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ABSTRACT

Accurate end conditions are derived for quintic spline interpolation
at equally spaced knots. These conditions are in terms of available
function values at the knots and lead to O0O(h®) covergence uniformly

on the interval of interpolation.






1. Introduction

Let Q be a quintic spline on [a,b] with equally spaced knots

X; = a+ih ; i=0.1,....k,

where h = (b-a)/k. Then Q e C*[a,b] and in each of the intervals
[xi1xi] 5 1= 1,2,...,k, Q is a quintic polynomial. The set of
all such quintic splines forms a linear space, of dimension k+5,
which we denote by Sp(5.k).

Given the set of values y; ; 1-0,l,...,k, where

YiZY(Xi) > Y € Cn[anb]n n = 69

we consider the problem of constructing an interpolatory QeSp(5.k)

such that
Qi) =yi ; i =0,1,....k .

Since dim Sp(5.k) = k+5, the interpolation conditions (1.2) are not
sufficient to determine Q uniquely and four additional linearly
independent conditions are always needed for this purpose. These

are usually taken to be end conditions, i.e. conditions imposed on

Q or its derivatives Q(J); j=1,2,3,4, near the two end points a and b.

As might be expected the choice of end conditions plays a critical
role on the quality of the spline approximation. It is well known
that the best order of approximation which can be achieved by an

interpolatory quintic spline Q is

1Q-ylIl = omh® ,

(1.1)

(1.2)

where || .|| denotes the uniform norm on [a,b]. Such order of convergence

is obtained, if for example, the end conditions

(1)(Xi)=yi(1),Q(1)(x .)=ygzi;i=0,1,

Q k —1



are used. However, these conditions require knowledge of the first
derivative of y at the four points Xx;.xXx.i; 1+ 0,1, and in an
interpolation problem this information is not usually available.

The natural end conditions
Q”@=Q" () =0 ; r =34,

do not require any additional information, but the resulting natural
quintic spline does not have 0(h®) convergence uniformly on [a,b].

The purpose of the present paper is to derive end conditions for
quintic spline interpolation at equally spaced knots, which depend
only on the given function values at the knots and lead to O (h°)
convergence uniformly on [a,b].  We derive a class of such end conditions
in Section 3, by generalizing the cubic spline results of Behforooz

and Papamichael (1979) to the case of quintic spline interpolation.

2. Preliminary Results

To simplify the presentation we use throughout the abbreviations,
1 2 3 4
mi=QWapMi=0® xpn=0® xpad Nj=o@ )

1=0,1....k. 2.1)
The following quintic spline identities are needed for the analysis
of Section 3:

m;i., + 261’1’11_1 + 661’111 + 26mi+1 =+ m;+o

5
= {-yiz - 10y i1 + 10yir1 +Yiez +
i= 2,3 ....,k2, (2.2)
M;, + 26M;.; + 66M; + 26M;.; +Miis
20

- i { Yiz F2yia1  -6yit2yin1 + Yie2 §s

i =2.3,....k-2, (2.3)



3 -
ni, *+26mn;;+ 66n; +26ni:; + N

0 Yi2 + 2yi1 -2¥ie1 T Vi yos
I i=2,3,...,k-2, (2.4)

Ni> "26N;; © 66N; 26Ny " Nia
_ 120 {yin -4y +6y -4yin Tty };
4
h i=2.3,....k-2, 2.5)

Ni.2+4N; 1*Nj+;- 6 { Mi_i - 2M; +Myy = 05
2
h i=1,2,.. k-1, (2.6)

60h { m.; +2m; + mys; } -h® {3ni; + 14n + 30 )
= 120 {Yi+1 -Yi-1 };
i=1,2,..,k-1, (2.7)

8h {mi:; -m; } -h>{M; - 6M; + M, }

= 20 {yi_1 -2yi tYyir1 } ;

i=12,....,k k-1, (2.8)
h 3
m; =—— . .
6 {2M; +M;i,; } 3L60 E8Ni + TNy } o+ A1 {yi-yi- }
h
i=12,....,k, 2.9
m;=- % {2M1 + Mi+1 } + h3 { 8N1 + 7Ni+1 } + %{ yi—'—l—yi};
360
i=0,1,...,k-1, (2.10)
m=-  _h2 {np; +18n; +njry } + L {YVie1-Yia s
120 2h
i=1,2,....k-1, 2. 11)
1 {y:_1.2v: S
M; = h2 {Ni; +8N; + Ny} + gen Yi-1-2Y1 T Yl
120
(2.12)



i=32;h {m;> + 32m;; - 32mj; - My |
5
+ ot {yi-2 "16yiq -34y; " 16y + yiez2 } 5
i =23,...,k-2, (2.13)
3 30

N; - ?{ M,  +18M; + My )+ h—4{ it - 2¥i Y-} o
i=1,2,...,K-1. (2.14)

The relations (2.2) — (2,14) can be derived from the results of

Albasiny and Hoskins (1971), Fyfe (1971), Ahlberg, Nilson and Walsh

(1966) and Sakai (1970).
The most convenient way for constructing Q is probably through its

B-spline representation

Q (x) = ciV (xj - x)%

where, as usual.

(t-x)3 = -

However, it is important to observe that the unique existence of Q
can be established by showing that any of the four (k+1) x (k+1)
linear systems, obtained by using either of the relations (2.2), (2.3)
(2.4) or (2.5) together with the four equations derived from the
end conditions of Q-is non-singular. For example, if the linear
system corresponding to (2.3) has a unique solution M; ; 1=0,1,... .k,
then (2.14) and (2.6) give the parameters N. ; 1=0,l,...k, and Q

can be constructed in any interval [x;; ,X;] by integrating

Q¥ (x) =% {Ni 1(xi-x)+Ni(x-x;_1) }, (2.15)

four times with respect to x and setting

Q&) =y; and QPx)=M;; j=i- Li



for the determination of the four constants of integration. Similarly,

if the linear system corresponding to (2.2) has a unique solution

m; ; 1=0,1,....,k, then (2.13) and (2.8) give the parameters

M; ; i=0,1,....k, and Q can be constructed in any interval [X;; ,X;]
by use of the two point quintic Hermite interpolation formula.

Similar arguments establish the unique existence of Q in the two

cases where the linear systems corresponding to (2.4) and (2.5) are
non-singular.

The following two lemmas are also needed for the derivation of

the results given in Section 3:

Lemma?2.1. If y e C°[a,b] then, forx e [xi.xi]; i=172,...k,

r r l-r 1 6 —r1

QW -yP e ga ntr max D em 67T,
r 0< <k J J
r=0,1,.....,6, (2.16)

where the A, are constants independent of h.
Lemma 2.2. Let KiZmi—yi(l) . Ify e C7[a,b] then

Aio 2641 +O66A; +26A i+ T A2 = By 1=2.3,.k-2, (2.17)
where

I, | < S Ry P i-2,3,k-2. (2.18)

Lemma 2.1 can be established, from the representation of Q by means
of the two point quintic Hermite interpolation formula, by using a
trivial generalization of a result due to Hall (1968: p.214). Lemma 2.2

follows easily from (2.2), by Taylor series expansion about the point x;.

3. End Conditions

We let Q be a quintic spline interpolating the wvalues y;. = y(xj) ;
i=0,1...,k, at the equally spaced knots (1.1), and assume that k > 6.

As before, we use the abbreviations (2.1).
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We consider end conditions of the form

1 i+5 ]
m;+om,, +Bm,,+ym, ;= 60—hjz‘,l a4y,
1 i+5
m, ;+om, ;; +Bm, ;. ,+ym, ; ;= _—Z A ;Y- - (3.1)
60 h 5=
1=0,1
and seek to determine the scalars o.B,y and a;; i = 0,1, ....,5
so that Q exists uniquely and
lo® _y@l =0®*) ; r =0,1,., 5. (3.2)

For this we let
7\,1 -m; -yi(l); i = 0,1, e, k,

and assume thaty e C’ [a,b]. Then, the equations (2.2) and (3.1)
give,

k0+ak1+ﬁk2+yx3:[30,

7‘1 +ax2 +Bk3 +yx4:Bl

A o +26 L 1 +667»i +26 L " + A " =[3i t =2.3,...... K -2, [—(4
g TR 3 o o Ay =By
Y)”K—3 +BXK_2 +axK_1 +Ahe =Bk |
where
i+5 ]
1 1 1 1
Bi=-( f ) +ay i(+)1+Bv i(+)2+v yi(+)3)+—601h. A =iy,
J=1
(1) (1) (1) (1) 1
Bk-i=—(y Kk —i Tay k—i+l+BY k—it2 1Y yk—i—3)+mz, aj-iyk-js|—(3.4)
]J=1
1=0,1
|8 |= & Wyl i = 23, .., k2 (3.5)

The matrix of coefficients in (3.3) is the matrix of the
(k+ Dx(k+ 1) linear system which determines the parameters m; of

the quintic spline Q. We denote this matrix by A, let 1 be the set

I = {(a.B.v) ; det A= 0} (3.6)
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and for any (a,B,Y) € I we assume that there exists a number M,
independent of h, such that

ot ] =

Then, for any (a.B,Y) e I, Q exists uniquely and, since

lwocic] Bl
0 o0<i<k i

ozl A=A
Lemma 2.1 shows that

e -y @Il =0 . r=0,1, ... .5,
only if B; = 0(’); i=0,1, k-1, k.

Theorem 3.1. Let Q be an interpolatory quintic spline which agrees

with ye C’[a,b] at the equally spaced knots (1.1) and satisfies end
conditions of the form (3.2), where (a.B8,Y). e L Then,
||Q(r) - y(r)” = 0(h6-r) 5 i :O:-l >"'>5’

only if, in (3. 1),

0 =—137 —12 a+3p-2y

| =300 —65 a—30 p+15y

2 =-300 +120 a=20 B-60y | 57
3 =200 —60 a+60 B+20y

4 =—75+20 a—15 B+30 y
s =12 —30+2p-3y

[ I

Proof. By Taylor series expansion we find that
Blzo(hs); 1= 0919 k - 19 k:

only if the scalars a,B,y and a;; i =0,1, ... , 5 satistfy the

relations (3.7). More specifically when the relations (3.7) hold

we find that
B i :1—(10 —-20+B-yh Sy .(6) +Fijh 6 |
60 1+ 2
©) — (3.8)
k-1

_, +Fk-ih 6 |

1=0,1,

]
Bk—i=—(0-2a+B-—yph Sy
60



where

_tty @D i

< 26880 +240 +
Fi 1< oo ( al+lv)

+la | " las | T 128(lac] + las|) +2187as|};
i=0,1,k-1, k.

Definition 3.1. A quintic spline Q which interpolates the values

yvi; 1 =0,1,....., k at the equally spaced knots (1.1) and satisfies
end conditions of the form (3.1) with the a.; i= 0,1, ... ,5 given
by (3.7), will be called an E(a ,B,Y) quintic spline.

For any (.8, Y) e I an E(a.,B, Y) quintic spline exists uniquely
and, by Theorem 3.1, if y; = y(x;) where y € C’[a,b] then

1@ _y@ | =om*, r=0,01,... 5.

In general for any (a.,B,Y) 1,
B; =0Mm); i-01, k-1, k,

and thus
| ™ - v = om®; i- o1,

However, if the wvalues o ,3, Y are such that
10 - 200 + B — Y = O,
then, from (3.8),
B, - 0h®):; i- 0,1, k-1, k.
For this reason, the class of E(a .3, Y) quintic splines whose parameters

satisfy (3.10) is "best" in the sense that, for any member of this

class,

m; - yi'” = 0h°%; i=0,1, ..

3.9

(3.10)

(3.11)



Corollary 3.1. The end conditions of an E(a .3, Y) quintic spline

can be written as

m;+om ;.1 +Bm ;4o +ym ;3 :pg(l) (x i )+ap fl) X j+1)
+Pp i(l (X j+2 )+ f-(l) (x j+3 )i=0,1
m;+om j_1+Pfm j_o +ym ;_3 =p§1_)5 (x { )+ap f_)f- xi-1)
(1 (

+Pp s (X j_2 )P i—)S (x j_3 »i=k-1k,

where p;. denotes the quintic polynomial interpolating the values
Yi->Yitl, - - -.,Yi+s at the points Xi, X1, - ..., Xi+s5.
Proof. The proof follows from (3.1),(3,7) and the results,

pi)

>

1
i ):E{ =137y i +300y j4+1 =300y j+2 +200y i+3 =75y i+4 +12y j+5 |,

O
O

O

1

(X i+1 )=a{ =12y § =65y i+1 +120y j4+2 —60y {+3 +20y i+4 =3y i+5 },
1

(X i+2 )=a{3y i =30y i+1 =20y i+2 +60y i+3 =15y i+4 +2y i+5 },

1
(X i+1 )=—60h { -2y i +15y j+1 —60y i+2 +20y {+3 +30y j+4 =3y i+5 },

(1)
p; o (

>

1
i+4 )=a{3y i =20y j+1 +60y j4+2 =120y j+3 +65y j+4 +12y j+5 },

1 1
p i =l =12y § 75y 4] <200y 142 +300y i3 =300y i +13Ty i5 )

Corollary 3.1 shows that the end conditions of the E(0,0,0)
quintic spline are
mi=p-(1) (x i );1=0,1,

1) _ - (3.14)
mj=p. s (x; )si=k-1,k.

Clearly (0,0,0) €1 and therefore an E(0,0,0) quintic spline exists
uniquely. In factit is easy to see that, in this case, the

(k-4)>(k-4) matrix A of (3.3) is such that

~(3.12)

~(3.13)




The corollary also shows than an E (0.3, Y) quintic spline can

be interpreted as an interpolatory quintic spline with end conditions

(1) . . ..
. (xi )i=2,
-2 - (3.15)

. 1 S
mi =p i(—4) (xi )i=k—-2 ,k-1.
Similarly the E (a.B3, Y)and E(a, 3, ) quintic splines can he interpreted

as interpolatory quintic splines with end conditions respectively

m ;= p(l)2 (x § )1=23,

- 3.16
m ;= ph) (x ; )i=k-3, k-2, ©.19)
and m:=p! (1) (x : :i=34,
i tl ! - (3.17)
mlp)z(xi)l—k 4, k - 3.

The unique existence of each of the E(wo,B3, Y E(a,©o,Y) and E(o,B, )
quintic splines can be established easily by considering the linear
systems for the m;'s derived from the consistency relation (2.2) and
the end conditions (3.15)- (3.17). However, the existence of the
E(a,© ,Y) ) and E(a,3,00) splines can only be established under the
assumptions k=7 and k = 9 respectively.

The corollaries stated below establish various alternative
representations for the end conditions of an E(a ,B,Y) Quintic spline.
They are established by using the quintic spline identities listed
in Section 2 and the expressions for the derivatives p® (x);

k = 2,3,4 of the interpolating polynomial p;(x). Although the algebra
involved in the derivation of these results is very laborious, the
proofs are otherwise eclementary and, for this reason, the details are

omitted.
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Corollary 3.2. The end conditions of an E(a ,3, Y) quintic spline

can be written as
AoASN{+A|A4N ;+A)A3N ;[ +A3A 2N, =0,
AoVIN_ {-A|VAN | i +A)V3IN | _{+A3V 2N _;=0; |- (3.18)
i=0,1,

where N; = Q¥ (x),

Ao =02 -3a+2p-3vy
A1 =569 —17 a+11 p—15 y5y

3.19
A 5 =10(137 =31 a+17 B-19 y9y ( )
A 3 =120(10 —-2a+B-17),
and A,V are respectively the forward and backward difference
operators.
Corollary 3.2 shows that the five E(a.B,Y) quintic splines
listed below have particularly simple representations of the form
AnNi = VnNk_i = 0.
Spline End conditions
. ( iﬁl_j AN, =VN; =0; i=0,1
5°5°5
E(21,33,5) A™N; = V*Ny; =0, i= 1,2
E@9,9, 1) AN, =VNi;, =0; i= 0,1 (3.20)
E(17.33,9) A'N; =VN ;= 0; i= 0,1
E(25,61,21) AN, =V°N; =0; i= 0,1

The unique existence of each of these five E(a .3, Y) quintic

splines can be established easily by considering the linear system



for the parameters N; derived by using the end conditions (3.20) and

the conaistency relations (2.5). However, the existence of the
E(21,33,5), E(17,33,9) and E(25,61,21) splines can be established

only under the assumptions k =7, k =7 and k> 8 respectively. We note
that the parameters of each of the E(9,9, 1), E(17,33,9) and E(25, 61,26)

quintic splines satisfy (3.10) and thus, for each of these three

splines,
max |m; - yi'V| = 0 (h"), (3.21)
o=<i<k
where n = 6, rather than n = 5.
Corollary 3.3. The end conditions of an E(a.B, Y) quintic spline can
i+3 ]
2
B mj-p P -0
=! - (3.22)
1+3 (2) )
.]El B J_l {m k—J _p k_S_i (X k—J )} 20,120,1,

be written as

where M; = Q P (x),
Bo=(-8a+7p-8y-23),
B1=3(-77a+58B-67y+113),
By =3(-58a+77B-118 y+67),
B3 =(-70+8B +237+3),

- (3.23)

and p; denotes the quintic polynomial interpolating the values

Yi. Yir1 ---.., Yirs at the Points X;, Xji ... . Xjis.

When o + 8735/888, B - 8920/888 and Y + 753/888 then, in

(3.23), B,= B, =B3; =0, It follows, from Corollary 3,3, that the

end conditions of the E ( 8735 ’8920 ,_753 j can be written as
888 888 888

2 :
Mi=P1( " (xi yi=0.1,

1 :
M i=p i(—S) (x i )i=k-1.k.

- (3.24 )



The unique existence of this spline follows at once by considering
the linear system, for the parameters M., derived from the

consistency relations (2.3) and the end conditions (3.24).

Corollary 3.4. The end conditions of an E(a .8, Y) quintic spline can be

written as

i+3
2 Cjqin j—p?) x =0,
ij+_; 5 - (3.25)
j:ic =i k- Pl Xk j)=0i=0,1,
where n; = Q@ (x))
Co=a-7v-8,

Ci1=18 a+p—-26 7-65,
C oy =0a+18 B-65 y-26,
Cq =B -8vy-1,

- (3.26)

and p; denotes the quintic polynomial interpolating the wvalues
Yi, Yi+1 5 - - -, Yirs at the points, X; Xi+1 .., Xiss.

When a = 2743/728, B - 1040/728 and Y = 39/728 then, in (3.26),

C, = C, =C; = 0. It follows, from Corollary 3.4, that the end

conditions of the g ( 2743 1040 39 j spline can be written as
728 728 728

3 .
ni=p >) (xi )i=0,1,
1( 3) - (3.27)
ni=p. (xi )i=k-1k.
1-5
The unique existence of this spline follows at once by considering

the linear system, for the parameters n;, derived from the consistency

relations (2.4) and the end conditions (3.27).



Corollary 3.5. The end conditions of an E(a .3, Y) quintic spline

can be written as

i+3 |
4
2 D i N j—pg) x i)} =0,
=1 - (3.28)
i+3 (4) )
jEiD —i N k- jTP s ; X k—j)i=01=01,
where Ni=Q¥(x,),
D o=@ a+p+2y-19),
D =311 o-8PB+17 y-306),
1 =3 B Y -36) ~ (3.29)
D 5 =38 a+11 B+ 36 y-17),
D =(a-2B+19 y-2),
and p; denotes the quintic polynomial interpolating the wvalues
Yi. Yi+l - .- > Yirs at the points X; X, . ... , Xijss,
When a = 391/83, B - 179/83 and Y = 7/83 then in (3.29),
D, = D, = D3y = 0. It follows, from Corollary 9,5, that the end
conditions of the E(ﬁ,g,lJ can be written as
83 83 83
Ni=p® & xi=o
1( 2 — (3.30)
N ,;=p s x ; »ri=k-1 k
The unique existence of this spline follows at once by considering
the linear system for the N; derived from the consistency relations
(2.5) and the end conditions (3.30).
Let d; denote the jump discontinuity of Q®at the knot x;.
Then, from (2.15),
d = Q)i P - QWi -)
1 2
=—  A"Ni,
h
LOVNL i= 1,2, ..., k-l (3.31)

h



It follows at once, from (3.2 0), that the fifth, derivatives of the

33 21 1
E [ 5—,5—5—] and E(21, 33, 5) quintic splines are continuous

respectively at the knots x;; j = 1, 2, k-2, k-1 and

Xj 3 J =2, 3,k-3, k-2. These properties are the special

cases G, = G; = G4 = 0 and G| = G3 =G4 =0 of the general result
contained in the following corollary. This result is established

easily by using (3.31) and the result of Corollary 3.2.

Corollary 3.6. Let Q be an E(a ,B, Y) quintic spline and let d;

denote the jump discontinuity of Q®at x = x; Then,

Gi1dj+G2d 41 +G3d j12+G 4d j33 =0;i=12,

) - (3.32)
Gi1dj+G2dj-1+G3dj_2+G 4dj-3=0j=k-2k-1I,
where,
G | =163 -12 a+3B-22 32 i
G =716 —-149 o + 66 - 49 99
2 P 7oL (3.33)
G 3 =309 -76 o+ 49 B - 66 v6
G 4 =36 —-9a+ 6B -9 vy ]
A number of properties of special interest which emerge
from the result of Corollary 3.6 are listed below.
Spline | Property satisfied by the d; s
B2 L) . .
5 75 75 1 = 2 = dia2=dikar= 0
E(21, 33, 5) 2 =93 =43 = %2 =0
_ . 3.34
E©.9, 1) d = 92 793 ™ 4, = dis=dks ( )
E(17, 33, 9) A’d; = V3de,. = 0; i=1.2
E(25, 61, 21) Ad; = Vid, = 0; i=1.2




4. Numerical results

In Table .1. we present numerical results obtained by taking
y (X)) = exp(x),
X; =0.051; i= 0,1, ...,20, “4.1)
and constructing various E(a .3, Y) quintic splines. The splines
considered are the E(0,0,0) quintic spline and the five splines of

(3.2.0). The results listed are values of the absolute error

lexp(x) - QX)I, (4.2)
computed at various points between the knots. For comparison
purposes we also list results computed by constructing the natural
quintic spline (N.Q.S.) with knots (4.1) interpolating the function
y(x) = exp(x) at the knots.

The numerical results indicate the serious damaging effect that

the natural end conditions

Q N (XO) - Q N (X20) = O; r= 3945 (4.3)

have upon the quality of the approximation, and demonstrate the
considerable improvement in accuracy obtained by using end conditions
of the type considered in the present paper, instead of (4.3). The
results also show that, as predicted by the theory, the 'best'

E(a.,B,Y) quintic splines correspond to values a .3, Y that satisfy (3.10).



TABLE 1

Values of |exp(x) - Q(X)|

33211
X N.Q.S. E(0,0,0) ( ?’?’E j E(21, 33,5) E(9,9,1) E(17,33,9) E(25,61, 21)
E
-5 -9 -11

0.01 0.29x10 0.17x10 0.21X10” 0.31x10°® 0.84x10™"! 0.70x10 0.17x10™"
0.02 0.33x10°° 0.78x10 0.23x10° 0.28x10 0.84x10™ 0.13x10™"! 0.25X10™"
0.07 0.12*10° 0.72X10” 0.56x10™" 0.24x10” 0.31x10™ 0.94x10 0.69x10™"
0.09 0.52X10°¢ 0.33X10° 0.24x10" 0.76x10™"° 0,13x16™"! 0.35x10™" 0.26x10™"
0.22 0.92x107 0.59X10"° 0.54x10™" 0.92X10™" 0.10x10™"! 0;11x10™ 0.12X10™"
0.36 0.55X10® 0.40X10™" 0.32x10™"2 0.12x10™" 0.56x10" 0.56x10™"2 0.55x10™"2
0.62 0.16X10® 0.98X10"! 0.11x10™ 0.31X10™" 0.17x10™1 0.17X10™"! 0.17X10™"!
0.93 0.31X10° 0.14x1078 0.13x10”° 0.49x10” 0.22x10™"! 0.20x10™" 0.24X10™M"
0.96 0.35X10° 0.12°10°® 0.16x10° 0.12x10® 0.71x10™" 0.14x10™" 0.94x10™"?
0.98 | 0.92x10° 0.15x10° 0.51x10° 0.58x10° 0.23x10™" 0.38x10 0.24x10™"
0.99 0.77X10°° 0.29x10° 0.45x10°° 0.63x10°8 0.20x107"° 0.23X10™"! 0.10x10™"
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