoted as nodes, which are integrated with sensors that can gather information through wireless 

links. 

In this thesis, data from a new prototypical ground instability monitoring instrument called Wi-GIM 

(Wireless sensor network for Ground Instability Monitoring) have been analysed. The system consists 

in a WSN made by nodes able to measure their mutual inter-distances by calculating the time of flight 

of an Ultra-Wide Band impulse. Therefore, no sensors are implemented in the network, as the same 

signals used for transmission are also used for ranging. The system has been tested in a controlled 

outdoor environment and applied for the monitoring of the displacements of an actual landslide, the 

Roncovetro mudflow in Central Italy, where a parallel monitoring with a Robotic Total Station (RTS) 

allowed to validate the system. The outputs are displacement time series showing the distance of each 

couple of nodes belonging to the same cluster. Data retrieved from the tests revealed a precision of 

2–5 cm and that measurements are influenced by the temperature. Since the correlation with this 

parameter has proved to be linear, a simple correction is sufficient to improve the precision and 

remove the effect of temperature. The campaign also revealed that measurements were not affected 

by rain or snow, and that the system can efficiently communicate up to 150 m with a 360° angle of 

view without affecting precision. Other key features of the implemented system are easy and quick 

installation, flexibility, low cost, real-time monitoring and acquisition frequency changeability. 

The comparison between Wi-GIM and RTS measurements pointed out the presence of an offset (in an 

order that vary from centimetric to decametric) constant for each single couple, due mainly to the 

presence of obstacles that can obstruct the Line Of Sight (LOS). The presence of vegetation is the main 

cause of the non-LOS condition between two nodes, which translates in a longer path of the signals 

and therefore to a less accurate distance measurements. To go further inside this issue, several tests 

have been carried out proving the strong influence of the vegetation over both data quantity and 

quality. To improve them, a MATLAB tool (R2018a, MAthWorks, Natick, MA, USA) called WiSIO 

(Wireless Sensor network Installation Optimizer) has been developed. The algorithm finds the best 

devices deployment following three criteria: (i) inter-visibility by means of a modified version of the 
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Hidden Point Removal operator; (ii) equal distribution; (iii) positioning in preselected priority areas. 

With respect to the existing viewshed analysis, the main novelty is that it works directly with 3D point 

clouds, without rendering them or performing any surface. This lead to skip the process of generating 

surface models avoiding errors and approximations, that is essential when dealing with vegetation. 

A second installation of the Wi-GIM system has been therefore carried out considering the deployment 

suggested by WiSIO. The comparison of data acquired by the system positioned with and without the 

help of the proposed algorithm allowed to better comprehend the effectiveness of the tool. The 

presented results are very promising, showing how a simple elaboration can be essential to have more 

and more reliable data, improving the Wi-GIM system performances, making it even more usable in 

very complex environments and increasing its flexibility. 

The main left limitation of the Wi-GIM system is currently the precision. Such issue is connected to the 

aim of using only low-cost components, and it can be prospectively overcome if the system undergoes 

an industrialization process. Furthermore, since the system architecture is re-adaptable, it is prone to 

enhancements as soon as the technology advances and new low cost hardware enters the market. 
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1. Introduction 

Landslides are frequent and widespread geomorphological phenomena and have an enormous impact 

on society, economics, and environment (Guzzetti et al., 2003). They can be defined as any mass of 

earth material (soil or rock) displaced under the action of the gravity. In recent times, factors such as 

excessive land use, uncontrolled urbanization, and improper urban planning have led to an alarming 

worldwide increase in the frequency of landslides occurrence (Nadim et al., 2006; Petley, 2012). 

In landslide prone areas, risk mitigation must often face problems related to economic resources, 

environmental impact and logistic issues. This is particularly true for structural countermeasures, 

which aim at minimising the risk by reducing the probability of failure (bolts, anchors, piles etc.), by 

preventing the landslide from reaching the elements at risk (barriers, ditches, retaining walls etc.) or 

by reinforcing existing buildings. Moreover, these defensive techniques are often not adequate to 

counteract the size and rapidity with which slope failures commonly occur and are also limited by 

economic/logistical constraints that may not be possible to overcome.  

Monitoring devices associated with Early Warning Systems (EWSs) are an alternative cost-effective 

means to reduce the risk with a low environmental and economic impact. In some cases, they can even 

be the only solution, for instance when a landslide is so large that it cannot possibly be stabilized, when 

in an area there are too many unstable slopes and there are not enough financial resources to take 

care of them all individually, or when the residual risk after remediation works is still unacceptable. 

Indeed, sometimes the timely evacuation of the dangerous area remains the only viable procedure for 

protecting vulnerable communities (Kilburn and Petley, 2003). According to Medina-Cetina & Nadim 

(2008) EWSs are defined as “monitoring devices designed to avoid, or at least to minimize the impact 

imposed by a threat on humans, damage to property, the environment, or/and to more basic elements 

like livelihoods”, and include the following activities: monitoring, data analysis/forecasting, 

dissemination of alarms, and definition of response actions (Casagli et al., 2017b; Intrieri et al., 2012; 

Figure 1). All of these need to be calibrated and contextualized in the frame of the studied scenario. 

Implementing an EWS depends indeed on (i) the type of landslide; (ii) the disaster scenarios 

considered; (iii) the degree of awareness of the stakeholders, including populations; (iv) the allocated 

resources (e.g. budgetary, human).  
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Figure 1. Flow chart of the activities of the implementation and operation of an EWS. The blue box indicates 
the action linked to the monitoring system (after Casagli et al., 2017b). 

Landslide monitoring is therefore a key component of landslide hazard assessments, with the main 

objective of providing early warning of an impending failure where lives, communities, or 

infrastructure may be at risk (Eberhardt, 2012). The monitoring instruments typically include 

extensometers, borehole inclinometers, tiltmeters, topographic instruments (Petley at al., 2005), 

satellite interferometry (Tofani et al., 2013), Ground-based interferometric Synthetic Aperture Radar 

(GB-InSAR) (Barla et al., 2016; Farina et al., 2011; Lombardi et al., 2017) and robotic total stations (RTSs) 

(Giordan et al., 2013; Petley et al., 2005) (Figure 2). 
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Figure 2. Main components of an Early Warning System (after Casagli et al., 2017b). 

Recently, Wireless Sensor Network (WSN) technology has been often used to support environmental 

detection, monitoring and prediction, thanks to its capability of real-time monitoring of natural 

phenomena and data extraction (Estrin et al., 2002). Some of the main advantages of the adoption of 

WSN for environmental real-time monitoring are fast and easy deployment, low maintenance, 

scalability and adaptability to different scenarios. On the other hand, some drawbacks are represented 

by memory, power and throughput, that are in general too scarce, limiting the efficiency of the systems 

(Mucchi et al., 2018).  

Focusing on the use of WSNs for landslide monitoring (Teja et al., 2014), several parameters, such as 

temperature and humidity, are gathered by multiple sensors and sent to a control centre; however, 

sensors are not directly used to measure the ground movement. New methodologies for ground 

instability measurement based on distributed and connected low cost wireless sensors have been 

proposed and are becoming more and more widespread (e.g. Arnhardt et al., 2007; Castillo et al., 2004; 

Chen et al., 2013; Intrieri et al., 2018). 

In this context, an innovative WSN (Wi-GIM, standing for Wireless sensor network for Ground 

Instability Monitoring) based on the adoption of Ultra-Wide Band (UWB) technology for the 3D 

accurate superficial monitoring of ground deformations has been developed. The main idea is to detect 

the surface movements by acquiring the position of many sensor nodes (organized in clusters) 

distributed over the monitored area to perform real-time ground displacement measurements to 
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provide early warning. The system has been implemented in the framework of a Life+ European 

Program, and the first part of this thesis is devoted to the analysis of the acquired data. 

Working with UWB WSNs means that the Line Of Sight (LOS) cannot be neglected. As a matter of fact, 

an information is properly transmitted if transmitter and receiver stations are in view of each other 

without any obstacle. For this purpose, the LOS of each emitting sensor is an important issue to 

consider when positioning two or more receivers. Depending mainly on their wavelength and the 

characteristics of the material to cross, waves can in fact follow several behaviours, and problems 

connected to non-LOS can lead to the absence of data or inaccuracy in measures, due to delay in the 

arrival time or multiple reflections effect (Alwan and Mahmood, 2015; Dardari et al., 2009; Schroeder 

et al., 2007; Wang et al., 2003). Indeed, several tests concerning vegetation have been carried out on 

the Wi-GIM system, demonstrating how the non-LOS condition (mainly due to vegetation) can cause 

a delay in the signal which can lead to an error in the distance evaluation as well as data loss, 

compromising the reliability of the monitoring system (Intrieri at al., 2018). For these reasons, an 

analysis of the inter-visibility is essential to correctly place and install a WSN requiring LOS.  

With this purpose, in the second part of this thesis, an algorithm able to find the best locations to 

install the sensors of a WNS requiring free LOS is presented. The aim was to develop an easy algorithm 

that works directly with 3D point clouds instead of Digital Elevation Models (DEMs) or Digital Surface 

Models (DSMs), that is to say without reconstructing any surface, avoiding approximations.  

The Wi-GIM system has been installed twice in the Roncovetro landslide (Emilia-Romagna region, 

Italy): at first, in 2016, following traditional patterns for its positioning; after, in 2019, installing the 

sensors in the points determined by the algorithm developed as part of this study. The comparison 

between data acquired from the two configurations allows to evaluate the performance of the 

proposed method on a real serviceable case, showing promising results. 

Moreover, during the monitoring activities, several analyses have been carried out to evaluate the 

accuracy and feasibility of the Wi-GIM system, mostly thanks to a parallel monitoring made with a 

Robotic Total Station (RTS). Results points out the effectiveness of the network especially in emergency 

conditions, due mainly to the rapid, economic and easy installation, the flexibility of the system and 

the real-time monitoring. 
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1.1 Overview of the existing landslide monitoring techniques 

Landslide monitoring is essential for the recognition of landslide occurrence as well as for early 

warning. A large variety of techniques is available for the monitoring of landslides, ranging from 

classical geodetic methods providing a local measurement of the movements to advanced laser and 

radar methods providing a global image of the displacements.  

There are three major categories of landslide monitoring. The first one is field observations; a 

conventional monitoring method in which geologists measure the changing features at regular time 

intervals in the field. The method has a limitation in providing information on impending landslides or 

slope failures, because measuring changes at the site in a short time interval such as a minute or an 

hour scale is impossible (Chae et al., 2017). The second category includes in situ ground-based 

observation of slope displacement, using various instruments as extensometers, laser distance meters, 

GPS, total stations, terrestrial laser scanner, ground based Interferometric synthetic aperture radar 

(GB-InSAR), seismometers and others. The third category consists of airborne and spaceborne 

techniques including acquisition and analysis of satellite images, photogrammetry and synthetic 

aperture radar (SAR) interferometry (Figure 3). 

Among these techniques, laser distance meters, total stations and Global Positioning Systems (GPS) 

receivers allow to precisely locate the position of targets installed within a landslide over time 

(Duranthon, 2000). These methods are also commonly used to georeference the images acquired with 

high resolution cameras, light detection and ranging (LiDAR) and radar systems.  

 

Figure 3. Some of the most common landslide monitoring systems. 
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1.1.1 Ground-based monitoring techniques 

In situ ground-based monitoring observes slope displacement (as well as other parameters connected 

to the investigated movement) trough devices that are installed in boreholes and on the surface of 

potential landslide sites. The instruments can measure parameter changes in a regular time interval or 

in real time. 

The Global Positioning System (GPS), a radio navigation, timing and positioning system with a wide set 

of applications, is one of them. By tracking the electromagnetic waves that the GPS satellites are 

sending continuously, the system can obtain the antenna position (longitude, latitude, and height). 

The use of the phase measurements allows to determine the relative positions of points located as far 

as several hundred kilometres apart with an accuracy of 2–5 mm in the X–Y plan and 5–10 mm in 

altimetry. This accuracy allows the fast detection of weak displacements and, thus the survey of the 

temporal evolution of natural hazards (volcanoes, tectonic faults, ice glaciers, landslides) (Bock et al., 

1990; Dixon et al., 1991; Gili et al., 2000; Lowry et al., 2001). Displacements are computed comparing 

repeated GPS surveys (Squarzoni et al., 2005). Its application is mainly suitable for the monitoring of 

slow‐moving landslides and the pre-failure stage rockslide. In addition, due to its high accuracy and 

precision, GPS offers advantages over conventional terrestrial method, e.g. measurements can be 

taken during night or day and under different weather conditions. However, the accuracy of GPS 

relative positioning depends on the geometric distribution of the observed satellites: at least four 

satellites must be in view with the receiver station. 

Other ground-based monitoring devices are wire extensometers: instruments which give punctual and 

one-dimensional displacement information that can be installed on the ground surface (Bonnard and 

Steinmann, 1990) or into a borehole (Angeli et al., 1988), giving an automatic and continuous recording 

of ground displacement. In any case, the extensometer integrates the displacement occurred between 

two points, one fixed on a stable zone outside the landslide area (in superficial extensometers) or 

below the landslide mass (in borehole extensometers), and the other one located in the ground surface 

of the moving mass. Due to its simplicity, low cost and excellent performance, wire extensometers 

have been applied to a large number of landslides (Angeli et al., 1988; Corominas et al., 2000; 

Corominas et al., 2005). Wire extensometer readings cannot be properly interpreted unless the 

general pattern of the movement is known; indeed, there is no direct relationship between the 

displacements of the landslide and the displacements of the wire extensometer. Moreover, these 

instruments give punctual and one-dimensional displacement information, are quite vulnerable and 

their installation requires skilled personnel.  
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An instrument that has mainly been used for relative displacement measurements within the 

deformable object and its surroundings is the tiltmeter. The measurement of tilt is usually understood 

as the determination of a deviation from the horizontal plane (Savvaidis, 2003). Tiltmeters are 

instruments that can measure degrees of rotation and are usually based on electrolytic level sensors. 

A data logger automatically records the output of a tiltmeter at sampling periods, which can be freely 

adjusted by the user (García et al., 2009). The same limitations previously explained for the 

extensometers are still valid. Moreover, the inclination variation or angular acceleration are often too 

low and are covered by the instrument noise. The measure is taken only at one place and in one depth 

per instrument.  

Conversely, borehole inclinometers are geotechnical instruments used to measure horizontal 

displacements along various points on a borehole. The device consists of a series of gravity sensor 

transducers (uniaxial or biaxial) positioned at intervals along the borehole axis or in the failure surface 

(Stark and Choi, 2007). The main advantages include rapid automatic data logging and real-time 

monitoring, but they need a borehole that must reach and go further the sliding surface (sometimes 

up to several meters in depth), with consequent high cost, long installation time, and logistic problems 

(Dunnicliff and La Fonta, 2001; Machan and Bennett, 2008).  

Robotic Total Stations (RTSs) enable measurements of angles and distances to target-prisms located 

on the moving mass, making it possible to retrieve the absolute position of a target and, therefore, its 

displacement. With respect to a traditional optical-mechanical theodolite, it has an electronic distance 

meter and a computer for storing and calculating data. Modern systems can operate automatically 

with high acquisition frequency providing relative positioning in almost real-time to an accuracy of 

±0.05 mm over distances of several meters and ±1–2 mm over distances of several hundred meters 

(Giordan et al., 2013; Liu et al., 2004; Mantovani et al., 2000; Petley et al., 2005; Rizzo and Leggeri, 

2004). The distance is performed through the electronic distance meter embedded within the total 

station. A laser beam is generated by the telescope, hits the targeted point and is reflected. The 

instruments record the time occurred for the light pulse to reach the target and calculates the travelled 

distance accordingly. Albeit total station systems are very precise and reliable and provide 3D 

coordinate information of the measured points; one of the main disadvantages is the requirement to 

have an unobstructed Line Of Sight (LOS) between the instrument and the targeting prism (Savvaidis, 

2003).  

In opposition to the above mentioned conventional and point-based surveying techniques, Terrestrial 

Laser Scanner (TLS) provides information over the entire landslide area; enabling a more complete 
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understanding of the landslide displacements. A laser (standing for Light Amplification by Stimulated 

Emission of Radiation) is a device that produces and emits a beam of highly collimated, directional, 

coherent and in-phase electromagnetic radiation. These systems can be used for the acquisition of 

large amounts of 3D information of the terrain at an extremely fast recording rate (Jaboyedoff et al. 

2012). If the sensor is ground-based, then instruments takes the name of Terrestrial Laser Scanner 

(TLS), conversely, we talk about Aerial Laser Scanner (ALS) when it is airborne-based. A laser scanner 

consists of a transmitter/receiver of laser beam and a scanning device. Two different methods for 

range determination are possible (Wehr and Lohr 1999): phase and pulse method. While the first one 

is characterized by a more accurate range determination and suffers from a limited range (Petrie and 

Toth 2008), the latter allows a greater range. For this reason, the pulse method is the one usually used 

for Earth surface observations, including landslide studies (Baltsavias 1999; Wehr and Lohr 1999). The 

result of a scan is a 3D point cloud representing the surveyed surface, expressed in polar coordinates 

with respect to the centre of the apparatus (range r, horizontal angle θ, vertical angle φ).  The produced 

point cloud is directly the 3D digital model of the scanned object and founded several applications for 

landslides mapping and characterisation. Rowlands et al. (2003) used a TLS -DEM to map the limits of 

a shallow landslide; Dunning et al. (2009) analysed a rockslide scar by TLS and estimated its volume; 

Jaboyedoff et al. (2009) demonstrated that shallow landslides in river banks are characterized by 

spherical failure surfaces. TLS surveys has also been exploited on rockfalls and rockslides for the 

extraction of 3D rock mass properties (orientation, spacing, persistence, roughness of discontinuities) 

(Gigli and Casagli, 2011; Jaboyedoff et al., 2007). Finally, landslide displacements can be efficiently 

monitored by multi-temporal TLS acquisitions computing the distance between matching points in two 

TLS point clouds, as proposed in several studies (Jaboyedoff et al., 2009; Oppikofer et al., 2009; Pesci 

et al., 2011; Teza et al., 2007).  

While monitoring by means of multi scan acquisition requires manual processing (i.e. the distance 

evaluation), ground-based interferometry (GB-InSAR) is a remote sensing technique that allows the 

real time determination of 2D deformation maps with high accuracy automatically. One of the great 

advantages of this technique is that measurements of the surface displacements are carried out 

remotely, being helpful for the observation of the ongoing phenomena as well as for checking the 

efficiency of consolidation interventions (Atzeni et al., 2015; Romeo et al., 2015). GB-InSAR is an 

interferometric technique based on the synthetic aperture radar (SAR) technique, similar to those used 

on satellites, but implemented in a mobile system with a terrestrial platform. In the last years this 

technique has been demonstrated as a reliable tool to monitor slope instability. Luzi (2010) presented 

an extensive literature about the working principle of this instrument and some of its applications. 
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Recently it has been shown that GBInSAR can be used in several geological contexts as well as with 

new approaches (Barla et al., 2017; Barla et al., 2010; Casagli et al., 2010; Farina et al., 2013). 

Moreover, it is very useful for monitoring of wide areas since it is suitable to cover long distances 

(Casagli et al., 2010; Tapete et al., 2012). However, only the component of displacement along the line 

of sight is measured, shadow areas cannot be detected, vegetation cover and atmospheric disturbance 

negatively influence the measurements, and the cost of the apparatus is very high.  

Some of the ground-based techniques allow to measure geophysical parameters, e.g. the seismic and 

the geoelectrical monitoring. Concerning the landslide geoelectrical monitoring, it can be performed 

by means of three different techniques: electrical resistivity tomography, self-potential and induced 

polarization. The Electrical Resistivity Tomography (ERT) technique, based on the measurement of the 

electrical resistivity values and their spatial distribution in the subsoil, is an active method largely 

applied in order to investigate landslide areas (Godio et al., 2006; Lapenna et al., 2005; Meric et al., 

2005; Pazzi et al., 2018). This technique provides useful information both on the lithostratigraphic 

sequences and the geometry of the landslide body (lateral extension and thickness), identifying the 

sliding surfaces between the slide material and the underlying bedrock, and individuating high water 

content areas (Perrone et al., 2014). Self-potential (SP) technique is applicable for the monitoring of 

underground fluid motion based on the electro-kinetic effect. The method (defined as a passive one) 

measures the presence of naturally occurring charges in the Earth surface, primarily streaming 

potentials and electrochemical potentials, which are measured between pairs of electrodes to create 

areal maps of variation in self-potentials. In the context of landslides, this is used to determine areas 

of subsurface flow within the subsurface material (Witheley et al., 2018).  The Induced Polarization (IP) 

is a phenomenon stimulated by an electric current, observed as a delayed response to voltage in 

natural materials (Sumner, 1976). By establishing an electrical current flow through the electrodes A 

and B on the surface, a primary potential difference is established (Martins et al., 2016). This parameter 

could eventually provide information on changes in pore geometry due to deformations of the 

landslide body. Although Auken et al. (2006) considered IP as a possibly emerging method, this 

technique has been applied on landslides quite rarely (Jongmans and Garambois, 2007).  

In recent years, seismic monitoring of active landslides detected a variety of seismic signals triggered 

by the unstable slope. Seismic monitoring appears therefore as a promising approach to complement 

surveillance and early warning systems of active landslides. In this framework, many researchers are 

focusing on the use of seismic sensors (e.g. seismometers, geophones, accelerometers, acoustic 

emission transducers) to monitor passively potential events. The extent of the investigated area varies 

from some centimetres to thousands of kilometres, depending on the magnitude and depth of the 



18 

 

events, the possible attenuation of the seismic waves travelling through the material, the type of 

seismic devices and the design of the seismic array. The technique founded numerous applications in 

rock cliffs (Amitrano et al., 2005; Feng et al., 2019; Gracchi et al., 2017; Kolesnikov et al., 2003); fracture 

processes in hard rocks (Brückl et al.,, 2006a; Roth et al., 2006; Spillmann et al., 2007); and debris flows 

(Itakura et al., 2005; Mainsant et al., 2012). On the other hand, for mass movements developed in soft 

rocks such as mudslides, the high attenuation of the seismic waves due to the nature of the material 

generally does not allow the use of seismic monitoring.  
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1.1.2 Airborne and spaceborne monitoring techniques 

Airborne and spaceborne monitoring systems are widely used in the field landslides, especially dealing 

with large volumes of mobilised material. Among them, the most common are satellite optical, satellite 

radar, photogrammetry and aerial laser scanner. 

Satellite images in the optical region with high spatial resolution are used for producing landslide 

inventory maps and for mapping factors related to the occurrence of landslides such as surface 

morphology, structural and lithological properties, land cover, and temporal changes of these factors 

(Fiorucci et al., 2011; Hervás et al., 2003; Savvaidis, 2003; Weirich et al., 2007). Data from satellite 

images are used in addition to aerial photos or as a single tool, due also to their low-cost in case of 

regional or national scales compared to other techniques. The big advantage of satellite-based remote 

sensing is the capability to repeat observations, which results in more frequent update of information 

on landslide characteristics compared to the conventional data sources. The method has been used 

for measuring long-term landform evolution of both rock glaciers and landslides from multitemporal 

digital elevation models (DEM) derived from sequential photo (e.g. Brunsden and Chandler, 1996; Kääb 

et al., 1997). Moreover, differencing of multi-temporal DSMs generated from satellite images can be 

used to estimate involved volumes and/or vertical surface settlements. As a lack, only extremely large 

landslides can be identified directly, and the landslide susceptibility of an area can be only determined 

indirectly from some of the features that are identifiable at small scales (Savvaidis, 2003).   

Another spaceborne technique increasingly used for landslides monitoring purposes is the SAR 

(Synthetic Aperture Radar) system, which sends radar pulses to the ground and measures both the 

amplitude and the phase of the backscattered signal. A SAR image is indeed composed of pixel 

characterized by amplitude and phase values. Phase values of a single SAR image partly depends on 

the sensor-target distance and this is the key element to detect ground displacement. SAR 

Interferometry is the technique focused on the measure changes of signal phase over time through 

the analysis of at least two SAR images (Casagli et al., 2017a; Fruneau et al., 1996; Singhroy et al., 

1998). A suitable method to exploit phase variation could be done indeed considering only two radar 

images, (Bamler and Hartl, 1998; Rosen et al., 2000). However, since the use of two single images could 

lead to geometrical and temporal decorrelation (Berardino et al., 2002), usually the Multitemporal 

Interferometric Techniques (MIT) approaches is preferred (Ferretti et al. 2001; Crosetto et al, 2016). 

In the past years, several MIT approaches have been developed. Between them, the signal analysis of 

a network of coherent radar targets (Permanent Scatterers, PS) allows to estimate occurred 

displacement, acquisitions by acquisition. Line Of Sight (LOS) deformation rate can be estimated with 



20 

 

an accuracy theoretically better than 0.1 mm/yr (Casagli et al., 2017a). In the field of landslide 

investigations the potential of SAR data has been exploited at different scales: from national (Adam et 

al., 2011) to regional (Ciampalini et al. 2016; Meisina et al., 2008;) slope (Frodella et al., 2016) and 

building scale (Bianchini et al., 2015; Ciampalini et al., 2014; Nolesini et al., 2016), as well as in different 

phases of landslide response (Canuti et al., 2007). On the other hand, significant difficulties have been 

found to use this technique as an effective and operational tool in emergency management situations 

due to the acquisition parameters of the current satellite SAR missions, especially in terms of temporal 

coverage and incidence angle. 

Photogrammetric techniques have been extensively used in determining ground movements, 

especially with the development of Unmanned Aerial Vehicle (UAV) (Colomina et al., 2014; Rossi et al., 

2018). The main advantages of using photogrammetry are the reduced time of fieldwork; simultaneous 

three-dimensional coordinates; the huge number of points that can be monitored (Brückl et al., 2006b; 

James et al., 2012; Savvaidis, 2003). The technique consists in the extraction of three-dimensional 

measurements from two-dimensional data (i.e. images). The final products are mainly DEM, DSM, 3D 

point clouds and orthoimages. The comparison of the above mentioned outputs acquired in different 

times is useful for monitoring purposes (Bitelli et al., 2004; Cardenal et al., 2008; Mora et al., 2003; 

Rossi et al., 2017), since the more recent photographs can be compared with old ones to examine the 

progressive development of slides. The accuracy of photogrammetric point position determination has 

been much improved in last years together with the advancement of high resolution cameras, making 

it attractive for high accuracy deformation measurements. 

The use of airborne Light Detection and Ranging (LiDAR), also called Airborne Laser Scanning (ALS), for 

topographic mapping is rapidly becoming a standard practice for landslide investigations (Ardizzone et 

al., 2007; Corsini et al., 2007; Eeckhaut et al., 2007; Xiong et al., 2018), also due to its ability to measure 

terrain surface elevations beneath a vegetated canopy (Glennie et al., 2013; Wang, 2013). Duel mainly 

to the high costs, this technique is used mainly for landslides modelling, but it can be also used for 

monitoring purposes. Multi-temporal ALS surveys have indeed become indeed a method for the 

detection of mass movements and the monitoring of land surface deformation processes (DeLong et 

al., 2012; Mora et al., 2018). As discussed in Shrestha et al. (1999) and Montealegre et al. (2015), 

depending on many issues, the accuracy of ALS measurements could range from a couple of 

decimetres to over one meter for large-scale topographic mapping applications. ALS permits an 

improvement in the landslide inventory mapping (Borlat et al. 2007), but the processing still requires 

significant experience and manual efforts to produce highly accurate ground surface measurements 

(Xiong et al., 2018).  
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1.2 Wireless Sensor Networks 

With the development of Micro-Electro-Mechanical Systems (MEMS) technology, which has facilitated 

the development of smart sensors, Wireless Sensor Networks (WSNs) have gained worldwide attention 

(Yick et al., 2008). They can be defined as networks of devices (also called nodes) that can communicate 

the information gathered from a monitored field by means of wireless links (Figure 4). These sensors 

are low size, with limited processing and computing resources, and low cost compared to traditional 

sensors (Estrin et al., 2002).  

 

Figure 4. Schematic structure of a Wireless Sensor Network. Modified after Khara (2017). 

WSN technology has the capability to quickly capture, process, and transmit data real-time (Intrieri et 

al., 2018). After their deployment in the environment, wireless sensors create a network by inter-

connecting to each other, with the advantage of being highly flexible. Sensors can indeed be 

distributed as needed and adapted to the environment.  

The use of WSN dates back to the Cold War, when the USA developed a system of acoustic sensors to 

place on the ocean bottom as a sound surveillance to detect and track Soviet submarines (Bhardwaj 

et al., 2014).  Since then, they found application in several fields, e.g. robotics, domestic, military, 

health care, environmental and as traffic detectors (Figure 5), as explained in detail in Akyildiz et al. 

(2002). 
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Figure 5. Some Wireless Sensor Networks applications. 

In recent years, WSNs have been employed in engineering geology, with the aim to help in preventing 

the millions of the losses due to natural hazard. In particular, they are considered a powerful tool for 

monitoring natural phenomena in hostile and remote environments as for example glaciers (Martinez 

et al., 2004), active volcanoes (Werner-Allen et al., 2006) and landslides (Bhardwaj  et al., 2014; Cho et 

al., 2008; Giorgetti et al., 2016; Sheth et al., 2007), as confirmed by the increasing worldwide interest 

in this field (Rosi et al., 2011). 

Wireless transmission permits to interpret data from any remote location in order to perform a real-

time hazard assessment. Moreover, these systems can generally acquire data with variable rates: the 

frequency can be modified anytime according to the criticality level reached by the monitored 

phenomenon at a certain time. This fulfils an important need for real-time monitoring, especially in 

hazardous or remote conditions. In this framework, WSNs can play a great role for landslide 

monitoring. The choice of the sensors used within the network depends on the parameters to measure, 

their variability, the required accuracy (function of the characteristics of the monitored phenomenon) 

and on the network compatibility to the site, with respect to energy efficiency. This technology can be 

in fact employ for the monitoring of several parameters such as temperature, sound, pressure, 

displacement etc... Furthermore, it can be applied to several geological conditions, geometries and 

environments.  

A distributed strain sensors system for landslide prediction is presented in Sheth et al. (2005), while a 

WSN capable of measuring the strain in the rock due to the accumulated pressure is proposed in Mehta 
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et al. (2007). In that work, slope movements are detected thanks to an accelerometer included in each 

node, as well as temperature, pressure and humidity, which are monitored by additional integrated 

instruments. In Dai et al. (2009), the ground motion is measured by means of three-axial accelerometer 

units. Benefits and limits of WSN and methods implemented and deployed in the northern Italy 

Apennines for landslide monitoring are described in Rosi et al. (2011). Their use has been tested on 

several lithological and geological conditions, as for example rockslide (Intrieri et al., 2012), floods 

(Castillo et al., 2004) and debris flow (Cho et al., 2008). 

The above mentioned experiences highlight important advantages of WSN over traditional ground-

based monitoring techniques, such as: 

i. the capability of collecting, aggregating and analysing, from a multi-point perspective, diverse 

and distributed data (Rosi et al., 2011);  

ii. the possibility to be very quickly deployed without requiring any pre-existing infrastructure 

(Kamal and Hamid, 2013);  

iii. the limited-cost wide area coverage, thanks to the exploitation of multi-hop communications;  

iv. the existence of low-cost energy-efficient algorithms to allow the network to run for months 

without human intervention;  

v. the capability to reach harsh environments thanks to the absence of wired structures (Zanella 

and Zorzi, 2006);  

vi. the reduced vulnerability and environmental impact thanks to the use of wireless 

communications with respect to physical wiring among sensors and data loggers;  

vii. the possibility of coexistence and integration with existing instruments, acting as an 

infrastructure to collect, process, and transmit data to a remote-control centre (Akiyldiz et al., 

2002; Arampatzis and Manesis, 2005). 

On the other hand, the diffusion of WSN for landslide monitoring purposes has been limited by four 

main factors: the energy consumption; the need of post-processing of acquired data; the capability of 

monitoring only a few points; the accuracy and the precision of the measure (i.e. the closeness of the 

measurements to the true value, and the closeness of the measurements to each other, respectively). 

It is important to note that WSNs have been mainly used to move information, not to measure the 

movements with a radio frequency technology. The measure of the ground movement is made by 

inertial sensors, or classical extensometers, or other traditional device, which is then interconnected 

by the WSN to a data logger. 
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1.2.1 Ultra-Wide Band technology for distance estimation in WSN 

As stated in the previous section, WSNs presented in literature mainly exploit radiofrequency signals 

to provide connectivity to the sensor nodes and not to measure the distance between nodes (Intrieri 

et al., 2018). In contrast, it is possible to use particular WSNs that use an impulsive radiofrequency 

technology, such as Ultra-Wide Band (UWB), to measure the distance between the nodes of a WSN, 

thus creating a “grid” over the soil surface to be used to monitor landslide movements. 

Ultra-Wide Band systems are defined as those which have an absolute bandwidth larger than 500 MHz 

and a frequency larger than 2.5 GHz (Yavari et al., 2014). Numerous applications of UWB ranging 

includes logistics, security, healthcare, search and rescue, control of home appliances, automotive 

safety, and military applications (Dardari et al., 2009). In particular, this technology has been proved 

to be a viable candidate for enabling accurate localization capabilities through Time Of Arrival (TOA) 

based ranging techniques (Sahinoglu et al., 2008; Gezici et al., 2005). 

In this framework, the UWB technology is extremely efficient for the monitoring of fast, moderate and 

slow moving landslides thanks to its main characteristics, such as low energy power consumption, high-

bandwidth communications over a large portion of the radio spectrum (>500 MHz) and immunity to 

electromagnetic interference generated by element present on the soil. The impulse-based UWB 

enables an accurate ranging and high-precision localization of the network nodes (Win et al., 2009; 

Win et al., 1998).  

The distance estimation is based on the Time Of Flight (TOF) measurement of a radio impulse sent 

from one UWB module to another. Since the radio impulses travel at the speed of light, the distance 

between the two modules can be easily estimated, by converting the TOF into a distance. The accuracy 

of the estimation of the distance is due to the exploitation of the wide band of the transmitted signal, 

which translates on small impulses over time. The fine timing resolution of the transmitted impulsive 

signal drastically limits the signal overlapping at the receiver, allowing an accurate ranging even in 

places characterized by many reflectors, as in the case of landslides. 

Two primary methods can be considered for estimating the distance between a pair of nodes: the first 

one, based on a single communication between the nodes, expects a strictly fine time synchronization; 

however, the second one exploits several exchanges of information between the nodes, but does not 

need any time synchronization (Groves, 2013). We will now focus our attention on the latter solution, 

i.e. the one used for the deployment of the Wi-GIM System. This methodology considers an advanced 

two-way ranging method called symmetric double-sided two-way ranging (SDS-TWR) (Mucchi et al., 
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2018). In particular, it uses the delays that naturally occur in the signal transmission for evaluating the 

distance. Figure 6 illustrates the SDS-TWR protocol, which exploits three communication messages 

(poll, response and final) between the Node A and Node B to determine the TOF.  

 

Figure 6. Symmetric double-sided two-way ranging (SDS-TWR), after Mucchi et al. (2018). 

If we consider TA
round = T4 - T1 and TA

replay = T5 - T4,  the round trip time and the reply time which refer to 

the Node A clock, respectively, and TB
round = T6 - T3 and TB

replay = T3 - T2 the round trip time and the reply 

time which refer to the Node B clock, the TOF between the Node A and Node B can be expressed as 

follows:  

𝑇𝑂𝐹𝑆𝐷𝑆 =
(𝑇𝑟𝑜𝑢𝑛𝑑

𝐴 −𝑇𝑟𝑒𝑝𝑙𝑎𝑦
𝐵 )+(𝑇𝑟𝑜𝑢𝑛𝑑

𝐵 −𝑇𝑟𝑒𝑝𝑙𝑎𝑦
𝐴 )

4
         (eq.1)  
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1.3 Rationale of the research 

Ground displacement monitoring is one of the most important aspects of early warning systems and 

risk management strategies when addressing phenomena such as landslides. The overview on the 

main existing survey techniques revealed that among the most commonly used and versatile 

instruments, there was a lack of a low-cost, low-maintenance, feasible and easy to install tool suitable 

for emergency monitoring, i.e. for those situations where the priority is to rapidly gather preliminary 

information concerning the kinematics of a slope in order to help decision makers. The existing 

instrumentations able to provide real-time warnings on multiple time series are in fact typically based 

on expensive technologies that requires maintenance and specialised personnel. 

Therefore, a wireless network based on ultra-wideband impulse radiofrequency technology has been 

realized. This activity has been carried out in the framework of the Wi-GIM project (Wireless sensor 

network for Ground Instability Monitoring) within the European Life+ financing program for the 

environment (Wi-GIM official website - http://www.life-wigim.eu) in collaboration with the 

Department of Information Engineering of the University of Florence and the private company Arsilicii 

s.r.l that actually developed the prototype performing the Technology Readiness Levels (TRLs) from 1 

to 3 (Table 1). The main goal of the project was to obtain a geological monitoring system that reduces 

the installation time with respect to the more traditional instruments, and consequently reduces the 

risks for operational personnel involved in the field activities, as well as promptly warns the civilians in 

areas at risk. The main features of the system are easy and quick installation, flexibility and capability 

to adapt to different application scenarios and cost effectiveness.  The novelty of this network consists 

indeed of its ability to measure the distance between nodes using the same signals used for 

transmission without the need for an actual measurement sensor, reducing costs considerably. 

In this thesis, all data acquired by the Wi-GIM system have been post processed and analysed in depth. 

The first part of this thesis describes the network and the extensive experimental campaign that was 

performed to test its efficiency and capability. More in detail, after a test in Arcetri that can be related 

to a technology validation in lab (i.e. TRL 4), the system has been tested twice in a relevant 

environment at the Roncovetro Landslide (TRL from 5 to 7). During the acquisition period, some 

experiments focused on the network’s inter-visibility and highlighted the importance to know a priori 

the visibility condition from one sensor to another one. 
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TRL level

TRL 1

TRL 2

TRL 3

TRL 4

TRL 5

TRL 6

TRL 7

TRL 8

TRL 9

System prototype demonstration in operational environment

System complete and qualified

Actual system proven in operational environment

Description

Basic principles observed

Technology concept formulated

Experimental proof of concept

Technology validated in lab

Technology validated in relevant environment

Tecnology demonstrated in relevant environment

 

Table 1. The Technology Readiness Levels, TRLs. 

With the aim to go further inside the issue, the second part of this thesis focuses on the 

implementation of an algorithm able to find the best locations to install a WSN requiring inter-visibility. 

The code has been developed on Matlab software environment (R2018a, MAthWorks, Natick, MA, 

USA) and works directly with 3D point clouds, usually obtained by TLS, ALS or photogrammetry. 

Nowadays many researches in the field of urban design, landscape planning as well as GIS technology 

focus on the study of visibility analysis, but most of them are based on the use of gridded digital terrain 

and elevation models (DTM and DEM) (Fisher, 1991; Murgoitio et al., 2013). With the development of 

LiDAR and SfM technologies, there is an opportunity to use directly 3D point cloud data to perform 

visibility analyses. Doing so, many disadvantages of traditional modelling and analysis methods can be 

bypassed. This leads to skip the process of generating a surface model avoiding errors and 

approximations (Dodd, 2001; Guth et al., 2009; Katz et al., 2007; Zhang et al., 2017). Furthermore, 

point cloud data can provide much more detailed information than traditional gridded raster terrain 

data or triangulated mesh terrain data (TIN), especially in case of steep, hummocky, vegetated or/and 

overhanging terrain. 

The main objective of this research is therefore the analysis of data acquired by an innovative Wireless 

Sensor Network and its optimal employment through a developed deployment tool based on inter-

visibility analysis. 
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2. The implemented Wi-GIM system 

In the framework of a European Life+ project (LIFE12/ENV/IT001033) called Wi-GIM (Wireless Sensor 

Network for Ground Instability Monitoring), an innovative Wireless Sensor Network based on Ultra-

Wide Band technology for 3D accurate superficial monitoring of ground displacements has been 

implemented. As already mentioned in Section 1.3, the prototype has been developed in the first 

months of 2016 other than this thesis, in collaboration with the Department of Information 

Engineering of the University of Florence and Arsilicii s.r.l., a private company located in the province 

of Siena (IT). The activities of this thesis began with data post-processing and interpretation. However, 

it is essential to describe in detail the network, to better comprehend the work that has followed. 

The Wi-GIM system was specifically designed with the aim of exploiting as much as possible its 

employment within Early Warning Systems in emergency situations. Among the main key features, 

which will be described in detail in the following sections, there are its easy and quick installation and 

high acquisition frequency, both requirements for early warning-oriented devices. More in general, 

the system was developed with the goal to overcome the limit that are still present in the conventional 

systems for ground deformation monitoring, introducing some advantages such as flexibility, cost 

effective, absence of wired structures and low environmental impact. 

The main design criteria for Wi-GIM was ultimately to produce a low-cost system that was reliable 

enough to be applied to different situations, trying to fill the gaps of the various existing monitoring 

techniques as much as possible. The achievement of the above mentioned objectives will be verified 

by analysing and comparing the experimental results obtained for the case studies that will be 

presented later in this thesis. 
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2.1 Operating principles 

2.1.1 Architecture 

The system is designed as an ad hoc wireless sensor network based on a modified star topology (Figure 

7). The master and slave paradigm, together with clustering technique, is adopted to allow a versatile 

and energy-aware estimation of the distances among the network nodes. A cluster is defined as a 

group of slave sensors (up to 16) managed by a single master sensor. It is defined by a single master 

when the scanning procedure starts during the configuration of the sensor network. During the 

scanning procedure, the master sensor uses the communication control channel sending a request 

signal. Slave sensors around the master answers to this signal with an ACK (acknowledge) and the 

estimated distance. Once the master has collected all the ACKs, it defines its network (cluster) of 

sensors, which are managed by itself from that time on. 

 

Figure 7. The master-slave paradigm (after Mucchi et al., 2018). 

As will be deeply explained in Section 2.1.2, each master node periodically estimates the distances of 

the slave nodes belonging to its cluster through the adoption of the UWB technology and a pre-

processing of the received signals. The obtained information is then transmitted to the remote server 

via a 3G link for a complete post-processing of all the data coming from the different clusters 

distributed over the monitored area. As a result, the variation of the distances among the network 

nodes over time is computed to evaluate the ground movements (Figure 8). 
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Figure 8. Wi-GIM system architecture (after Mucchi et al., 2018). 

Each Wi-GIM network’s node consists of an electronic board with a micro-controller ARM Cortex M3, 

a battery (12 V, 7.2 Ah lead acid battery), a UWB module (Decawave Sensor DWM1000) and different 

additional modules, that characterize the specific node function within the network architecture. 

Furthermore, some boxes are equipped with a thermometer, useful to make some correlations with 

the other parameters, as explain later. Three types of node are defined: 

i. the Slave Nodes (SNs), i.e. the basic one, that include ports to plug Decawave and battery 

supply; 

ii. the Master Nodes (MNs), which are additionally equipped with a SD memory card, a GPS, a 

GSM/GPRS/3G communication modules and an internal thermometer; 

iii. the Super-Slave Nodes (SSNs), optionally equipped with GPS. 
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A list of the network nodes components and their functions is provided in Table 2, while their pictures 

are reported in Figure 9. Concerning the communication modules, please note that the connection 

depends mainly on the SIM card used and therefore, at the moment, it would be already possible to 

replace them with a 4G or 5G card. 

Component Function MN SSN SN

Micro-controller ARM Cortex M3 micro-controller X X X

Battery A 12 V, 7.2 Ah lead acid battery for node power supply X X X

UWB Decawave Sensor DWM1000 Module (2017a) for communication and ranging X X X

SD memory card Storage of the Ids of SNs and SSNs and the number of hops to reach them X X

GPS TAOGLAS DXP.02.A for time reference signal, required for slave coordination X X

GSM/GPRS/3G Long-range communication modules for data transmission to a remote server X

MN: Master Node; SSN: Super-Slave Node; SN: Slave Node.  

Table 2. Wi-GIM nodes components and relative functions. 

 

Figure 9. Wi-GIM main components: a), b) micro-controller; c), d) UWB Decawave sensor; e) GPS; f) modem. 
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The chosen UWB module, Decawave (Dublin, Ireland) Sensor DWM1000 Module (2017a) (Figure 10) 

uses signals with bandwidth of 500 MHz resulting in 0.16 ns-wide pulses. The Decawave Module 

integrates: the Abracon (Spicewood, TX, USA) ACA-107-T dielectric chip antenna (3200–7200 MHz 

frequency range), all radio frequency circuitry, power management and clock circuitry. It can be used 

in two-way ranging or TOF location systems to locate assets to a precision of 10 cm and it supports 

data rates of up to 6.8 Mbps.  

Precision 10 cm (indoor)

Data rate communications 6.8 Mb/s

Communications range 300 m

Frequency 3.5 GHz - 6.5 GHz

Dimension 23 mm x 13 mm x 2.9 mm

Supported location schemes TOF and TDOA

Temperature Range -30°C to +85°C

Power consumption - Transmit mode from 31 mA

Power consumption - Receive mode from 64 mA

Support packet sizes up to 1023 bytes  

Figure 10. Detail of the Ultra-Wide Band module used in the Wi-GIM system, the Decawave Sensor DWM1000. 
For more detail, please visit the Decawave website (https://www.decawave.com/product/dwm1000-
module). 

The GPS is not required for positioning but for a time reference. The master node spreads the GPS time 

reference among the slaves before starting the ranging measurements. The one implemented in the 

system is a TAOGLAS DXP.02.A SMD L1/L2/L5 SAW Diplexer using the GPS/GALILEO L1, L2 and L5 

bands. It is housed in a compact 5 mm x 5 mm x 1.7 mm laminate package and its specifications are 

reported in Table 3. 
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Min. Typ. Max.

Center Frequency (MHz) 1582.1875

Insertion Loss (dB) 3.8 4.6

Amplitude Ripple (dB) 0.6 2.0

Return Loss (dB) -13.0 -6.0

10 ~ 1330 (MHz) 32 38

1660 ~ 2000 (MHz) 27 33

Min. Typ. Max.

Center Frequency (MHz) 1206.9225

Insertion Loss (dB) 4.2 5.2

Amplitude Ripple (dB) 1.2 2.5

Return Loss (dB) -8.0 -6.0

10 ~ 1100 (MHz) 17 23

1320 ~ 2000 (MHz) 20 28

Min. Typ. Max.

Isolation (1196.9~1248.625MHz) 22 35

Isolation (1574.22~1576.62 dB) 22 31

Operating Temperature

Input Power Level

DC Voltage

-40°C to 85°C

10 dBm

3 V

BAND 1 (L1)

Attenuation (Reference level from 0dB)

BAND 2 (L2 and L5)

Attenuation (Reference level from 0dB)

BAND 1 and BAND 2

Environmental

 

Table 3. TAOGLAS DXP.02.A SMD L1/L2/L5 SAW Diplexer table of specification. For more detail please see the 
product website page (https://www.taoglas.com/product/dxp-02-a). 

Since battery consumption is a critical point for the WSN, a sleep mode has been implemented for the 

nodes. The master node is programmed to periodically measure the distances throughout the day, 

e.g., every 10 min over 24 h. When a node is activated by the master, it sends an UWB impulsive signal 

to each near node with whom it is able to communicate. The neighbour node receives it and sends it 

backwards. The active node thus can estimate the inter-node distance by calculating the two-way TOF. 

Once the TOF is estimated, the distance is obtained by multiplying the TOF times the speed of light. 

This computation is made by the master, and once the procedure is complete, it deactivates all the 

sensor (including itself) restoring them in the sleep mode. 

Considering a cluster made by 10 nodes, a single entire measurement cycle (from activation to back in 

sleep mode) lasts around 90 seconds. For an earth flow, given its slow temporal evolution, the 

measurement frequency can be 2–4 acquisition per day in order to save batteries. For a longer use of 

the WSN on a landslide, the battery of each node can be changed without moving the node.  
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2.1.2 Installation procedure and pre-processing 

The presence of obstacle between transmitter and receiver, i.e., Non-Line Of Sight (NLOS), implies a 

bias in the estimation of the distance. For this reason, it is important to try to install all the Decawave 

sensors so that they are visible one to each other. In case a Sensor Node (SN) needs to be placed behind 

an obstacle for monitoring purposes, so that the Master Node (MN) is in NLOS condition, another SN 

shall be put in Line Of Sight (LOS) with that SN and with the MN enabling the MN to still reach the 

"blocked" SN. In fact, each MN scans the network to gather information of those SNs that are in LOS 

condition, then asks these SNs to inform it about the SNs in LOS with them (but in NLOS with the MN). 

This procedure allows the MN to have a map of all the SNs which are in LOS and the ones reachable 

through 1 hop thanks to SNs relaying mechanisms. 

Once the best topology has been found, then the nodes can be installed on the field and the MN can 

start the initial scan to know which sensors are part of the network. Once the MN has completed its 

SNs map, the cluster is defined, and those nodes will be considered for the monitoring strategies. It is 

worth highlighting that, after the initialization phase, the cluster cannot be modified: the introduction 

of an additional node requires a new scan of the network. From that time on, the MN continuously 

controls the status of each SN of its cluster (e.g., battery level, correct functioning), as better described 

in the following.   

In order to manage the network resources allocation, the MN sends the activation control signal to an 

SN, enabling it to occupy the channel and perform the ranging operations. The SNs are activated one 

at a time. Upon reception of the activation signal, the SN sends an UWB impulsive signal to all its 

neighbour nodes (LOS nodes), which respond. As the SN completes the distance measurements, by 

calculating the two-way TOF, it sends the results to the MN and then releases the channel. The MN 

can now send the activation control signal to another SN and the process is repeated until all the SNs 

are activated. 

As above mentioned, an initial network scanning allows the MN to draw a sketch of the network 

connections between the nodes, identifying also those SNs that are not directly reachable from the 

MN. The activation of those SNs is performed by means of a relay mechanism: the MN activation 

command is relayed by a LOS SN to the NLOS SN. The IDs of the SNs and the number of hops to reach 

each specific node are stored in the MN memory card. As the complete scan of the nodes is finished, 

the MN sends the sleep command and the wake-up time to the slaves. All the SNs deactivate all their 

power-consuming modules and then reactivate them at the programmed time. The scheduled 
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measurements activation/deactivation allows an efficient management of the nodes’ battery 

consumption. The acquisition rate is set by the user during the installation procedure, and it is a 

consequence of the monitored phenomenon, always considering the battery consumption.  

The proposed distance measurements system requires a time reference. For this purpose, the MN is 

equipped with a GPS module, whose function is to provide the GPS time reference to be spread among 

the SNs before starting the ranging measurements. After collecting all distances, the MN sends a report 

file to the remote server via 3G connection. The periodical report on the status of the cluster/network 

includes: the distances measured by all the pairs of sensors that are in LOS (directly or through a relay 

process) and the corresponding time stamp; each node battery level and the temperature recorded by 

the internal thermometer. 

 2.1.3 Data remote post-processing 

The information collected by the master node are stored in the internal SD card and send at the same 

time to the remote server by using the GSM/GPRS/3G module. The resulting ASCII data file name is 

assigned based on the cluster name and acquisition time, and it is formatted as the following example: 

11.06.16 01:07:50.132 DWV_RNG 001 002 80.9211  

11.06.16 01:07:50.071 DWV_RNG 001 003 0.0000  

11.06.16 01:07:51.250 DWV_RNG 001 004 72.4136  

11.06.16 01:07:51.198 DWV_RNG 001 005 56.4527  

11.06.16 01:07:51.147 DWV_RNG 001 006 82.3447  

11.06.16 01:07:51.096 DWV_RNG 001 007 42.4421  

11.06.16 01:08:18.067 GPS_FIX 001 110616,010731.594, A, 4431.4290, N, 01023.4090, E  

11.06.16 01:08:18.047 GPS_FIX 002 

11.06.16 01:08:27.219 ANG_V&T 001 12.815 V 7.001 V 26.126 °C 13.912 °C  

11.06.16 01:08:27.195 ANG_V&T 002 12.079 V 17.255 V 51.454 °C -35.770 °C 

where DWV_RNG stands for Decawave ranging; GPS_FIX for GPS position and ANG_V&T for sensor’s 

values such as battery charge and device temperature.  

A specific MATLAB (R2016a, MAthWorks, Natick, MA, USA) script has been compiled for the database 

creation by reading data from SD card and joining data from ftp server. Once data are available, they 
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are processed by a second specific MATLAB script which yield the following graph types for each pair 

of communicating nodes: 

i. raw distance values (Figure 11a); 

ii. distance values without invalid measurements (i.e. with no zero or non-numerical values) 

(Figure 11b); 

iii. distance validated values (outliers’ removal) (Figure 11c); 

iv. distance daily mean values (Figure 11d). 

 

Figure 11. Displacement time series of a pair of nodes (1–3). Green circles and blue crosses represent the 
distance measured from one node to the other and vice versa. Where measurement points are extremely 
dense, the blue crosses are overlaid by the green circles. a) raw distance values; b) distance values without 
invalid measurements; c) distance validated values, considering a threshold of 1 m for the outlier’s removal; 
d) distance daily mean values. 

The outlier removal (iii) consists in the identification and removal of the unreliable measurements, 

which can be defined as those values with a distance for example bigger than 1 m compared to the 

previous value, avoiding also some possible multipath effects. Raw data presented indeed some offset 

repeated at different intervals (Figure 11 a, b). In particular, in some points the measured ranging 

resulted to be underestimated of a constant quantity respect to the real distance. The observed 
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phenomena affected data from all the test sites and was not related to the distance, since it had the 

same characteristics both for short and long distance, and for this reason it was considered as a 

problem of multipath. To avoid this problem, a correction was applied to all data considering the 

general trend of the measured distances. Firstly, the modal value of the first acquired data was 

calculated, and data exceeding a predefined threshold respect to this were considered as invalid data. 

Subsequently, after some days of monitoring, having regard to the possibility of a real movement, each 

valid value was considered as reference value, and data were considered as outliers if they exceed 

more than a predefined threshold with respect to the previous valid one. Note that the threshold 

changes in function of the kinematic of the landslide and the involved distances. Considering the latter, 

it is in general modified in a shorter value in case of smaller distance (for example in case of a measured 

distance equal to 3 m, a standard value of 0.4 m can be taken into account to remove the multipath 

effect).  

Each pair of nodes is represented by one of the above mentioned graphs, in which distance values in 

both directions are plotted (e.g. for pair 1–3 distance values measured from 1 to 3 and vice versa are 

plotted, Figure 11). In addition, it is possible to add battery level and/or temperature values in the 

graphs, allowing the user to check the battery life and to eventually correlate data with temperature 

values (Figure 12). 

 

Figure 12. Distance daily mean values of a pair of nodes (1–3). a) Displacement time series and battery level. 
Black and red lines show the battery level of node 1 and 3 respectively. b) Displacement time series and 
temperature values. 

  



38 

 

2.2 Tests 

To carry out some tests on the Wi-GIM technology, six clusters have been installed for a field test in a 

controlled open environment located in Arcetri, Florence (Central Italy). The test site has been chosen 

due both to logistic reasons, namely easy accessibility, and to the site features: being an outdoor 

setting with a heterogeneous vegetation, it allowed us to test the effects of obstacles and temperature 

on the measurements. For every specific test a different cluster was installed, taking advantage both 

of site characteristics and available distances (Figure 13).  

 

Figure 13. Location of the experimental test site in the controlled environment of Arcetri. Clusters are 
displayed on the Digital Surface Model (DSM) of the area. Number close to each coloured dot is the node label.   

The first cluster (named Cluster 1), composed by a master node and three slaves, has been installed 

on 2016/10/13 and removed on 2017/02/06 with the aim to test inter visibility between pairs of nodes 

belonging to the same network. Each antenna was fixed on temporary wood stakes planted in the 

ground (Figure 14), and the acquisition frequency was set equal to 10 minutes. All the distances have 

been measured with a laser distance meter to have a prompt method of comparison and to better 

evaluate both precisions and reliability of the technology.  
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Figure 14. Wi-GIM installation at Arcetri. 

Cluster 2, composed by a master node and three slaves, has been installed in the area on 2016/11/11, 

with the aim to investigate the relation between measured ranging and temperature. Nodes position 

has been chosen appositely to have long and short distances to analyse the relation. Acquisition 

frequency was fixed at 10 minutes and the cluster has been removed on 2017/01/20. 

Other four clusters (named Cluster 3, 4, 5 and 6) have been installed in the area with the aim to test 

the system behaviour with the presence of obstacles. In all cases, clusters were composed by one 

master and one slave node only, and their installation and removal times are reported in Table 4. 

Installation Removal

(yyyy/mm/dd) (yyyy/mm/dd)

Cluster 3 2016/10/11 2016/12/27

Cluster 4 2017/01/03 2017/02/01

Cluster 5 2017/01/20 2017/02/06

Cluster 6 2017/02/01 2017/02/16  

Table 4. Arcetri clusters installation and removal times. 
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2.2.1 Inter-visibility test 

Studies about inter-visibility have been carried out firstly thanks to the installation of Arcetri Cluster 1. 

A first test has been performed by tying the sensors on stakes about 25 cm high, so that the antennas 

resulted only a few centimetres from the ground level. The experiment gave as result the no vision 

between all the pairs of nodes, due probably to the presence of abundant grass cover combined with 

small slopes and soil irregularities. For this reason, on 2016/10/17 the entire cluster has been 

reinstalled keeping the same position but setting the antennas on stakes 1 meter high. After changes, 

it followed the reciprocal visibility between all nodes but the pair 2–4 was affected by the presence of 

discontinuous vegetation. Therefore, it was necessary to move node 2 of some decimetres to let all 

node communicate between them. Figure 15 and Figure 16 show the 2–4 pair line of sight before and 

after the applied changes. 

 

Figure 15. Line of sight between antennas 2-4 of Arcetri Cluster 1 before and after changes (respectively on the 
left and on the right). 
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Figure 16. Arcetri DSM with the position of Cluster 1 node 2 before and after changes (respectively 2a and 2b). 
The dotted lines show the line of sight. Note that the dashes red line (which corresponds to the pre changes 
positioning) is more affected by vegetation than the purple one. 

As second test consisted in flipping antennas of cluster 1 of 180° on their vertical axis to see if this 

affected the measurements. This experiment has been important as it was necessary to prove if a node 

could effectively make measurements even with respects to other nodes behind it, a common 

configuration in a fully connected monitoring network. This resulted in a shift in ranging measurements 

of about 10 cm, explainable by the different wave paths that rebounded several times on obstacles 

before arriving at the receiving antenna. As showed in Figure 17, in correspondence of 2016/11/28 

there has been a shift of about 15 cm on average, that has been might due to the different wave paths 

that rebounded several times on obstacles before arriving at the receiver sensor. Figure 18 shows the 

real distances of the whole network of Cluster 1, measured by means of a laser distance meter.  
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Figure 17. Arcetri Cluster 1 correct valid data from 2016/11/10 to 2016/12/05. On 2016/11/28 the system has 
been restarted turning 180° the antennas on their vertical axis. The absence of data in the middle time is due 
to the lack of power. Green circles and blue crosses represent the distance measured from one node to the 
other and vice versa. 
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Figure 18. Arcetri DSM in which are shown the real distances relative to Cluster 1. Distances have been 
measured with a laser distance meter. 

Further tests have been carried out to verify reliability and precision of the monitoring system in 

presence of obstacles. For this purpose, all clusters composed by only one master and one slave node 

have been exploited, and the acquisition rate has been set equal to 1 acquisition every 10 minutes, in 

order to have as much data as possible. 

First of all, to observe the influence of an obstacle on the measurements, a 40 cm wide, 2 m high, 

hollow plastic cylinder has been installed between two nodes (cluster 3) that were 3.30 m far away 

(Figure 19a). 

After 8 days of acquisition, the obstacle has been removed, and data highlight the influence of the 

obstacle on the ranging measurements (Figure 20a).  
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Figure 19. Photographs of different configurations for the inter-visibility tests with a PVC pipe (a), a tree (b), a 
vegetated bush (c) and a dry bush (d). 

 

Figure 20. Measurements of the distances between nodes with time. Each graph (a, b, c, d) corresponds to the 
respective experiment shown in Figure 19a, b, c, d. Periods of non-acquisition were due to a lack of power. 
Green circles and blue crosses represent the distance measured from one node to the other and vice versa. 
Where measurement points are extremely dense, the blue crosses are overlaid by the green circles (after 
Intrieri et al., 2018). 
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Despite precision did not show any changes, a shift of few centimetres between measurements made 

before and after the object removal has been observed, thus affecting the measurements accuracy. 

Specifically, in the first days of acquisition (when the obstacle was in place), longer and less reliable 

distances have been measured by the monitoring system. This phenomenon has been interpreted as 

due to a difference in the path travelled by the waves that, due to the NLOS condition, are still able to 

reach the antennas but only after one or more rebounds. 

Notably, even without any obstacles, the ranging distance measured by Wi-GIM is still affected by a 

systematic error resulting in an offset with respect to the actual distance. This value is constant for a 

specific pair of nodes but varies from pair to pair. It is probably due to a mistake during the calibration 

of the circuits at factory level, caused by a wrong estimation of the time needed for the signal to cover 

the distance between its generation and its amplification. However, the determination of absolute 

distance is not relevant for the applications of Wi-GIM, since the relative inter-node distance still allows 

the user to map the displacements. 

Further tests have been performed to evaluate the system behaviour with different types of obstacles, 

such as a 40-cm wide tree trunk (Cluster 4). The antennas have been initially positioned at the sides of 

the trunk, each at a distance of 1.20 m. After a week, the antennas have been moved an additional 1m 

from the obstacle for a total distance between them of 4.40 m. They have been then moved again and 

reinstalled 5m from the trunk, for a total distance of 10.40 m (Figure 19b). Data showed how the signal 

was able to transmit despite the presence of the trunk (Figure 20b). The same results have been 

observed for each evaluated distance, without an evident relation between the obstacle influence and 

its distance from the nodes. The effect of different vegetation types has been then analysed taking 

into account a densely vegetated 7 m tall, 4 m wide shrub (monitored by Cluster 6) and a 1.5 m tall dry 

bush (monitored by Cluster 5). In both cases, the antennas have been positioned at opposite sides of 

the obstacle at 7.50 m (Figure 19c) and at 5.34 m (Figure 19d) and the signal was able to bypass the 

obstacle despite the antennas being close to the obstacle (Figure 20c, d). Notably, the test performed 

using Cluster 5 showed a sensible ranging shift starting from February 1st, indicating an increased 

distance between nodes, which can be interpreted as a variation in the geometry of the branches 

within the shrub. The comparisons between the actual distances between the nodes (measured with 

a laser distance meter) and the mean distances measured with Wi-GIM are reported in Table 5. Note 

that, for every case, the LOS was never completely free of obstacles, although their nature and 

dimension varied from case to case. The pair 2–4 of Cluster 2 is not included since not visible by Wi-

GIM. 
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Nodes Actual distance (m) Difference (m)

Min. Max. Mean σ

1–2 25,62 25,08 25,23 25,16 0,025 0,46

1–3 21,35 22,65 23,15 22,90 0,022 –1,55

1–4 48,16 49,03 49,13 49,08 0,021 –0,92

2–3 45,87 45,64 45,76 45,70 0,021 0,17

2–4 61,10 62,14 62,27 62,23 0,017 –1,13

3–4 37,08 37,70 37,80 37,75 0,022 –0,67

1–2 66,70 64,16 64,25 64,21 0,013 2,49

1–3 65,50 67,28 67,40 67,30 0,023 –1,80

1–4 2,56 2,80 2,90 2,85 0,030 –0,29

2–3 8,47 8,70 9,10 8,80 0,028 –0,33

3–4 66,36 66,98 67,07 67,02 0,028 –0,66

Cluster 3 1–2 3,30 3,74 3,85 3,76 0,030 –0,46

Cluster 4 1–2 10,40 11,13 11,28 11,20 0,026 –0,80

Cluster 5 1–2 5,34 5,30 5,42 5,35 0,037 –0,01

Cluster 6 1–2 7,50 8,00 8,60 8,20 0,050 –0,70

Cluster 1

Cluster 2

Wi-GIM distance (m)

 

Table 5. Measurements relating to each pair of each cluster: actual distance between the nodes (measured 
with a laser distance meter), minimum, maximum, mean and standard deviation (σ) of Wi-GIM measurements 
and difference between actual and Wi-GIM mean distance (modified after Intrieri et al., 2018). 
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2.2.2 Atmospheric effects 

Air temperature measurements are performed at every measuring cycle using a sensor placed on every 

master node. This value showed a strong correlation between the measured distances and 

temperature on a daily scale (Figure 21 – Figure 22), and the data analysis highlighted a linear 

correlation between these parameters described by a trend line (Figure 23 – Figure 24). 

 

Figure 21. Distance values without invalid measurements acquired by nodes 1–4 of Arcetri Cluster 1 and 
temperature values from 2016/11/10 to 2016/11/18. The graph highlights the strong correlation between 
ranging measurements and temperature. 

 

Figure 22. Distance values without invalid measurements acquired by nodes 1–4 of Arcetri Cluster 2 and 
temperature values from 2017/01/03 to 2017/01/12. The graph highlights the strong correlation between 
ranging measurements and temperature. 
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Figure 23. Scatter plot between the temperature and the measured ranging, calculated for the pair of nodes 
1–4 belonging to Cluster 1 (Figure 21). The equation in the upper part refers to the black trend line. 

 

Figure 24. Scatter plot between the temperature and the measured ranging, calculated for the pair of nodes 
1–4 belonging to Cluster 2 (Figure 22). The equation in the upper part refers to the black trend line. 

For this reason, a linear empirical relation between ranging and environmental temperature has been 

proposed. A correction considering a reference temperature of 20 °C was made using a correction 

factor Ki for each displacement value: 

𝐾𝑖 = (𝑇𝑖 − 20) ∗ 𝑚                                    (eq. 2) 

where m is the trend line slope (angular coefficient). It is constant in time for each pair of nodes, but 

it varies from pair to pair. Ti is the temperature measured at the time (ti) of the acquisition that is going 

to be corrected. The choice of a temperature of 20°C as a reference one has been made since generally 
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it is the average temperature at which devices are implemented. The correction has been applied by 

subtracting Ki from each value, resulting in a consistent reduction of the data variance:  

𝐷𝑖 = 𝐷0 − 𝐾𝑖             (eq. 3) 

where D0 is the raw measured distance (that is the output value before the temperature correction) 

and Di the corrected value of the distance. The satisfactory result of this correction is evident in Figure 

25 and Figure 26, which show how data are no more following the temperature oscillations.  

 

Figure 25. Results obtained applying the temperature correction on data acquired by nodes 1–4 of Arcetri 
Cluster1 (Figure 21). According to the trend line slope (Figure 23), the m value has been set equal to 0.0029. 
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Figure 26. Results obtained applying the temperature correction on data acquired by nodes 1–4 of Arcetri 
Cluster2 (Figure 22). According to the trend line slope (Figure 24), the m value has been set equal to 0.0071. 

Furthermore, to verify whether this relation depending on distance, data from Cluster 2 have also been 

analysed since its nodes provide the possibility to examine both long and short distances (Table 6). It 

was not possible to analyse nodes 2–4, the most distant from each other, because their inter-visibility 

was compromised by vegetation. It appears that the values of the angular coefficient are similar 

between different pairs within the same cluster (regardless of their respective distance) while they 

vary from a cluster to another (Table 6).  

Nodes Distance (m) m* R2**

1–4 49 0,0029 0,5340

3–4 38 0,0025 0,3091

1–3 22 0,0030 0,4803

1–4 3 0,0070 0,7394

3–4 67 0,0060 0,7063

1–3 67 0,0063 0,8151
* Angular Coefficient                                                                                                                                                                                         

** Coefficient of determination

Cluster 1

Cluster 2

 

Table 6. Distances and trend line slopes of pair of nodes for Arcetri Cluster 1 and 2. 

Therefore, other factors than the inter-nodes distance probably influence the relationship between 

temperature and ranging measurement. For example, it is possible that m is also affected by the 



51 

 

internal temperature of the nodes or by local atmospheric effects (such as variation of humidity or 

turbulence), especially where the LOS is close to the ground. On the other hand, it is still not clear if it 

is due to the deformation of the instrument as well as the supporting elements or if it has an influence 

on the signal itself (El Houssaini et al., 2019; Meng et al., 2009). 

Moreover, this relation could be due directly to the temperature, or it could be caused by the batteries 

that with high temperatures give different charge to the Decawaves. To go further inside this aspect, 

some batteries have been equipped with a voltage regulator to stabilise the input at the sensors 

despite the temperature fluctuations. However, since these tests are in the early stages, they are not 

object of this thesis, but will be deepened in future. 

For a proper filtering of temperature effects, the value of m cannot be assumed but needs to be 

calibrated for each pair in every application. In order to apply a temperature correction, a preliminary 

period of acquisitions is necessary to calibrate the relationship between temperature and measured 

distance. Once m is calculated for each pair of nodes, it can be used to correct the value of D0 after 

calculating Ki. This correction can be done in real-time and therefore does not invalidate early warning 

applications. Moreover, a medium value of about 0,005 can be used obtaining a good result without 

misrepresenting data, since all the calculated values range from 0,0029 to 0,0070 (Table 6). 
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3. Wi-GIM application to Roncovetro landslide 

A detailed experimental survey on an actual case of instability was performed to stress test the system. 

The chosen site was the Roncovetro landslide, a 2.5 km long complex landslide, with a volume of 3 

million m3, first described by Almagià (1907). It is located in Emilia Romagna Region (Central Italy) and 

carves the southern slope of Mount Staffola (where the crown is located) down to the Tassobbio 

stream (at the toe), where it partially dams the water creating a small seasonal lake (Figure 27). 

 

Figure 27. Aerial photo of the Roncovetro landslide. 
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The upper and central parts of the Roncovetro landslide appeared to be optimal for the Wi-GIM 

experimental survey, thanks to several factors: 

i. the landslide shows almost continuous movements; 

ii. the existing different mechanisms of rupture (deep creep, sliding, flowing) due to the upper 

area of the landslide shows a very large range of displacements; 

iii. it is possible to place sensors in the whole width of the landslide in the central part; 

iv. the variety of field conditions allow to experiment the inter-visibility of the monitoring 

network nodes; 

v. the size is sufficient to test the range limit of the network; 

vi. it is possible to implement a parallel system of monitoring (automated geodesy) by positioning 

a robotized total station to cross-check and validate Wi-GIM data. 
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3.1 Roncovetro landslide features 

The first notices of the Roncovetro landslide dates back to the 1907, when Almagià coined the term of 

“Lavina di Roncovetro”, where Lavina meant Landslide in local idiom, in the first Italian inventory of 

landslides (Almagià, 1907). At that time, the landslide was already well known among the local people, 

but for what we know the morphological features of this landslide were not so evident in more ancient 

times, since the oldest existing cartographies, dating in 1821, 1828 and 1858, did not represent it. 

 

Figure 28. The Roncovetro landslide. 

As already mentioned, it is a 2,5 km long mudflow (Figure 28) that carves the southern slope Monte 

Staffola from its top to the Tassobbio River where it causes the formation of a small lake.  
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The slope is formed by sub-ligurian clayey calcareous-arenaceous flysch belonging to the Mount 

Staffola Formation, Cretaceous-Eocene (Figure 29 – Figure 30). 

 

Figure 29. Geological Map. LEGEND - 1) Reactivated earth-flow landslide; 2) Reactivated earth-slide landslide; 
3) earth flow, dormant; 4) rotational/translational slide, active; 5) RAN: Ranzano Formation (Eo-Oligocene); 6) 
MST3: Mount Staffola Formation (Vedriano); 7) MST2: Mount Staffola Formation (Upper Paeocene - Middle 
Eocene); 8) Units pertaining to the Ligurian Domain: APA: Palombini Shales (Lower Cretaceous); SCB: Scabiazza 
Arenites (Lower Campanian); AOF: Ophiolitic Shales (Upper Cretaceous); AVV: Cassio “Varicolori” Shales 
(Santonian-Campanian); d: ophiolites; 9) strike and dip of bedding planes; 10) tectonically-originated unit 
boundary; 11) fault; 12) landslide main scarp; 13) trace of geological cross-section A-A’. After Bertolini & 
Gorgoni (2001). 
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Figure 30. Geological section, referred to the A-A' section reported on the geological map of Figure 29. Symbols 
are the same used in Figure 29. After Bertolini & Gorgoni (2001). 

The clay fraction is dominant from the mechanical point of view, causing the landslide to behave in its 

upper portion as a very active fluid-viscous mudflow, with maximum velocities up to 10 m/day. The 

total volume of the landslide is about 3 million m3. The landslide reactivated completely in autumn 

1993 and, since then, it alternates seasonal phases of suspension (i.e. during summer periods) with 

phases of activity.  

The body of the landslide can be divided in three main sectors: 

i. The upper part, that comes from the main scarp, i.e. the crown area, located at about 660–

670 m a.s.l., where the bedrock is moving valleyward through rotational surfaces of rupture. 

The rate of movements is here in the order of magnitude of centimetres/decimetres per year. 

ii. The middle part. At the altitude of about 550 metres a.s.l., the landslide material enters into a 

narrow channel about 1 km long, 30 m wide and 20 m deep carved inside the flysch bedrock. 

This channel has no other function than transport the mud from the depletion to the 

accumulation area, maintaining in confined conditions the fluidity of the mud. The state of 

fluidity here varies in time and space, causing varying flow velocities inside the moving mass. 

iii. The lower part is located at about 415 m a.s.l. and moves a few decametres per year. From 

here, the material evolves in more plastic physical behaviour, well represented by the convex 

shape of the landslide in this sector (Figure 28–Figure 30), whose thickness is about 15 meters. 

Reaching the Tassobbio River, the landslide material forms a dam and a seasonal small lake. 

The damming is facilitated also due to the subterranean collision of the tip of the Roncovetro 

landslide with the tip of another landslide moving in opposite direction on the other side of 

the valley. 
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According to Bertolini & Gorgoni (2001), the permanent fluid state that characterizes the upper part is 

caused by high porewater pressures maintained by the highly mineralised groundwater mixed with 

methane.  

During the last 20 years, the average speed of the mudflow has been of 33.6 m/year. The maximum 

observed velocity, in the upper part of the landslide, was 9 m/day (Bertolini & Gorgoni, 2010; Bertolini 

& Fioroni, 2013). The rapid evolution of this landslide during the last century is also demonstrated by 

recent documents and images, as shown in Figure 31. In particular, the rapid retrogression of the 

crown, now reaching the mountaintop, is evident (Figure 31 c, d). 

 

Figure 31. Pictures of the Roncovetro landslide taken in 2001 (a, c) and in 2014 (b, d). a) and b) shows the upper 
part of the landslide, while c) and d) highlight a detail of the crown noticeably in retrogression. 
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3.2 Installation of the Wi-GIM system 

Two clusters have been installed respectively on the fastest moving sector of the depletion zone 

(Cluster 3) and on the narrowest part of the mudflow (Cluster 1), as shown in Figure 32.  

 

Figure 32. Location of the two clusters installed on the Roncovetro landslide. 
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Each node has been leaned on the ground on the top of the batteries, and the Decawave sensors have 

been fixed on iron poles 2.5 m high anchored in the terrain for 1 meter, so that the sensors were all at 

1.5 meter from the ground (Figure 33).  

 

Figure 33. Example of a Wi-GIM node installed on the landslide. At the top of the pole a target for the Robotic 
Total Station. 

Cluster 1 was constituted by 11 nodes, with 3 of them placed outside of the landslide (i.e. nodes n. 1, 

2 and 7, Figure 34a). Figure 34b shows the distances at which nodes have been installed, ranging from 

14.4 m to 135.1 m. Cluster 3 was composed of 12 nodes (Figure 35a) placed at inter-node distances 

ranging from 35.1 m to 201.9 m, so to cover all the crown area (Figure 35b). 
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Figure 34. Roncovetro Cluster 1. a) Location of all the Cluster 1 nodes and their links (point 1 indicates the 
Master Node - MN); b) Distribution of node distances.  
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Figure 35. Roncovetro Cluster 3. a) Location of all the Cluster 3 nodes and their links (point 1 indicates the 
Master Node - MN); b) Distribution of node distances.  

The acquisition frequency has been calibrated based on the velocity of the mudflow and set to 1 

reading every 12 hours. Since measurements are redundant (as they are performed from one node to 

another and vice versa), this allows one to calculate daily averaged by using a total of 4 reading to 

reduce noise.  
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In detail, on February 1st, 2016 the first cluster (Cluster 3) was installed in the landslide crown area. 

The position of the nodes was chosen allowing to cover the entire area of interest and trying to ensure 

a distribution as equal as possible. Moreover, with the aim of acquire numerous and reliable data, the 

installation was done trying to position all the nodes in LOS, despite it was not easy due to the large 

distances involved and to the presence of several shrubs. The master node (node 1) was placed in the 

centre of the cluster (Figure 35). 

Following the same criteria, on March 11th, 2016 a new cluster (Cluster 1) has been installed in the 

middle sector of the landslide. Here the earthflow is channelized, and the lower width allowed to cover 

the area of interest with 11 Nodes. As already mentioned, the master node (Node 1), Node 2 and Node 

7 were located outside the unstable area (Figure 34). In this way it is possible to use their position as 

fixed reference, allowing to update the position of the other nodes within the earthflow. Moreover, 

the relative distance between the nodes of this Cluster is much smaller than in Cluster 3; consequently, 

it was also possible to analyse displacement accuracy with respect to node distance. 

For both clusters, the acquisition started the same day of the installation and lasted until March 7th, 

2017, day of the system removal. 

Measurements validation has been performed using a LEICA NOVA MS50 Robotic Total Station (RTS) 

(Figure 36). The instrument has the same functionality as a total station integrated with a sensor for 

high precision in a completely automatic measurement procedure. It has a panoramic wide-angle 

camera and a 30x autofocusing coaxial camera. It provides real time video data on the embedded 

display in order to enable the visualization of high quality images. It was installed in a stable area near 

Cluster 1 in a location from where all nodes were visible (blue triangle, Figure 32). With the aim to 

validate the Wi-GIM system, prism targets and Decawave antennas have been installed on the same 

poles (Figure 37).  

The RTS have been considered in this thesis also for the cost-benefit analysis presented in Section 6.1.4 

together with a Ground-Based Interferometric Synthetic Aperture Radar (GBInSAR). However, the 

parallel monitoring has been done only with the RTS for the following reasons: 

i. the measurements obtained with a RTS are punctual as the one’s by the Wi-GIM system, while 

data from a GBInSAR are referred to pixels that, even with high resolutions, are far from being 

punctual. Therefore, the RTS allows a more proper comparison. 
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ii. Due to the strong presence of vegetation and to the complex morphology of the Roncovetro 

landslide, several areas investigated by the GBInSAR would have been not reliable or hide, 

respectively for the first and the second cause. 

iii. To be installed, a GBInSAR system requires a planar surface with enough space for the binary 

on which it slides. Looking at the areas surrounding the Roncovetro landslide, there were not 

available spaces to correctly install the radar if not the street crossed by the landslide itself, 

that was not an adoptable solution. 

iv. Finally, the high costs of the GBInSAR system (see Section 6.1.4 for further details about it). 

 

Figure 36. The Leica Nova MS50 used for Roncovetro landslide traditional monitoring. 
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Figure 37. Prism targets installation on the same pole of the Wi-GIM antennas. 
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3.2.1 Data acquisition and processing 

As explained in Section 2.1.3, the acquired data, once downloaded from the server or in situ from the 

SD cards, have been processed with the help of two specific MATLAB script. The result is a 

displacement time series whose noise can be further reduced by simple data averaging (daily averaged 

data), taking advantage of the system redundancy. 

Before presenting some examples of data acquired in the Roncovetro site, focus is needed on the effect 

of the seasonal thermal excursion on measurements. 

Looking at the analysed data, it was noted that measurements were influenced by temperature on a 

large scale, as showed by the displacement series of the Cluster 1 pair of nodes 5–10 (Figure 38). In 

detail, data followed a curve trend instead of a linear one despite no significant movement interested 

the area. In particular, the curve traced the seasonal temperature cycle, with its peak at the hottest 

months. As for the daily scale (see Section 2.2.2) ranging measurements have been put in relation with 

temperature values, showing a strong linear correlation (Figure 39).  

 

Figure 38. Displacement time series from the pair of nodes 5–10 of Roncovetro Cluster 1 with distance 
validated values considering a threshold of 2 m for the outliers’ removal. The red line shows the temperature 
recorded by the master node during the whole monitoring period. Green circles and blue crosses represent 
the distance measured from one node to the other and vice versa. Where measurement points are extremely 
dense, the blue crosses are overlaid by the green circles. 
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Figure 39. Scatter plot between measured ranging and temperature for the pair of nodes 5–10 of Cluster 1 
(Figure 38). The equation in the upper part refers to the black trend line. 

As previously described, a correction based on temperature (eq. 2 and eq. 3) was applied to the ranging 

values, showing a significant improvement of data quality, removing the effect of the temperature 

influence at a seasonal scale (Figure 40 – Figure 41). For each pair, m value was calculated and applied 

for its own correction. 

 

Figure 40. Scatter plot between corrected ranging values and temperature for the pair of nodes 5–10 of Cluster 
1 after applying the correction presented in eq. 2 and eq. 3, setting m equal to 0.0029. Data present a Standard 
Deviation (σ) of 0.015 m. The equation in the upper part refers to the black trend line. 
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Figure 41. Displacement time series from the pair of nodes 5–10 of Roncovetro Cluster 1, after correction to 
remove temperature effects (eq. 2 and eq. 3 setting m equal to 0.0029), with distance validated values 
considering a threshold of 2 m for the outliers’ removal. The red line shows the temperature recorded by the 
master node during the whole period. Green circles and blue crosses represent the distance measured from 
one node to the other and vice versa. Where measurement points are extremely dense, the blue crosses are 
overlaid by the green circles. 

In the following paragraphs, some significant cases from Roncovetro test site, i.e. the pairs of nodes 

1–3 belonging to Cluster 1 (from Figure 42 to Figure 47) and 1–10 belonging to Cluster 3 (from Figure 

48 to Figure 53), are reported. Concerning the correction to remove temperature effects, data have 

been corrected setting m value equal 0.0030 for the former and 0.0044 for the latter. 

In both cases, to eliminate the outliers, a threshold of 2 meters has been used, meaning that all values 

having a distance higher than 2 meters compared to the previous one have been considered as invalid 

data. Doing so, also the multipath effect is removed, as highly visible in Figure 44 and Figure 50.  

Data can be plotted with the values of the Robotic Total Station (RTS), so to compare the 

measurements acquired from the two monitoring systems, as shown in Figure 47 and Figure 53. Please 

note that in this section data are only presented, as they will be deeply discussed in Section 6.1.1. 

Furthermore, the daily mean values together with the battery level are reported in Figure 46 and in 

Figure 52. The voltage trend fluctuates from the maximum (about 13 V) to the minimum (up to 11 V). 

Once the voltage is very low, the batteries are replaced with some full charged ones and thus in the 
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graph the voltage values return to be high. The battery life was function of several values such as 

temperature and UMTS signal, but it generally lasted a bit more than one month, as explained in detail 

in Section 3.2.2. 

Figure 42 – Figure 47 show the displacement time series from Nodes 1–3 of Roncovetro Cluster 1. The 

removal of invalid values and outliers allows to identify a displacement of 20 cm after a period of 

stability lasted until 2016/07/01. One can note a decrease of the acquired data (Figure 44 – Figure 45) 

when the movement started. This is due probably to a temporary loss of the LOS between the sensors 

subsequently restored. The precision of the measurements is about 10 cm (Figure 44), but it can be 

reduce at about 2.5 cm if considering a daily average (Figure 45). 

 

 

Figure 42. Displacement time series from the pair of nodes 1–3 of Roncovetro Cluster 1, raw distance values. 
Green circles and blue crosses represent the distance measured from one node to the other and vice versa. 
Where measurement points are extremely dense, the blue crosses are overlaid by the green circles. 
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Figure 43. Displacement time series from the pair of nodes 1–3 of Roncovetro Cluster 1, distance values 
without invalid measurements (i.e. nonvalues and zero values). Green circles and blue crosses represent the 
distance measured from one node to the other and vice versa. Where measurement points are extremely 
dense, the blue crosses are overlaid by the green circles. 

 

Figure 44. Displacement time series from the pair of nodes 1–3 of Roncovetro Cluster 1, distance validated 
values, considering a threshold of 2 m for the outlier’s removal. Green circles and blue crosses represent the 
distance measured from one node to the other and vice versa. Where measurement points are extremely 
dense, the blue crosses are overlaid by the green circles. 
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Figure 45. Displacement time series from the pair of nodes 1–3 of Roncovetro Cluster 1, distance daily mean 
values.  

 

Figure 46. Displacement time series from the pair of nodes 1–3 of Roncovetro Cluster 1, distance daily mean 
values and batteries level. The red line refers to the battery level of Node 1, whereas the black one refers to 
the Node 3 one.  
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Figure 47. Displacement time series from the pair of nodes 1–3 of Roncovetro Cluster 1. Blue crosses: distance 
daily mean values measured by Wi-GIM. Red circles: RTS data. 

Similarly, Figure 48 to Figure 53 show the displacement time series from Nodes 1–10 of Cluster 3. In 

particular, in Figure 50 the ranging measurements after the outlier’s removal procedure are reported. 

Here, a displacement of about 4.5 m occurred in the period March–December 2016 is estimated, with 

a strong acceleration started in May 2016, during which, a shift of 1 m is evident in the graph. This 

apparent movement is actually due to the pole that slowly tilted and finally fell down. June 2016 

records then an abrupt increase of the distance due to the correct repositioning of the pole.  

A lack of data characterizes the time series from the end of June to the beginning of July 2016. This 

correspond to the life end of the battery, which was replaced with a full charged one on 2016/07/01 

(Figure 52). 
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Figure 48. Displacement time series from the pair of nodes 1–10 of Roncovetro Cluster 3, raw distance values. 
In this case, raw data present an impressive error (distances in the order of 1038 m) that has been removed 
filtering the non-valid measurements (Figure 49). Green circles and blue crosses represent the distance 
measured from one node to the other and vice versa. Where measurement points are extremely dense, the 
blue crosses are overlaid by the green circles. 

 

Figure 49. Displacement time series from the pair of nodes 1–10 of Roncovetro Cluster 3, distance values 
without invalid measurements (i.e. nonvalues and zero values). Green circles and blue crosses represent the 
distance measured from one node to the other and vice versa. Where measurement points are extremely 
dense, the blue crosses are overlaid by the green circles. 
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Figure 50. Displacement time series from the pair of nodes 1–10 of Roncovetro Cluster 3, distance validated 
values, considering a threshold of 2 m for the outliers’ removal. Green circles and blue crosses represent the 
distance measured from one node to the other and vice versa. Where measurement points are extremely 
dense, the blue crosses are overlaid by the green circles. 

 

Figure 51. Displacement time series from the pair of nodes 1–10 of Roncovetro Cluster 3, distance daily mean 
values.  
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Figure 52. Displacement time series from the pair of nodes 1–10 of Roncovetro Cluster 3, distance daily mean 
values and batteries level. The red line refers to the battery level of Node 1, whereas the black one refers to 
the Node 10 one.  

 

Figure 53. Displacement time series from the pair of nodes 1–10 of Roncovetro Cluster 3. Blue crosses: distance 
daily mean values measured by Wi-GIM. Red circles: RTS data. 
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Concerning the precision, it is the same observed for the previous analysed pair, i.e. about 10 cm for 

the complete displacement time series (Figure 50) and about 2.5 cm for the daily mean values (Figure 

51). This precision is confirmed also when using of a Savitzky-Golay smoothing process, in this case 

more appropriate than a daily average due to data dispersion and trend (Figure 54–Figure 55). 

This method performs a polynomial regression to the data in a moving window, preserving in this way 

the peaks that would be smooth by a simple average, that is particularly true for case as the one of 

Figure 54, where the absence of significant movements cause a higher dispersion in data visualisation. 

Wider is the chosen window (defined by points), higher the smoothing is (and therefore lower the 

definition of the peaks). In the case here presented, a moving window of 40 point has been selected, 

a value that allows to make a smoothing without losing information and to better evaluate the 

precision of the system. 

 

Figure 54. Displacement time series from the pair of nodes 1–3 of Roncovetro Cluster 1. Blue crosses: distance 
daily mean values. Red line: Savitzky-Golay polynomial regression line. 
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Figure 55. Displacement time series from the pair of nodes 1–10 of Roncovetro Cluster 3. Blue crosses: distance 
daily mean values. Red line: Savitzky-Golay polynomial regression line. 

Roncovetro experimental survey also permitted to assess the effects of long distances on the overall 

performances of the system. Even if distances longer than 100 m resulted in more difficult 

transmissions, they did not affect the precision and accuracy of the measurements. More specifically, 

the distance between nodes has been studied in relation with data precision by calculating the 

standard deviation (σ) of measurements made at different distances. Pairs 3–4, 1–3 and 1–7 for cluster 

1 and pairs 2–11, 1–2 and 5–12 for cluster 3 have been examined (Figure 56 – Figure 57 – Figure 58 – 

Figure 59 – Figure 60 – Figure 61).  
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Figure 56. Displacement time series from the pair of nodes 3–4 of Roncovetro Cluster 1, distance validated 
values, considering a threshold of 2 m for the outliers’ removal. Green circles and blue crosses represent the 
distance measured from one node to the other and vice versa. Where measurement points are extremely 
dense, the blue crosses are overlaid by the green circles. 

 

Figure 57. Displacement time series from the pair of nodes 1–3 of Roncovetro Cluster 1, distance validated 
values, considering a threshold of 2 m for the outliers’ removal. Green circles and blue crosses represent the 
distance measured from one node to the other and vice versa. Where measurement points are extremely 
dense, the blue crosses are overlaid by the green circles. 



78 

 

 

Figure 58. Displacement time series from the pair of nodes 1–7 of Roncovetro Cluster 1, distance validated 
values, considering a threshold of 2 m for the outliers’ removal. Green circles and blue crosses represent the 
distance measured from one node to the other and vice versa. Where measurement points are extremely 
dense, the blue crosses are overlaid by the green circles. 

 

Figure 59. Displacement time series from the pair of nodes 2–11 of Roncovetro Cluster 3, distance validated 
values, considering a threshold of 2 m for the outliers’ removal. Green circles and blue crosses represent the 
distance measured from one node to the other and vice versa. Where measurement points are extremely 
dense, the blue crosses are overlaid by the green circles. 
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Figure 60. Displacement time series from the pair of nodes 1–2 of Roncovetro Cluster 3, distance validated 
values, considering a threshold of 2 m for the outliers’ removal. Green circles and blue crosses represent the 
distance measured from one node to the other and vice versa. Where measurement points are extremely 
dense, the blue crosses are overlaid by the green circles. 

 

Figure 61. Displacement time series from the pair of nodes 5–12 of Roncovetro Cluster 3, distance validated 
values, considering a threshold of 2 m for the outliers’ removal. Green circles and blue crosses represent the 
distance measured from one node to the other and vice versa. Where measurement points are extremely 
dense, the blue crosses are overlaid by the green circles. 
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To evaluate their dispersion, data have been analysed during periods of stability for each pair (from 11 

March 2016 to 31 May 2016 for cluster 1 and from 1 December 2016 to 6 February 2017 for cluster 3), 

to be sure that the measurements were not relative to actual movements. All the pairs selected were 

characterized by a percentage of received data higher than 80% and of valid data higher than 60%. The 

results of this analysis did not highlight any correlation between distance and Wi-GIM precision (Table 

7). 

Nodes Wi-GIM mean distance (m) σ (cm)

3–4 15.09 4.7

1–3 69.88 3.5

1–7 132.75 2.6

2–11 37.35 3.6

1–2 80.83 3.0

5–12 130.61 3.4

Cluster 1

Cluster 3

 

Table 7. For each pair is reported the mean distance measured with Wi-GIM and the standard deviation (σ) of 
the measurements. For the standard deviation evaluation, only data belonging to period of stability have been 
considered. 
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3.2.2 Power Consumption 

As previously mentioned, the component of the Wi-GIM system have been designed in order to reduce 

the power consumption and maximize the batteries’ life. Since the battery consumption is a critical 

point for a Wireless Sensor Network, a proper protocol/algorithm (i.e. the sleep mode) to save energy 

has been implemented. For a longer use of the WSN on a landslide, the battery of each node can be 

replaced with a full charge one without moving the node. However, field measurements revealed a 

battery life shorter than that expected; this was mainly due to: 

i. low temperature (cold season); 

ii. low UMTS signal, which required a longer wake up time to try sending the acquired data to the 

ftp server; 

iii. long node to node distances, which sometimes implied several communication attempts. 

For these reasons the acquisition rate was calibrated during the Wi-GIM monitoring campaign, to get 

an optimal balance between data continuity and logistic capability to maintain the whole system 

active. Table 8 summarizes the battery replacement activities related to monitoring duration for each 

cluster; note that the shortest life at Roncovetro Cluster 3 is due to the maximum mean node to node 

distance. 

Cluster id From To
Monitoring 

duration (days)

Battery 

replacements

Mean battery 

life (days)

Cluster 1 11/03/2016 24/04/2017 409 10 41

Cluster 3 01/02/2016 24/04/2017 447 12 37  

Table 8. Battery replacement activities related to monitoring duration for each cluster. 
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4. WiSIO: Wireless Sensor networks Installation Optimizer 

The monitoring at both test sites (Arcetri and Roncovetro), highlighted the influence of the LOS 

condition on data properties. 

To make the most of a WSN, an optimal deployment of sensors is indeed essential, namely an equal 

and thoughtful distribution. In this context, sensor deployment problems have been studied in a 

variety of environments (Tan et al., 2009). Wang et al. (2003) geometrically analysed the relationship 

between coverage and connectivity in a WSN considering an obstacle-free environment; Zou and 

Chakrabarty (2003) proposed a virtual force algorithm as a sensor deployment strategy after an initial 

random placement of sensors. In the case of UWB WSNs this issue is emphasised by the need to have 

the sensors in LOS. An obstacle between transmitter and receiver, i.e., non-line-of-sight (NLOS), implies 

a bias in the estimation of the distance. For this reason, it is important to install all the sensors so that 

they are visible to each other, since respecting the inter-visibility can lead to more numerous and 

reliable data. 

In this framework, in this study an algorithm able to find the best locations to install sensors part of a 

WNS requiring LOS called WiSIO (Wireless Sensor network Installation Optimizer) has been 

implemented based on the following three criteria. (i) inter-visibility between sensors is guaranteed 

by exploiting a modified version of the Hidden Point Removal operator by Katz et al. (2007); (ii) equal 

distribution of devices is ensured; (iii) different weights are preferentially assigned to critical portions 

of the investigated landslide. Weighted areas are significant portions of a landslide and can be 

previously selected by the user (e.g. areas most at risk, areas with higher displacement values, easily 

reachable areas or stable areas).  
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4.1 General structure 

The final aim of the algorithm is to geometrically find the best locations to install a WSN requiring 

visibility, i.e. ith Point (Pi). To pursue this goal, WiSIO has been implemented as a simple, fast, and easy 

code in MATLAB (R2018a, MAthWorks, Natick, MA, USA), but it can be run also in open source program 

such as GNU Octave (GNU Octave, John W. Eaton) that has an exact compatibility (Figure 62, Annex 

A). It can be applied to several natural scenarios such as vertical cliffs, gentle and steep slopes, and 

terraces. Its employment can also be extended to buildings, small objects, and, more generally, to 

every artificial structure without geometrical or size limits.  

 

Figure 62. WiSIO operating scheme. The selection of the first point occurs in a semi-automatic way. Depending 
on the quantity of devices the user wants to install, once a new Pi is pointed out (box n. 8), the code ends or 
restart from box n.2. 

The central point of the algorithm is visibility analysis. Similar analyses are the common function of 

most Geographic Information System software, but in all cases they are based on the digital elevation 

model. This kind of analysis uses the elevation of each cell of the model to detect if they are visible or 

not from a given point of view. Line of sight from the point of view to the target cells is substantially 

planned, and when cells of higher elevation intersect them, the view is considered obstructed. It goes 

without saying that the method works well when dealing with straight lines, as is the case of buildings 

and roads, and this is why these viewshed analyses are usually made on the digital elevation model 

and not on the digital surface model. Dealing with vegetation in fact, constrains these methods to 

significant geometrical approximations even when models have good resolution. With the aim of 

keeping all original information, the input data of the proposed algorithm are high-resolution 3D point 

clouds. Working directly with point clouds, as in the case of WiSIO, aims to be able to work with harsh 
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environments, including not only vegetation but also steep, rough, and overhanging terrain. The 

algorithm works without reconstructing any kind of surface, avoiding errors and approximations 

usually caused by traditional modelling. The heterogeneity and the resolution of 3D point clouds are 

consequently main limitations of the developed code: the lower the resolution of the input data is, the 

less reliable the output is. In this regard, input data should be a cloud obtained by merging data 

acquired from different positions to avoid shadow areas and to have regular distribution of points in 

space. 

 

Figure 63. Comparison between viewshed analysis on a digital surface model and Wireless Sensor network 
Installation Optimizer (WiSIO) on a 3D point cloud using a particular of a landslide’s 3D model and point cloud. 
For better comparison, both analyses were carried out considering the same point of view. a) Hillshade of 
digital surface model with 1 cm resolution. b) Three-dimensional point cloud with 1 cm resolution. c) 
Application of ArcGIS 3DAnalyst Viewshed applied on digital surface model. Visible and nonvisible areas are 
marked, respectively, in green and red. d) Application of visibility analysis carried out in WiSIO on the 3D point 
cloud. Visible points are highlighted in cyan. 

To appreciate the importance of working with 3D point clouds instead of the digital surface model for 

viewshed detection, a comparison between the two processes made on the same dataset was carried 

out (Figure 63). In the one case, the Viewshed 3D analyst tool of ArcGIS was applied on a digital surface 

model with a resolution of 1 cm; in the other, WiSIO was run on the 3D point cloud (1 cm resolution), 

obtained by photogrammetry and source of the above mentioned surface model. Figure 63 shows the 

results in detail, allowing an easy comparison. It is evident that working with points instead of surfaces 

produces more reliable results. 
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Given a landslide’ s 3D point cloud, only the points respecting the following criteria are considered as 

the best locations: 

i. inter-visibility: each selected point is in LOS with the others;    

ii. inter-distance: nodes are equally distributed in space; 

iii. once the previous conditions are satisfied, it is preferable if Pi is positioned into pre-selected 

areas, hence Priority Areas (Pas). 

Once these principles are met, a WSN make his most, which translates into an accurate landslide 

displacement map and efficient real time monitoring system, to: 

i. have numerous and reliable data, since a complete inter-visibility is guaranteed for the whole 

network;  

ii. obtain a reliable and complete deformation map;  

iii. constrain the deployment of the WSN in areas pre-selected by the user. 

To avoid the involvement of useless data and the consequent increase of elaboration time, the 

algorithm automatically calculates a Region Of Interest (ROI) for each node. Only points located inside 

this region are then considered for subsequent elaborations. The ROI extension depends on the 

landslide geometry and on the used monitoring system, but it generally coincides with the maximum 

distance at which two sensors can communicate properly (Dmax). Given C, the point of view of X, Y, Z 

coordinates, the region is defined by a cube whose farthest are (X-Dmax; X+Dmax; Y+Dmax; Y-Dmax; Z+Dmax; 

Z-Dmax).  

The best positions are thus selected automatically, except for the first one that is chosen in a 

semiautomatic way. The user manually selects by clicking on the point cloud with pointer P1. The 

algorithm automatically calculates a second ROI (hence ROIP1), smaller than the previous one, inside 

which the first point is chosen. The choice is made by means of an iterative procedure, during which n 

P1 within ROIP1 (i.e., the Region of Interest around P1) are selected randomly. For each of them, visibility 

analysis is computed. As a result, the point from which more points are visible is selected as the first 

point. This helps in positioning P1 close to the desired area but having a high visibility. The choice of P1 

with low visibility could indeed compromise the results. 
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4.1.1 Viewshed analysis 

To face the problem of inter-visibility between nodes, the Hidden Point Removal (HPR) operator 

proposed by Katz et al. (2007) has been applied. The operator is a simple algorithm to determine 

visibility in point clouds without rendering them or performing surface reconstruction. It first 

transforms the points of the cloud by means of spherical flipping inversion, and then computes the 

convex hull of the set containing the viewpoint and the transformed points (Silva et al., 2014). A point 

is then marked visible from a given point of view if its inverted point lies on the convex hull (Katz et al., 

2007) (Figure 64). The operator is easy and fast, and it gives back points that are actually visible. 

Straightforward solutions are in fact bound to fail and working calculating the LOS between two point 

is not helpful, since except for extreme cases, a point is always visible, even with high resolution point 

clouds.  

 

Figure 64. Hidden Point Removal operator. Blue, investigated point cloud; green, sphere with radius R used to 
invert points by spherical flipping (left side). Points residing on convex hull of inverted points (cyan at top-
right) are marked as visible from C (point of view). (Modified after Katz et al., 2007). 

The method has found numerous applications in several domains, is supported by theoretical 

guarantees and has been explained in depth in Katz et al. (2007; 2015).  

R, the radius of the sphere for spherical flipping, is the only parameter to set. As it increases, more 

points pass the threshold of the convex hull and are hence market visible (Katz et al., 2007). 

Consequently, a large radius is recommended for dense point clouds and the other way around. It is 

evaluated by an iterative procedure that considers two points of view at opposite sides, with respect 

to the object centre. R is then defined as the value that maximizes the total number of disjoint visible 

points (Machado e Silva et al., 2014). 
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The HPR operator was developed for little objects like small sculptures. In the proposed method, 

dealing with huge point clouds, R is not constant but changes by increasing the distance from C (point 

of view) to the target, and it is not only a function of point density (homogeneous in ideal cases). As 

showed in Figure 65d, given a point cloud (P), obviously the number of involved points grow with the 

distance. Higher D/2 is, higher is the amount of points. In this sense, to correctly apply the HPR 

operator, the distance has the same role as the density: for points closer to C, a small R is 

recommended, while for further points, a larger R is more suitable, as demonstrated in Figure 65, 

where the same R is not an optimal one for both closer and furthest points. Too high values of R 

produce false positive (i.e. non visible point marked visible, Figure 65b) and too low values give origin 

to false negative (i.e. visible point marked non visible, Figure 65a). Choosing a medium value for R is 

not a good solution since it involves a high number of false positive for short distances and false 

negatives for longer distances. 

To solve the problem, the point cloud is split in s cubic sector centred in C, and for each of them R is 

evaluated. As a result, the optimal R increases moving away from C (Figure 65d). If the point cloud is 

divided in s sector, the visibility analysis is computed s time, for each of them all the points between C 

and sector i (included) are considered, but only the ones that are within sector i are marked as visible 

or not-visible. 

 

Figure 65. Test to evaluate the optimal radius R. The points marked visible from C changing the radius are 
shown in cyan, green, magenta and yellow. d) Use of different R for each sector. 
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Obviously, more are the sectors in which P is split, more accurate are the results of the visibility 

analysis, high is the computational time. To reach the goal of present work, the HPR operator has been 

applied to a landslide 3D point cloud. Since monitoring sensors (regardless of the type) generally lies 

on the ground, it is necessary to split the original point cloud in terrain and vegetation point clouds, to 

avoid the placing of sensors on points representing vegetation. Indeed, in the landscape field the major 

obstacle in terms of visibility is the vegetation, and monitoring devices are usually installed on the 

terrain. Therefore, the HPR operator is applied to the whole point cloud, but only the terrain points 

are considered as points where the network could be installed. For the distance calculation and the 

computation concerning the pre-selected areas, the terrain point cloud is also the required datum. 

Vegetation is involved only in the visibility analysis. As a result, providing as inputs the vegetation point 

cloud (PCV), the terrain point cloud (PCT) and the point of view coordinates (C), the algorithm returns 

visible point of PCT from C. 

Furthermore, in some cases sensors are not directly in touch with the ground, but they are fixed on 

supports (e.g. poles, tripods). The proposed algorithm gives the possibility to consider the height of 

the support, placing points where the sensors will actually be placed, that is fundamental for the 

visibility analysis. Given h the support’s height, the visibility analysis is performed by adding h to the Z 

component of Pi. If the installation on n nodes is required, for each of them the HPR operator is applied 

for all sectors. Since a complete inter-visibility of the network is required, one can note that nodes 

location is selected between points that are visible from P1 to P(i-1); e.g. the choice of P4 is among points 

that are visible from P1, P2 and P3. 

It is worth to note that obtained visible points lie on the ground, while in the field sensors must be in 

LOS with other sensors, raised in turn of h. The assumption is that a point raised of h is visible from a 

given point of view if the point on the same verticale lying on the ground is visible. Problems come in 

harsh situations where there is a lot of dense vegetation, such as tall grass, and a minimal amount of 

terrain points is visible from C. In this case, the algorithm could underestimate the visible points from 

C, and it could be necessary to ask the algorithm which terrain points would be visible if they were 

raised of h. To solve this problem, it should be necessary to raise each PCT point (i.e., the terrain point 

cloud), one by one, verifying if they lie on the point cloud convex hull. This means that, if PCT is made 

by one million points, the operator should be applied one million times for each point of view: each 

time a different PCT point should be raised of h, visibility should be computed and the same point 

should be lowered of h. This could be the best solution in areas with low visibility as well as not many 

suitable points to install a device, but it obviously takes too much elaboration time, especially when 
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dealing with big clouds. For this reason, considering the size of the employed point cloud, in this study 

the algorithm was tested rising only Pi by h.  

4.1.2 Distance evaluation 

For the geometrical deployment of the sensors, with the aim to have equal distribution in space, the 

Euclidean distance with already selected ones for each Pi was computed. Only the farthest points were 

then considered to avoid two or more close monitoring devices, or areas with no sensors at all. The 

procedure was carried out by associating weights to node inter-distances. 

Given X(i-1), Y(i-1), Z(i-1) the coordinates of P(i-1) and Xi, Yi, Zi the coordinates of Pi, Euclidean distance is 

given by: 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = √(𝑋(i−1) − 𝑋𝑖)
2
+ (𝑌(i−1) − 𝑌𝑖)

2
+ (𝑍(i−1) − 𝑍𝑖)

2
                       (eq.4) 

Pi is selected among the farthest points of PCT from the already chosen points. The remoteness is 

evaluated by calculating the product of all the distance obtained with eq.4, between P1, …., Pi-1 and all 

the points of PCT. This allow to weight a cluster a portion to PCT (namely the farthest points) among 

which Pi will be chosen. 

4.1.3 Priority Areas 

A step that allows to prioritize sensors deployment in selected portions of the point cloud was added 

to the algorithm. It aims to give different relevance to distinct areas of a landslide, avoiding the absence 

of monitoring devices in significant areas. The boundary of these sections (Priority Areas, PAs) is made 

manually by the user, and a file with the XYZ coordinates of points located inside these areas must be 

uploaded as an input. In detail, the m farthest points obtained from the distance evaluation (Equation 

4) are pointed out. If some points are located in PAs, then Pi is selected among those ones. If there is 

no intersection between the farthest points of PCT (i.e. the terrain point cloud) and PAs, then Pi is the 

farthest point of PCT from P1, …, Pi-1. It goes without saying that the choice of m depends on how much 

important the inter-distance is with respect to the identification of priority areas.  

This makes sure that the experience and knowledge of the user play an important role on the 

procedure despite the automatic nature of the tool. As areas with priority, can be selected areas closer 

to element at risk, region with higher displacement values, most accessible zones, stable points or any 

areas where the user would like to place devices.  
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4.2 Validation on an artificial 3D model 

To check the reliability of the proposed algorithm and with the aim to make the function of the code 

easy to understand step by step, a 3D model was produced and subsequently transformed into a 3D 

point cloud. The model was built to have low visibility and to highlight the WiSIO ability in positioning 

a network, ensuring complete inter-visibility. Furthermore, it allows to easily perceive visibility from a 

given point of view (Figure 66). The model corresponds to a complex artificial scene representing a 

room with scattered vertical obstacles in the form of beams and sections of walls designed in AutoCAD 

3D (Autodesk, v. 20.0) and transformed into a 3D point cloud with CloudCompare (v. 2.10). This is a 

challenging scene because of the difficulty of finding lines of sight in crowded obstacle scenes. In 

addition, obstacles with simple shapes made the scene easy to visually interpret, making it a good first 

example to understanding the functioning of the code. A first validation was done selecting a generic 

point of view C, evaluating the visible points from C and exploiting the camera/eye centre visualization 

function of CloudCompare software (Figure 66). As shown in Figure 66d, all points detected as visible 

from WiSIO are indeed visible from C (in cyan), since there is no overlap of points. On the other hand, 

a small number of false negatives are reckoned up, due to the precautionary R chosen for the test 

trough the iterative process described in Section 4.1.1. The problem of false negatives can be easily 

solved increasing the number of sectors. More the sectors are, less is the number of false negative, 

higher is the time of running, as shown in Table 9, where data of three different approach are reported. 

Note that Test 1 is the approach whose results are shown in Figure 66. 
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Figure 66. 3D model developed to simulate a harsh environment in terms of visibility. a) Visible points from C 
highlighted in cyan. The dark blue dot represents the point selected with the pointer as first choice, and the 
red box the small ROI inside which C has been semi-automatically detected. b) Visible points from C highlighted 
in cyan from a different angulation. c) View from C of points marked visible (in Cyan) and the whole point cloud 
(grey points). d) View from C of only points marked visible; the zoom at the right bottom allow to better 
comprehend the amount of false negatives, i.e. visible points marked as non-visible. 

False 

negatives

Running 

time

Sector 1 Sector 2 Sector 3 Sector 4 Sector 5 (min)

44568 354019 1119508 1774301 4456843 10504 0.350

False 

negatives

Running 

time

Sector 1 Sector 2 Sector 3 Sector 4 (min)

44568 354019 706362 2812078 25120 0.317

False 

negatives

Running 

time

Sector 1 Sector 2 Sector 3 Sector 4 Sector 5 Sector 6 (min)

44568 223371 706362 2233713 4456843 5610833 4131 0.393

Test 1

Radius, R (m)

Test 2

Test 3

Radius, R (m)

Radius, R (m)

 

Table 9. Numbers of false negative obtained varying sectors. Test 2 is the one whose results are shown in 
Figure 66. 

Only one generic point cloud P made by 1.972.852 points was used, since no vegetation is present in 

the model. Figure 67 illustrates the whole elaboration made by WiSIO to point out 7 nodes positions, 

carried out in 3,33 minutes. With respect to Figure 66, where walls helped in the comprehension of 

visible areas, in Figure 67 they were removed to better display all the involved Pi. To detect P1 the 

iterative procedure was replied three times. The automatically evaluated ROIP1 is depicted as a black 
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box in Figure 67a. Moreover, some objects were randomly selected in the model and uploaded as 

priority areas (in red in Figure 67e,f). 

 

Figure 67. Results pointed out by WiSIO for the installation of 7 nodes using the developed 3D model. From a) 
to e) all the steps computed by WiSIO for the automatic detection of P3; in detail: a) choice of P1 inside ROIP1, 
consequent selection of the ROI and detection of points visible from P1; b) detection of points visible from P2; 
c) detection of points that are visible from both P1 and P2; d) identification of the furthest points from P1 and 
P2 among the ones marked pink in (c); e) uploading of the PAs and automatic selection of P3; f) final result with 
the location of all the 7 Points. 

Five sectors were used, whose respective radius are the ones reported in Table 9,  Test 1. The test was 

also replied changing the quantity of point to evaluate the amount of time required varying the size of 

the point cloud (Table 10).  

N. points 427920 1972852 2000000

Running time 0.85 min 3.33 min 3.61 min  

Table 10. Different time of running for different amount of points. 
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It is worth to note that P3, P4 and P6, are out of priority areas, since no further points are overlapped 

to them (Figure 67e). It is also interesting to note that in the area at the right bottom of the model 

there are no sensors, in spite of the presence of PAs. This is due to the absence of points visible from 

both P1 and P2 (pink points in Figure 67c), that is an essential condition.  

All the selected Points are in LOS with respect to the others, are equally distributed in space and 4 of 

them reside on the areas marked as PAs, despite the harsh designed environment (Figure 67f). 
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5. Application of WiSIO to the Roncovetro landslide case study 

To apply the method on Roncovetro landslide, a laser scanner survey was carried out to obtain the 3D 

point cloud, the main input of WiSIO. The survey interested only the central part of the landslide, 

namely the area of interest for installing the network. Since the reliability of the code is strongly 

influenced by the resolution of the point cloud, and due also to the high presence of vegetation in the 

area, seven scans have been acquired from different positions, in order to limit the shadow areas 

(Figure 68). The survey was carried out on December 5, 2018 using the terrestrial laser scanner RIEGL 

VZ-1000 (Figure 69). 

To obtain a vegetation point cloud (PCV) and a terrain one (PCT) a vegetation filter was applied to the 

original point cloud. In particular, the filtering procedure was carried out thanks to the echo registered 

by the laser scanner. The RiSCAN PRO software (RIEGL LMS, RiSCAN PRO version 2.6.2) allowed to 

detect four different echoes of the point cloud: 

i. single targets; 

ii. first targets; 

iii. other targets; 

iv. last targets. 

The removal of the first (ii) and other targets (iii) allow to the vegetation removal. Figure 70 shows the 

split point cloud; the one drawn with only single and last targets is the terrain one, while the one drawn 

with first and other targets is the vegetation one. 

Due to the intense vegetation of the area, a further clean made by the user was then necessary, in 

particular in areas where dense grass was present. The final result is the one shown in Figure 68.  
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Figure 68. 3D Point cloud of the Roncovetro landslide. The red triangles show the position of the seven scans 
that were carried out with the terrestrial laser scanner RIEGL VZ-1000. Green and grey colors represent 
respectively vegetation and terrain (i.e. PCT and PCV). 

 

Figure 69. Laser scanner survey. a) the employed RIEGL VZ-1000 laser scanner; b) picture taken during the 
survey (scan position 1 of Figure 68). 
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Figure 70. Representation of the 3D point clouds echoes. a) single and last targets, i.e. the terrain point cloud 
(PCT); b) first and other targets, i.e. the vegetation point cloud (PCV). RIEGL LMS, RiSCAN PRO version 2.6.2 
software. 
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5.1 Selection of the Priority Areas 

Several tests were carried out by varying the Priority Areas (PAs) to assess which ones would have 

produce the best configuration and to understand its influence. 

In all cases, h, the sensor’s support high, was set equal to 1.5 m, according to the first installation of 

the system made in 2016, while the ROI was fixed at 100 m. However, all the input parameters used 

for Roncovetro tests are listed in Table 11. 

h* 1.5 m R sector 1 3593 m

ROI 100 m R sector 2 18010 m

ROIP1 5 m R sector 3 71700 m

m** 20% R sector 4 180104 m

Iterations for P1 5 R sector 5 285446 m

*Iron poles' height                                                                                                        

**The value is expressed as the percentage of the points visible from P i  

Table 11. Summary of the input parameters used for Roncovetro tests. 

The first test was performed considering as PAs the areas with the highest displacement values. For 

this purpose, data of the Robotic Total Station (RTS) installed in the area were analysed and 

interpolated by kriging, a powerful type of spatial interpolation that uses complex mathematical 

formulas to estimate values at unknown points based on the values at known points. As previously 

mentioned (see section 3.2), during the first installation each node had been indeed equipped with a 

RTS target and it was therefore possible to interpolate the displacement values obtaining a continuous 

map. Figure 71a shows the displacement map (resulted from the kriging process carried out on ArcGIS, 

ARCMAP v. 10.4) with the location of the old Cluster 1, namely the points of known displacement. 

Points of the terrain point cloud (PCT) located on areas with a displacement rate higher than 0.1 m was 

considered as Pas in this first test (Figure 71b), and the obtained configuration is shown in Figure 71c. 

One can note that the two nodes of the old configuration that had been installed in stable areas (i.e. 

nodes 1 and 7, Figure 71a) allow to identify stationary areas, whereas in the middle area, 

corresponding to the landslide flow channel, the highest displacement values were observed. Despite 

this, the analysis was not so significant, since the source data were few and punctual. Moreover, the 

resulted configuration was not satisfying at all due to its high concentration in one sector of the 

landslide and its total absence in the other areas (Figure 71c).  
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Figure 71. Results of WiSIO using RTS values to define Priority Areas (PAs). a) aerial picture of Roncovetro 
landslide with the results of the interpolation procedure (i.e. Kriging) obtained with the RTS values acquired 
from old Cluster 1 positions; b) Roncovetro terrain 3D point cloud (PCT) with the PAs detected by the kriging 
procedure in red; c) configuration obtained considering areas characterised by displacement values higher 
than 0.1 m as PAs. 

A second test was still performed considering the landslides movement, but this time considering the 

differences between two 3D point clouds obtained by means of two terrestrial laser scanner survey 

performed in two different times, one on March 3, 2015 and the other on December 2, 2018 (i.e. the 

same on which WiSIO runs). The absolute distances were calculated from the mesh generated from 

the first terrain point cloud and the second terrain point cloud; a direct evaluation of the point to point 

distance would have indeed produced only relative distances values, not allowing to understand 

depletion and accumulation zones. Unfortunately, the 2015 point cloud, which was the results of 

merging only three scansion and considering the strong presence of vegetation as well as terrain 
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roughness and slopes, did not generates a high resolution cloud as the one obtained in 2018. For this 

reason, and due also to the strong changes in terms of vegetation and morphology, the obtained 

results were not so satisfying, especially for the lower part of the area of interest, where the obtained 

displacement does not seem to follow the actual morphology of the area. Conversely, they seem to be 

significant and reliable in the upper part, where the depletion areas coincide with the numerous 

channels where the material flows (Figure 72).  

Areas with a displacement values higher than +0.5 m (i.e. depletion zones) were therefore considered 

as PAs. Two different configurations are shown in Figure 72b and Figure 72c, obtained by WiSIO moving 

P1 on the middle and on the lower part of the area of interest, respectively. Both configurations are 

distributed in space and the influence of the PAs is clearly visible. However, they were both excluded, 

the first one because the main intention was to install sensors close to the ones installed in 2016; the 

latter because as above mentioned the PAs in this case were not considered reliable.  

 

Figure 72. Results of WiSIO using differences between terrestrial laser scanner point clouds obtained in 2015 
and 2018. Points with a displacement higher than +0.5 m have been considered as PAs. The differences were 
calculated by means of CloudCompare software (CloudCompare v. 2.10). a) differences from the mesh 
generated from the 2005 point cloud and the 2018 point cloud; b) first configuration obtained; c) second 
configuration obtained. 

With the aim of installing the sensors in a position close to the old configuration to obtain a significant 

comparison of the results, a test was carried out considering as PAs the location of the 2016 nodes. In 

particular, 11 spheres, having a 10 m radius and centred in the location of the old configuration 

sensors, were drawn, projected on the 3D point cloud and considered as PAs (Figure 73). WiSIO was 
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consequently run positioning P1 close to the old P1; the result is showed in Figure 73b. This 

configuration was however discarded since P1 was the only stable point out of the landslide and this 

would not be enough to assess the non-relative position of sensors trough triangulation processes, 

since at least three stable points are required for this purpose. 

 

Figure 73. Results of WiSIO using the position of the sensors in the old configuration as PAs. a) in red the PAs 
on Roncovetro 3D terrain point cloud (PCT); b) the obtained configuration. 

A fourth test was finally carried out with the aim of ensuring the best geometrical positioning in terms 

of visibility despite the presence of several geomorphological ups and down in the landslide body. 

Due to the low visibility of the site, it is in fact necessary to avoid locating by WiSIO of one or more 

sensors in areas with scarce visibility, since it would compromise the best positioning of the 

subsequent sensors. WiSIO indeed, place devices in LOS one to each other, but without considering if 

the surrounding areas are highly visible. In a stress condition like Roncovetro landslide, due to the 

presence of vegetation as well as terrain roughness and slopes, it may happen that a sensor is correctly 

positioned in LOS with the others and following the distance criteria, but in an area with few visible 

points, sacrificing the positioning of the succeeding devices. To prevent this, the geomorphological 

highest locations were selected as PAs. To automatically select these areas, a simple computation was 

performed. Cells were extracted by ideally moving a sampling cube of fixed dimension (side of 5 m in 

this work) on the terrain point cloud. For each of them the mean elevation value (Zmed) and the average 

of the 10 highest elevation values (Zmax) were calculated. PAs were thus defined as points located in 

cells whose (Zmax - Zmed) was greater than 2 m (Figure 74). Note that calculating Zmed as above 

mentioned, instead of using the maximum elevation value of each cell, allow to avoid outliers’ issues. 

In a 3D point cloud of a vegetated area, outliers with a Zmax out of the range can be indeed quite 

common. Figure 74c shows the obtained configuration. 
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Figure 74. Results of WiSIO obtained using the cube method for the PAs selection. a) cube centres coloured in 
function of the Zmax - Zmed values. b) Roncovetro 3D point cloud (PCT) with the PAs (i.e. points in cubes whose 
Zmax - Zmed was greater than 2m) highlighted in red; c) one of the obtained configurations. 

A further detail to take into account is that the selection of P1 strongly influenced the whole 

deployment. As an example, Figure 75 shows three different configurations obtained changing the 

original position ROIP1, which framed an area of 5 m around P1. In case 1 and 3, it is located in central 

and easy to reach positions (Figure 75a and Figure 75c), while in case 2 it is situated a bit further 

upstream (Figure 75c). The most satisfying configuration is in Case 3, due to the point distribution in 

the landslides body and to the presence of one or more stable points located outside the landslide (i.e. 

Nodes 3, 5, 9 and 11).  
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Therefore, since the interest was to install the system in the same area where it was in 2016, aiming 

at a complete comparison of the collected data, on February 2019 the new installation of the Wi-GIM 

system was done following Configuration 3 (Figure 75c). 

 

Figure 75. Different configurations obtained changing the position of P1 using the cube method for the PAs 
selection. Red dots represent points in cubes whose Zmax -Zmed was greater than 2m, i.e. the PAs. a) 
configuration 1; b) configuration 2; c) configuration 3, i.e. the one used for the new installation of the Wi-GIM 
system. 
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5.2 Wi-GIM new installation 

On February 27nd, 2019, sensors were installed on 1,5 m high iron poles (as already done in 2016, and 

as considered in the parameter settings reported in Table 11), following the configuration showed in 

Figure 75c.  

To place the poles in the locations detected by WiSIO, the point finder function of the Emlid Reach RS+ 

GPS (see Emlid Reach GPS official web site, in bibliography) was exploited. The X, Y, Z point coordinates 

were thus uploaded in the GPS that directed the user on them through a navigation system. Points 

were then marked on the ground with a spray paint, where the iron poles were subsequently 

embedded (Figure 76). 

 

Figure 76. Wi-GIM installation after the implementation of WiSIO. a) Emlid Reach RS+ GPS point finder function 
used to localise the Points detected by the algorithm; b) installation of the new Cluster 1 Node 8 (highlighted 
with a yellow circle). 

As explained in Section 3.2.2, the power consumption was been a critical point during the first 

installation of the Wi-GIM system in Roncovetro, since the scarce duration of batteries’ life caused too 

frequent batteries replacements increasing the costs of the monitoring. For this reason, for the second 

installation, each battery was equipped with a photovoltaic panel (Figure 77a), that was placed in situ 

on the top of each battery and facing south. Thanks to the panels, all batteries remained charged 

during the whole monitoring period, except the one at Node 5 which died on 2019/03/15 probably 

due to a tension overload occurred on 2019/03/01 (Figure 77b). 
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Figure 77. Effect of photovoltaic panels. a) one of the batteries equipped with the photovoltaic panel 5 W 21.2 
V, whose dimensions are 180 mm X 340 mm X 23 mm; b) displacement time series of Nodes 1–5 plotted with 
the battery level, where the daily influence on the panel voltage is clearly visible. The red line is referred to 
Node 1 battery; the black one is referred to Node 5 battery who died on 2019/03/15 probably due to a tension 
overload occurred on 2019/03/01. One can note that no data can be acquired after the loss of one of the two 
involved batteries. 

As shown in Figure 75c, 7 devices out of 11 lie on PAs. One of the non-PAs points is however P1, whose 

position was manually picked out. The remaining 3 are out of them as a result of the relationship 

between the distance and the m value (set equal to the 20% of the points visible from Pi). All sensors 

were effectively in LOS, as demonstrated by an analysis carried out with the camera/eye centre 

visualization function in CloudCompare. Despite this, the acquired data show the lack of three pairs, 

i.e. 3–11; 2–7 and 4–5 (Figure 78). This leak could be due to changes in vegetation or to problems 

related to the Decawave. Concerning vegetation, please note that due to logistic problems, three 

months passed from the scan survey to the installation. This period may have led to some changes on 

the field, due to animals’ transition or branches fall. Secondly, some problems have already been 

encountered in the past because of the low-cost nature of the Decawave, as already discussed in the 

previous sections. 
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Figure 78. Percentage of collected measures in the new configuration, index of the LOS condition. 

Figure 79 and Figure 80 show two examples of the acquired data in the new configuration, i.e. the 

displacement time series of pairs 4–8 and 7–10 for the period from 2019/02/27 to 2019/05/12. All 

processing steps are reported in the images, such as the outlier’s removal using a threshold of 1 m and 

the daily averages that strongly increase data precision.  

Furthermore, it is interesting to note the temperature effect in the presented data, where a slight daily 

influence is visible in Figure 79b and in Figure 80b, that are attenuated after the correction using a 

factor equal to 0.003 (Figure 79c – Figure 80c). 
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Figure 79. Displacement time series of the pair of nodes 4–8. a) raw distance values; b) distance validated 
values, considering a threshold of 1 m for the outlier’s removal; c) distance validated values after the 
temperature correction made using a correction factor of 0.003; d) distance daily mean values. Green circles 
and blue crosses represent the distance measured from one node to the other and vice versa. Where 
measurement points are extremely dense, the blue crosses are overlaid by the green circles. 
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Figure 80. Displacement time series of the pair of nodes 7–10. a) raw distance values; b) distance validated 
values, considering a threshold of 1 m for the outlier’s removal; c) distance validated values after the 
temperature correction made using a correction factor of 0.003; d) distance daily mean values. Green circles 
and blue crosses represent the distance measured from one node to the other and vice versa. Where 
measurement points are extremely dense, the blue crosses are overlaid by the green circles. 

  



108 

 

5.2.1 The event of May 5th, 2019 

Looking at data presented in Figure 79 and Figure 80, one can note that a significant movement is 

clearly visible starting from the 5th of May 2019. The displacement, 1.5 m for the pair 4–8 and about 5 

m for the pair 7–10, occurred during intense rainfall (Figure 81), and it is the higher that has been 

registered during the whole monitoring period started in 2016. 

 

Figure 81. Rainfall and temperature data recorded in May in the close weather station of Canossa (RE, Italy). 

It is interesting to note how the pair 4–8 registered a movement in opposite directions, first measuring 

shorter distances (as if they were approaching one to each other) and then bigger (that is moving away) 

(Figure 79). This change in direction is due to the pole instability: during the displacement it probably 

fell down tilting and thus measuring the displacement in a different direction. Pole instability may 

indeed occur in case of large displacements along the slopes, compromising the reliability of the 

measured distances. Unfortunately, in these extreme cases, it is hard to imagine an appropriate low 

cost solution with a low environmental impact. However, it is important to note that while the 

direction of the movement is in question, the system is capable to record a movement, remaining a 

good solution in emergency conditions. 
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Figure 82 shows the daily average values recorded by some other significant pair of nodes during the 

event.  

 

Figure 82. Displacement time series, daily mean values of some pair of nodes recording the event started on 
the 5th of May 2019. 

The differences between the first acquired measurements (specifically the medium value of the first 

5) and the last ones were evaluated to estimate the maximum displacement recorded by the network. 

The values were plotted in a links representation (Figure 83), allowing to understand which nodes 
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moved more. In Figure 83, warm colours show negative values which refer to an approach between 

the two sensors; conversely, cold colours show positive values, indicating two sensors moving away.  

 

Figure 83. Difference between the first 5 distance values acquired by Wi-GIM and the last one. 

However, due to the instability of the pole, as in the case of Nodes 4–8 (Figure 79), those directions 

could not be always significant. Therefore, it may be more appropriate to consider the absolute values, 

that anyway give an exhaustive idea of which sector of the landslide are exposed to higher 

displacements (Figure 84). 
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Figure 84. Absolute values of the difference between the first 5 distance values acquired by Wi-GIM and the 
last one. 

During the event, the landslide completely destroyed the road close to Cluster 1, as can be seen in 

Figure 85 where pictures of the road taken before and after the event are reported. 
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Figure 85. Pictures of the road crossing the landslide taken in December 2018 (a) and May 2019 (b). 

Unfortunately, the master node was damaged during the event, and no more data have been acquired 

after the 10th of May. In sight of this, the whole Cluster was removed from the site on 2019/05/31. 

  



113 

 

6. Results and discussion 

The last part of this thesis presents several considerations on the effectiveness of the Wi-GIM system, 

allowing to a better comprehension of its feasibility, highlighting both its advantages and limitations, 

together with the importance of using WiSIO for its deployment. 

In particular, in the first part of this chapter, observations about the performance of the system are 

presented. The results of the validation which was carried out using the data from the Robotic Total 

Station (RTS), comparing the two measurements and computing the motion tracking of the nodes, are 

presented and discussed in Section 6.1.1; the influence of atmospheric effects such as rain and snow 

are pointed out in Section 6.1.2. Moreover, further remarks can be done looking at the Performance 

Index (PI), a parameter that allow to quantify the system performances over time, as well as the Cost-

Benefit analysis, carried out comparing Wi-GIM with two traditional monitoring instruments, namely 

RTS and Ground-Based InSAR. 

Additionally, the second part of this chapter shows the result obtained by applying WiSIO for the 

installation of the WI-GIM system in Roncovetro landslide. The comparison between the data obtained 

from the first installation (first configuration) and the second one (second configuration, i.e. the one 

set considering the output of WiSIO) allows to quantify the improvements achieved by using the 

developed algorithm. 
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6.1 Feasibility and reliability of the Wi-GIM system 

6.1.1 Validation with the RTS, positioning and pathfinding 

A validation of the system was carried out by using the results from the Robotic Total Station. As 

mentioned in Section 3.2 in fact, each node was equipped with an RTS target, allowing to have the 

same distances acquired by the two different monitoring system. 

The comparison between the two sets of measurements shows an offset on the absolute distance 

values (Figure 86a – Figure 87a). In the here presented cases, the offset was equal to 83 cm and 90 cm, 

respectively for pairs 1–6 of Cluster 1 and 1–10 of Cluster 3. For all the examined pairs of nodes, the 

offset was more in general about 80 cm, and it was due to both problem of signal obstruction and 

problem related to the low-cost nature of the Decawave sensor. Concerning the first, the obstructed 

Line of Sight (LOS) of some pairs of nodes (due mainly to vegetation) caused a change in the direction 

of the signal, that consequently measured higher distances. However, as already mentioned, an error 

was introduced by the Decawave since, even in free LOS conditions, offsets in the order of the 

decimetre have been found. 

Although the offset is not relevant for a monitoring aimed to record the distance variation, since it is 

constant for a given pair of nodes, it was corrected (Figure 86b – Figure 87b), and the result highlighted 

a very good correlation between the two sets of measurements.  

 

Figure 86. Displacement time series of the pair of nodes 1–6 of Cluster 1 from February 2016 to March 2017. 
Blue crosses: daily averages of filtered Wi-GIM data. Red circles: RTS data. a) data without offset 
compensation. b) compensated data. 
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Figure 87. Displacement time series of the pair of nodes 1–10 of Cluster 3 from February 2016 to March 2017. 
Blue crosses: daily averages of filtered Wi-GIM data. Red circles: RTS data. The green circle highlights the pole 
fall. a) data without offset compensation. b) compensated data. 

Interestingly, between May and June 2016 Wi-GIM nodes 1–10 of Cluster 3 recorded a movement 

while RTS did not generate any acquisition (Figure 87). This was due to the pole that slowly tilted and 

finally fell down. Whereas RTS lost sight of the target mounted on the pole and was not able to perform 

further measurements, the Wi-GIM nodes continued to detect displacements. Data from the RTS 

(represented by red circles in Figure 87) reappears only when the pole has been put back in place re-

establishing the LOS condition. This is a key point of the proposed monitoring system, since although 

the free LOS strongly improves data reliability, it is not a sine qua non condition, as it is for the RTS. 

In case a node is visible at least by other 3 nodes, Wi-GIM system also enables to determine its 

planimetric position and track its variation over time. To find out the absolute positions of a node, a 

circle is traced, considering the sensor coordinates as its centre and the measured distance with the 

other nodes as its radius. The intersection of three circles individuates an elliptic triangle whose centre 

is taken as the position of the node. Since for a reliable and significant positioning, a node must be 

seen by three stable nodes, the tracking of Cluster 1 was carried out considering nodes 1, 2 and 7 as 

stable points (being placed outside the landslide’s body). This procedure has been repeated for each 

daily average measurements, and a motion tracking feature was tested and compared with the results 

from the geodetic monitoring (Figure 88 – Figure 89 – Figure 90 – Figure 91). Note that, for a better 

comparison, the offset that affect the Wi-GIM measurements is already removed in the following 

images. 

Concerning the following cases of Cluster 1, the accuracy of the positioning is in the order of the 

decimetre, but it varies with the scale: lower is the displacement and lower is the precision. Moreover, 

please note that this positioning has been done in 2D, without taking into account the elevations of 
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the points, considering the area as a planar one and thus making an approximation. However, looking 

at the slopes at a node-to-node scale, the error can be judged acceptable. As a matter of fact, in the 

following cases the two tracks run parallel due to the offset affecting the Wi-GIM measurements, 

nevertheless Wi-GIM is able to correctly trace the direction and module of the displacement vector. 

 

Figure 88. Motion tracking of node 3 from Roncovetro cluster 1 considering data of the whole monitoring 
period. Crosses refer to RTS and circles to Wi-GIM measurements, respectively. 
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Figure 89. Motion tracking of node 4 from Roncovetro cluster 1 considering data of the whole monitoring 
period. Crosses refer to RTS and circles to Wi-GIM measurements, respectively. 
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Figure 90. Motion tracking of node 6 from Roncovetro cluster 1 considering data of the whole monitoring 
period. Crosses refer to RTS and circles to Wi-GIM measurements, respectively. 
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Figure 91. Motion tracking of node 8 from Roncovetro cluster 1 considering data of the whole monitoring 
period. Crosses refer to RTS and circles to Wi-GIM measurements, respectively. 

An example showing how the precision improves increasing the displacement is reported in Figure 92. 

It concerns the motion tracking of node 10 of Cluster 3. In this case, the nodes considered as stable for 

the analysis were nodes 1, 2 and 6. Actually, they were not out of the landslides, and therefore their 

location could not be as reliable as the one carried out for Cluster 1. However, the data showed 
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minimum movements, so the results can be considered satisfactory. One can note how at this scale, 

the precision is higher (in the order of millimetres in some cases) and that both systems are able to 

track movement of around 3.8 m toward SSE from February to September 2016.  

 

Figure 92. Motion tracking of node 10 from Roncovetro cluster 3 considering data acquired from February to 
September 2016. Crosses refer to RTS and circles to Wi-GIM measurements, respectively. 
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Moreover, in Figure 93 a different representation to analyse the positioning over time, i.e. the motion 

tracking of one node month by month, is reported. If the representations of Figure 88 to Figure 92 can 

be useful to understand the capability of the Wi-GIM system to correctly track a real movement, the 

one that follow allows a better comprehension of the periods in which the landslide has had higher 

displacements.   

 

Figure 93. Motion tracking of node 12 from Roncovetro cluster 3 considering data from February to September 
2016. Different colours point out months. 

6.1.2 Rain and snow effects 

A further study was conducted to investigate the effects of rain and snow on Roncovetro's clusters. 

The attention was in this framework not much focused in seeing how rain and snow affected the 

landslide, but how they affected the monitoring system. For rainfall, rain gauge data from a 

meteorological station previously installed in the area were used. For snow, only information about 

the occurrence of snowy days was available. Here are reported some examples highlighting a basically 

stable situation and how rainfall and snowy days are not associated with spikes or increased noise 

(Figure 94 – Figure 95). Indeed, no relation between the atmospheric events and data was observed, 

in particular referred to data dispersion, acquired data percentage or valid data percentage. 
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Figure 94. Atmospheric effect on the Wi-GIM system. a) raw distances of nodes 4–9 belonging to 

Cluster 1. b) distance validated values of nodes 4–9 belonging to Cluster 1. 

 

Figure 95. Atmospheric effect on the Wi-GIM system. a) raw distances of nodes 1–2 belonging to 

Cluster 3. b) distance validated values of nodes 1–2 belonging to Cluster 3. 

6.1.3 Performance Index (PI) 

In order to quantitatively evaluate the Wi-GIM performance and its variation over time, a specific 

index, called Performance Index (PI), was introduced in this study. The analysis of the PI values plotted 

vs time allowed to assess possible local anomalies, making possible to change the system settings in 

progress, in order to achieve the best results in terms of data quality and continuity. The Performance 

Index (PI) is calculated daily for each pairs of nodes, and it is defined as the product of two parameters: 

PI = P1 x P2 

Each parameter is defined as follows: 
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- P1= Nv/Ntot 

- P2=1-D 

where: 

- Nv is the number of valid distance readings (outliers and invalid measurements excluded) for 

each pair of nodes; 

- Ntot is the total numbers of readings requested by the master node; 

- D is the difference between the RTS distance and the compensated Wi-GIM distance expressed 

in metres. 

Since each parameters P1 and P2 varies from 0 to 1, PI ranges from 0 (minimum performance) to 1 

(maximum performance). Thus, the index expresses the quality of each link over time by considering 

the communication capacity of each pair of nodes and the correctness of the performed readings. In 

the case study of Roncovetro, the PI allowed to continuously evaluate the performance of each 

component of Wi-GIM system, as well as to make some local interventions to maximize the quality of 

monitoring data.  

Naturally, the assessment of P2 can be done only in case a parallel monitoring is installed in the area, 

as for the Roncovetro landslide, or if, more in general, the actual position of each sensor is known. In 

case this is not applicable, only P1, which is however worthwhile to monitor the system performance, 

can be estimated. 

As mentioned, the P1 parameter is the ratio between the valid distances over the total measures that 

the master node should acquire. This value is calculated on a moving average considering e.g. days or 

months. Depending on the chosen time interval, the information given by the PI are visualised 

differently. To give an example, the variation of P1, P2 and PI for the pair 3–9 of Cluster 1 over time is 

presented in Figure 96 and Figure 97 considering respectively 20 days and 1 day as time interval for 

the evaluation of P1. Results are discussed considering the acquired data, and in particular the valid 

ones and the daily averaged ones compared with the RTS compensated measurements (Figure 98).  



124 

 

 

Figure 96. Variation of performance parameters P1 (blue line) and P2 (red line) and Performance Index (PI: 
black line) over time, considering a time interval of 20 days. Data are relative to Cluster 1 pair of nodes 3–9. 

 

Figure 97. Variation of performance parameters P1 (blue line) and P2 (red line) and Performance Index (PI: 
black line) over time, considering a time interval of 1 day. Data are relative to Cluster 1 pair of nodes 3–9. 
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Figure 98. Displacement time series from the pair of nodes 3-9 of Roncovetro Cluster 1. a) distance validated 
values. Green circles and blue crosses represent the distance measured from one node to the other and vice 
versa. b) Daily averages of compensated Wi-GIM data (blue crosses) and RTS data (red circles). 

As a general rule, one can note that P1 is the parameter which mainly affects the PI values, and this is 

mainly due to environmental disturbances (such as vegetation growth) which obstruct the LOS making 

the communication more unstable. In the presented case, i.e. nodes 3–9 of Cluster 1, P1 strongly 

decreases from October 2010 to January 2017, reaching values of about 0.5, with an interval in 

correspondence of the end of November, when its values reach 1 again (Figure 96–Figure 97). This 

trend is due to the number of measures recorded by Wi-GIM, that are halved in the just mentioned 

periods, as clearly visible in Figure 98, where only measurements from one node to the other are  

acquired. This has been a recurring behaviour of the system, whose causes are still unclear but that is 

probably due to a UWB module bug. Another anomalous case is the one occurred at the end of 

December 2016, when P1 was equal to zero, meaning no data recorded at all, due to the low battery 

of one of the nodes (Figure 97). Concerning the P2 parameter (the red line in Figure 96 and Figure 97), 

please note that its repeatedly absence in the graph is simply due to the absence of the RTS data, as 

visible in Figure 98. Apart from these particular cases, the PI fluctuates in between 0 and 1, and, 

whereas it gives more detailed but sometimes chaotic information if evaluated daily (Figure 97), its 

trend over time is better represented when considering a wider time interval, even if less precise 

(Figure 96). 

The same elaboration is then reported for the pair 1–7 of Cluster 3 (Figure 99 to Figure 101). 
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Figure 99. Variation of performance parameters P1 (blue line) and P2 (red line) and Performance Index (PI: 
black line) over time considering a time interval of 20 days. Data are relative to Cluster 3 pair of nodes 1–7. 

 

Figure 100. Variation of performance parameters P1 (blue line) and P2 (red line) and Performance Index (PI: 
black line) over time, considering a time interval of 1 day. Data are relative to Cluster 3 pair of nodes 1–7. 



127 

 

 

Figure 101. Displacement time series from the pair of nodes 1-7 of Roncovetro Cluster 3. a) distance validated 
values. Green circles and blue crosses represent the distance measured from one node to the other and vice 
versa. b) Daily averages of compensated Wi-GIM data (blue crosses) and RTS data (red circles). 

Also in the case of nodes 1–7 of Cluster 3, the absence of the RTS data and therefore of the P2 

parameter is recurrent, as well as the presence of the Wi-GIM measures in only one direction (from 

July 2016 to September 2016) and the absence of data due to a low battery (end of June 2016 and end 

of December 2016) that caused the total absence of the Wi-GIM data and therefore the zero value of 

the P1 parameter (Figure 99 to Figure 101). 

At the end of the monitoring period it has been possible to calculate the mean performance 

parameters and index for each link, and represent it on a map, as can be observed in Figure 102, Figure 

103 and Figure 104. In this case, the Performance Index has been calculated doing an average of all 

the values obtained by considering a daily time interval. 
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Figure 102. Mean performance parameter P1 for the node links of Cluster 1 (a) and Cluster 3 (b). 

 

Figure 103. Mean performance parameter P2 for the node links of Cluster 1 (a) and Cluster 3 (b). 
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Figure 104. Mean Performance Index (PI) for the node links of Cluster 1 (a) and Cluster 3 (b). 
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6.1.4 Cost-Benefit analysis 

Using the cost-benefit analysis template provides costs and benefits information that can be used to 

analyse and evaluate the Wi-GIM system. Three different systems usually exploited for monitoring 

ground instability phenomena have been compared in terms of costs and benefits. In particular, a 

ground-based radar and a Robotized Total Station (RTS) have been considered together with Wi-GIM. 

Concerning costs, to better comprehend the advantages of the examined monitoring systems, a 

distinction between two different areas has been done: 

i. Area 1: an area of 500 m2; 

ii. Area 2: an area of 100000 m2. 

Note that as regard the RTS and the radar, as ‘direct costs’ the renting cost of the systems for 1 year 

has been considered, since the actual cost would be too high and so not comparable with Wi-GIM. A 

detailed analysis of the direct costs for each instrumentation is described in Table 12. Concerning the 

Wi-GIM system direct costs, note that one battery and one photovoltaic panel or two batteries are 

actually included in the price of a single battery. To keep the system running for more than one month 

in fact, it is necessary to replace the batteries (so two for each node are required) or to equip each one 

with a photovoltaic panel. 

Item cost (€) Item cost (€) Item cost (€)

Battery 20 Total Station 11000(1) Radar 54000(2)

UWB module 20 Target 120

Micro-controller 30

TOT (€) 70 11120 54000

Radar

Direct costs

(1)Price taken from a one-year rental made by the Department of Earth Sciences of the University of Florence

for the monitoring of the Lungarno Diaz sinkhole (FI, Italy) with the Pizzi Instruments S.r.l company in 2019.
(2)Price taken from a one-year rental made by the Department of Earth Sciences of the University of Florence

for the monitoring of the Pomarico landslide (MT, Italy) with the ELLEGI-LiSALab S.r.l. company in 2019.

Wi-GIM RTS

 

Table 12. Direct costs considered for the Cost-Benefit analysis. 

As for the benefits, to more easily understand the advantages and the disadvantages of Wi-GIM than 

the other two monitoring systems, a table that summarized benefits with a score from 1 to 5 has been 

realised. The scores have been assigned as follows: 
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1: poor; 

2: fair; 

3: good; 

4: very good; 

5: excellent. 

Results of the Cost-Benefit analysis are shown in Table 13. Due mainly to the low scores assigned to 

precision, vulnerability (caused by the instability of the nodes) and maximum range at which the 

system works, Wi-GIM has a final mark lower than the other two systems, but anyway classified as 

good. However, the benefits results must be considered together with the costs one: if Wi-GIM has 

some limits, on the other hand it is characterized by a really low cost. Looking at the following table in 

fact, one can note that there is a big difference between the total price of Wi-GIM (5220 € in the worst 

scenario analysed) and the price of the other two systems (18150 € for the RTS and 58100 € for the 

radar), although for the lasts only the rent for one year has been considered. Furthermore, the total 

price of the Wi-GIM system can be even reduced with the use of photovoltaic panels, since the high 

maintenance costs are due to the field trips for the batteries replacements.  

Therefore, the cost-benefit analysis points out that where a high precision is not requested or big 

distances are not involved, Wi-GIM can be a good compromise (Table 13). 
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Materials Labor

Area 1 500 5 350 20 1500 50 (1) 200 700 (4) 2820

Area 2 100000 30 2100 120 1800 300 (1) 200 700 (4) 5220

Area 1 500 5 11600 150 200 1600 (2) 500 700 (4) 14750

Area 2 100000 30 14600 200 350 1600 (2) 700 700 (4) 18150

Area 1 500 - 54000 300 100 2500 (3) 500 700 (4) 58100

Area2 100000 - 54000 300 100 2500 (3) 500 700 (4) 58100

Vulnerability Precision
Maximum 

range

Environmental 

impact
TOT

Rain Snow

Wi-GIM 2 3 2 3 4 4 3,3

RTS 3 4 5 4 3 3 3,6

Radar 5 5 5 4 4 1 4,04

COSTS

BENEFITS

Influence of atmospheric 

events

Wi-GIM

RTS

Radar

area (m2)
number of 

nodes/targets

(1)Price of the supports for the UWB modules. (2)Sum of the prices of the protection structure (1200€) plus the reinforced concrete pillar on which the

instrument lean (400€). (3)Sum of the prices of the protection structure (2000 €) plus the supporting structure needed for the ground based radar (500 €).
(4)Sum of the prices of the sim card (200 €) plus the modem necessary for the data trasmission (500€).

Installation effort

5

3

TOT (€)Direct costs (€)

Energy 

consumption 

(€)

Installation costs 

(€)

Data 

trasmission 

costs (€)

Maintenance 

costs (€)

 

Table 13. The Cost-Benefit analysis. 
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6.2 Evaluation of the effectiveness of WISIO by comparing the two installations of the 

Wi-GIM system 

To highlight the effectiveness of WiSIO, a comparison was made between the results from the Wi-GIM 

system with the old 2016 installation and the new one, which was supported by WiSIO optimizing 

procedure, considering both the amount of acquired data and their worth. 

The percentage of collected and valid data (data without no outliers or zero values) both in the old and 

in the new configuration is shown in Figure 105 where the percentages of respectively collected and 

valid measures in the whole monitoring periods are represented by means of coloured links for each 

pair of nodes.  

In the new configuration (Figure 105a,b), the percentage of collected data ranges between 90% and 

100% for all the pairs, except for the 4 previously mentioned pairs (see Section 5) and for pairs 1–5; 3–

10; 9–10. In these last three cases, both collected and valid data are in between 45% and 50%). 

In the old configuration (Figure 105c,d), the percentage of collected data is less than 60% for 10 pairs 

and the percentage of valid measures do not reach the 60% for 22 pairs. That means that not only in 

the old configuration less data were acquired due to non-LOS problems, but most importantly that the 

quality of data was worse as well. Indeed, in the old configuration the acquisition of a value did not 

guarantee its validity, as it is for the new configuration, where there is no discrepancy from the 

percentage of collected and valid data.  

Considering as suitable pairs the ones whose percentage of valid data is at least 60%, and that 

consequently 50 out of 56 pairs are suitable in the new configuration (i.e. the 89,3%), instead of 34 out 

of 56 in the old one (i.e. the 60,7%), it follows that thanks to WiSIO the amount of valid data increased 

by the 28.6%.  
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Figure 105. Comparison between measures recorded in the old and in the new configuration of the Wi-GIM 
system, considering data acquired during the whole monitoring periods. a) Percentage of collected measures 
in the new configuration. b) Percentage of valid measures in the new configuration. c) Percentage of collected 
measures in the old configuration. d) Percentage of valid measures in the old configuration. 

As mentioned, the analysis has been carried out taking into account data acquired during the whole 

monitoring periods, i.e. from March 11th, 2016 to March 7th, 2017 and from February 27th, 2019 to May 

10th, 2019, respectively as regards the old and the new configuration. For a more precise analysis, the 
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elaboration has been carried out also considering data recorded in the same time interval and in 

particular in the same period, to exclude the influence of seasonal variables on the percentage of 

collected and valid measures. Such factors could be the rainfall intensity or the temperature, as well 

as the vegetation growth. Considering both periods of acquisition, data recorded in the month of April 

(2016 for the old configuration and 2019 for the new one) have been processed and compared (Figure 

106).  

As noticeable in Figure 106, results are not contradictory when considering equal time intervals. This 

is particularly true for data belonging to the new configuration, but it was expected since the 

monitoring period considered in Figure 105 is really close to the one examined in this phase. Even in 

this case in fact, the couples that do not reach the 60% of valid data are 50 out of 59 (i.e. the 89.3 %). 

On the other hand, the old configuration presents some differences. Now, following the same 

procedure done before, both the percentages of collected and valid data are less than 60% for 29 pairs 

(i.e. the 48.2 %). Thus, when considering the same time interval and mostly the same period, the 

amount of valid data increased by the 41.1% instead of the 28.6%, meaning that the month of April 

was one of the worst in terms of data quality during the first installation of the Wi-GIM system. 

The main cause may lie in the vegetation growth that occurs in April and that could have obstructed 

several LOS between couples of nodes. The old configuration was indeed installed on March 11th, when 

brushes and grass were still dry. The growth in April could have then changed the morphology at a 

small scale compromising several Line Of Sights. However, it is interesting to note that this does not 

occurred in the new configuration, even if the network was installed at the end of February and thus 

in similar conditions.  

It is reasonable to think that the different behaviour (i.e. the loss of the LOS condition in the old 

configuration and the unchanged situation in the new one) is due to the application of WiSIO. As 

previously discussed in Sections 6.1.1 and 6.2, the algorithm produces a few false negatives around 

the objects, i.e. visible points marked as non visible. This preventative measure, although reducing the 

number of exploitable points, ensure the LOS between two sensors even in case of small changes 

around an obstacle, at least as long as these are limited in the buffer area of the false negatives. 

Therefore, if the vegetation grows within this precautionary area, it does not compromise LOS 

between two nodes when using WiSIO for their positioning. 
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Figure 106. Comparison between measures recorded in the old and in the new configuration of the Wi-GIM 
system, considering data acquired in the same period, i.e. April 2016 for the old configuration and April 2019 
for the new configuration. a) Percentage of collected measures in the new configuration. b) Percentage of valid 
measures in the new configuration. c) Percentage of collected measures in the old configuration. d) Percentage 
of valid measures in the old configuration. 
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Some examples showing this improvement on the distance measurements acquired by the system are 

reported in Figure 107. The image shows three cases in which data recorded in the old and in the new 

configuration (respectively during April 2016 and April 2019) are compared. The two pairs that are part 

of each case have been selected due to their similar positioning in the landslide and therefore visibility 

conditions (Case A and Case B), or to their similar distance (Case C). Observing these examples, it is 

evident how the pairs belonging to the old configuration are more affected by outliers and multipath 

effects. This is a general aspect, occurring regardless the percentage of collected and valid data, as in 

the case of pairs 2–7 and 4–9 (Case B in Figure 107). Despite their high percentage of collected and 

valid data (more that 80% for both), the pair 2–7 is affected by a higher number of outliers. 

Looking at the acquisition of pair 1–11 of the old configuration (the one presented in Case A – Figure 

107), one can note that the measurements have been recorded only from one node to the other and 

then vice versa. This anomaly is however probably related to a problem of the UWB module (as 

discussed in Section 6.1.3) and it is not clear if it can be connected to LOS problems.  
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Figure 107. Comparison between data acquired in the new and in old configurations. Case A) Pairs of nodes 1–
11 and 2–3 from the old and the new configurations, respectively. Case B) Pairs of nodes 2–7 and 4–9 from the 
old and the new configurations, respectively. Case C) Pairs of nodes 7–8 and 9–11 from the old and the new 
configurations, respectively. Blue crosses and green circles represent measurements in the two directions, i.e. 
the signals from node x to node y and vice versa. 
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Contrary to precision, whose values remain in the range of 2 to 5 cm once outliers are removed, WiSIO 

has also an effect on the accuracy of the data, affected by the presence of obstacles. Comparing the 

offset between ‘actual’ distances and Wi-GIM measured distances, it is clear how the place of sensors 

in LOS contributes to increase accuracy (Figure 108). The histogram shows the offset between real and 

measured distances (named “Error” in the graph) for all the pairs of nodes in the two configurations. 

The real distances have been calculated using the values of the RTS for the old configuration and the 

GPS coordinates for the new one. On the other hand, as values measured by Wi-GIM it is intended the 

average of one-month acquisition for each link (the months of April 2016 for the old configuration and 

April 2019 for the new one). The error has been then evaluated for each pair of nodes and displayed 

on a histogram. It is clearly visible that in the old configuration the error is higher in almost all the pairs 

due to the presence of obstacles, whereas it is lower and much more distributed in the new 

configuration. 

 

Figure 108. Histogram of the errors in the new and in the old configurations. On the x-axis, Error is expressed 
as the offset between the real distances and the ones evaluated by Wi-GIM. On the y-axis there is reported 
the frequency, i.e. the number of pairs. For the old configurations, real distances have been evaluated by 
means of a robotic total station, while in the new one they have been measured using the GPS coordinates. 
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7. Conclusions 

In the field of ground stability control there is a general lack of low cost instruments able to monitor 

displacements over broad areas. The main reason is the difficulty in providing good performances 

especially in terms of precision, acquisition frequency and robustness. In this framework, thanks to the 

European Life+ financing program for the environment, a new prototypical ground instability 

monitoring instrument, called Wi-GIM (Wireless sensor network for Ground Instability Monitoring), 

has been developed. It consists in a Wireless sensor network (WSN) constituted by nodes (organized 

in clusters, each consisting of one master node and a number of slaves) able to determine their mutual 

inter-distances by measuring the time of flight of an Ultra-Wide Band impulse. Therefore, no sensors 

are implemented in the network, as the same signals used for transmission are also used for ranging. 

As part of the activities carried out in the framework of the present thesis, the system was tested in a 

controlled outdoor environment and applied for the monitoring of the displacements of an actual 

active landslide, the Roncovetro mudflow in Central Italy. The outputs are displacement time series 

showing the distance of each pair of nodes belonging to the same cluster. Data retrieved from the 

performed tests revealed a precision of 2–5 cm (when they are opportunely filtered and averaged) and 

that measurements are influenced by the temperature. Since the correlation with this parameter has 

proved to be linear, a simple correction made it possible to improve the precision and remove the 

effect of temperature. The results of this study also revealed that measurements were not affected by 

rain or snow, and that the system can efficiently communicate up to 150 m with a 360° angle of view 

without affecting precision. 

All the further key features of the Wi-GIM system can be summarized as follows: 

i. Easy installation. Wi-GIM is easy to deploy and to set up in the target areas. The setup of the 

system is simple: firstly, the sensors are put in the area to be monitored, if the node position 

is requested, at least three reference nodes are put in a known position in a stable area. 

ii. Quick installation. The system has very low setup time. Only the reference nodes have to be 

localized once they have been positioned in the stable area around the unstable ones.  

iii. Flexibility. Wi-GIM can be easily adapted to different types of landslide, subsidence cases or 

other ground displacements. The total absence of wired structures allows the monitoring of 

harsh environment and decreases its vulnerability.  
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iv. Cost effective. Wi-GIM has a reasonable cost. This makes it suitable to monitor large areas 

without prohibitive expenses, especially if compared with traditional systems as Robotic Total 

Stations (RTSs). 

v. Real-time monitoring. Wireless transmission permits to interpret data from any remote 

location in order to perform a real-time hazard assessment. This is achieved comparing the 

measured data with appropriate thresholds based on the knowledge of the kinematic 

behaviour of the phenomenon and on previous monitoring data. 

vi. Frequency changeability. The acquisition frequency can be modified whenever the landslides 

features vary. It is a trade-off with the duration of the batteries and can be as high as 1 

measurement every minute (or less if necessary). 

Despite the implementation of a sleep mode for the survey on the test site, battery’s life was a critical 

point during the first monitoring period, since a replacement per month was necessary. The problem 

was solved by equipping each node with a photovoltaic panel. 

The parallel monitoring performed by RTS allowed to validate the system. Whenever a node is visible 

from at least other three stable sensors, it is possible to track its movement by means of a pathfinding. 

The comparison of both the distance measurements and the pathfinding shows the capacity of Wi-

GIM to correctly trace the direction and module of the displacement vector. Nevertheless, the 

obtained results pointed out the presence of an offset (in an order that vary from centimetric to 

decametric) constant for each single pair of nodes, due to the low-cost nature of the antenna used 

(and probably to a miscalibration) and to the presence of obstacles that obstruct the LOS. However, it 

is important to remark that this error does not influence the measurement of the displacements (and 

therefore the potential of Wi-GIM as an early warning tool) but only of the absolute distance between 

the nodes, which, in this case, is not a meaningful parameter. The system in fact, aims at the 

reconstruction of the displacement over a landslide using the measurement of the relative distances 

between the nodes. 

The presence of vegetation is the main cause of the obstruction of the LOS between two nodes, which 

translates in a longer path of the signals and therefore to a less accurate distance measurements. In 

this context, several tests were carried out proving the strong influence of the vegetation over both 

data quantity and quality. To improve them, avoiding the obstruction of the LOS between nodes, a 

MATLAB tool (R2018a, MAthWorks, Natick, MA, USA) called WiSIO (Wireless Sensor network 

Installation Optimizer) was developed. The algorithm finds the best devices deployment following 
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three criteria: inter-visibility by means of the Hidden Point Removal modified operator; equal 

distribution; positioning in pre-selected Priority Areas. With respect to the existing viewshed analysis, 

the main novelty is that it works directly with 3D point clouds, without rendering them or performing 

any surface. This lead to skip the process of generating surface models avoiding errors and 

approximations, that is essential when dealing with vegetation. 

Within the framework of this thesis, WiSIO procedure was applied to Roncovetro landslide’s 3D point 

cloud, but it can be applied to several natural scenarios such as vertical cliffs, gentle as well as steep 

slopes and terraces. Its employment can also be extended to buildings, small objects, and, more 

generally, to every artificial structure without geometrical or size limits. Moreover, the manual 

selection of the area in which the first point of the network must fall, and the weights associated to 

each Priority Area make sure that the user puts his knowledge in the procedure, despite the automatic 

approach of the code. The validation on a 3D artificial model, especially created to reconstruct a harsh 

environment with low visibility, pointed out a good correspondence with the reality, showing just few 

false negative (i.e. visible points marked as non-visible). Precision can be improved increasing the 

number of sectors to divide the area under study and evaluating the radius for each of them. The more 

the sectors are, the fewer the false negatives or/and false positives, and the higher the running time. 

The continuous growth of new technologies for the development of increasingly high-resolution 3D 

point clouds (i.e., drone laser scanners and high-resolution cameras) could still improve the reliability 

of the presented approach that is highly dependent on the data source. 

A second installation of the Wi-GIM system on Roncovetro landslide was therefore carried out 

considering the deployment suggested by WiSIO. The comparison of data acquired by the Wi-GIM 

system positioned with and without the help of the proposed algorithm allowed a complete analysis 

of the effectiveness of the method. The results obtained showed that almost all devices of the latest 

installation were in LOS with each other, evenly distributed in space, and seven out of eleven devices 

lay in Priority Areas. As a matter of fact, 87.5% of measurements were collected by the master node 

and, between them, 89.3% was good enough to be considered reliable data with respect to the 

previous installation, when during the whole monitoring period the acquired measurements where 

82% and only 60.7% were valid.  

The presented results are very promising, showing how a simple elaboration can be essential to have 

more and more reliable data, improving the Wi-GIM system performances and making it even more 

usable in very complex environments and increasing its flexibility. 
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The significant movement that occurred at Roncovetro landslide on the 5th of May 2019 allowed to 

point out the suitability of the system, confirming its capacity to detect displacement in real-time and 

emphasizing its high potential in emergency conditions.  

The most significant limitation of Wi-GIM system is currently the precision. Such issue is connected to 

the aim of using only low-cost components, and it can be prospectively overcome if the system 

undergoes an industrialization process. Since the system architecture is re-adaptable, it is prone to 

enhancements as soon as the technology advances and new low cost hardware enters the market. As 

a perspective, it would be in fact interesting to replace the Ultra-Wide Band module with a more recent 

one, analysing the improvements with particular attention on the offset that was caused by the 

miscalibration of the antennas.  

Another interesting development could be the installation of the network in different type of landslides 

such as rockslides, clay rotational slides or subsidence. The deployment could be moreover supported 

by the use of WiSIO applied to a UAV-LiDAR 3D point cloud. A further aspect to deepen is certainly the 

absolute positioning, that has been faced in this thesis considering a 2D surface. The same process 

carried out in 3D could avoid some errors, making the system even more applicable in different 

scenarios. Finally, a more in-depth study about the influence of the temperature on the Wi-GIM 

measurements is already ongoing, but it will require several experimentations. This analysis will allow 

to comprehend the nature of this relation that is not really clear up to now.  

In conclusion, albeit it is still a prototypal system and, as such, is prone to improvements, the Wi-GIM 

system appears as a suitable instrument for monitoring velocities classified from slow (of the order of 

m/year) to rapid (m/min) (Cruden and Varnes 1996), typical for example of earth flows, subsidence in 

mining areas, earth slides and rockslides before failure. More in general, it fits for every ground 

movements characterized by periods of acceleration that leads to significant movements (at least in 

the order of cm), and when strong precisions are not required. In a few words, it is optimal in 

emergency condition, where a quick and low-cost installation, the remote control of the monitoring 

data and the detection of unexpected accelerations are fundamental requirements.  
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Appendix A: WiSIO MATLAB tool  

% A file named 'Points_coordinates.txt' with the obtained configuration 

coordinates is saved 
% File named 'visiblearray' contains points visible from the ith point 
clearvars;  

  
%INPUT DATA 
load PtCloud_VEG.txt;                            %Point cloud_Vegetation 
Clean_V=PtCloud_VEG; 
p_V=[Clean_V(:,1),Clean_V(:,2),Clean_V(:,3)]; 
load PtCloud_TERR.txt;                           %Point cloud_Terrain 
Clean_T=PtCloud_TERR; 
p_T=[Clean_T(:,1),Clean_T(:,2),Clean_T(:,3)]; 
p=[p_T;p_V];                                     %Point cloud_all 
load PAs_cubi.txt;                               %Priority Areas  
Dangerous_Areas=PAs_cubi; 
DangerousAreas=[Dangerous_Areas(:,1),Dangerous_Areas(:,2),Dangerous_Areas(:

,3)];  

  
tic 
Pole_h=1.5;                         %Pole's height 
Nodes=11;                           %Number of nodes              
FontSize=18;                        %Point label 
max_distanza=90;                    %ROI extension 
ROI_C_Extension=5;                  %ROI for Point1 
iteration_for1=5;                   %Iteration for Point1 
Sector=5;                           %Number of sectors 
param_all=[1.6,2.3,2.9,3.3,3.5];    %Radius 
values_PA=5;                        %m 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
%FIGURE 
figure; 
grey=[0.5 0.5 0.5]; 
plot3(p_T(:,1),p_T(:,2),p_T(:,3),'.','Color',grey); 
%plot3(p_V(:,1),p_V(:,2),p_V(:,3),'.','Color','g'); 
hold on 
grid on 
xlabel('MN95 Longitude [m]'); 
ylabel('MN95 Latitude [m]'); 
zlabel('Altitude [m]'); 
sz=6; 
scatter3(DangerousAreas(:,1),DangerousAreas(:,2),DangerousAreas(:,3),sz,'Ma

rkerFaceColor','r','MarkerEdgeColor','r','MarkerFaceAlpha',.2,'MarkerEdgeAl

pha',.2);              

  
%SELECTION OF THE FIRST POINT OF VIEW, C 
%by pointer 
datacursormode on 
dcm_obj=datacursormode; 
set(dcm_obj,'DisplayStyle','window','SnapToDataVertex','off','Enable','on') 
pause 
c_info=getCursorInfo(dcm_obj); 
C=[c_info.Position(1,1),c_info.Position(1,2),c_info.Position(1,3)]; 
%by coordinates 
% C=[-600.77343750 -425.23242188 199.84852600];        
plot3(C(1,1),C(1,2),C(1,3),'*','Color','r'); 
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%Preallocating 
COLPLUS=zeros(1,3); 
Point_all={zeros(size(p,1),3)}; 
Point_all_dist={zeros(size(p,1),3)}; 
Point={zeros(1,3)}; 
roi={zeros(1,6)}; 
indices={zeros(size(p,1),1)}; 
p_roi={zeros(size(p,1),3)}; 
Inters_weight={zeros(size(DangerousAreas,1),3)}; 
Point1_ntime={zeros(1,3)}; 
visiblearray_ntime={zeros(size(p,1),3)}; 
length_visarray={zeros(1,1)}; 
sector={zeros(1,6)}; 
index={zeros(size(p,1),1)}; 
p_sector={zeros(size(p,1),3)}; 
p_sec={zeros(size(p,1),3)}; 
visiblearray_sect_diff={zeros(size(p,1),3)}; 
indicess={zeros(size(p,1),1)}; 
visiblearray_sect_all={zeros(size(p,1),3)}; 
visiblearray={zeros(size(p_T,1),3)}; 
visiblearray_sect={zeros(size(p_T,1),3)}; 

  
for i=1:Nodes 
    disp(num2str(i)); 
    %COLORS  
    COL=rand(1,3); 
    plus=[0.2500 0.2500 0.2500]; 
    for j=1:length(COL) 
       if COL(1,j)+plus(1,j)>1 
          COLPLUS(1,j)=1; 
         else     
          COLPLUS(1,j)=COL(1,j)+plus(1,j); 
       end 
    end     
             if i==1                  
                if iteration_for1==0                         
                    Point{i}=[C(1,1) C(1,2) C(1,3)+Pole_h]; 
                    roi{i}=[Point{i}(1,1)-

max_distanza,Point{i}(1,1)+max_distanza,Point{i}(1,2)-

max_distanza,Point{i}(1,2)+max_distanza,Point{i}(1,3)-

max_distanza,Point{i}(1,3)+max_distanza];    
                    indicess{i}=findPointsInROI(ptCloud,roi{i}); 
                    p_roi{i}=select(ptCloud,indicess{i});                                             
                    p=p_roi{i}.Location;                       
                    ptCloud=pointCloud(p); 
                    [indices,dist]=findNearestNeighbors(ptCloud,C,K); 
                    FurthestPoint=ptCloud.Location(indices(K),:); 
                    Radius=dist(K); 
                    Radius_roi=Radius/Sector; 
                    for n=1:Sector   
                    XROI=Radius_roi*n; 
                    sector{n}=[Point{i}(1,1)-

XROI,Point{i}(1,1)+XROI,Point{i}(1,2)-

XROI,Point{i}(1,2)+XROI,Point{i}(1,3)-XROI,Point{i}(1,3)+XROI]; 
                    index{n}=findPointsInROI(ptCloud,sector{n}); 
                    p_sector{n}=select(ptCloud,index{n}); 
                    p_sec{n}=p_sector{n}.Location; 
                    % KATZ_2007  
                    p=p_sec{n}; 
                    param=param_all(1,n); 
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                    dim=size(p,2); 
                    numPts=size(p,1); 
                    pnew=p-repmat(Point{i},[numPts 1]);  
                    normp=sqrt(dot(pnew,pnew,2));   
                    R=repmat(max(normp)*(10^param),[numPts 1]); 
                    P=pnew+2*repmat(R-normp,[1 dim]).*pnew./repmat(normp,[1 

dim]);  
                    a=convhulln(P); 
                    visiblePtInds=unique(a); 
                    I=visiblePtInds;   
                    visiblearray_sect_all{n}=[p(I,1) p(I,2) p(I,3)];    
visiblearray_sect{n}=intersect(visiblearray_sect_all{n},p_T,'rows'); 
                    if n==1 
                       visiblearray_sect_diff{n}=visiblearray_sect{n}; 
                       else  

visiblearray_sect_diff{n}=setdiff(visiblearray_sect

{n},p_sec{n-1},'rows'); 
                    end 
                    visiblearray{i}=vertcat(visiblearray_sect_diff{:});             
                    end 
                else 
                %Selection of the small ROI for Point1 
                roi_C=[C(1,1)-

ROI_C_Extension,C(1,1)+ROI_C_Extension,C(1,2)-

ROI_C_Extension,C(1,2)+ROI_C_Extension,C(1,3)-

ROI_C_Extension,C(1,3)+ROI_C_Extension];    
                ptCloud=pointCloud(p); 
                indici=findPointsInROI(ptCloud,roi_C); 
                punti_roi_C=select(ptCloud,indici);    
                punti_inroi_C=punti_roi_C.Location(:,:);             
                   for Num_iterationFor1=1:iteration_for1 
                           Point{1}=datasample(punti_inroi_C,1,1); 
Point{1}=[Point{1}(1,1),Point{1}(1,2),Point{1}(1,3)+Pole_h]; 
                           roi{i}=[Point{i}(1,1)-

max_distanza,Point{i}(1,1)+max_distanza,Point{i}(1,2)-

max_distanza,Point{i}(1,2)+max_distanza,Point{i}(1,3)-

max_distanza,Point{i}(1,3)+max_distanza];    
                           indicess{i}=findPointsInROI(ptCloud,roi{i}); 
                           p_roi{i}=select(ptCloud,indicess{i});                                             
                           p=p_roi{i}.Location;                
                           ptCloud=pointCloud(p);                       
                           K=size(p,1);                                                      

  [indices,dist]=findNearestNeighbors(ptCloud,C,K); 
                           FurthestPoint=ptCloud.Location(indices(K),:); 
                           Radius=dist(K); 
                           Radius_roi=Radius/Sector; 
                               for n=1:Sector   
                               XROI=Radius_roi*n; 
                               sector{n}=[Point{i}(1,1)-

XROI,Point{i}(1,1)+XROI,Point{i}(1,2)-

XROI,Point{i}(1,2)+XROI,Point{i}(1,3)-XROI,Point{i}(1,3)+XROI]; 
                               index{n}=findPointsInROI(ptCloud,sector{n}); 
                               p_sector{n}=select(ptCloud,index{n}); 
                               p_sec{n}=p_sector{n}.Location; 
                               % KATZ_2007  
                               p=p_sec{n}; 
                               param=param_all(1,n); 
                               dim=size(p,2); 
                               numPts=size(p,1); 
                               pnew=p-repmat(Point{i},[numPts 1]);  
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                               normp=sqrt(dot(pnew,pnew,2));   
                               R=repmat(max(normp)*(10^param),[numPts 1]); 
                               P=pnew+2*repmat(R-normp,[1 

dim]).*pnew./repmat(normp,[1 dim]);  
                               a=convhulln(P); 
                               visiblePtInds=unique(a); 
                               I=visiblePtInds;   
                               visiblearray_sect_all{n}=[p(I,1) p(I,2) 

p(I,3)]; 

visiblearray_sect{n}=intersect(visiblearray_

sect_all{n},p_T,'rows'); 

                                if n==1 
                            visiblearray_sect_diff{n}=visiblearray_sect{n}; 
                                else  

visiblearray_sect_diff{n}=setdiff(visiblearray

_sect{n},p_sec{n-1},'rows'); 
                                end 

visiblearray{i}=vertcat(visiblearray_sect_diff

{:});             
                               end 
                        Point1_ntime{Num_iterationFor1}=Point{i}; 

visiblearray_ntime{Num_iterationFor1}=visiblearray{

i}; 
length_visarray{Num_iterationFor1}=size(visiblearra

y_ntime{Num_iterationFor1},1); 
                   end  
                    %Ordering in ascending order Num_iter in function of 
                    %the visible points and choice of the first one 

lenght_visarray_matr=vertcat(length_visarray{:});    

[lenght_visarray_matr_ord,lenght_visarray_index]=sort(len

ght_visarray_matr,'descend');   
visiblearray{i}=visiblearray_ntime{lenght_visarray_index(

:,:)}; 
                  Points1_ntime=vertcat(Point1_ntime{:});   

Points_maxVisibility=Points1_ntime(lenght_visarray_index,

:); 
                  Point{1}=Points_maxVisibility(1,:);  

Point{1}=[Point{1}(1,1),Point{1}(1,2),Point{1}(1,3)+Pole_

h]; 
                end 

                    

plot3(Point{i}(1,1),Point{i}(1,2),Point{i}(1,3),'*','Mark

erSize',10,'Color',COL); 
                    

text(Point{i}(1,1),Point{i}(1,2),Point{i}(1,3),num2str(i)

,'Color','k','FontSize',FontSize); 
             elseif i==2             

                        %DISTANCE EVALUATION 
                        AbsDistance_xyz=abs(Point{1}-visiblearray{1}); 

AbsDistance_Single=abs(AbsDistance_xyz(:,1)-

AbsDistance_xyz(:,2)-

AbsDistance_xyz(:,3));[AbsDistance_Descend,AbsDista

nce_Descend_Index]=sort(AbsDistance_Single,'descend

'); 
                 

Visiblearray_maxDist=visiblearray{1}(AbsDistance_De

scend_Index,:); 
  n__values=floor(size(Visiblearray_maxDist,1)/values_PA);                                             
            Point_all_dist{2}=Visiblearray_maxDist(1:n__values,:);                            
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%PRIORITY AREAS 
      Inters_weight{2}=intersect(DangerousAreas,Point_all_dist{2},'rows');                   
                            if Inters_weight{2}~=0 
                               Point{2}=datasample(Inters_weight{2},1); 
                                 else                         
                                Point{2}=Point_all_dist{2}(1,:); 
                            end 
                        znew=Point{2}(1,3)+Pole_h;     
                        Point{2}=[Point{2}(1,1),Point{2}(1,2),znew]; 
                        

plot3(Point{i}(1,1),Point{i}(1,2),Point{i}(1,3),'*','MarkerSize',10,'Color'

,COL); 
                        

text(Point{i}(1,1),Point{i}(1,2),Point{i}(1,3),num2str(i),'Color','k','Font

Size',FontSize);    
                        ptCloud=pointCloud(p); 
                        roi{i}=[Point{i}(1,1)-

max_distanza,Point{i}(1,1)+max_distanza,Point{i}(1,2)-

max_distanza,Point{i}(1,2)+max_distanza,Point{i}(1,3)-

max_distanza,Point{i}(1,3)+max_distanza];    
                        indicess{i}=findPointsInROI(ptCloud,roi{i}); 
                        p_roi{i}=select(ptCloud,indicess{i});                                             
                        p=p_roi{i}.Location;                              
                        ptCloud=pointCloud(p); 
                        K=size(p,1);  
                        

[indices,dist]=findNearestNeighbors(ptCloud,Point{i},K); 
                        FurthestPoint=ptCloud.Location(indices(K),:); 
                        Radius=dist(K); 
                        Radius_roi=Radius/Sector; 
                           for n=1:Sector 
                           XROI=Radius_roi*n; 
                           sector{n}=[Point{i}(1,1)-

XROI,Point{i}(1,1)+XROI,Point{i}(1,2)-

XROI,Point{i}(1,2)+XROI,Point{i}(1,3)-XROI,Point{i}(1,3)+XROI]; 
                           index{n}=findPointsInROI(ptCloud,sector{n}); 
                           p_sector{n}=select(ptCloud,index{n}); 
                           p_sec{n}=p_sector{n}.Location; 
                           % KATZ_2007  
                           p=p_sec{n}; 
                           param=param_all(1,n); 
                           dim=size(p,2); 
                           numPts=size(p,1); 
                           pnew=p-repmat(Point{i},[numPts 1]);  
                           normp=sqrt(dot(pnew,pnew,2));   
                           R=repmat(max(normp)*(10^param),[numPts 1]); 
                           P=pnew+2*repmat(R-normp,[1 

dim]).*pnew./repmat(normp,[1 dim]);  
                           a=convhulln(P); 
                           visiblePtInds=unique(a); 
                           I=visiblePtInds;   
                           visiblearray_sect_all{n}=[p(I,1) p(I,2) p(I,3)];    

                            

visiblearray_sect{n}=intersect(visiblearray_se

ct_all{n},p_T,'rows'); 
if n==1                             

visiblearray_sect_diff{n}=visiblearray_sect{n}; 
                              else  

visiblearray_sect_diff{n}=setdiff(visibl

earray_sect{n},p_sec{n-1},'rows'); 
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                            end 
visiblearray{i}=vertcat(visiblearray_sect_diff

{:});             
                            end         

 
              else       %FROM POINT 3  
                         Point_all{2}=visiblearray{1};                            
                         Point_all{i}=intersect(Point_all{i-

1},visiblearray{i-1},'rows');         
                         Distance={zeros(size(Point_all{i},1),1)}; 
                           for jj=1:(i-1)  
                                for jjj=1:size(Point_all{i},1) 
                                Distance{jj}(jjj,1)=sqrt((Point{jj}(1,1)-

Point_all{i}(jjj,1)).^2+((Point{jj}(1,2)-

Point_all{i}(jjj,2)).^2+((Point{jj}(1,3)-Point_all{i}(jjj,3)).^2))); 
                                end   
                           end  
                         Distance_all=horzcat(Distance{:});   
                         ProdOfDistanceAll=prod(Distance_all,2);                             
                         

[Prod_Desc,Prod_Desc_Index]=sort(ProdOfDistanceAll,'descend');                        
                         

Distance_all_Weight=[Distance_all(Prod_Desc_Index,:),ProdOfDistanceAll(Prod

_Desc_Index,:)];   
                         

Point_all_Dist_Sort=Point_all{i}(Prod_Desc_Index,:); 
                                 if size(Point_all_Dist_Sort,1)>5000                       
                                     

nvalues=floor(size(Point_all_Dist_Sort,1)/values_PA); 
                                 elseif size(Point_all_Dist_Sort,1)==1 
                                     nvalues=1; 
                                 else  
                                     

nvalues=floor(size(Point_all_Dist_Sort,1)/4);        
                                 end  
Point_all_dist{i}=Point_all_Dist_Sort(1:nvalues,:);  
                         

Inters_weight{i}=intersect(DangerousAreas,Point_all_dist{i},'rows'); 
                           if  size(Inters_weight{i},1)>1                               
                               Point{i}=datasample(Inters_weight{i},1,1);  
                           else                                                  
                                Point{i}=Point_all_dist{i}(1,:);             
                           end 
                         znew=Point{i}(1,3)+Pole_h;     
                         Point{i}=[Point{i}(1,1),Point{i}(1,2),znew];                        

plot3(Point{i}(1,1),Point{i}(1,2),Point{i}(1,3),'*','MarkerSize',10,'Color'

,COL); 
                         

text(Point{i}(1,1),Point{i}(1,2),Point{i}(1,3),num2str(i),'Color','k','Font

Size',FontSize);  
                         ptCloud=pointCloud(p);  
                         roi{i}=[Point{i}(1,1)-

max_distanza,Point{i}(1,1)+max_distanza,Point{i}(1,2)-

max_distanza,Point{i}(1,2)+max_distanza,Point{i}(1,3)-

max_distanza,Point{i}(1,3)+max_distanza];    
                         indicess{i}=findPointsInROI(ptCloud,roi{i}); 
                         p_roi{i}=select(ptCloud,indicess{i});                                             
                         p=p_roi{i}.Location;                               
                         ptCloud=pointCloud(p); 
                         K=size(p,1);  
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[indices,dist]=findNearestNeighbors(ptCloud,Point{i},K); 
                         FurthestPoint=ptCloud.Location(indices(K),:); 
                         Radius=dist(K); 
                         Radius_roi=Radius/Sector; 
                           for n=1:Sector 
                           XROI=Radius_roi*n; 
                           sector{n}=[Point{i}(1,1)-

XROI,Point{i}(1,1)+XROI,Point{i}(1,2)-

XROI,Point{i}(1,2)+XROI,Point{i}(1,3)-XROI,Point{i}(1,3)+XROI]; 
                           index{n}=findPointsInROI(ptCloud,sector{n}); 
                           p_sector{n}=select(ptCloud,index{n}); 
                           p_sec{n}=p_sector{n}.Location; 
                           % KATZ_2007  
                           p=p_sec{n}; 
                           param=param_all(1,n); 
                           dim=size(p,2); 
                           numPts=size(p,1); 
                           pnew=p-repmat(Point{i},[numPts 1]);  
                           normp=sqrt(dot(pnew,pnew,2));   
                           R=repmat(max(normp)*(10^param),[numPts 1]); 
                           P=pnew+2*repmat(R-normp,[1 

dim]).*pnew./repmat(normp,[1 dim]);  
                           a=convhulln(P); 
                           visiblePtInds=unique(a); 
                           I=visiblePtInds;   
                           visiblearray_sect_all{n}=[p(I,1) p(I,2) p(I,3)];    
                           

visiblearray_sect{n}=intersect(visiblearray_sect_all{n},p_T,'rows'); 
                            if n==1 
                               

visiblearray_sect_diff{n}=visiblearray_sect{n}; 
                              else  
                               

visiblearray_sect_diff{n}=setdiff(visiblearray_sect{n},p_sec{n-1},'rows'); 
                            end 
                            

visiblearray{i}=vertcat(visiblearray_sect_diff{:});             
                           end       
            end      

plot3(visiblearray{i}(:,1),visiblearray{i}(:,2),visiblearray{i}(:,3),'o','C

olor',COLPLUS);           
end 

 
rotate3d on 
Points_coordinates=vertcat(Point{:}); 
dlmwrite('Points_coordinates_9.txt',Points_coordinates,'precision',10); 

  
time=toc/60; 
disp([num2str(time),' minutes']);. 

  



 

 

 




