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ABSTRACT 

A new class of C1 piecewise—cubic interpolatory polynomials 

is defined, by generalizing the definition of cubic X-splines given 

recently by Clenshaw and Negus (1978). It is shown that this new  

class contains a number of interpolatory functions which present  

practical advantages, when compared with the conventional cubic 

spline. 



 



1. Introduction

This paper is concerned with the problem of piecewise-cubic 

polynomial interpolation where, unlike the cubic spline, the  

interpolatory function does not necessarily possess a continuous 

second derivative. More specifically, given the points 

a = x0 < x1 <... < xk = b                                                   (1.1) 

and the corresponding set of values yi=y(xi); i = 0,l,...,k, we 

consider the problem of constructing a piecewise-cubic polynomial 

s ε C1 [a,b], with knots xi ; i = 0,1 ,. .. ,k, such that 

s(xi) = yi ; i = 0,l,...,k. 
 

One class of such interpolatory functions is the class of X-splines 

considered recently by Clenshaw and Negus (1978), who show that 

There are certain practical advantages in allowing discontinuities in 

          S(2)  In particular, they derive an X-spline which reduces considerably 

the computational effort involved in constructing the interpolatory 

function, whilst retaining the same order of convergence as the 

conventional cubic spline. 

In the present paper we show that the conditions used by 

Clenshaw and Negus (1978) for defining an X-spline are unnecessarily 

restrictive and we extend their definition to a much wider class 

of piecewise-cubic polynomials. We show that any X-spline s of this 

new class leads to O(h4) convergence uniformly on [a,b], that the 

magnitude of the jump discontinuities of s (2) and s (3) at the 

interior knots are respectively 0(h2) and 0(h) and that the class 

contains several interpolatory functions which are better, in terms 

of accuracy, smoothness and ease of computation, than those 

considered by Clenshaw and Negus (1978). 
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2. Interpolatory Piecewise-Cubic Polynomials

          Given the set of values yi = y (xi),x = 0,1,... ,k, where xi are 

the points (1.1), let H be the piecewise - cubic Hermite polynomial  

which is such that 

 H(Xi) = yi and H(l 
(xi) = y(1) 

i i = 0,1 ,. . . ,k . 

Then, if yεC4 [a,b],the following optimal error bound holds 

 y(4)
384

4h
yH ≤−                                                     (2.1)

In (2.1), || • || denotes the uniform norm on [a,b] and   ,ih
ki1

maxh
≤≤

=

Where 

hi = xi - xi-1 ; i = 1,2, . . . , k ,  

see e.g. Birkhoff and Priver  (1967). 

Definition 1 . Let s be the piecewise—cubic polynomial obtained from 

H by replacing the derivatives yi
(1). ; i = 0,l,...,k, respectively by 

suitable approximations mi ; i = 0,l,...,k. Then, s will be called a 

piecewise-cubic polynomial (P.CF.) with derivatives mi ; i=0,l, ,k 

It follows at once from the definition that 

s(x) = y
i-1 

+ m
i-1 (x-x

i-1
) + s[x

i-1
x

i-1,xi] (x-x
i-1

)2 

+ s[xi-1, xi-1,xi,xi] (x-xi-1)2(x-xi) , 

                                                                    x ε [xi- l
, x i|;  i = 1,2, . . . , k,                      (2.2) 

where s(xi)= yi, s(1)
(xi)= mi and, with the usual notation for 

divided differences, 

 and  
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(2.3)
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The following theorem can be established easily by using (2.1), 

Theorem 1 . Let s be a P.C.P. with derivatives mi; i=0,1,...,k. 

If y ε C4[a,b] then, for x c[x i-1,x i ];i = 1,2,...,k, 

    .||(4)y||
384

4h
|}(1)

iyim||,(1)
1iy1immax{|

4
h

|y(x)s(x)| +−−−−≤−   (2.4) 

 The theorem shows that the best order of approximation that 

can be achieved by an interpolatory P.C.P.s is 

 || s-y || = 0(h4), 

 
and that this order is obtained only if the derivatives mi are such 

that 

                                  (2.5)  
,,,...,0 k1i;)o(hymi

n(1)

i
==−

 with n ≥ 3. 

Clearly a P.C.P. s is continuous and possesses a continuous 
first derivative. In general however s (2) has a jump disontinuity 

at each interior knot- Using (2.2) and (2.3) it can be shown easily 

that the jump discontinuities of s(2) and s (3) at the interior knots 

are respectively, 

d(2)
i = s(2)(xi+)-s(2) (xi-) 

 
};{ 111 3322

++− ++−−−= iiiiiiiii

ii

YYmmm
h

γβγβ
β  

 

i=1,2,...,k-l,                     (2.6) 

and 

d(3)
i = s (3) (xi +)-s(3)(xi-) 

 

       };1iY2
i2γiY2

i2β1im2
iγi)mi2β(11im2

iβ{2
iβ

2
ih

6
+−+++−+−−  

        i=1, 2,…, k-1,   (2.7) 
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where 

β i = hi+1 /(hi+hi+1), γ=1-βi and Yi - (yi-yi-1) /hi .                              (2.8) 
 

Theorem 2. Let s be a P.C.P. with derivatives m i ; i = 0,l,..,k, and 

denote the jump discontinuities of s (2) and s (3) , at an interior knot 

xi , respectively by d(2)
I  and d(3)

i . If y e C5[a,b] then, for some 

ξi ε [xi-1, xi-1],  

 
);i(ξ(5))y3

1ih3
i(h

30
1(4)

i)y2
1ih2

i(h
12
1

}(1)
1iy1i(miγ

(1)
iyi2(m(1)

1iy1i(miβ{
iβih

2(2)
id

++−+−+

+−+−−−−−−−=

 

 
       i = 1,2,..,k-l ,     (2.9) 

          and,  for  some  ηi ∈ [xi-1, xi+1] 
 

;( )yh(h ½ (4)
1ii  )++ +

+−++−−+−−−−=

i

ii

η

β }(1)
1iy1i(m2γ(1)

iyi(m21(1)
1iy1i(miβ{

iβih
6(3)

id

 

                                                                                  i = 1,2,...,k-l            (2.10)                      

         Proof. Equation(2.9)follows from (2.6),by using the result  

);i(ξ(5))y1ihih2
1ih2

i(h1ihih
60
1(4)

i)y1ihi(h1ihih
24
1

(1)
1iyiγ

(1)
i2y(1)

1iyiβ1iYi3γiYiy3β

+−+++−+−+=

+−−−−++

 

  i = 1, 2 ,…, k-1  2.11) 

This result is due to Kershaw (1972: 193) and is established by using 

Peano's method for finding remainders. 

Similarly, equaiton (2.10) follows from (2.7), by using the 

result 

);i(η(4))y1ih2
ih

12
1(1)

1iy2
iγ

(1)
i)yi2β(1(1)

1iy2
iβ1iY2

i2γiY2
i2β +==+−+−−+−  

i = 1,, 2, . . . , k-1,                               



 
which is also established by the use of Peano's method. 

Using (2.9)and (2.10)we obtain at once the following bounds  

on the magnitudes of  ,(3)
idand(2)

id

             
(5)y3

1ih3
1(h    

30
1

(4)y|2
1ih2

ih|
12
1

|(1)
iyim|

i
axm

1ihih

)1ihi6(h
|(2)

id|

+++

+−+−
+

++
≤

                         

                                                                     i=1,2,……,k-1,       (2.12)                 

           

;(4)y)1ihi(h
2
1

|(1)
iyim|

i
max2

1ih

1
,2

ih

1
max12|(3)

id|

+++

−

+

≤
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

   

                                                                                       i=1,2,…,k-1.     (2.13)                  

  
Theorem 2 shows that the magnitudes of d(2)

i and d(3)
i , like the 

order of convergence of s, depend only on the quality of the approxima- 

tions mi. More specifically if the conditions (2.5) which lead to 

0(h4) convergence uniformly on [a,b] hold then, in general, 

 

    . 0(h)(3)
idand)20(h(2)

id ==

Furthermore, if the knots are equally spaced with hi =h and in (2.5) 

n ≥ 4 then d(2)
i= 0(h3) . 

Clenshaw and Negus (1978) determine the derivatives mi of a 

P.C.P. s by imposing the conditions 

  ;d
3

hc
d

(3)

i
1ii

(2)

i
+=       i=1,2,. . . ,K-1,                     (2.14) 

where the c. are given numbers. These conditions lead to the 

relations 
A

i
m

i-1
+B

i
m

i
+C

i
m

i+1
= Di

Y
i
+E

i
Y

i+1
;    i=1,2,…,k-l,                                      (2.15) 
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where  

                  (2.16)   
⎪⎭

⎪
⎬
⎫

+=−−=

+=+−+=−−=

),i2c(32
iγiE),ici2βi3β(3iβiD

)ic(12
iγiC),ic(1i2βic{2iB),iβiciβ(1iβiA

and β i , γi , Yi are given by (2.8). The equations (2. 15) together with 

the two end conditions 

            (2.17),(1)
kykmand(1)

oymo ==

are then used to determine the derivatives m. of a P.C.P. s which 

Clenshaw and Negus call an "X—spline with parameters c i". A sufficient 

condition for the unique existence of an X-spline s is that 

           (2.18) 1k1,2,....,i;1
iβic10 −=−≤+≤

If (2.18) holds then, it can be shown that, 

 ).30(h(1)
iyim =−

 

The X-splines of particular interest are those which correspond 

respectively to the following three choices of the parameters ci : 

i) ci = 0; i = 1,2,.. .,k-1. 

This is the only choice of the ci for which an x-spline s is twice 

continuously differentiable in [a, b]. Thus, in this case, s coincides 

with the conventional cubic spline and the equations (2.15) become 

the well—known consistency relations for cubic spline interpolation 

 1k1,2,....,i;1i1)/2hihi(hicii) −=++−−  

This is the only choice of the c. for which the derivatives mi of 

the x-spline s are such that 

          i = 0,1, ...,k . );40(h(1)
iyim =−
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For this reason s is called by Clenshaw and Negus the "optimal 

interpolating X-spline". Clearly, when the knots are all equally 

spaced the optimal X-spline coincides with the conventional cubic 

spline. 

(iii) c i  = -1,  i  -  1 ,2,… k-l  .

In this case the equations (2.15) become 

                        β imi -1 +mi=β i(3-β i)Yi+ Y
2

i
γ i+1 ; i = 1,2,...,k-l .        (2.19) 

 
Thus, the derivatives of the X-spline s are determined by solving a 

lower triangular linear system and, for this reason, s is called the 

"x-spline which minimizes computational labour". 

          Clenshaw and Negus (1978: chap.2.) claim that the conditions 

(2.14), with suitable ci = 0 , can restrain the magnitude of di (3)
 

and thus produce X-splines with smaller third derivative jump 

discontinuities than those of the conventional spline. However, 

this claim is not justified by Theorem 2 of the present paper which 

shows that, for the conventional spline and for any other X-spline, 

di
(3) , is always 0(h). In fact, the results of the present section 

indicate that the conditions (2.14) are unnecessarily restrictive 

and suggest the generalization of the x-spline definition given in 

the following section. 

3. A new definition for x-splines

Let  pi denote the cubic polynomial interpolating the function 

y at the points xi, xi+1 , x1+2 and xi+3 and define the quadratic 

polynomials qi ; i = 0, 1 ,..., k - 2, by 

                              qi = ;(1)
ip  i=0,1,...,k-3, and q  = q  = .                          (3.1) k-2 k-3

(1)
3kp −
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The motivation for the new definition of x-splines emerges from 

the observation that the jump discontinuities (2.6) and (2.7) can be 

written respectively as 

And        

⎪
⎪
⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪
⎪
⎪

⎬

⎫

−=

+
−

+−
−

−
−

−
−

−
−−

=

+
−

+−
+

=
−

+
−

−
−−

=

1k1,2,...,i

};
1i

m)
1i

(x
1i

(q
2

i
γ

)
i

m)
i

(x
1i

(q )
i

2β)(1
1i

m)
1i

(x
1i

(q
2

i
{β2

i
β

2

i
h

6(3)

i
d

)},
1i

m)
1i

(x
1i

(q
i
γ

)
i

m)
i

(x
1i

2(q)
1i

m)
1i

(x
1i

(q
i

{β
i

β
i

h
2(2)

i
d

    (3.2) 

This implies that the equations (2.15) can be written as 

                Ai mi-1 + Bi mi +Ci mi+1 =Ai qi+1(xi-1 )+Biqi-1(xi)+(xi)+Ci q i-1(xi+1 ); 
 

                i = 1 ,2 , . . . , K – 1, 

and suggests the following definition which extends the class of 

x-splines considered by Clenshaw and Negus (1978) to a wider class 

of P.C.P. 

Definiton 2 . Let ai , bi ; i = 1,2,... ,k— 1 be 2k—2 real numbers . Then, 

a P.C.P. s whose derivatives in. ; i=0,l, . .,k, satisfy the relations 

          (3.3) 

⎪
⎪

⎭

⎪
⎪

⎬

⎫

=

−=

++=++
=

+−−−−+−

,ym
,1k,,....1,2i

;)(xqb)(xq)(xqambmma
,ym

(1)

kk

1i1iii1i1i1ii1iii1ii

(1)

oo

where the polynomials qi are defined by (3.1), will be called an x-spline 

with parameters ai, bi ; i = 1,2,…,k-1 . 
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Clearly, this new definition contains the x-splines considered 

by Clenshaw and Negus (1978) as the special case 

ai =Ai/Bi , bi =Ci/Bi ; i - 1,2,.. . ,k-l ,                    (3.4) 

where the A., B. are given by (2.16). 

By Definition 2, the derivatives mi ; i = 1,2, . . .,k-1 of an 

X-spline s are determined by solving the (k-l)x(k—1)tri-diagonal 

linear system defined by (3.3).The matrix of coefficients A of 

this linear system is strictly diagonally dominant, and therefore 

non-singular, if 

                      |ai | + |bi | < 1 ; i = 1,2..,k-1.                                         (3.5) 

Thus, a sufficient condition for the unique existence of s is that 

its parameters satisfy (3.5.) . If this condition holds then, using 

a result of Lucas (1974= 576), 

| A -1 ||∞ < V,             (3.6) 

where v ≥ 1 is such that 

| ai | + |b i | +1/V < 1 ; i - 1,2 ............ k-1 .  

 We consider now the effect that the parameters ai , bi have on 

the quality of the X-spline approximation. For this, we let 

          ;}y(1)1i)
1i

(x
1i

{q
i
b}y(1)i)

i
(x

1i
{q}y(1)1i)

1i
(x

1i
)q
i
a

i
δ +−+−+−−++−−−=  

 i=1,2,...,k-l,  (3.7)  

and assume that the parameters of the X-spline satisfy (3.5). Then, 

from (3.3), 

)8.3(.1k,,....2,1i;|
i

|maxv|y )1(
ii

m|
i

−=δ≤−  
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      Also, by Taylor series expansion about the point xi , we find that, 

if y ε C6 [a,b] then, 

 

         ,1k,...,1,2i;)0(hy (5)
iG

5!
1y (4)

iFi
4!
1δi

5

i
−=++=                            (3.9) 

 
where  
 

         

⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪

⎬

⎫

−=

−++++++++
+++−++++++−

++−++++++++=
++++

+
++++−++

+
+=

,1k,,...1,2i

;})ih2ih1i(3h)1ihi(h2ih1i{hib

})2ih1i(2h)ih2ih1i(h1ihi{h1ihih

}))2ihi(2hih)2ih1i(h)2ih1i)((2h1ihi(hi{hiaiG

,)1ihi(h2ih1ihib

)2ih1i(h1ihih)2ih1ihi(hihiaiF

 (3.10)  

 
 

and, in (3.10), 

 hk+1 =-(hk-2+hk-1+hk).                                                                (3.11) 

 

When the knots are equally spaced with hi = h ; i = 1,2,...,k-l, then 

(3.9) simplifies considerably and, if y ε C7[a,b], it gives 
 

         
;)6(hoy(6)i

5}h
i
b~172-

i
{23ã

720
1

y(5)i
4}h

i
b~32-

i
{3ã

60
1

y(4)i
3}h

i
b~1-

i
(3ã

12
1

i
δ

+++

+++=
 

                 i = 1 ,2,...,k-1 ,       (3.12) 
 

 

⎪
⎪
⎭

⎪⎪
⎬

⎫

==

===

.ab~,bã

,2-k,,...1,2i;biib~ai,ãi

1-k1-k1-k1-k

where

and                                                             (3.13)
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The results (3.8) and (3.9)-(3.10) show that any x-spline s, whose 

parameters satisfy (3.5), is such that 

                                                          (3.14) 1k1,2,...,i);n0(h(1)
iyim −==−

where, in general, n = 3. However, if the parameters of s are such 

that Fi = 0; i = l,2,...,k-l then n = 4, and if Fi=Gi =0; i = 1,2,. .. ,k-1 , 

then n = 5. 

The remainder of this paper is concerned with examining the 

quality of six particular x-splines. These are the conventional 

cubic spline, the two x-splines of Clenshaw and Negus (1978) which 

we discussed briefly in Chapter 2, and three new x-splines of special 

interest that emerge from Definition 2. In particular, for each of 

these X-splines, we consider the case of equally spaced knots and, 

by using (3.12), (3.8), (2.4), (2.12) and (2,13), we derive bounds 

  .|d|and|d|,||ys||Eon )3(

i

)2(

i−=

4. x-splines of special interest

(I) x-spline s1 with parameters 

ai = βi /2 , bi = γ i /2 ;   i=1,2…,k-l ,                                  (4.1) 
where, as before, βi -= hi+1/(hi+hi+1) and γi = 1-βi . 

The values (4.1) are the only choice of parameters for which 

di
(2)  = 0; i = 1,2,. .. ,k-l . Thus, sI is the well-known conventional 

cubic spline. 

When the knots are unequally spaced then, in general, Fi = 0 

and the derivatives mi of sI satisfy (3.14) with n=3. However, 

if the knots are equally spaced then 

a i = bi = 1/4 ; i = 1,2,. . . ,k-l 
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and, by using in this case (2.11) instead of (3.12), 

          .1k,,...1,2i;)(ξξy
120

hδi
i

(5)
4

i
−=

−
=  

 
Thus, since v = 2, 

 ,1k,,...2,1i;||y||
60
h|ym|

)5(
4

)1(

ii
−=≤−  

 
and hence,   

              ,||
)5(

y
240

5
h

||
)4(

y||
384

4
h

E +≤                                                  (4.2) 

and  .

1k,,...2,1i;||
)5(

y||
5

2
h)4(

y||h|d
)3(

i|

,od
)2(

i

⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

−=+≤

=
                 (4.3) 

            (II) x-spline sII with parameters 

       (4.4).1k,,...2,1i;
2
ibi,

2
iai −=γ=β=

The jump discontinuities of  satisfy (2.14) with sands
(3)

11

(2)

11

ci = (hi—hi+1 )/2hi+1 , and (4.4) is the only choice of parameters of the 

form (3.4) for which Fi =0; 1 = 1 ,2, .. . ,k-1 . It follows that s11 is 

the only P.C.P., in the class considered by Clenshaw and Negus (1978), 

whose derivatives m. satisfy (3.14) with n > 3. 

When the knots are equally spaced then sII coincides with the 

conventional cubic spline sI . 

(III) x-spline s III with parameters 

                              a i = βi , bi = 0 ; i - 1 ,2,. .. ,k-l .                                            (4.5) 
The jump discontinuities of  satisfy (2.14) with sands

(3)

11

(2)

11

ci = -1, and the values (4.5) reduce the three-term recurrence relation 

in (3.3) to the two-term recurrence relation (2.19). For this reason,
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of all the x-splines contained in the definition of Clenshaw and 

Negus (1978), the construction of sIII involves the least computa- 

tional effort. 

When the knots are equally spaced then, 

ai = 1/2, bi= 0 ; i=1,2,...,k-1, 

and, since ν = 2, 

                 .)(h0||y||
60
h||y||

12
h|ym|

5(5)
4

(4)
3

(1)

ii
++≤−

 

Hence,  

                ,)0(h||y
240
h||y||

384
9hE

6(5)
5

(4)
4

++≤                                             (4.6) 

 

⎪
⎪
⎪

⎭

⎪
⎪
⎪

⎬

⎫

−=

++≤

++≤

,1k,,...1,2i

;)0(h||y||
5

h||y||2h|d|

and

,)0(h||y||
15
h||y||

3
2h|d|

3(5)
2

(4)(3)

i

4(5)
3

(4)
2

(3)

i

                (4.7)

 
where, in this case, (4,7) is obtained by using (2.13) for the bound 

on| and the relation instead of (2.12), for the |d
(2)
i /3(3)

ihd(20
id −=

.|d
)2(

i|onbound  

(IV) x-spline sIV with parameters 
 
ai=bi=0; i - 1 ,2,...,k-l .                                                       (4,8) 

The derivatives of sIV are given explicitly by 
 
mi= qi-1(xi); i=1,2,...,k-1. 

  

Thus, sIV is the x-spline of least computational effort. 



14 

In this case,  

        ;)()yh(hhh
24
1

y(xi)qym
i

(4)

2i1i1ii

(1)

i1i

(1)

ii
ξ+−=−=−

+++−
 

 

 1 = 1, 2 ,..., k - 1 ,  

where ξi∈[xi-1 ,xi+2 ]; i = 1,2,..,k-2,ξ k-1∈ [xk-3, xk] and hk+1 is 
given by (3.11). Hence, if the knots are equally spaced, 

 

(4.10)

1k,...,2,1i;||y||h2|d|

and

,||y||
15
h||y||h|d|

)4()3(

i

)5(
3

)4(2)2(

i

⎪
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          (V) X-spline sv with parameters, 
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The construction of sv involves the same computational effort as 

that of sIII. However, since the parameters (4.11) are such that 

Fi =0; 1=1,2,...,k—1, the derivatives mi of sv satisfy (3.14) with 

n = 4. 

When the knots are equally spaced then 
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Hence, 

(4.13)

.1k,,...2,1i

;)h(0||y||h
10
3||y||h|d|

and

,)h(0||y||h
120
17||y||h

30
11|d|

)12.4(,)h(0||y||
160
h||)4(y||

384
hE

3)5(2)4()3(

i

5)6(4)5(3)2(

i

6)5(
54

⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

−=

++≤

++≤

++≤

  

          (VI) X-spline sVI with parameters 
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where hk+1 is given by(3.11).  

This is the x-spline of highest accuracy, in the sense that (4.14) 

is the only choice of parameters for which Fi = Gi =0 ; i = 1, 2,..,k-l. 

This implies that the derivatives mi of sVI satisfy (3.14) with n = 5. 

It should be observed that, in this case, the conditions (3.5) which 

ensure the unique existence of sVI are satisfied only if 

(hi+hi+ 1) (hi-hi+2) < 2hi + 2(hi + 1+hi+2) ; 

i = 1, 2 , . . . , k-1 .  

When the knots are equally spaced then, 
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Hence, 
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5. Numerical results and discussion

In Tables 1 - 3 we present numerical results obtained by taking 

y(x) = exp(x), 

xi - i/20 ; I - 0, l,..., 20 ,                                                        (5.1) 
 
and constructing each of the six x-splines considered in Section 4. 
The results listed are values of the absolute error | s(x)-y(x) | , 
computed at various points between the knots, and values of the jump 

 computed at a selection of interior 

 

 discontinuities   ,dandd
)3(

i

)2(

i

knots. The results of Tables 4 - 6 are obtained, in a similar 
manner, by using the same y and the unequally spaced knots 

xi =- i2/82 ; 1 = 0, l,...,8 ,                                                     (5.2) 

In each table, the results corresponding to the x-spline sI are listed 

in column (I), those corresponding to SII in column (II), etc. 

The use of any of the X-splines sII' sIII' sIV ' SV' or sVI'. 

in preference to the conventional cubic spline SI, can be justified 

only if it leads to increased accuracy or to a reduction of the 

computational labour. The numerical results of this section indicate 

that no significant improvement in accuracy is achieved by the so 

called optimal x-spline SII of Clenshaw and Negus (1973), or indeed 
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by the more 'accurate' sVI . It follows that the only x-splines of 

real practical importance, for the interpolation of smooth functions, 

are those whose construction involves less computational effort than 

the construction of sI . In particular the two new x-splines sIv and 

SV are of special interest. The x-spline SIV involves the least 

possible computational effort, and it is of practical interest 

because of its simplicity. The x-spline SV has small discontinuities 

in the second derivative and produces, with less computational effort, 

results of comparable accuracy to those obtained by the conventional 

spline. 

By Definition 2, the construction of an x-spline requires 

knowledge of y(1) at the two endpoints x0 , xk and, in an interpolation 

problem, this information is not usually available. However, by 

using techniques similar to those of Behforooz and Papamichael 

(1979 a,b), the end conditions 
          
                  )3.5(,ymk,ym

)1(

k

)1(

oo
==

can be replaced by conditions which use only the available function 

values of y at the knots whilst retaining the order of the x-spline 

approximation. For example, instead of (5- 3) , the following end 

conditions can be used respectively for the construction of  SIV and 

Sv : 

mo = qo(Xo), mk = qk-2(xk),                                                       (5.4) 

and 

⎪
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 (5.5) 
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where, in (5.5), 

αj =uj /(uj-1) + vj /{vj-1-(vj-uj)2} ; j = 0,k 

with 

uo =(h1+h2)/h1,vo =(h1+h2+h3)/h1, 

 
and 

uk =(hk-1
+h

k)/hk,   vk =(hk-2+hk-1+hk)/hk ; 

see Behforooz and Papamichael (1979 b). 
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Table 1 

Values of | s(x) - y(x)|.   (Knots as in 5.1)  

X     (I)      (III) (IV) (V)         (VI) 

0.01 .674x10-8 .155x10-7 .111x10-7 .664x10-8 .682x10-8

0.02 .151x10-7 .414x10-7 .383x10-7 .148X10-7 .154X10-7

0.09 .705x10-8 .177xl0-7 .501x10-7 .688x10-8 .721xl0-8

0.22 .189x10-7 .117x10-7 .467x10-7 .190x10-7 .188x10-7

0.36 .990x10-8 .139x10-7 .808x10-7 .102x10-7 .967x10-8

0.62 .281x10-7 .143x10-7 .697x10-7 .283X10-7 .280x10-7

0.93 .374x10-7 .617x10-7 .353x10-6 .369x10-7 .378x10-7

0.96 .184x10-7 .402x10-7 .151x10-6 .193x10-7 .177x10-7

0.99 .179x10-7 .327x10-8 .245x10-7 .182x10-7 .177x10-7

Table 2 

Values of d .  (Knots  as in 5.1) )2(

)i( 

  
(I) 

 
(III) 

 
(IV) 

 
       (V) 

 
    (VI) 

x1 — -.996x10" .225x10-2 .121x10-4 -.889x10-5

x4 — -.102X10-2 .311x10-2 .132x10-4 -.103X10-4

X 7 — -.120x10-2 .361x10-2 .154x10-4 -.120x10-4

 
X10

X13 

x16

— 
— 
— 

-.140x10-2 

-.162x10-2 

-.189xl0~2

.419x10-2 

.487x10-2 

.566x10-2

.178x10-4 

.207x10-4 

.241x10-4

-.139x10-4 

-.162x10-4 

-.189x10-4

X19
— -.181x10-2 -.320x10-2 .290x10-4 -.210x10-4



 

Values of . (Knots as in 5.1) d
)3(

)i( 

 (I) (III) (IV) (V) (VI) 

 
x1

 
.525x10-1

 
.597x10_1

 
.244x10-1

 
.524x10_1

 
.526x10_1

X4 .611X10-1 .613xl0_1 .580x10-1 .611xl0-1 .611xl0-1

x7 .710x10_1 .723x10-1 .673x10_1 .709x10_1 .710x10-1

x10 .824x10- .838x10_1 .782x10_1 .824x10_1 .824x10-1

x13 .958x10_1 .974x10_1 .909x10-1 .958x10_1 .958x10-1

x16 .111 .113 .106 .111 .111 
x19 .130 .109 .192 .130 .129 

             Values of  |s(x)-y(x)|.  (Knots as in (5.2)  

X (I) (II) (III) (IV) (V) (VI) 
0.01 .512xl0-9 .131xl0-9 .125x10-8 .908x10-8 .104x10-9 .125x10-9

0.05 .287x10-8 .763x10-8 .558x10-7 .196x10-6 .611xl0-8 .826x10-8

0.1 .804xl0-7 .104x10-6 .290x10-6 .586x10-6 .956x10-7 .105x10-6

0.17 .297x10-6 .277x10-6 .269x10-6 .391x10-6 .272x10-6 .283x10-6

0.35 .589x10-6 .860x10-6 .373x10-5 .921x10-5 .702x10-6 .931xl0-6

0.5 .272x10-5 .301x10-5 .933x10-5 .192x10-4 .248x10-5 .325x10-5

0.6 .325x10-5 .308x10-5 .163x10-5 .422x10-4 .354x10-5 .298x10-5

0.8 .721x10-5 .566x10-5 .118x10-4 .328x10-4 .654x10-5 .480x10-5

0.9 .207x10-4 .192x10-4 .218x10-5 .184X10-4 .201x10-4 .184x10-4

Table 3

Table 4

20
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Table 5 

Values of d . )3(

)i( (Knots as in 5.2) 
 

 (I) (II) (III) (IV) (V) (VI) 

x1 _ -.166x10-3 -.646x10-3 .255x10-2 -.152x10-3 -.169x10-3

x2 — -.348x10-3 -.209x10-2 .693x10-2 -.288x10-3 -.369x10-3

x3 - -.565x10-3 -.457x10-2 .148X10-1 -.394x10-3 -.630x10-3

x4 - -.839x10-3 -.862x10-2 .275x10-1 -.442x10-3 -.103x10-2

x5 - -.121x10-2 -.151X10-1 .480x10-1 -.373x10-3 -.160x 10-2

x6 - -.171x10-2 -.254x10-1 .427x10-1 -.121x10-3 -.260x10-2

x7 - -.249x10-2 -.315X10-1 -.470x10-1 -.941x10-3 -.387x10-2

                                                                        Table 6 

 Values of . (Knots as in 5.2) d
)3(

)i( 

 (I) (II) (III) (IV) (V) (VI) 

x1 .335x10-1 .319x10-1 .413x10-1 .325x10-1 .315x10-1 .322x10-1

x2 .663x10-1 .668x10-1 .801xl0-1 .271x10-1 .662x10-1 .670x10-1

x3 .108 .109 .125 .541x10-1 .107 .109 
x4 .160 .161 .184 .871x10-1 .160 .162 

x5 .233 .233 .263 .128 .229 .234 

x6 .324 .329 .376 .745 .327 .332 

X7 .484 .479 .403 .601 .484 .476 
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