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Abstract

Collision cascades near a 1/2〈111〉{110} edge dipole in alpha-iron have been

studied using molecular dynamics simulations for a recoil energy of 20 keV and

two temperatures, 20 K and 300 K. These simulations show that the collision

cascade induces the migration of the dislocations through glide along its slip

plane. The motion of the dislocations starts at the peak of the collision cascade

and expands a time scale much longer than the cascade duration, until restoring

the equilibrium distance of the dipole, regardless of the damage produced by the

cascade. At the initial stages, kinks are formed at the dislocation that enhance

glide. When defects reach the dislocations, jogs are produced. We show that

the initial dislocation motion is triggered by the shock wave of the collision

cascade. The cascade morphology is also strongly influenced by the presence

of the dislocations, having an elongated form at the peak of the displacement,

which demonstrates the strong interaction of the dislocations with the cascade

even at the early stages. Finally, we show that larger vacancy clusters are

formed in the presence of dislocations compared to isolated cascades and that

these clusters are larger for 300 K compared to 20 K.
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radiation damage

1. Introduction

The mechanical behavior of metals is governed by the characteristics and

mobility of their dislocations. In the presence of defects produced by irradiation,

this behavior can be altered modifying the plastic response of the material.

Effects such as hardening or loss of plasticity are common in metals exposed to5

irradiation [1, 2]. The development of radiation resistant materials for fusion

applications can benefit from a fundamental understanding of dislocation-defect

interactions [3].

Molecular dynamics with empirical potentials has been an important tool

to provide atomic level information about these phenomena. Most of the calcu-10

lations performed consider the interaction of a single dislocation with a defect

under an applied stress [4, 5, 6]. The interaction of collision cascades with pre-

existing dislocations has been studied only recently [7, 8, 9, 10, 11], with most

of the calculations performed in f.c.c. crystals [7, 8, 11] and, to a lesser extent,

in b.c.c. metals [9, 10]. These simulations have shown how damage produced by15

the cascade can induce significant changes in the dislocation structure leading to

dislocation climb or cross-slip [11] and, in some cases, glide [9]. Calculations in

b.c.c. iron next to a single 1/2〈111〉{110} edge dislocation have been performed

at low recoil energies (5 keV) [10] showing a dependence of the cascade damage

on the distance between the dislocation and the initial recoil, with enhanced20

vacancy clustering at certain distances and reduced defect production for both

vacancies and self-interstitials at closer distances from the dislocation.

In this work, we have studied the effect of collision cascades produced by 20

keV recoils on a 1/2〈111〉{110} edge dipole and two different temperatures, 20

K and 300 K. After the two dislocations reach their equilibrium distance, an ini-25

tial energetic recoil is started in the center between the two dislocations. These

calculations show that the collision cascade induces glide of the two dislocations,

something also observed previously in simulations done in tungsten [9], although
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not studied in detail. The importance of interstitials on dislocation climb has

also been addressed recently through dislocation dynamics [12]. Here, we mea-30

sured the displacement produced by the two dislocations and study the effect

of the defects produced by the cascade on this motion. Even more interesting

is the strong influence of the dislocations on the morphology of the collision

cascade, even at the very early stages. Finally, we have analyzed the damage

produced by the collision cascade in terms of vacancies and self-interstitials and35

compare the results with those in a pristine lattice, without the presence of the

dislocations.

2. Methodology

We have used in our simulations a b.c.c. Fe crystal constituted by 1.7 million

atoms with two perfect edge dislocations, as shown in figure 1(a). The x, y and40

z axes correspond to the [21̄1̄], [011̄] and [111] directions respectively. The

dislocation lines are in the x direction which corresponds to the [21̄1̄] direction

of the b.c.c. crystal and the y axis is perpendicular to the glide plane of the

dislocation. Our cell has dimensions of approximately 283 Å× 280 Å× 245 Å

in the x, y, and z directions respectively. The simulations are performed using45

the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) [13,

14], with the Fe potential developed by Ackland et al. [15]. A Langevin [16] heat

bath is located at the borders of the simulation cell, except in the two planes

perpendicular to the dislocation lines. Periodic boundary conditions are used

throughout the 3 directions. First of all, we have let the system evolve for 20050

ps at a constant temperature (300 K or 20 K) and both dislocations move in the

z direction until reaching a new equilibrium position as shown in Figure 1(a).

Figure 1(b) shows the position of the dislocations as a function of time during

the thermalization up to 200 ps. The dislocations reach an equilibrium position

after ≈ 50 ps. While for 20 K the two dislocations do not change their location,55

at least within this time scale, at 300 K a slight motion could be observed.

After the dipole has reached the equilibrium position, a collision cascade
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Figure 1: (colour online) (a) Simulation configuration used in this work. The initial posi-

tion of the atoms belonging to the dislocations can be observed in green (light colour) while

their equilibrium position after a thermalization at 20 K during 100 ps is plotted in blue

(dark colour). (b) Average z coordinate of the two dislocations as a function of time during

thermalization at 20 K and 300 K.

is started by giving 20 keV of energy to a central atom in slightly different

directions close to the −z direction, that is, perpendicular to the dislocation line

and away from it. Note that the distance between the initial recoil and either of60

the two dislocations along the y direction is ≈ 70 Å. We let the collision evolve

for up to 60 ps and analyze how the collision cascade affects the position of the

dislocations and how the dislocations affect the creation of point defects of the

cascade.

In order to analyze our results, we have used the open visualization tool65

OVITO [17], which also provides analysis software for atomistic simulation data.

The movement of the dislocations was followed using a Common Neighbour

Analysis (CNA) [18], whereas the positions of point defects created by the cas-

cade were obtained using a Wigner-Seitz cell method, comparing the damaged

cell with the cell before the cascade. The Dislocation Extraction Analysis (DXA)70

[19], implemented in OVITO, is used to identify the changes in the dislocations

induced by the collision cascade.
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3. Results and Discussion

3.1. Cascade induced dislocation glide

The first noticeable effect observed in these calculations is that the two dis-75

locations in the dipole are displaced from their equilibrium position when the

collision cascade is initiated. In order to study the motion of both dislocations

after the 20 keV collision cascade in the crystal thermalized at T = 20 K (or

300 K), we have identified the atoms close to the dislocation core with CNA

[17, 18], choosing only those atoms that do not have a b.c.c. environment. This80

allows us to discard the atoms of the cell that do not belong to the dislocations.

The motion of the dislocations is mostly in the z direction, remaining fixed the

y coordinate of both dislocations, except when there is climb induced by the

collision cascade, as explained below. Therefore, we can quantify the position

of the dislocations by averaging the z coordinate of the atoms around the dis-85

location core. The initial configuration of the dislocations before the cascade is

shown in figure 1(a), identified using the method just described. Green atoms

correspond to the position of the dislocations before relaxation and blue are

the positions after they reach equilibrium. From the average position of the

dislocation we obtain that one of the dislocations is initially located at z ≈ 3090

Å and the second one at z ≈ −30 Å after equilibrium.

In figure 2(a) we show the average z coordinate of both dislocations as a

function of time for 10 different cascades at a temperature of 20 K. They cor-

respond to slightly different variations of the velocity direction of the primary

knock-on atom (PKA) in order to obtain significant statistical fluctuations of95

the collision cascade, but always close to the −z direction. We observe that in

all cases both dislocations move in the z direction. However, the average z dis-

tance between dislocations can be increased or reduced after the starting of the

collision cascade, as shown in figure 2(b). Eventually they reach an equilibrium

distance which is approximately the same as the initial one. Note that, even100

though the equilibrium distance is constant, there is a slight drift of the two

dislocations in some cases (see black lines). Such motion is not observed in the
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Figure 2: (colour online) Evolution of (a) the average z coordinate of each dislocation and

(b) the z distance between dislocations, after a 20 keV cascade close to the center of the

simulation box and on the −x direction in a bcc Fe with two edge dislocations at T = 20 K.
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calculations at constant temperature before the cascade for the same time scale

(see figure 1(b)).

Analogously, in figure 3(a) we observe the motion of the dislocations after a105

20 keV cascade for a temperature of 300 K. Unlike for T = 20 K, now in all cases

both dislocations tend to move closer together after the collision, and after 10 ps

they tend to separate to reach again an equilibrium distance, similar to the initial

one. This is better observed in figure 3(b). The distance between dislocations

is initially reduced, but after 10 ps it increases again, reaching an equilibrium110

distance similar to the initial one. Again oscillations in the distance between

dislocations with a period of 3 ps can be observed. Also, at this temperature,

the drift of the two dislocations after reaching the equilibrium distance is more

clear than at 20 K.

It is interesting to note the oscillations in the distance between dislocations,115

that appear with a period of around 3 ps (see insets in figures 2(b) and 3(b)).

Since the size of the simulation box is 245 Å along the z direction, the speed

of this wave is ≈ 8176 m/s, which is above the speed of sound in iron. There-

fore, this oscillation could be related to the shock wave induced by the collision

cascade that does not get fully damped by the applied thermostat. Supersonic120

shock waves from collision cascades have been identified in calculations of 100

keV up to 200 keV recoils in Fe [20]. Note that the oscillations are the same

for the two temperatures studied. These oscillations show the influence of slight

stress changes on the dislocations, changes that do not affect the defects pro-

duced by the collision cascade.125

Finally, we show in figure 4 the z distance between dislocations (black line)

and the number of vacancies (red line) as a function of time. It is important to

point out that the maximum number of displacements in the collision cascade

occurs between 2 to 3 ps after the initial PKA and decreases very rapidly. At 10

ps the total number of defects remains constant, meaning both the ballistic and130

thermal spike phases of the collision cascade are over (see figure in Supplemental

Material). Therefore, the motion of the dislocations occurs induced by the

cascade but equilibrium for the dipole is recovered in a much longer time scale

7



Figure 3: (colour online) (a) Evolution of the average z coordinate of each dislocation and (b)

evolution of the z distance between dislocations; after starting a 20 keV cascade close to the

−x direction in a bcc Fe with two edge dislocations at T = 300 K.

8



than the total time of the collision cascade. In fact, the dislocations start moving

right after the peak of the collision cascade.135

Figure 4: (colour online) z distance between dislocations (black line) and the number of

vacancies (red line) as a function of time during, and after, the 20 keV collision cascade at

T = 300 K.

Decoupling the contribution to dislocation mobility of the shock wave and

temperature gradient produced by the cascade from the production of defects

at the dislocations from these simulations is not straightforward. In order to

get a better understanding, we have performed simulations where a Gaussian

temperature distribution is initiated in the center of the simulation cell, in140

between the two dislocations. Here no defects are produced. Figure 5 shows

the evolution of this temperature profile in time. Atoms identified as defects

with the common neighbor analysis in OVITO are represented, with colours

corresponding to the σzz component of the atomic level stress. This figure shows

how bending of the dislocation along the z direction, that is, the formation of145

kinks, and the migration of the dislocation occurs even without the arrival
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of defects to the dislocations. It is important to note that this is different

from having a fixed higher temperature in the whole cell, where we saw no

motion of the dislocations in the same time scale. Therefore, the motion of these

dislocations is driven by the stress created by the temperature gradient. More150

details about the bending of the dislocations along the z direction is included

in the Supplementary material.

Figure 5: Evolution of a thermal spike started in the middle of the simulation cell. Colours

correspond to σzz component of the atomic level stress, with blue representing negative values

and red positive ones. Note the bending of the dislocation.

The same bending of the dislocations is observed in the case of collision

cascades, as can be seen in figures 7 and 8 below, although sometimes not so

clear when defects arrive to the dislocations. Figure 6 shows a cut through the155

dislocation core, along the glide plane, with the location of the two dislocations

in green spheres as identified by the common neighbor analysis and the colors of

the rest of the atoms showing the shear atomic level stress σyz component with

red positive values and blue negative ones. Top and bottom figures correspond

to the two dislocations of the dipole for different times during the collision160

cascade: 1 ps before the collision cascade (a and d), and 0.6 ps (b and e) and

2.9 ps (c and f) after the collision cascade. The bending of the dislocations in
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the z direction is clearly observed and the central panels (b and e) correspond

to the moment when the dislocations start to bend. A change in the shear stress

σyz distribution close to the dislocations can be observed at this time. In the165

case of the dislocation on the top figures, defects arrive to the dislocation but

not in the dislocation at the bottom. The resulting damage produced in the

cascade for this case can be seen in figure 8, on the left panels.

Figure 6: (colour online) Cut through the dislocation core along the glide plane, for different

times during the collision cascade and for the two dislocations (top and bottom). Green

spheres showing the location of the dislocation line. Colours are the shear σyz component of

the atomic level stress.

3.2. Cascade evolution near the dislocations

In order to understand the mechanisms and processes occurring during the170

collision cascade next to the dipole we present in figures 7 and 8 the evolution

of different cases at 20 K and 300 K, respectively. In both figures we show how

the system evolved at 1 ps, 5 ps, and 10 ps after starting the energetic recoil.
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The case shown on left side of figure 7 corresponds to the black thick lines

in figures 2(a) and 2(b), while the one depicted on the right corresponds to the175

green thick lines of the same figures. The red dots in figure 7 represent vacancies

and the blue dots are self-interstitials as obtained with the Wigner-Seitz analy-

sis provided by OVITO. The green dots are the atoms whose surrounding is not

b.c.c., as provided by the CNA of OVITO. In the cascade on the left hand of

figure 7, we can observe that the collision cascade is far from both dislocations180

and the final resulting damage is also away from the dislocations. As a result,

the final damage looks very similar to that in bulk, without the presence of dis-

locations, with a core rich in vacancies and self-interstitials in the surroundings.

We can also see in figure 2 (black lines) that the effect of the collision cascade

on the motion of the dislocations is not as pronounced as in the other cases.185

There is first a displacement of both dislocations, getting slightly closer to each

other, and then quickly recovering an equilibrium position very similar to the

initial configuration.

The case on the right hand of figure 7 is quite different. Firstly, note that

the collision cascade has quite a different shape from the case on the left, it is190

less spherical due to the interaction with one of the dislocations. As a result a

cluster of self-interstitials is formed at the dislocation, while higher number of

vacancies are produced in the bulk (66 in this case vs. 52 in the case described

above and shown on the left side of figure 7). As a result, the movement of

the dislocations is also different from that observed in the case on the left. As195

shown in figure 2, first the dislocations move slightly away from each other, then,

they approach until they reach again almost the initial equilibrium distance. In

this case, one of the dislocations is pinned by the defects and stops gliding

while it is the second dislocation the one that glides reaching the equilibrium

distance. Movies of the whole collision cascade are provided as supplemental200

material (movies 1 and 2). When analyzing the dislocations using the DXA tool

in OVITO, we observe that the interstitial cluster identified by the Wigner-Seitz

method it actually corresponds to climb on the dislocation due to the arrival of

these defects, as can be seen in figure 9.
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Figure 7: (colour online) Details of the simulation for two selected histories at T = 20 K

for different times after starting the cascade. The history shown on the left (right) hand

is represented by black (green) thick lines in figures 2(a) and 2(b). Blue dots represent

interstitials, red dots represent vacancies, and green dots show the atoms whose surrounding

is different to a b.c.c.; those include the dislocation atoms.
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Figure 8: (colour online) Details of the simulation for two selected histories at T = 300 K for

different times after starting the cascade. The history shown on the left (right) is represented

by black (green) thick lines in figures 3(a) and 3(b). Blue dots represent interstitials, red dots

represent vacancies and green dots show the atoms whose surrounding is different to a b.c.c.;

those include the dislocation atoms.
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Figure 9: (colour online) Configuration of dislocations after a 20 keV collision cascade at 20

K from two different perspectives, one a projection along the z axis (a), corresponding to the

case shown in figure 7(f).
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Figure 8 shows the same evolution of the cascades for two cases at T = 300 K.205

It is clear from these figures, the influence of the dislocations on the shape of the

collision cascade: the cascades are elongated, perpendicular to the dislocation

lines. This is more clearly observed when representing the shear component of

the atomic level stress in a cut through the center of the collision cascade, as

shown in figure 10.210

On the left hand of figure 8, we can see that the cascade breaks into two

subcascades, giving rise to the formation of two clusters of vacancies as well as

a cluster of interstitials next to the left dislocation. This cascade corresponds

to the black thick lines in figure 3. Here the two dislocations get close to each

other and then separate to reach equilibrium. Like in the case of figure 9,215

the dislocation on the left climbs due to the arrival of self-interstitials, which

results in the formation of the vacancy cluster. This dislocation, in fact, moves

only slightly as shown in figure 3(a) because the collision cascade surrounds the

dislocation, as can be seen in figure 8(b), while it is the dislocation on the right

the one that moves to reach the equilibrium distance.220

The case on the right hand of figure 8 shows the creation of a single cluster

of vacancies and a cluster of interstitials, that in this case it is not attached

to the dislocation. In this particular case the distance between dislocations is

very reduced reaching a z distance of approximately 15 Å, almost parallel to

each other, as shown also in the green thick lines of figures 3(a) and 3(b), as225

well as figure 8(f). In this case, the dislocations also move back to recover the

equilibrium distance, although now the time to reach that equilibrium is longer

than in the other cases where the dislocations did not approach each other so

much (see figure 3(b)). The whole evolution of these cascades are provided as

supplemental material in movies 3 and 4.230

3.3. Analysis of resulting damage: vacancies and self-interstitials

We have performed a statistical analysis of the defects produced in the dif-

ferent cases: with and without dislocations and two temperatures (20 K and

300K). Although the total number of simulations performed for each condition
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Figure 10: (colour online) Cut through the center of the simulation box, color representing

the shear stress σyz component of the atomic level stress, with red positive values and blue

negative ones for the initial distribution (a) and the distribution at the peak of the collision

cascade (b). The circles indicate the location of the dislocation cores.

is low (10 cases), some conclusions can be extracted from this analysis. From235

the Wigner-Seitz analysis, we have calculated the size of the different clusters of

vacancies and self-interstitials created at the end of the collision cascade. Fol-

lowing the criteria of Björkas et al. [21], for the case of vacancies, the cut-off

distance is second nearest neighbors while for self-interstitials is third nearest

neighbors to consider two defects as belonging to the same cluster. From this240

analysis we obtained the percentage of vacancies/self-interstitials in clusters

and the largest vacancy/self-interstitial cluster produced. All these values are

included in table 1).

When looking at the total number of Frenkel-pairs produced (third column

in table 1) no significant differences can be inferred from these results, except245

for, perhaps a slightly lower number of defects at 300 K compared to 20 K,

independently of the presence or not of the dislocations. When analyzing the

percentage of defects in clusters, at first glance it would seem that the percent-

age of vacancies in clusters decreases when the dislocations are present, while for
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the case of self-interstitials there is a slight increase. It is, however, interesting250

to analyze the size of the largest cluster obtained in the different cases. Here

we can see that both for the case of vacancies and self-interstitials, the largest

clusters are obtained in the presence of the dislocations. For example, while

the largest vacancy cluster formed at 20 K has 13 vacancies, in the presence of

the dislocations it reaches 20 defects, and this tendency increases with temper-255

ature. The reason for what it would seem as a discrepancy between these two

results, that is, a low percentage of vacancies in clusters and the formation of

larger vacancy clusters is due to the fact that two types of collision cascades are

observed in the presence of dislocations. There is a group of cascades for which

the damage is produced far from the dislocation and results in small number of260

defects as well as low clustering, while there is another group of cascades where

there is a larger interaction with the dislocations, forming large self-interstitial

clusters close to the dislocation and consequently leaving a larger number of

vacancies in the bulk which are in clusters. Some representative examples of

this behavior are shown in figures 7(f), 8(c), and 8(f).265

Analyzing the structure of self-interstitial clusters we observe that single

interstitials are < 110 > dumbbells, small interstitial clusters of sizes 2, 3 and 4

are < 110 > dumbbells in parallel configurations, while clusters of larger sizes

are arranged on < 111 > planes. From the cases studied, we have not identified

C15 clusters or < 100 > loops.270

4. Conclusions

We have studied the influence of dislocations on the evolution of collision

cascades in b.c.c. Fe. An edge dislocation dipole is considered where the effects

of the dislocations on the collision cascade is more clearly observed. These

simulations show that the recoils induce glide of the dislocations, occurring in275

the early stages of the collision cascade and related to the shock wave produced

by the energetic recoil. The dislocations also influence the morphology of the

collision cascade, being mostly elongated and perpendicular to the dislocation
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T (K) Dipole FP % V-C % I-C 〈Vmax〉 〈Imax〉 Vmax Imax

20 No 57± 4 41± 3 34± 3 7± 1 5± 1 13 9

20 Yes 60± 4 27± 3 41± 5 7± 2 10± 3 20 35

300 No 47± 3 45± 5 52± 3 10± 2 10± 2 26 21

300 Yes 51± 6 37± 7 58± 7 12± 4 21± 8 38 58

Table 1: Analysis of defects for the two temperatures, with and without the dipole. The table

includes the average number of Frenkel pairs (FP), the percentage of vacancies in clusters (%

V-C), percentage of self-interstitials in clusters (% I-C), the average maximum cluster size

for vacancies (〈Vmax〉) and interstitials (〈Imax〉) and the maximum vacancy (Vmax) and

interstitial (Imax) cluster obtained.

line instead of almost spherical as in a pristine cell. Dislocation climb is also

observed when the collision cascade surrounds the dislocation, leaving behind a280

vacancy cluster close to the dislocation. In general, we observe that the presence

of dislocations results in the formation of larger vacancy clusters.
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Supplementary material

The files movie1.avi and movie2.avi show collision cascades at 20 K depicted

on figure 7, whereas the files movie3.avi and movie4.avi show the collision cas-

cades at 300 K depicted on figure 8.

The following figures also include supplementary material. Read the figure420

captions for additional information.
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Figure 11: Evolution of the number of vacancies on bcc Fe with two dislocations after the

cascade is started for (a) T = 20 K and (b) T = 300 K. Notice that after the cascade phase,

the number of vacancies reaches an equilibrium value at 10 ps.
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Figure 12: (a) Displacement of a dislocation during a thermal spike; we have analyzed the

bending of the dislocation along the z direction by calculating the maximum and minimum

values of z in the dislocation (∆z) and dividing this value with respect to the initial value

which would be a measure of the width of this dislocation (∆z0). (b) Ratio of ∆z/∆z0 (b); the

largest bending along the z direction is observed at the beginning of the temperature spike.
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Figure 13: An example of the location of vacancies and self-interstitials around a dislocation

in relation to the stress distribution.
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