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ABSTRACT 

Let Q be a quintic spline with equi-spaced knots on [a,b] interpolating 

a given function y at the knots. The parameters which determine Q are 

used to construct a piecewise defined polynomial P of degree six. It 

is shown that P can be used to  give at any point of [a,b]  better  orders 

of approximation to y and its derivatives than those obtained from Q. 

It is also shown that the superconvergence properties of the derivatives 

of Q, at specific points of [a,b], are all simple consequences of the 

properties  of  P. 





1_. ___ Introduction

Let Q be a quintic spline on [a,b] with equally spaced knots 

                              x. = a + ih ; i = 0,1,...,k,                                            (1.1) 

where h= (b-a)/k. Then, Q ∈ C4[a,b] and in each of the intervals 

[x.i-1,  x.];  i=1,2,...,k,  Q  is  a  polynomial  of   degree   five  or  less. 

The set of all such  quintic  splines  forms a  linear  space, of  dimension 

k + 5, which we denote by Sp(5;k). An element Q ∈ Sp (5;k) is said to 

be  a  quintic  spline  interpolant  of  a  function  y  if 

                              Q(xi) = yi ;   i=0,1,...,k,                                                (1.2)                

where yi = y(x.). Since dim Sp(5;k)=k+5, the conditions (1.2) are not 

sufficient to determine an interpolatory Q uniquely and four additional 

linearly independent conditions are always needed for this purpose. 

These are usually taken to be end conditions, i.e. conditions imposed 

on  Q  or its derivatives Q(j) ; j = 1,2,3,4, near the two end points  a 

and b. As might be expected the choice of end conditions plays a 

critical role on the quality of the spline approximation. 

In  what  follows  we  assume  that  Q  is  a  Sp (5;k) interpolant of a 

function y ∈ C7[a,b] and, for notational simplicity, we use the following 

abbreviations, 

.  )
i

(x(4)Q
i

n   and     )
i

(x(3)Q
i

n    ),
i

(x(2)Q
i

m     ),
i

(x(1)Q
i

m ====  

It  is  well  known  that  the  best  order  of  uniform  convergence  that 

can be achieved by Q and its derivatives is 

   || Q(r)-y(r) || = 0(h6-r); r-0,1.2.3.4. 

where || · || denotes the uniform norm on [a,b] . It is also known that 

for a variety  of end conditions 

               (1.3) k.0,1,...,i);60(h(1)
iyim ==−
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The class of end conditions for which (1.3) holds includes the 

conditions 

mi    =     ; i = 0,1,k-1,k,      (1.4) (1)
iy

ni     =   
(3)
iy    ; i = 0,1,k-1,k      (1.5) 

                             ∆s  Ni = ∇sNk-i  = 0 ; i = 0,1, s = 3, 4, 5,    (1.6) 
  

and, for periodic y, the end conditions 

Q(r)(a) - Q(r)(b); r=1,2,3,4                                              (1.7) 

of the periodic quintic spline; see e.g. [1] and [2]. 

The result (1.3) is an example of the improved order of 

approximation that the derivatives of  Q  display,  under  appropriate 

end conditions,  at  specific  points of  [a,b].  Another  example  is 

the result 

ni  -   =   0(h(3)
iy 4);    i = 0,1,….,k,             (1.8) 

which holds whenever (1.3) holds. This paper is concerned with such 

superconvergence properties of Q. More specifically, in Section 3, 

we use the parameters which determine Q to construct a piecewise 

defined polynomial of degree six, and we show that the superconvergence 

properties  of  Q  are  all  simple consequences of the properties of P. 

We also show that, under certain conditions, P can be used with very 

little additional computational effort to  compute,  at  any  point 

x ∈ [a,b], more accurate approximations to y and its derivatives than 

those obtained from Q. 

The work of the present paper generalizes the results of [3], 

concerning the superconvergence properties of a cubic interpolatory 

spline  s,  to  the  case  of  quintic  spline interpolation.  The  cubic 

spline  results  were  established  in [3]  by  considering  the properties 

of a piecewise quartic derived from the quartic Hermite polynomials 
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matching y at the points xi-1  ,   xi  , xi+1 and  )1(y at x , x , by i-1   i  

replacing the derivatives  and  respectively by  s(1)
1-iy (1)

iy (1) (xi-1)  

and s(1) (xi) It is important to observe that the results of the 

present paper cannot be established by direct generalization of the 

above, i.e. by considering the sextic Hermite polynomials matching 

y  at  xi-1 ,    xi   ,  xi+1  and  y(1)    ,   y(2)  at    xi-1 , xi .   As  will become 

apparent  later,  the  reason  for  this  is  that Q(2) does  not exhibit 

superconvergence at the knots. Thus, in Section 3, we derive P by 

considering a class of certain sixth degree Hermite-Birkhoff 

polynomials. 
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2_.___Preliminary Results 

If the values mi =  (x ) and n(1)Q i = Q(3)     (x ); i = 0, 1 , …,k, are 

known then Q can be determined in each interval [xi-1 ,x.] by using 

the quintic Hermite—Birkhoff polynomial hi, which is such that 

and        (2.1)  

⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

−==

−==

==

i.l,ij;(3)
jy)j(x(3)

ih       

i,l,ij;(1)
jy)j(x(1)

ih       

i,l,-ij;jy)j(xih

This   gives 

;i(x)ni6,Ψlin(x)i5,Ψ
i(x)mi4,Ψ1i(x)mi3,Ψi(x)yi2,Ψ1i(x)yi1,ΨQ(x)

+−+
+−++−=

 

x  ∈  [ xi-1  ,  xi ]  ;  i = 1,2 ..., k,          (2.2)
 

where 

       

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎬

⎫

+−−−−−=

−−−−−=

+−+−−−−−=

+−−−−−−−=

+−−−−−−−=

+−−−−−=

h}.)1i-x2(x{2)ix(x2)1ix(x248h
1(x)i6,ψ

and

h},-)ix2(x{2)ix(x2)1ix(x248h
1(x)i5,ψ

},23h)1-ix3h(x2)1i-x2(x){ix(x2)1ix(x44h
1(x)i4,ψ

},23h)ix3h(x2)ix2(x{2)ix)(x1ix(x44h
1(x)i3,ψ

};35h2)1ix5h(x3)1ix{2(x2)1ix(x52h
1(x)i2,ψ

};35h2)ix5h(x3)ix2(x{2)ix(x52h
1(x)i1,ψ

       (2.3)

  
Thus, 

 );i3ni(n24
1)i7m1i(3m2h

1)iy1i(y2h
5)i(x(2)Q +−+−+−−=−  

    i= 1,2,...,k ,     (2.4) 

);i3n1i(n24
1)i7m1i(3m2h

1)iy1i(y2h
5)i(x(2)Q −+++++−+=+  

  i =0, 1,. .,k-1 ,   (2.5) 
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( ) );1i3ni(7n2h
1

limim3h
30)iiyi(y4h

60)i(x(4)Q −++−+−−−=−    

                       i = 1,2,...,k,                 (2.6) 

);1i3ni(7n
2h
1)1imi(m3h

30)liyi(y4h
60)i(x(4)Q ++−++++−=+    

                          i = 0,1,. ..,k-1 ,           (2.7) 

and  the  continuity  of  Q(2)    and Q(4)   implies  that 

12h{3mi-1 + 14mi + 3mi+1,}-h3{ni-1 -6ni +ni+1}-120{yi+1- yi-1 } ; 
                                                                 i = 1,2,...,k-1,              (2.8) 

and 
60h{mi-1 +2mi +mi+1 }-h3{3ni-1+ 14ni+3ni+1}=120{yi+1 -yi-1}; 

                                                                     i = 1,2,...,k-1 .           (2.9) 

It follows, from (2.8) and (2.9), that 

};1iy1i{y2h
1}1ini18n1i{n120

2h
im −−++−++−

−=

i = 1,2,...,k-1,          (2.10) 

};1iy1i{y32h
15}1imi8m1i{m22h

3
in −−++−++−

−=  

i = 1,2,. ..,k-l,          (2.11) 
and these two equations, in conjunction with (2.8) and (2.9), lead 
to the consistency relations 

i = 2,3,...,k-3,          (2.12) 

i = 2,3,...,k-2.          (2.13) 
The  above  quintic  spline  identities  (2.4) — (2.13)  can  also  be  derived 

from  the  results  of  [4]  -  [7]. 

The  parameters  m.,  n.;  i=0, 1,...,k  needed  for  the  construction 

of  Q  by means of (2.2) may be determined as follows. The k+ 1 

parameters m. are obtained by solving the linear system consisting 

of (2.13) and the four equations derived from the end conditions 

of Q. The remaining parameters ni; i = 0, 1 , . . .,k are then determined 

from (2.11) and (2.10). 

;}2iy1i2y1i2y2iy{3h
60

2in1i26nin661i26n2in ++−−−+−−=+++++−+−  

};2iy1i10y1i10y2iy{h
5

2im1i26mi66m1i26m2im ++++−−−−=+++==−=−

and
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The following lemma is needed for the analysis in Section 3. 

Lemma   2. 1  Let  mi = Q(1) (x i) and ni -Q(3) (xi). If y ∈ C7[a,b]  then 

there exist constants c and d, independent of h, such that 

k.0,1,...,i

||;(7)y||4dh|(1)
jyjm|

max

kjo2h
c|(3)

iyin|

=

+−
≤≤

≤−

         (2.14) 

The  result  (2.14)  is  established  easily from (2.11) and (2.8) 

by Taylor series expansion about  the  point  xi. 
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3. ____Improved orders of approximation. 

Given the values y, = y(xi); i = 0,1, . . , k, where xi  are 

the equally spaced points (1.1), let H.; i = 1 , 2, . . . , k - 1, denote 

the sextic Hermite-Birkhoff polynomials which are such that 

Hi (xj ) = yj;   j = i - 1, i , i + I , 

i,1,ij;(1)
jy)j(x(1)

iH −==  

i,1,ij;(3)
jy)j(x(3)

iH −==  

Also, let EL be the sextic Hermite-Birkhoff polynomial matching y at 

the  points  xk-2,  xk-1,  xk  and  y(1),   y(3)  at  the  points  xk-1 ,  xk.  Then, 

it  can  be  shown that 

Hi (x) = hi (x) + ri θi(x); i = 1,2, ... , k,                           (3.1) 

where h.(x) is the  quintic  Hermite-Birkhoff  polynomial,  of  Section  8.4, 

matching  y,  y(1)  and  y(3)  at  the  points  xi-1  ,  xi, 

θi (x)  =  (x-xi-1)2 (x-xi)2 {2(x-xi_1)2  -  2h (x-xi-1) -  h2}; 

i = 1,2, ... , k,        (3.2) 

and 

)
i

(1)y
1i

(1)h(y1iyyi21i{y
612h

1
iΓ −

−
+++−−=

  

 
i  = 1,2, ...,K-  1,       (3.3) 

)};i
(3)5y(3)

1i(y12
h3 +−−  

  
)(1)

ky(1)
1kh(yky1k2y2-k{y612h

1
kΓ −−++−−=

  

)}(3)
ky(3)

1k(5y
12

3h +−+

Also, it can be shown that if y ∈ C7[a,b] then, for x ∈ [xi-1 , xi+1 ], 

        r =  0, 1,…, 6,       (3.4)||(7)y||r7hrK|(x)(r)y(x)(r)
iH| −≤−

where  the  Kr  are  constants  independent  of  h. 
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Definition 3.1.   Let Q be a quintic spline which agrees with the 

function y at the equally spaced knots  (1.1).    Denote by pi ; 

i = 1,2, ... ,k, the sextic polynomials obtained from the Hi. by 

replacing  the  derivatives     j  =  i- 1,  i   in  (3.1)  respectively (3)
jyand(1)

jy

by  m.  =  Q(1)  (xj)  and  nj  = Q(3)  (xi); j = i- 1, i. Then, the piecewise 

polynomial 

    p  (x)  =                               (3.5) 

k,,...3,2,i;]ix,1ix[iIx(x),ip

],1x,o[x1Ix(x),1p

=−=∈

=∈

 

will be called the piecewise sextic induced by Q. 

It follows at once from the definition that P ∈ C1 [a,b], and 

that 

P(x) = Q(x) + Δiθi (x), x ∈ Ii ; i  =  1,2,…,k,                 (3.6)  

where θi (x) is given by (3.2) and 

;)}ni51i(n12
3h

)im1ih(m1iyi2y1i{y612h
1

iΔ

+−−

−−+++−−=

        i = 1,2, . . . , k-1,                      (3.7) 

;)}kn1-k(5n12
3h

)km1kh(mky1-k2y2k{y612h
1

kΔ

++

−−++−−=

Also, by using the identities (2.8) and (2.9), it can be shown that 

                                      ∆k  =  ∆k-1,             (3.8) 

and hence that 

pk-1
(x) = pk (x), x ∈ (xk-2, xk ], 

i.e. the same sextic polynomial is used over the intervals Ik-1 and Ik.  
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Theorem 3.1. Let Q be an interpolatory quintic spline which agrees 

with the function y ∈ C7[a,b] at the equally spaced knots (1.1) and 

satisfies end conditions such that 

k,,....1,0,i;6Ah|(1)
iyim| =≤− (3.9) 

where A is a constant. Let P be the  piecevxse sextic  induced  by Q. 

Then,  there  exist  constants  Br    such  that,  for  x  ∈  Ii, i=1,2,...,k, 

| p(r) (x) - y(r) (x) |  ≤  Br h7-r;    r = 0,1, ... , 6.                          (3.10) 

Proof. From (3.1), (3.6) and (3,4) 

|(x)(r)
iθ|

iIx
max|iΔiΓ||(x)(r)

ih(x)(r)Q|

|(x)(r)y(x)(r)
iH||(x)(r)

iH(x)(r)p||(x)(r)y(x)(r)p|

∈
−+−≤

−+−≤−

 
 + Krh7-r| |y(7)| |;

                            r = 0,1, ...,6, x ∈ Ii ; i = 1,2, ... ,k.         (3.11) 

Also, from (3.3) and (3.7), 

,|(3)
jyjn|

kjo
max324h

1|(1)
jyjm|

kjo
max56h

1|iΔiΓ| −
≤≤

+−
≤≤

≤− (3.12) 

and from (3.2) 

6,...,0,1,r;r6hra|(x)(r)
iθ|

iIx
max =−=
∈

      (3.13) 

where the a are constants independent of h. The result (3.10) follows 

from (3.11), by using (3.12), (3.13), (3.9), (2.2) and the result of 

Lemma 2.1. 

The piecewise sextic P, of Definition 2.1 is defined completely 

by the parameters which determine the quintic spline Q. Thus, under 

the conditions of Theorem 2.1, P can be used with very little 

additional computational effort to produce at any point x ∈ [a,b] 

more accurate approximations to y and its derivatives than those 

obtained from Q. 
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Theorem 3.2 below establishes the superconvergence properties 

of  the  derivatives  of  Q and derives expressions for the derivatives 

PP

(r) (xi);  r  =  2,4,5,6  in  terms  of  the  parameters of Q. The theorem 

generalizes  the  results  of  [3,  Theor.2]  to  the case of quintic spline 

interpolation. 

Theorem  3.2.  Let  Q he an interpolatory  quintic  spline with equally 

spaced  knots  (1-1)  matching  the   values  yi ;  i = 0,1,  ...,  k   at  the 

knots. Let P be the piecewise sextic  induced  by  Q.  Then 

PP

(r)(x . + α  h) = Qi 1 r
(r)(x _  + α h); i 1 r

r = 0,1,…5, i = 1,2…k,                  (3.14) 

for all choices of the yi, if and only if 

,/2
30
411(2α0,1/2,1,1α0,1,oα ⎟

⎟

⎠

⎞
−±===  

   (3.15) 
 

Also, 

                      MQ - h2(No - 2N1 + N2)/720 ; i = 0, 

PP

(2)(x ) =        M. - hi
2(N _  - 2N  + N )/720; i-1,2....k-1 ,  (3.16) i 1 i i+1

                      Mk - h2(Nk-2 - 2Nk-1 + Nk )/720; i=k, 

 

                      (13No - 2N1 + N2)/12;   i = 0, 
p(4)(xi) =        (Ni-1 + 10Ni + Ni + 1)/12;   i = 1,2,…, k-1, (3.17) 

  (Nk-2 - 2Nk-1 + 13Nk ) / 12; i=k, 

                       (-3N + 4N1 - N2)/2h; i = 0, 

p(5)(xi) =         (Ni+1 - Ni_1)/2h;    i = 1,2,…., k-1,                                        (3.18) 

                       (Nk_2 - 4Nk-1  +  3Nk )/2h;  i = k, 

1/2.5α/6)33(4α0,1/2,1,3α =±==  
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                      (N - 2N1 + N2)/h2, x ∈ [XO,X1 ], 

PP

(6)(X) =         (N  - 2N  + N )/hi-1 i i+1
2, x ∈ (x  ,xi]; i = 1,2, ... , k- 1,      (3.19) i-1

                      (Nk-2 - 2Nk-1 + Nk)/h2, x ∈ (xk-1 , xk], 

where M. = Q(2)(xi) and Ni = Q(4)(xi). 

Proof. Equation (3.6) shows that a necessary and sufficient condition 

for  (3.14)  to  hold,  for  all  choices  of the yi, is that the points 

xi-1 + αr h; r - 0,1, ... , 5; i = 1,2, ... , k,                          (3.20) 

are respectively real zeros in [xi-1 ,xi] of the polynomials 
 

where  9. (x)  is  given  by  (3.2) . It can be shown easily that such 

zeros  occur  only  at  the  points  defined  by  (3.20)  and  (33.5).   This 

completes  the  proof  of  the  first  part  of  the  theorem. 

For  the  second  part  of  the theorem, the derivatives of P give 
 
PP

(2) (x ) = M  - 2h Δ0 0 2 1 
    (3.21) 

PP

(2)(x ) = M  - 2hi i
4Δ ; i=1,2,....k, i

 
PP

(4)(x  )= N + 120h0
2Δ ,   1

     (3.22) 
PP

(4)(x ) = N  + 120h0 0
2Δ ; i = 1,2,...,k, i

 
PP

(4)(x ) = (N  - N )/h - 720hΔ . o 1 o 1
    (3.23) 

PP

(5)(x ) = (N  - N /h + 720hΔ ; i = 1,2,...,k, i 1 i-1 i
 

and 

PP

(6)(x) = 1440A., x ∈ I ; i = 1,2, ... , k,                                     (3.24) i

w here from (3.7) , by using (2.6) - (2.9), it can be shown that 

 
x — 1,2, …, k 1,      (3.25) 

Δk
 = Δk-1

.

 

k...,1,2,i5;...,,10,r;r
xd

(x)iθ
rd

==  

;}1iNi2N1Ni{21440h
1

iΔ ++−−=  
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The results (3.16) - (3.19) follow by  substituting  these  values of 

Δi in (3.21) - (3.24). 

The results concerning the third, fourth, fifth and sixth 

derivatives of P are in fact direct consequences of  the  results of 

[3, Theor.23. To see this we observe that 
 
PP

(2)(x) = Q(2)(x) + 60Δ (x-x )i i-1
2 (x-x )i 2-2h4 Δi

(3.26) 
= P~  (x) - 2h4Δi, x ∈ Ii;       i=1,2, . . ., k,  

 
where 

P~ (x) = Q(2)(x) + 60Δi (x-xi-1)2(x-xi)2

(3.27),2)ix(x2)1ix(x}1iNi2N1i{N224h
1(x)(2)Q −−−++−−+=

and Q(2) is a cubic spline with knots (1 .1).. Comparison of 

(3.27) with the results of [3] shows that P~  can be regarded as 

the quartic induced by the cubic spline Q(2). Since 

1,2,3,4,(x),(r)P~(r)(x)}(2){p ==  

the results of Theorem 3.2 concerning the third, fourth, fifth and 

sixth derivatives of P follow at once from [3, Theor.2.]. 

From the Definition 3.1 and the fact that Pk (x) = Pk_1(x), 

X ∈ (xk.2,xk], it follows that 

).kx,2k(xC)2kx,o(xICP −
∞∪−∈  

Also, from the definition,P(3) is continuous in (xo , xk ). Let di(r); 

r = 2,4,5,6 denote the jump discontxnuitxes of P(r) ; r = 2,4,5,6 at 

each  interior  knot  xi ; i = 1,2, ... ,k-2. Then,  using (3.7), (3.26) and 

the quintic spline identities (2.10) and (2.11), it can be shown that 

1)i(x(2)p)i(x(2)p(2)
id −−+=  

= - 2h2(∆i+1 - Δi ) 

;})2i33y1i81i81y1i33y(9h
1

2im1mi99mi1im{1296h
1

++++−−−−
+++++−−=

i = 1,2 ............k- 2, (3.28)



- 13 - 

and that 

2.k,...1,2,;(6)
id720

4h(5)
id360

h3(4)
id60

2h(2)
id −−==−=   (3.29)

By using (3.25) the result (3.28) can be written as 

2k...,1,2,i;1iN3Δ720
2h(2)

id −=−−=     (3.30)

This implies that if P is a sextic induced by a quintic spline with 

end conditions 

Δ3 Ni = Δ3 Nk-i = 0; i=0,1 
                                                                                                             (3.31) 

then 

2,4,5,6,r2,k3,k1,2,i;0(r)
id =−−==  

i.e. 
.])kx,4k(xC)3x,o(x[CP −

∞∪∞∈  

Theorem 3.3. Let P be the piecewise sextic induced by a quintlc spline 

Q, and denote the jump discontinuity of p(r) ; r = 2,4,5,6 at an 

interior knot xi, by d(r)
i . If y ∈ C7[a,b] then 

where 

2,4,5,6,r;)r70(h|(1)
iyim|

i
maxr1hra|(r)

id| =−+−−≤ (3.32) 

.9
100

6a,9
50

5a,27
25

4a,334
5

2a === (3.33) 

Proof. From (3.28), by Taylor series expansion about xi , 

       
;)50(h)}(1)

2iy2i(m

)(1)
1iy1i(m9)(1)

iyi9(m)(1)
1iy1(mi{1296h

1(2)
id

+++++

++++−+−−−−=
 

  
                                              i = 1,2, ... , k-2.           (3.34) 

The result (3.32) - (3.33)  follows  at  once   from  (3.34)  and  (5.29). 

Theorem 3.3 shows that if the end conditions of Q are such that 

(1 .3) holds then 

.2,4,5,6r;)r70(h(r)
id =− (3.35) 
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4. Numerical results 

Let Q be the quintic spline with knots 

xi  =  0.05i;  i  =  0, 1, ... , 20,                                    (4.1) 

which interpolates the function 

y(x) = exp(x), 

at the knots and satisfies the end conditions (3.31) i.e.,  the 

conditions 
Δ3Ni=  
 
Δ3 Ni = Δ3N20-i =0; i=1,                                 (4.2) 

where Ni = Q(4)(xi). In Table 4.1 we list values of the absolute 

errors 
e(r)(x) = |Q(r)(x) - exp(x)|; r = 0,1, ... , 5, 

and 

E(r)(x) = |P(r)(x) - exp(x)|; r = 0,1, ... , 6, 

computed at various points of [0,1] by constructing this Q and 

the  corresponding  sextic  P  induced  by Q. In Table 4.2 we list 

values of the jump discontinuities   theofidandid,id,id (6)(5)(4)(2)

derivatives p(2), P(4), p(5) and P(6) computed at a  selection  of 

interior knots. The results illustrate the  improvement  in  accuracy 

obtained when P is used instead of Q, and confirm some of the 

theoretical  results  contained  in  Theorems  3.2  and  3.3. 



TABLE 4.1 

e(r)(x)  = |Q(r)(x) - exp(x)| 

E(r)(x) = |P(r)(x) - exp(x)| 

     r 
 

x. 

0 I 2 3 4 5 6 

e(r)(x) 0.14x10 11 0.17x10 10 0.84x10 8 0.15x10 6 0.97x10 4 0.25x10 3 - 

E(r)(x) 
0.025 

0.33x10 12 0.17x10 10 0.49x10 9 0.15X10 6 0.11x10 4 0.25x10 3 0.20x10 1

e(r)(x) 0.75x10 12 0.87x10 10 0.99x10 9 0.13x10 5 0.38x10 4 0.17x10 1 - 

E(r)(x) 
0.3125 

0.20x10 13 0.26x10 11 0.32x10 9 0.53X10 7 0.12x10 5 0.68x10 3 0.52x10 1

e(r)(x, 0.15x10 11 0.29x10 11 0.11x10 7 0.34x10 7 0.16x10 3 0.15x10 3 - 

E(r)(x) 
0.4250 

0.49x10 13 0.29x10 11 0.29x10 9 0.34x10 7 0.40x10 5 0.15x10 3 0.38x10 1

e(r)(x) 0.11x10 11 0.13x10 9 0.14x10 8 0.19x10 5 0.57x10 4 0.25x10 1 - 

E(r)(x) 
0.7125 

0.14x10 13 0.44x10 11 0.48x10 9 0.80x10 7 0.20x10 5 0.10x10 2 0.78x10 1

e(r)(x) 0.13x10 12 0.92x10 11 0.20x10 7 0.69x10 7 0.49x10 3 0.58x10 1 - 

E(r)(x) 
 0.850 

0.13x10 12 0.92x10 11 0.19x10 10 0.69x10 7 0.34x10 6 0.50x10 3 0.13x10 2

e(r)(x) 0.12x10 11 0.I5x10 9 0.17x10 8 0.24x10 5 0.70x10 4 0.31x10 1 - 

E(r)(x) 
0.9125 

0.99x10 13 0.11x10 10 0.52x10 9 0.12x10 6 0.36x10 5 0.12x10 2 0.83x10 1

e(r)(x) 0.22x10 11 0.18x10 9 0.70x10 8 0.21x10 5 0.36x10 4 0.34x10 1 - 

E(r)(x) 
0.9875 

0.86x10 12 0.19x10 10

 0.57x10 8 0.45x10 6 0.31x10 4 0.21x10 2 0.11x10° 
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TABLE 4.2 

 
)i(x(r))i(x(r)p(r)

id −−+=  

xi
(2)
id  (4)

id  (5)
id  (6)

id  

x4 -0.44x10-9 0.11x10-4 -0.13x10-2 0.50x10-1

x7 -0.64x10-9 0. 15x10-4 -0.18x10-2 0.74x10-1

x10 -0.74x10-9 0.18x10-4 -0.21x10-2 0.85x10-1

x13 -0.81x10-9 0.19x10-4 -0.23xl0-2 0.93x10-1

x16 -0. 15x10-8 0.36x10-4 -0.43x10-2 0.17 
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