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1 . Introduction. 

 

     The finite dimensional problem of constructing Lagrange and 

Hermite interpolants, which natch function and derivative values 

at a  finite  number  of  points on a simplex in 
n

~
R , has been con- 

sidered by a number of authors [4,9,10,11,12].  More  recently, 

Mansfield [8] has considered the infinite dimensional problem of 

constructing blending  function interpolants which match function 

and derivative values on the entire boundary of a tetrahedron and, 

more generally, an n-simplex. 

     Mansfield's work generalizes a scheme for interpolating on 

triangles first described in Barnhill, Birkhoff and Gordon [1]. 

In the present paper we develop a new scheme for blending function 

interpolation on n—simplices which is a generalization of an interp- 

olant for triangles described in [7]. The essential feature  of the 

scheme is that it is a moving average or 'blend' of interpolants, 

each of which matches function and derivative values on all but one 

of the faces of the simplex. 

    The paper begins, in Section 3, with the development of an explicit 

representation of a finite dimensional  Hermite  interpolation  polynomial 

for the simplex. This interpolant is a natural generalization of 

Hermite two point Taylor interpolation in one variable and includes 

the bivariate tricubic polynomial interpolant of Birkhoff [3] as a 

special case. The existence of the interpolant in the general case is 

suggested by Mansfield [8]. It should be stressed that the piecewise  

application of the interpolant  over a union of  non-overlapping  simplices 

in   gives  a  C,1n,
~
R >n 0 global function, even though derivatives 

across the vertices of the simplicial complex  are continuous. 

The importance of the Hermite interpolant to this paper is 
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that its basis functions are used to construct the weight functions 

of the blending function scheme. This scheme is described in general 

terms in Section 4 and polynomial and rational examples of the 

scheme are developed in Sections 5 and 6. These blending function 

schemes, unlike the Hermite interpolant, give CN global functions 

when they are piecewise applied over a simplicial complex. 

All the interpolation  schemes  described  in this  paper define 

bounded idempotent linear operators, i.e. projectors , on some appropriate 

function space. Thus the schemes are able to reproduce  all functions 

in the range of the interpolation  projector. The range is thus 

called the precision set  of the interpolant. The subset of all 

polynomials of a certain degree which can be contained in the precision 

set is important in determining the accuracy of each interpolant. 

Such polynomial sets are considered in detail for each interpolation 

scheme of the paper. 

The paper begins with a summary of notation in Section 2. In 

particular, the barycentric coordinate system for an n—simplex is 

introduced since each interpolant will be described in terms of 

this invariant system. 

2, Preliminary  Notation. 

Let 

,}1jλ
1n

1j
,1jλ0/jvjλ

1n

1j
x{ns =∑

+

=
≤≤∑

+

=
==  

(2.1) 

where 

 

x = (x1 ,...,xn) ∈ ,
n

~
R

(2.2) 

define a simplex in 
n

~
R  with vertices 
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vj = (v1j ,...,vnj) ∈ ,  j=1,2,…, n+1 .                        (2.3) 
n

~
R

 

We assume that the simplex is non-degenerate so that the vertices do  

not lie in an m-dimensional  hyperplane  of 
n

~
R , m<n .In  this  case, 

the representation 
 

                                (2.4),1jλ
1n

1j
where,jvjλ

1n

1j
x =∑

+

=
∑
+

=
=

uniquely defines the barycentric  coordinate  system  λj = λj (x) , 

j=1 ,2,...,n+1 . Let  E. denote a  point  on  the  face  λi = 0, i.e. 

the  face  opposite  the vertex  Vi . Then  E. can  be represented as 

              .,0i 1jλ
1n

1j
jλwhere,jvjλ

1n

1j
E =∑

+

=
=∑

+

=
=          (2.5) 

     The barycentric coordinate system  can be interpreted as defining 

an affine transformation between (x 1 ,...,xn) ∈ 
n

~
R ,and (λ1,....,λn) ∈ 

n

~
R  

This  transformation takes Sn , with vertices Vj , j = 1,2,...,n+1 , 

onto a standard simplex  ,nS~  ith vertices 
~

V j = ej ,  j = 1,2,...,n , 

and  
~
01nv~ =+  respectively, where ej ,j = 1,...,n , denotes the 

canonical basis of   
n

~
R

We  define a derivative operator along the edge joining the vertices 

Vi and Vj by 
 

                 (2.6)  ,1n,...1,2,ji,,ji,kx/)kivkj(v
n

1k
ijD +=≠∂∂−∑

=
=

and a product of such operators along all edges which meet at 

  Vi by 

                                          (2.7)  .1n,...2,1,i,ijD
1n

1j
1j
ΠiD +=
+

≠
=

=

Furthermore, if α1 ,α2, . . . ,αn+1 denote n+1 non-negative integers 

and              
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                       (2.8) ,1n,...1,2,i,)1nα,...,1iα,1iα,...,1(α
i~
α +=++−=

Denotes  a  multi-index of N of these integers, then we define 

  

                             (2.9) .1n,...2,1,i,ijD
1n

ij
1j
ΠiD +=
+

≠
=

=
α

i~

Finally, with 

                                                     (2.10) ,),...,( n1
~

αα=α

we define  

                                                      (2.11) Dα = .)/(
1~ jj

n

j
x απ ∂∂

=

.
n

1j
Π~D j)jx/( α∂∂
=

=
α

 (2.11) 

We conclude this section with  a  lemma  which will be useful in  

subsequent  work: 

Lemma 2.1.  Let  f :  
~
Rn

~
R →   be  defined  by 

     f(x) =  g( λ1, λ2,..., λn+1) ,                                      (2.12) 

Where g is a real  dif  ferentiable  function  of  n+1  variables  and  

λj , j = 1,2,...,n +1 , are  defined  by (2.4). Then 
 
     Dijf = (∂/∂λj - ∂/∂λi)  i ≠ j , i, j = 1,2,...,n+1 .                (2.13) 
 

   Proof. Let 

     h (x1 ,x2,...,xn+1) = g(λ1 , λ2 ,..., λn+1 ), 
 

where x1 ,x2 ,...,xn+1  are  defined  by 

            .1n,...,1,2j,11nvand1n,...,1,2i,ixijvjλ
1n

1j
+==++==∑

+

=

This transformation is non-singular since the simplex is non-degenerate 

and (2.4) is the particular case xn+1 ≡ 1 . Now 
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.kxh/)kivkj((v
n

1k

kxh/)kivkj(v
1n

1k
g)iλ/jλ/

∂∂−∑
=

=

∂∂−∑
+

=
=∂∂−∂∂

Thus, from (2.6), the lemma is established, where  

f(x) = h(xj ,...,xn,1) . 

3.  A Hermite  Interpolant for the Simplex . 

    Theorem 3.1 . Given  the non-negative  integer  N , let f be a 

real valued  function defined  on Sn which is such that 

                            (3.1) ,n
~
N

i~
,)iV(fi~ ∈α+=

α

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
1n,...2,1,i ,iD

 
are well defined  values, where 
 
    

~
N  =  {0 , 1,...,N} .                                    (3.2) 

Then there exists  an interpolation polynomial  p, explicitly  defined  
by 

      
           

(3.3) ,)i(V)1N
i(f/λ

i~α
iD)(P

~α

1N
iλ

1n

1i
p(x) ⎟

⎠
⎞⎜

⎝
⎛ +λα∑

∈

+∑
+

=
=

i~n
~
N

where 

                    (3.4)   ,)1nλ,...,2λ,1λ(λ,!jj/αα
jλ

1n

ij
1j
Π)(

i~α
p +=

+

≠
=

=λ

which is such that 

              (3.5) .n

~
N

j~
α,1n,...2,1,j f

j
~
α

iD)j(Vpi~
α

iD ∈+==
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

 
     Proof. Since  

,n

~
N

j~
α,1n,...2,1,)

j
(Vi~

α

i
D ∈+=≠=+λ ⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
i,ji,01N

i  
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it follows from (3.3) that 

              )j(V})j(V)1N
j(f/λ

j~α
jD'

j~α
p

n
~N

'
j~α

1N
jλ{

j~α
jD)j(Vp

j~α
jD

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
⎟
⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛ +∑+=

 

for all . Application of Leibnitz's rule then gives that n

~
N

j~
α ∈

     ( ) )j(V
})1N

j
(f/λ'

j~α
D{}'

j~α
p

j
~
β
j(D

n
~N

'
j~α

}1N
jλ

j
~
βj~αjD{

~
β
~
α

j~αj
~
β

)j(Vp
j~αjD

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛ +
∑
∈

+−
∑
≤

= j

j
 

    Now, using Lemma 2.1, 

          )j(V}!'kα/
'
kαkλ

1n

jk
1k

Π{k}β)jλ/kλ/(
1n

jk
1k

Π{)j(V'
j~α

p
j
~
β
jD

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +

≠
=

∂∂−∂∂
+

≠
=

=

                      

⎪
⎪
⎩

⎪⎪
⎨

⎧ =

=
.otherwise0

,
j~

β
'

j
αif1
~

Hence,  substituting and reconstituting the summation using Leibnitz's   
  
rule gives 

      

)
j

(Vf
j

~
α

j
D

)
j

(V)1N
j

f/λ1N
j

(λ
j

~
α

j
D

)
j

(V})1N
j

(f/λj
~
β
j
D{}1N

j
λ

j
~
βj

~
α

j
D{

j
~
β

j
~
α

j
~
αj

~
β

)
j

(Vp
j~α

jD

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
⎟
⎠
⎞⎜

⎝
⎛

=

++=

++
−

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

∑
≤

=

 
which cpmpletes the proof of the theorem.  

Example the interpolant defined by (3.3) is a natural generalization 

of Hermite two point Taylor interpolation in one variable, where, with  

n = 1 and x = λ1 V1 + λ2 λ2 ∈  λ
~
R 2 + λ2 =1 ,  we have 

    

( )
( ) (3.6),)2(V

1N
1(f/λ

i
12D}/i!i

1λ{
N

0i
1N

2λ

)1(V
1N

1(f/λ
i

12D}/i!i
2λ{

N

0i
1N

1λp(x)

+
∑
=

++

+
∑
=

+=
 

   



 

 

see Davis [5, p.37]. Equation (3.6) can be expressed in the cardinal 

basis form  

         (3.7)  ,)
2

(Vfi
12
D)

2
(λ
i

h
N

0i
)
1

(Vfi
12
D)

2
(λ
i

h
N

0i
p(x) ⎟

⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛ ∑

=
+∑

=
=

where 

     .!i)(ki!N!/!i)k(Nkλ
N

ik
1Nλ)(1)(ih −−+∑

=
+−=λ                  (3.8) 

 
When n = 2 and N=1 in (3.3) the tricubic  interpolant on a triangle 

of G. Birkhoff [3] is obtained. 

The piecewise application of the interpolant (3.3) over a 

bounded  domain , which consists of the union of non-overlapping 

simplices in   gives  a C global function, except  in  the case 
n

~
R

n=1 when it is CN. The blending  function   interpolants of the 

following  sections  will, however, give  CN global functions for 

all n . 

It follows from the theory of finite dimensional interpolation,  

and the explicit representation given by (3.3) and (3.4), that  the  

linear functionals defined by (3.1) are linearly independent over  

the (n+l)(N+l) dimensional polynomial space defined by 
 

.}1n,...,1,2i,Njα0/jαjλ
1n

ij
1j
Π

1N
i

λ{T +=≤≤
+

≠
=

+
=            (3.9) 

Also, the linear operator P defined by 

P[f](x) = p(x) , f ∈ CnN(Sn) ,                               (3.10) 

where  p is given by (3.3), is a  projector on  CnN (Sn ) with range 

T . Thus 

P2[f] - P[f]                                                (3.11) 
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and 

P[f] = f for all f e T . (3.12) 

The following theorem gives more insight into the nature of T . 

Theorem 3.2. T is the space of polynomials whose restriction 

along an edge joining any two vertices Vi and  Vj , i≠j , is a 

polynomial of degree 2N+1 , i.e. 

.ji,1N2{T }jαiα0/kαkλ
1n

1k
Π ≠+≤+≤
+

=
=                     (3.13) 

Proof. Clearly, from (3.9), 

.ji,1N2{T }jαiα0/kαkλ
1n

1k
Π ≠+≤+≤
+

=
⊂

 

Thus we require to prove that if 

     ,}ji,12N
j

α
i

α0where,k
α

kλ
1n

1k
Π{f ≠+≤+≤
+

=
=                (3.14) 

then f ∈ T , as  defined  by (3.9). The proof  of this  comprises two parts: 

(i) Suppose  αk ≥N+1  for  k=i . Then,  since  αi+αk ≤2N+1 , it follows 

that  αk≤N  for , k≠i k=1,2,...,n+1 . Now (3.14) can  be  written as 

      

,αk
kλ

1n

ik

1k
Π1Nαi)kλ

1n

ik

1k
Π1(1N

iλ

αk
kλ

1n

ik

1k
Π

1Nαi
iλ

1N
iλf

+

≠

=

−−+

≠

=
−+=

+

≠

=

−−+=

   

and since αi -N-1+αk  ≤  N it follows  that  f ∈ T. 

 (ii) Suppose αk ≤N  for all  k=1 ,2,...,n+1 . Then  ∑
+

=

1n

1i
αK ≤ (n+l)N . 
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Assume further the inductive hypothesis that f ∈ γ for all 

    α∑
+

=
≤

1n

1k
M K ≤ (N+1)N , where 1≥M≤(N+1)N. Now   if  ∑

+

=

1n

1k
αK  = M-1 then 

 (3.1 4) can be written as 

      

,
ki

α
k

λ
1n

1k
Π

1n

1i

)
k

α
k

λ
1n

1k
Π()

i
λ

1n

1i
f

+

=
∑
+

=
=

+

=
∑
+

=
= (

where  and α∑
+

=
=

1n

1k
Mkiα ki ≤ N+l . Thus f ∈ γ  using  either  the 

inductive hypothesis if  αki ≤ N or part (i) if  αki - N+l . The 

inductive hypothesis is true for M =(n+1)N since in this case 

αk=N for all k=l , 2,...,n+l and then (3.14) can be written as 

     

,
N

k
λ

1n

1k
Π1N

i
λ

1n

1i

)
N

k
λ

1n

1k
Π()

i
λ

1n

1i
(f

+

=

+∑
+

=
=

+

=
∑
+

=
=

    

so that f ∈ T . Hence, by induction, the hypothesis is true for 

all 0 ≤ M ≤ (n+l)N. 

This completes the proof of the theorem. 

The following corollary follows immediately from (3.13) 

Corollary 3.1. The following inclusions hold:

,11)N(n
T

12N ++
⊂⊂

+ PP P2N+1 (n+l)N+l '                (3.15) 
where 
 

      }K
i
α

n

1i
0,

n
~
Rx/

αi
ix

n

1i
Π{k ≤∑

=
≤∈

=
=P   ,           (3.16) 

 

is the set of polynomials of degree ≤ K . 
 



10 

It should be noted that 

,1)N(n
T

and
T

22N +
⊄⊄

+
PP   

 

An Algebraic Identity. We are now in a position to derive an 

identity which will be essential for the blending function schemes 

which  follow. Let  f(x)≡ 1 . Then f ∈ T and, using   (3.12),  the 

following identity can be derived: 

∑
+

=

1n

1k
ai (x) = 1 for all  x ∈ 

n

~
R                             (3.17) 

 
where ai є T are polynomial functions defined by 
 
 

,
j
α

1n

ij
1j

,/N!!)(N(λλ
i~
αP

n

~
N

i~
α

1N
iλ(x)ia |||| ∑

+

≠
=

=αα+∑

∈

+=
i~i~

   (3.18) 

 
and the are given by (3.4) . 

i~

P
α

4. A General Scheme for Blending Function Interpolation. 

In this section we define a general scheme for interpolating 

function and derivative values given all faces of the  simplex  Sn  .

Two particular implementations of the scheme will be given in subsequent 

sections. The interpolation  scheme is defined in the  following theorem. 

Theorem 4. 1. Let f and Pi [f], i=l ,2,...,n+l , where the Pi  

are linear operators, be real valued functions defined on Sn which  

are such that 

( ) ( )
(4.1).N

k
α

n

1k
allfor

,1n,...1,2,j,ij,)j(Ef~
α

D)j(E[f]iP
~αD

||
~
α ≤∑

=
=

+=≠=

 

T hus Pi [ f ] interpolates f and its derivatives of order N and 



11 

less on all faces of the simplex excluding the face λi = 0'. Then 
 

P[f](x) -  a∑
+

=

1n

1i
i(x) Pi[f](x), x ∈ Sn ,                    (4.2) 

where  the  ai  are  given  by  (3.18) , defines  a linear operator P 
which is such that  

     
( ) ( ) )3.4(.Nallfor ≤+== ||

~
α,1n,...1,2,j)j(Ef~

α
D)j(EP[f]~αD

Proof. The proof is almost self evident, relying on (3.17) and 

(3.18). More formally, applying Leibnitz's rule gives 
 

( )

,)
j

(Ef~
β

~
α

D)
j

(E
i
a~

β

D
1n

ji
1i

~
β
~
α

~α~
β

)
j

(EP[f]~
β

~
α

D)
j

(E
i
a~

β

D
1n

1i
~
β
~
α

~α~
β

)j(E[f]
i
P
i
a

1n

1i~
αD)j(EP[f]~αD

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

⎟
⎠
⎞⎜

⎝
⎛

−

∑
+

≠
=

∑
≤

=

−

∑
+

=
∑
≤

=

∑
+

=
=

 

where, since (3.18) contains the factor 1N
iλ
+ , we have used the fact 

That 

       .N|
~
β|allfor0)j(Eja

~
β
D ≤=⎟

⎠
⎞

⎜
⎝
⎛

Furthermore, from (3.17), 

       
⎪⎩

⎪
⎨
⎧

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

≤<

=

=∑
+

≠
= ,N|

~
β|0if0

,0|
~
β|if1

)
j

(E
i

a~
β

D
1n

ji
1i

and hence (4.3) follows. 

Remarks, Suppose H is a subspace of bounded real valued functions 

defined on Sn which is such that Pi :H → H , i=l ,2,...,n+l , and 

which is such that the derivatives defined by (4.1) exist and are bounded 

on H . Suppose further that 
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Pi [g ] (x) ≡ 0 , i=1,2,..., n+1,                              (4.4)

for  all  g ∈  H  such  that 

                                  

)( 1n,...,1,2j,N|
~
α|,0)j(Eg~αD +=≤= .                      (4.5) 

Then it follows that 

Pi (I-Pi)[f](x) ≡ 0 for all f ∈ H ,                            (4.6)  

where I is the identity operator, and, moreover, that 

     P(I-P) [f] (x) ≡ 0 for all f ∈ H .                              (4.7) 

Thus Pi , i = 1,2,...,n+1 , and  P define bounded idempotent linear 

operators,  i.e. projectors, on  H . Also  if 

   Pi [f] = f for all f ∈ Hi ,                                     (4.8) 

i.e. if Hi is the precision set of the operator Pi , then, using 

(3.17),it follows that 

P[f] = f for all   ,                                  (4.9) 
i

1n

1i
f HI

+

=
∈

i.e. the  precision  set of P contains the intersection of the Hi  .

5 . Polynomial Blending Function  Interpolation  Scheme. 

We now consider an example of the general blending function scheme 

defined  in  Theorem  4.1,  where  projectors Pi  are defined by Boolean 

sums of polynomial  Taylor interpolation projectors. Let 

 

     ,1
k

λ
1n

1k
,ji,

i
V)

j
λ

i
(λ

k
V

k
λ

1n

ji,k
1k

j
jE =∑

+

=
≠++∑

+

≠
=

=             (5.1)
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be the point of intersection  of the face  λj = 0 with the line 

through  x which is parallel to the edge joining Vi

and  Vj .Also let  , i=l,2,...,n+l , be the function spaces )n(S
nN
i

C~

      .}
n

~
N

i~
αallfor)n(S0Cf

i
~
α

iD/f{)n(S
nN

i
C ∈∈=~              (5.2)            

Then  Taylor interpolation  projectors  can be defined on  by i
jT )n(S

nN
i

C~

                   

( ) .1n1,2,...,j,ij,)ij(Ef
k

ijD)!/k
k
j(λ

N

0k
[f](x)i

jT +=≠∑
=

=      (5.3)           
 

Some  properties of these projectors  are given in the following lemma: 

 Lemma  5.1. The Taylor projectors  defined by (5.3) have  the interp- 

olation  properties that 

( ) ( ) )
n

(S
nN

i
CfN,0,1,...,k,ji,)j(Ef

k
ijD)j(E[f]i

jT
k

ijD ~∈=≠=  (5.4)          

and the precision set property that 

                                        (5.5)           ,i
jfallforf[f]i

jT H∈=

where 

                (5.6)          .}Nk0,)n(S
n

i
Cg/)(λg

1n

ji,
1

k
jλ{

i
j ≤≤∈∏

+

≠
=

= N~lll

l

l
H

                                                                        

      Proof.  Since  λj = 0  at  Ej  and  since ( ∂/∂λ j  - ∂/∂λ i )  0)i
jE(g =

for any differentiable function g,it follows by use of Lemma 2.1 that 

             
( ) ( )

( )( ) .N0,1,...,k,)j(E)ij(EfkijD

)j(E)ij(Ef
k'

ijD)!/k''
k
j(λ

N

0k'
k)iλ/jλ/()j(E[f]i

jT
k

ijD

==

∑
=

∂∂=∂∂= ⎟
⎠
⎞⎜

⎝
⎛

  

Now  when  x  = Ej  we have   and hence  the interpolation  properties jEi
jE =

(5.4)  follow.  Also, if 
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,Nk'0,)( λg
1n

ji,

1

k'
jλf(x) ≤≤∏

+

≠

=
= ll

l

l

 

then it follows from (5.1) and Lemma 2.1 that 
 

( ) )i
j

(Efk)
i

λ/-
j

λ/()i
j

(Efk
ji

D ∂∂∂∂=⎟
⎠
⎞

⎜
⎝
⎛  

⎪
⎪
⎩

⎪⎪
⎨

⎧ =∏
+

≠

=
=

.otherwiseiskif0

,'kkif)(λg
1n

ji,

1
!k' ll

l

l
 

  

Thus substituting into (5.3) gives the desired precision set result (5.5), 

which completes the proof of the lemma. 

The proj e etors   ,j≠i , j=1 ,2 ,...,n+1 , are commutative over i
jT

)n(S
nN
i

C~ .  The proof of the  following theorem is then easily supplied 

by induction using the Boolean sum theory of Gordon [6]. 

Theorem 5.1. The n fold Boolean sum 

(5.7) 

where 

,i
jT

1n

ij

1j
iP ⊕

+

≠

=
=  

    ,
2

i
jT1

i
jT2

i
jT1

i
jT2

i
jT

i
jT −+≡⊕                                 (5.8)

defines  a projector on   which is such that )n(S
nN
i

C~

          (5.9) .1n1,2,...,j,ijand

N0,1,...,kallfor)j(Efk
ji

D)j(E[f]
i

pk
ji

D

+=≠

== ⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

F urthermore 

      .                                (5.10) i
j

1n

ij

1jifallfor[f]ip HH ∪
+

≠

=
=∈=

 
 
 



      15 
 
 

Equations (5-9) imply that 

( ) ( ) ,)j(Ef~
α

D)j(E[f]iP
~αD = j≠i,j = 1, 2,...,n+1 , 

                                   

.N
~
αallfor ≤  

Thus the following corollary follows immediately from Theorems 5.1 

and 4.1 : 

Corollary 5.1 

,)n(S
n

i
C

1n

1i
f,nSx,(x)[f]iP(x)ia

1n

1i
(X)P[F] N~∑

+

=
∈∈∑

+

=
=                (5.11)

defines a blending function  interpolant on Sn . Moreover, since 

,1n1,2,...,i,i11)n(N +=
⊂

−+
HP then (4.9) implies that 

P[f] = f for all f ∈ Pn(N+1)-1   
.                                                          (5.12) 

 
We refer to (5.11) as the polynomial blending function interpolant

since  the  P. and P involve  polynomial  weights. 

Remark. The derivatives  ,
n

~
N

i~
α,f

i~α
iD ∈   are  'compatible' 

on C  . By  this we mean that the derivatives do not depend on )n(S
nN
i~

the order in which the differentiation is performed. This condition 

allows the commutativity of the projectors  j=1,2,...,n+1. ,ij,T i
j ≠

The projectors defined in the following section do not require such 

stringent compatibility conditions. However, this involves the 

introduction of rational terms and the blending function interpolant 

which results has, in general, less polynomial precision. 

6. Rational Blending Function Interpolation Scheme. 

In this section we consider a rational definition of the projectors 

Pi  for the  general  blending function scheme of Theorem 4.1. The 

definition is inductive, where Theorem 4.1 is used to define a projector 

on a k-simplex as a weighted  average of projectors on (k-1) dimensional 
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simplices. In order to define the scheme the following notation is 

introduced: 

Let 

Ik ={ν={ν1 , ν2,..., νk+1} / νi ∈{1,2,. ..,n+l } , νi≠νj for all i≠j } 
 

                                                   k=l,2,...,n ,        (6.1) 

be the ( )1n
1k
+
+   dimensional set of combinations of{1 ,2,...,n+1 } taken 

k+1 at a time without repetitions. Also let Sν ,   νєIk , be  the k 

dimensional simplex given by the intersection of Sn with the n—k 

hyperplanes  through x parallel to the faces λi = 0 , i∈ν', where 

 

νf = {1,2,...,n+l} - ν (6.2) 

The simplex Sv has vertices 

                       (6.3)       ,vjV,
υj

V}iλvi
{iυiλ,

vi
v
vjV ∈∑

∈
+∑

∈
=

and it is easily  shown that 

                                                         (6.4),v
vjVv

vjλ
1k

1j
x ∑

+

=
=

where 

     ,vjv,}iλ,
vi

{/vjλ}iλvi
{/vjλv

vjλ ∈∑
∈

=∑
∈

=                        (6.5) 

define the barycentric coordinates of Sv with respect to the vertices 

.v
vjV  Consider now the particular case v = {v1,v2 } ∈ I1, where I1

is an (n+l)n/2 dimensional set. Then the one dimensional simplex 

Sv is the line segment joining the two vertices 

          ,       v = { V
⎪
⎭

⎪
⎬

⎫

++∑
∈

=

++∑
∈

=

,
2

vV}
2

vλ
1

v{λjVjλ,vj
v
v2V

,
1

vV}
2

vλ
1

v{λjVjλ,vj
v
v1V

1 ,V2 } .   (6.6) 
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In this case 

     ,}2v,1{vv
v,

2
vV

v

2
vλ

v

1
vV

v

1
vλx +=                                (6.7)

where 

     .}
2
vλ

1
v{λ/

2
vλ

v

2
vλand}

2
vλ

1
v{λ/

1
vλ

v

1
vλ +=+=                 (6.8)

The line segment Sν , ν={ν1, ν2 } , can be interpreted  as the intersection 

of  the  simplex Sn with the line through  x  which is parallel to the 

edge  joining  Vv1  and Vv2 . Thus,  with  the  notation of Section 5, 

we have  2
v

.
1

vE
v

2
vVand1

v

2
vE

v

1
vV =

 
Let  )n(SN

2
v,

1
vC be the function space defined by 

)
2

v(ENC)
1
v(ENCfi

2
v
1
vDand)n(SNCf/f{)n(SN

2
v,

1
vC I∈∈=

   , 0 < i < N }. (6.9) 

Then a Hermite two point Taylor operator Pv , ν={ν1, ν2 } ,can be 

defined along the line segment Sν by 

(6.10),)
n

(SN

2
v,

1
v

Cf,)
2

v,
1

(vv

)v

2
v(Vfi

1
v
2
vD

i)
2
vλ

1
v(λ)}

2
vλ

1
v{λ/

1
v(λih

N

0i

)v

1
v(Vfi

2
v
1
vD

i)
2
vλ

1
v(λ)}

2
vλ

1
v{λ/

2
v(λih

N

0i
(x)[f]vP

∈=

++∑
=

+

++∑
=

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

  

whe re the hi are defined by (3.8). 

If we exclude, for the moment, the singularity ,0
2
vλ

1
vλ ==  

then Pν , ν ={ν1, ν2 }  defines an interpolation projector  C  )n(SN

2
v,

1
v

on and we have the following lemma: 
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Lemma 6.1. The Hermite projectors defined by (6.10) have the 

interpolation properties that 

⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

=

=

)
1
v(Efk

1
v
2
vD)

1
v(E[f]vPk

1
v
2
vD

)
2
v(Efk

2
v
1
vD)

2
v(E[f]vPk

2
v
1
vD

   
(6.11)

,)n(SN

2
v,

1
vCfN,0,1,...,k ∈=

and the precision set property that 

Pv [f ] = f for all f є Hv  ,                                                       (6.12) 

where 

  
})n(SN

2
v,

1
vCg,12Nk0,2or1i/)(λg

'v

k
viλ{v ∈+≤≤=

∈
∏= llll

H

                                                               (6.13) 

Proof. The interpolation properties follow directly from the 

theory of Section 3 in the special case n=l . We also know from Section 

3 that 

 .12Nk01,2,i,k)}
2
vλ

1
v{λ/

i
v(λ]k)}

2
vλ

1
v{λ/

i
v(λ[vP +≤≤=+=+  

The precision set result is then proved by writing 

 

       
,1,2i,)(λg,

,v
Πk}λ,

v
I{k)}

2
vλ

1
v/{λ

i
v(λ

)(λg
,v

Π
k

viλf

=
∈

∑
∈

−+=

∈
=

lllll

lll

 
and noting that λℓ , ℓ∈ν’ , is a scalar with  respect to the linear 
         
operator Pν . 

In Lemma 6.1 we have ignored the problem of the singularity 

λv1 = λv2 = 0 . We now show, in Lemma 6.3, that this singularity is 

removable by considering the behaviour of the Hermite projector Pv , 

v={v1 ,v2} , in a neighbourhood of the point  ,nSV∈~  where 
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.1i
1n

v2v1,i
1i

,1i0,iVi
1n

2
v,

1
vi
1i

V =λ∑
+

≠
=

≤λ≤λ∑
+

≠
=

=
~~~~                 (6.14)      

In order to prove Lemma 6.3 we consider first a preliminary lemma which 

essentially relies on the operator defined by the left hand side of 

(6.16) annihilating  polynomials of a certain degree. Standard results 

for such operators prove difficult to apply because of the nature of 

particu1ar operator and function space involved. We thus give a direct 

proof of this lemma: 

Lemma 6.2. Let   letand)n(SN

2
,
1

Cf νν∈  

                                                   )v

1
v(Vfj

21
D)!j/j

2
(λ

N

0j
p(x) ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
ννν∑

=
=

(6.15)

be the Taylor interpolant to f about .ν

1
νV  then

     )
~
γ(iχ,n

i|
~
γ|N

)
2
vλ

1
v(λ})v

2
v(Vf)(Pi

2
v
1
vD{

γ
~D

−

+=− ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
                   (6.16)

nC(Si,
~
γnwhere,iN|

~
γ|allfor ∈−≤  

.Sx,0)x(n ni,
mli

x
~ ∈=χν→                                            (6.17)

 
 
Proof. For simplicity and without loss of generality  we consider 

the case v—{1,2}  with the derivative operator 

 

1,2,k,)
1n

γ,...,
1k

γ,
1k

γ,...,
1

(γ
k~

γ,jγkjD
1n

k,1,2j
1j

k
~
γ

k
D ≠

++−
=∏

+

≠
=

= (6.18) 

 

~(D.iN|
~
||(see (2.9)) , where 

~
|

γ

−≤γ=γ   can   be   expressed   as   a 

 linear  combination of   such   derivatives.) Now if   )nS(1Ch ∈

           

( )
( )⎪⎩

⎪
⎨
⎧

=

≠
=

.1,2jif)v2(VhkjD

,1,2jif)v2(VhkjD

)}v
2{h(VkjD                             (6.19)          
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Thus, since ,Ni|
~
γ|,)n(SNCfp, ≤+∈     and   substituting Dk2 = Dk1 + D12

it follows that 

           ( ) })2(Vf)(pi
12D{kkD −

γ
~

 
 
 
 
 

)v2(Vf)(pjγkjD
1n

k,1,2j
1j2γ1γk2D

i
12D

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

−∏
+

≠
=

+=    

        
)v2(Vf)(pjγkjD

1n

k,1,2j
1j12D2γ1γk1D

i
12D2

γ
1

γ2
γ

1
γ

0
⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

⎟
⎠
⎞

⎜
⎝
⎛ −∏

+

≠
=

−+
+

∑
+

=
= ll

ll

 

                           (6.20)
)v2(Vg)(qi

12D2γ1γ2γ1γ

0
⎟
⎠
⎞⎜

⎝
⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−++

∑
+

=
= l

l
l

    
where 

           )
n

(S
|

k~
γ|N-

Cg,fγj
kjD

1n

k,1,2j
1j

2
γ

1
γ

k1Dg

l
l

+

∈∏
+

≠
=

−+
=

 
and, from (6.15) and the dual of (6.19), 

             

.)
n

(S

|k|N

CR

,R

1|k|N

2
λ)v

1
(Vgj

12
D)!/jj

2
(λ

|
k

|N-

0j

p j
γ

kjD
1n

k,1,2j
1j

2
γ

1
γ

k1Dq

l

l
l

l

+γ−

∈

++γ−

+∑

+γ

=
=

∏
+

≠
=

−+
=

⎟
⎠
⎞⎜

⎝
⎛

~

~
~

   
 

Finally, since  ℓ+i ≤ N- |
k

|
~
γ  +ℓ,a  Taylor  expansion     about gi

12D l+

v
1V gives 

           ,μi|
k~

γ|N2λg)(qi
12D l

l −−=−+  

 

whe re mℓ ∈ C(S) and     Substitution of this result .0(x)μ
lim

v
1
Vx =→ l

in (6.20) completes the proof of the lemma. 

Lemma 6. 3. Let   N

2
v,

1
vCf ∈  (Sn ) and let P

V be defined by the 
  

Hermite projector (6.10). Then 
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( ) ( ) .|
~
α|allfor)

~
V(f~αD(X)[f]vP~αD~mli

Vx =→ nSx,N ∈≤ .     (6.21)

Proof, Let p be defined by the Taylor interpolant (6.15).Then 
p ∈ Hv and thus 

p(x) - PV[ f ](x) = Pv[p - f](x) 

                  )v

2
v(Vf)(pi

2
v

1
vD

i)
2

vλ
1

v(λ)}2vλ
1

v/{λ
1

v(λih
N

0i
⎟
⎠
⎞

⎜
⎝
⎛

−++∑
=

=  

 

Thus, by application of Leibnitz's rule. 

        ( )(x)[f])v(P~αD  
 

             

])v

2
v(Vf)(pi

2
v

1
vD[~

β
~
α

D]i)
2

vλ
1

v(λ)}2vλ
1

v/{λ
1

v(λih[
~
β

D~
α

~
β

~
α

~
β

N

0i
⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−

−

++∑
≤

∑
=

=  

      (6.22),])v

2
v(Vf)(pi

2
v

1
vD[~

β
~
α

D(x)

~
β
K~

β-i

)
2

vλ
1

v(λ~
α

~
β

~
α

~
β

N

0i
⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−

−

+∑
≤

∑
=

=  

 
where it can be shown that is bounded on S

~
β

K n by use of the fact 

that 

       . 
n
Sxallfor1}

2
λv

1
vλ{/

1
vλ

lim
Vx0 ∈≤+→≤

It thus follows that 

     ( ) ,
n

Sxfor0(X)[f]vP(P~αD~mli
Vx ∈=−→

where if i
~
β ≥   in  (6.22)  then  ,iN

~
β

~
α

~
β

~
α −≤−=−  so that 

by Lemma 6.2 we may substitute 

     ( ) .(x)i,
~
β~α

n
i

~
β~αN

)2vλ1v(λ)v
v2(Vf)(pi

v1v2D~
β~αD −

−+−
+=−

−
 

The proof of the lemma is then completed by noting that 
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  .)V(fD)X(PD
mli
Vx

~~~
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ α
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ α
→

 

Remark. Lemma 6.3 has been proved under slightly weaker conditions 

than those used in Theorem 2.2 of [2] for the special case n=2 of 

Hermite projectors on the triangle. 

Having defined an interpolation projector Pv , v={v1 ,v2} ∈ I1 , 

with interpolation properties on Ev1 and Ev2 , we now consider the 

the general case v={v1 ,v2 ,..., vk+1 } ∈ Ik , k=2 ,...,n. In this case a  

projector Pv is inductively defined by the following theorem: 

Theorem 6.1. Let 

,)n(SN
ji,C

ji
vj,i

f,(x)[f]
}i{vv

P(x)v
ia

1k

1i
[f](x)vP

≠
∈

∈
−

∑
+

=
= I                  (6.23) 

 
define a projector Pv , v ∈ Ik , k=2 ,...,n. where  

,/N!)
i~
α(N}!

j
/αα)v

vj(λ
1k

ij
1j

{
kNi~α

1N)v
vi(λ(x)v

ia !j +∏
+

≠
=

∑
∈

+=            (6.24) 

 

i~
α  = ( α1 ,... ,αi-1,αi+1 ,...,αk+1 ) , 

(cf. (3.18)), and PV , v ∈ I1 , is defined by (6.10). Then 

     ,N
~
αallfor,vj,)j(Ef~αD)j(E[f]vp~

α
D ≤∈= ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
        (6.25)

and 

PP

V[f] = f for all f ∈ ,                        (6.26) 
j}{i,

H

ji
νji,

f I

≠
∈

∈

 
where H{i,j} is defined by (6.13) 

     Proof. Assume the inductive hypothesis that (6.25) is true for 

  all v ∈ Ik-1 . Then (6.23) is simply an application of Theorem 4.1 
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on the k dimensional simplex Sν . Thus (6.25) holds for all v є Ik , 

where the singularities of the jEvj
onν

ia ∈
I  are easily shown to be 

removable, since Pv-{vi}, i=l, 2,...,k+l , have common interpolation 

properties on this set and .1v
ia ≡∑  Now, by Lemma 6,1, the inductive 

hypothesis is true for all ν є I1 and hence the first part of the 

theorem is proved. The precision set property follows directly from 

(6.12) and (4.9). This completes the proof. 

A blending function scheme for the simplex Sn is defined in the 

following corollary as a special case of Theorem 6.1. We refer to 

this scheme as the rational blending function interpolant. 

Corollary 6.1 

,)n(SN
ji,C

ji
νji,

f,nsx,1}n...,,2,{1ν,[f](x)νPP[f](x)

≠
∈

∈∈+== I  (6.27) 

 

defines a blending function interpolant on Sn = Sv . Moreover, since 

P2N+1 C H{i,j} for all i,j ∈ v, i ≠ j ,  then 

P[f] = f for all f  Pν 2N+1

 

(6.28) 

Remark. The polynomial precision set (6.28) is contained in the 

range of each Hermite two point Taylor projector because of the simple 

additive form of the inductive scheme. Mansfield [8]  considers an 

additive and product composition of the Hermite projectors which 

gives a higher precision rational scheme on  the  tetrahedron.   This 

scheme, although of a more complex form, can be generalized to the 

n-simplex. Finally, Mansfield has proved that the product composition 

of all the Hermite projectors (6.10) maps a function f onto the 

finite dimensional interpolant defined by Theorem 3.1 of this paper. 
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