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A Linear, Functional Differential Equation of the First Order

In this paper rational function methods are used to study
the analytic nature of a function satisfying a functional
equation and related to a linear, functional differential
equation of the first order. The solution of this differential
equation 1s of intrinsic interest, since it can be regarded as
a generalisation of the exponential function. From the

rational functions sequences of approximations to solutions

of the differential equation are constructed. Some of these
sequences can be used to calculate the solutions for an
appreciable range of the independent variable.
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1.

The Problem

From the literature it appears that the basic problem has arisen
from two distinct sources, namely, from a problem in electrical
engineering [Ockendon & Tayler, 1971] and from a problem in the theory
of number [Mahler, 1940].

The problem is to solve the functional, differential equation

$= ay(1) +by(t) (1)

fort > 0 with y(o) = 1,where we take A > Oand a,b to be real
constants,

For 0 <A <1 the solution is found to be unique, [See Kato & Mcleod,
1971], but for A > 1 there exist non-trivial solutions of (1.1) with
y(o) = 0, Thus for X >1 -eigensolutions exist. For A > 1 we shall
be interested, particularly, in those solutions which, as functions
of A, are the analytic continuations of solutions found for 0 <A <1,
but other solutions are also discussed.

Since most of the analysis is carried out in the Laplace transform

plane, it is convenient to modify, slightly, the formulation of

(1.1) to
$+ aly (M) = By(t) (1.2)

where  o,fp are real constants, the remaining conditions being unchanged.

A number of particular cases of (1.2) are trivial and soluble immediately.

(i)ForA= 0, or o = 0, the solution is y(t) = e*
(ii) For » = 1 the solution is y(t) = e®®"
(iii) If for integer n > 0, P =al""' , the solutionis a polynomial

of degree n in t, namely
n r p tT
yo =1+ 2 { TT(B-aaP)ie
r=1|p=1 r

For 0 < A< 1 this solution is unique, but not for A > 1 It is,

however, the analytic continuation of the solution valid for 0 < A < 1.



From now on we assume that, unless stated otherwise, a # 0, A # 0,1,
and B-oA""'#£ 0 for n =0,1,2,... .
The series solution of (1.1)

o0

r t!
YO =1+ 3 {nlqs ~a xp)}F (13)
p= !

is absolutely convergent for 0 <A <1 and can be used to calculate

y(t) for quite large values of t when o, are such that, after a

few terms, all the coefficients in the series are positive. when the

signs of the coefficients in the series alternate it is not suitable.

In particular the solution for the case with p-o*® small mentioned by

Fox [1971]

% =-y(0.99t) + 0.95 y(t) (1.4)

can be evaluated from (1.3) for quite large values of t.

2. The Functional Eguations

Laplace transforming (1.2) gives the functional equation
(s-B)Y(s) + aY(%)= 1 @.1)
where y(s) :J'OOOe—St ypd, and is a function of four variables

s, o, f and A.

This is a linear equation so we can write

Y(s) = Yos) + Ye(s) (2.2)
where Y, (s)—»% as |s| > o and satisfies the initial condition
Yo-1;
(-BIYo (5) +a Yo( )= 1. (2.3)

and Y. (s) is such that its original is zero at t = 0

(s- B)Ye (5) +a Ye(%)= 0 (2.4)



It 1is sufficient if these eigerisolutions Y. (s) are such that, with

>0,

_ 1

] as [s| > o (2.5)

Such solutions do not arise for 0 <A <1, and for A >1 we require
the analytic continuations of the A <1 solutions. We will defer

further discussion of Y. (s) until section 7.

A sequence of functions closely related to Y, (s) can be generated
successively by writing for m=0,1,2,

sYm(s) = 1 + (B-a A™N) Y (5) (2.6)

. o\ 1
with the condition Y, (s)»— as |s|—.o0.
S

The functional equation satisfied by each Y, (s) is
s -B) Ym (8 + A"Yul)= 1 2.7)
A
and we immediately see that we can write

Yn(s,00)= Y, (s,ad™) . (2.8)

Further from (2.7) we find

1

Ym (0) = m

(2.9)

Setting m = 0 Y, (O)=L which suggests we should be able to

introduce negative values for m by writing
sYg(s) =1+ B-a) Y, (s).
Substituting in (2.3)

s - B)[sYa(s)-1]+alY, (Z)-l 1 =(f-a)
(s - B) sY.1(s) -s +% sY_| (%)Z 0

(5= B) Yasr+2 Y (=1

provided s #0
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In general (2.6) and (2.7) can be introduced for negative values of
m along with the condition Y (s)—>% as |S| — . (2.8) and (2.9)

are also valid for negative m. However we must be cautious in using
these relations recursively with m decreasing, in particular at s = 0.

3. The Dual Equations

In (2.8) we observed that Yy (s,0) = Y(s, o A ).From now on, for our
convenience, we will drop the zero suffix of Yy. Consequently (2.6)

and (2.7) are simply

sY(s,a) = 1 + (B - al) Y(s,ahr) (3.1)
(s-B)Y (s,a) + aY (,a) =1 (3.2)
with a replaced by aA™ . Further on rearranging the former in the
form
(@-B) Y (5,0) + 5 Y(s, Gj) = 1 (3.3)

we see that (3.3) is the dual of the equation (3.2) in that the
roles of o and s are interchanged.

It is because of this duality between s and o that we write Y as
a function of two variables, Y(s,a), although it is a function of
B and A as well. In fact we will find that it is f and A that

largely determine the analytic behaviour of Y (s,a).

In addition we note that (2.9) becomes

1
Y = 4
(0.0) =4 (3.4)
The dual result for s is
1

Y(s,0) = (3.5)

B

Strictly, however, it is from the equation (3.2) with the
condition Y(s,oc)—>% as |s| — oo that we must determine Y(s,a) .
To obtain solutions of our original differential equation (1.2)

we require the Laplace inverse of Y(s,a). We will therefore

concentrate on the s variable and find both series and continued
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fractions in s for Y(s,a). On inversion these will yield sequences

r approximations to the solutions in the original variable.

Solutions of the Functional Equation

We will introduce our solutions in a convenient order for discussing

the nature of the singularities of Y (s,a).
Two rational function solutions of the basic equation (3.2),

(s-B) Y(s,0) + aY(-% o) = 1

with the boundary condition Y(s,a) 1 as|s| — o, suggest themselves.
S

The Iterated Series

By iteration, we find

1 o o o S
a)= 1- 1- -, ———— 31— aY( ,0) ¢,
(s—B) s _ s S _ { AN+l }
G-B| 5P B
4.1.1)
For 0 < X A 1 and s#0, S as n —oo, so that
n+1
S n+l
Y(——,a) > ——, and the last term of (4.1.1)
xﬂ‘f‘l S
(=t )n+1xn(n+1)/2Y L,a
xn+l
o —->0 asn—>wx
[1(s—prP)
p=0
provided 0 < A < 1 and s £ B p =012, ...

Hence for 0 < A < 1 and for all a,3

o _a)rkr(r +1)/2

Y(s, -
SR e g
p=0

(4.12)

This result produces the trivial cases (1), (ii) and (iii) of

section 1 and further setting s = 0 and assuming |a|<| B | we

have Y(0,a) :L. To obtain (iii)) of section 1, since (4.1.2)

o—f



. . +1 .
does not terminate if B = o A" for some n, consider first the case

B = oA, the - partial sum of sY(s,a) is

S als 0223 g (~a )r—lkr(r—l)/zS

r N > 3ot .

s—a (s—aA)(s—ar“) (s—aA)(s—aA<)(s—ar”) H(s—akp)
p=I1
BTN S o A2 ) (a)r 15 1(e=1)/2 ok
Y s—a ) s—a A —a2 T ot
ST H(s a?»p)
p=I
-1 r(r+1)/2
__ (o )r A
H(S a AP)
p=l

Hence for 0<A<l sY(s,a) =1.

A similar technique when P =oA""" shows that the rth partial sum of the series

+2n+1)/2
sNHly (g, 0t)—n1 H(B a AP) s s H(B o APy~ (al):;r(r o
=0 |p=1 p=I I (s—arP)

p=n+1

(4,1.3)

This shows not only that (iii) of section 1 is contained in the
expansion (4.1.2) but is also gives the error in approximating the
L.H.S. of (4.1.3) by a finite number of terms of the iterated series.

The expansion (4.1,2) for Y(s,a) is absolutely convergent under the

conditions
i) O<A<l ; all o, ; s#BA r=0,1,2 .. ;
i) A>1 5 lal<|B| ;  s#PM r=0,1,2 ..

Thus, with p #0 and O <A <1, it appears that in general Y(s,a) is
an analytic function of s with simple poles at s =BA" , r = 0,1,2 ... ;

unless B = ar™™' when Y(s,a) has a pole of order n + 1 at s=0. For

0< A < 1 PBA — 0 as r—> o so that Y(s,a) has an essential singularity
at s =0. The function given by (4.1.2) also has simple poles at

= BA, r=0,1,2 .. for A>1 provided |a|<]|B|, and then has an

essential singularity at s = oo.



The absolute convergence of (4.1.2) allows the series to be

rearranged and expressed in partial fractions, so that, with B # O,

ES

1 o0
Y@, a )=K(a )| —+ > . (4.1.4)
S—B r=1 ﬁ(l—}bp) S—Bkr
p=1
where
r(r +1)/2 o\r
o M)
K(a)=1+ 3 T
r=l 1 a-aP)
p=1
This K(a) may be expressed as an infinite product
00 a AP
Kla)= 1 (4 - B ) for0 < A <1
p=1
_1 (4.1.5)
= ]O_.i [1 -z } for A > 1
p=0 pA p

The product when 0 < A < 1 1is indicating the conflict in the
nature of the solution at points where p = ad’ , p=1,2...
For A > 1 the absolute convergence of the expansion (4.1.2)
required |a|<| P | , the product (4.1.5) suggests a singularity

when o = .

The expansion (4.1.2) is clearly fitting Y(s,a) for |s| large

in the sense that

Y(s,a)- Sy (s) =O(én+1) as [s|] —» o

where S, (s) is the n" partial sum of (4.1.2). The original of

Sap (s) must, for 0 <A <1, match the first n terms in the series for
y(t) and hence be useful at least for t small. When A >1,

(4.1.2) can be readily expanded for |s| small but not |s| large

it does not produce the solution (iii) of section 1 as can be

seen from (4.1.3). Consequently it is not the required continuation
of the above 0 <A <1 solution. However, the fact that a function
with the roots s = PBA" exists for A > 1 and which satisfies (3.2)

demands closer investigation; this will be undertaken in section 5.



4.2

Successive terms of (4.1.4) fit the poles at s =BA r =0,1,2
When s=f is the pole with the largest real part which is so when
B> 0 and 0 < A < 1 the original of the series (4.1.4) will usually
provide good approximations to y(t) for t large. When A > 1 and
B < 0 the original of the series (4.1.4), although not y(t), will
also be found interesting.

By repeated use of the equation (3.1), we find that

. m
Y(s,oz):l—erz1 II[(B—axp) 1 n ﬁ(B—a%p) Y(s, ?nx )
§ I'=1 p:l p:l S

Sr+1
Like Y(s,a), Y(s,aA™ ) has simple poles at s = B\ r =0,1,2
When B = ol™ for some m, this series inl terminates and corresponds
S

to case (iii) of section 1. Further when B~ aA™ it is advantageous

S B
to take out m terms of the series in— using (4.1.6) and use
S

(4,1.2) or (4.1.4) for Y(s,aA™). But changing a to al™ improves the
convergence of both (4.1.2) and (4.1.4) for 0<A < 1 and so, even

when B is not close to al™ , it will often be useful to take out m

N | )
terms of the seriesin—; m need not be small. When A is close
S

to 1 there are difficulties in using (4.1,2), nevertheless using
(4.1.6) excellent numerical results can be obtained for values
of A less than about 0.95.

The Continued Fraction Matching Power Series

From (4.1.6) we have

r+1

r=1 S

1] m-1|r Y(s, a
Yea) =14y {H(B—Mp)} {H(B—Mp)}(—)
S p:l S
where Y(s,aA™ ) has simple poles ats =pA" r =0,1,2 ..for 0 < A <I .

o .. 1
Y(s,a) satisfies the boundary condition Y(s,a)— — as |s|— o and
s

since all the poles of Y(s,a) lie in |[s| <|B| for O <A <1 the last
term — 0 as m— o provided |s|>| B |. Consequently Y(s,a)has the

power series expansion

r+1

T
Y(s,a )——+ p3 {HI(B o P)}

for 0 < A <1, |s| >|B| ; the series is absolutely convergent. For

(4.1.6)

4.2.1)

(4.2.2)
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A>1 and a # 0 the series diverges, unless f = o)l" for some

integer n when the series terminates. This expansion is in agreement
with the particular cases A = 0,2 = 1 and B = oA" quoted in section 1.

This series (4.2.2) is readily converted into the continued fraction

1 (A=) Mr-Doa Mor % -P) an-lon-lT_pe an-lgan —p)

S + 1 + S + 1 + S + 1 +
(4.2.3)

by, for example, applying the Q-D algorithm. Now the elements of

this continued fraction occur in pairs and only the even convergents
are finite for s small. @ We consider only the even convergents, or
what is equivalent, the convergents of the J fraction that matches the
series (4.2.2)

1 M~ (B—o X) A20-lon g B-a al)

stak=P+ o -Da+rarZ-p)+ S+AT D — D)o+ A0 (@ADL — )+

(4.2.4)
It is obtained on contracting (4.2.3)
This continued fraction is fitting the terms in the series inl
S
(4.2.2) for Y(s,a) and gives the required solution when A = 0 and
when A = 1. Further when B = al" it terminates and gives the polynomial

solution quoted in section 1 for not only O<A <1 but also for A>1.

In section 6 we show that for 0 <A <1 the denominator roots of
(4.2.4) tend to B A" and the continued fraction converges to Y(s,a) for
all and s # 0. When A > 1 the denominator roots do not tend to
B A" but instead tend to -o A*"' The continued fraction still fits the

boundary condition as |s| —>o and it converges; but not to the same function
as (4.1.2).
When B = a A" for all A the continued fraction provides an analytic

. . . . .1 :
continuation of the polynomial solution in—. However a more effective
S

analytic continuation is to set m=n in (4.2.1) and use the continued
fraction for Y(s,a A"), or put another way, the series expansion with

the terms after the n™ replaced by the corresponding continued fraction.
In particular the solution of the problem (1.4) is efficiently calculated

by this method with n = 6.



4.3
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In general the solution to our problem is to approximate the
original of (4.2.1) with the continued fraction (4.2.4), with o A™
in place of a, replacing Y(s, a A™ ). Denoting the n't convergent of

(4.2.4) by Y/n (s,a) the corresponding approximation to y(t) is

_ m
1+mzll{n(5—axp)}—+ T B-arPy! Y/“(S’H‘I”” ) (4.2.5)
Ir= . p— S

The inversion of the continued fraction can be performed in two ways.

Indirectly using a method based on the complex inversion formula

such as Talbots method [1976]; or directly by evaluating the positions
of the poles of (4.2.4) numerically, expanding in partial fractions

and then inverting. With this latter method as A approaches 1

high convergents (n >10) are often required and the zeros of the
denominators must be determined very accurately. The use of high
convergents can be reduced by taking out more terms of the series
when 0 < A < 1. The advantage, when 0 < A <1, in using (4.1.2) or
(4.1.4), over the continued fraction, 1is that the positions of the
poles PA" are known and the partial fraction expansion can be performed

algebraically.

Further Solutions

In section 4.1 we generated the solution(4.1.2) by iteration of

the equation (3.2). The solution satisfyingthe boundary condition
Y(s,a)—»é as |s|— o was valid for 0 <A< 1 and for all a, B.
Now our functional equation (3.2)

(s -B) Y(s,a) + aY(%,a)Zl

can be iterated in the sense opposite to that which generated (4.1.2).

This produces

-
Y(s, 00 )= — { LB SM‘{ +%{1+(B—sxnw(sxn,a}}}. 4.3.1)

The associated series

1 o0

T
PR {nl(ﬁ—sx p)} 4.3.2)

r+l
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converges absolutely for all finite s under the conditions 0<A<1

and |o/>|B |, but clearly does not converge to the same function as
(4.1.2) ; for compare (4.3.2) with (4.2.2) in our previous solu
s and a are not interchangeable.Similarly when (3.1) 1is iterated

the sense opposite to that used in generating (4.1.6), we find

_g)n %
B = (_S)I' ( S) Y(Sa }\,n)
Y, )= ¥ —5 o +n1a
=11 (5 -B) =
RINSY. NC
The sereies
SEEEOL
T
=0 1 (5P
p=0 2
converges when 0 < A< 1 for all s, ;a#A"pB r=0,1,2, ...and
the same function as (4.3.2) when |a|>| B|]. However when A>1,

tion

1n

(4.3.3)

(4.3.4)

18

(4.3.4) has an interesting relationship with (4.1.2), they become the

same function when both series are absolutely convergent, that is
when |0L]<| B | and [s|<| B |. It is to this function, with Its
interchangeability between the two variables s and a, that we
turn our attention in the next section.

Symmetric Solution of the Functional Equations for A > 1.

If we relax the boundary condition Y(s,oc)—>l as [s|— oo,
S

the

functional equations (3.2) and (3.3) have an interesting solution

symmetrical in the variables s and o. For the variables to be
interchangeable, both s and o must have identical arrangements
The iterative solution (4.1.1) displays poles at s = B A' r =
while the iterative solution (4.3.3) has poles ata= B A r =
moreover both are convergent for A > 1 for some a, s (as well as
0 <A<1). Let us combine these properties by solving, in a
iterative manner, the pair of functional equations (3.2) and (3

simultaneously.

(s-B)Y (s,0) + aY(% o) = 1

I
p—

(a- B) Y(s.a) +sY (s, 3)

of poles.
0,1,2,
0,1,2,
for
similar

3)

(3.2)

(3.3)

ey
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Multiplying (3.2) by (a-pB),

(&Mme@m+ﬂb%w§§ﬂ=aﬁ

- P _esys e (5-1)
N O ) T LT AR

Iteration of this equation gives, if B# 0

-B A s
Y(s, a) = 1+ 1+../
S T CIE AN CR PR
Aos Aas S o
.+ - , ).. (5.2)
— — n n
s -BpA"~a—-pan=hy| a2np AT 2
When the boundary conditions are
Y(s,0) =s-PBand Y(0,0) = ! (5.3)
a-p
we see that the solution for A > 1 is
© Las)t
Y 0 )=-p 3 2 , (5.4)
r=0 1 (s -paPya-prP)
p=0
This series 1s absolutely convergent, excluding the lines poles
at s = PBA and a=PBA" r=0,1,2,..., for all A >0. At A =1 the
series takes the value
1
= (5.5)

For the behaviour of this function as |s| — o0, Wwrite

B 0+ —M g4 Ao n-—¢

a—f a—BA a_an—l Bkn_l

_ B o
1= [1 B]

m_— J.]

then the partial sum of n terms of (5.4), for a given A & [, tends to

1 ol (5.6)

Il n—1
| TI (@-pAP)
p=0

The function (5.4) does not tend tol as |s|—> oo if OL:B?»P for p=0,1,2,...,
S



13
or if 0< A <1.

Suppose the n iterations of (3.2) and of (3.3) are performed
consecutively, rather than simultaneously using (5.1), Then the
relation (5.2) 1is obtained but in a rearranged form connecting both
(4.1-1) and (4.3.3).

When the n iterations with (3.3)

1 S S
Y(S’a)_a—B l_a_B I— . — _B{I—SY(S, )}
A }\11’1—1
are followed by the n iterations with (3.2) (5.7)
_a _*
o 1 L RS o S o
Y = 1- l— . — 1- Y .
A }\'1’1—1

together they form a rearrangement of (5.2). Removing the final
term, we readily obtain the partial fraction in s expansion of n

terms of (5.4).

The residue at s = B3
r n—1 |
T 1 iy
I - L s P
2P T -p| G- <f—1> (- T
p=0 AP 2 p=1 A
= —— ! x n terms of the series for K(—)
= a
oo~ 2P

For 0 < A < 1 the n terms of the series forK(xin). is tending to cancel the

factors in the denominator, while for X > 1 it is tending to introduce extra
factors to the denominator. Asn — o, this residue tends to K(a) as

defined in (4.1.5), further the complete partial fraction expansion

of (5.4) forA> 1 is

(QX]

3 1 0 B 1

Y(s,a) =K(a ) S p +r§1 ﬁ(l_xp).s—ﬁkr (5.9)
p=l
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and is 1identical to (4.1.4). For 0 <A <1 the precise nature of
the partial fraction expansion of (5,4) 1is not important.

The function (5.4) 1is identical to the function (4.1.2) for
A>1 and |a|<|B|, and 1is an analytic extension for A >1 of this
function. (5.4) may also be used to define the function for
0 <A<1, but the natural barrier that exists at A =1 makes this
choice less obvious. Linking (5.4) for A > 1 with our previous
solution (4.1.2) for 0 < A <1 has much to commend it; in particular
(4,1.4) holds for all positive A # 1, and, if A > 1,a # BA" for p =0,1,2,...

Expansion of Symmetric Solution

The function (5.4), with its symmetrical arrangement of the poles
in the two variables s and o, can be expanded in terms of the residues
at the intersections of these poles.

K{ o)
A3 T k
*__l X
A2p
- ;T T I T
- e ——— "
8 # K(s)
) 0 8] x8| A28 38
With A >1, the residue at s= o =, from (5.1) is
— Li i _ _ __gl1— By B By|_ — B
K = Lim Lim s - B - p)¥6. )= -p1- vl By]= = T
p=1 AP
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While the residue at the point s=B AF, a =p A™ is

Lim Lim_ (s—BAT) (a—BA™)Y (s, = -P
m m S— o— S,0) = > 00
SoPAT a—pam MA-2PYT1-29) 1 (-1
p=I =1 p=1" AP
er+r+m
SettingKr m =— o ,(5.4) can be written
[1A-AP) [1(1-29)
p=1 q=l1
o o K
Y(s,0)=KY 3 - (5.9)

r=0m=0 (s—PAT ) (@—pA™)

The double summation cannot be split into a product of a sum over r
and a sum over m.

Continued  Fraction Solutions

We write our continued fractions in the form

L Pn

a1 . 92 4 dn +
and suppose that P, /Q, is the nth convergent. Only standard results
from the theory of continued fractions are used,

P, and Q, both satisfy

Up+1 = (n+1 Un + Pn+1 Un-1
for n= 1,2,3, ..., the initial values for P  being Po =0, P;=P,
whilst the corresponding values for Q, are Q, = 1, Q;=q,

From here we deduce the determinant formulae

Prii1Qn- PuQuei — (-1)" pip2 ....pnti
ProQu-PuQui2 = (-1)"  pip2..... Puriqnr2
for n=0,1,2,......
If the numerator elements p, of the continued fraction are non-zero
constants and the denominator elements q, are polynomials in some
parameter s, say, then P,, Q, are polynomials in s. The first

determinant formula shows that any zero of Q, cannot be a zero of P,

(or Qn+1).
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Conventionally a power series is converted into its corresponding
continued fraction by some such method as the Q-D algorithm. For
the series (4.2.2) we found the corresponding continued fraction

1, (axl—ﬁ)+x (x—l)a+x(ax12 —B)+m+xn—1(xn—1 —1)a+xn—1(a1xn B),
S S S

(6.1)
The iterated series (4.1.2) 1is also in a form suitable for conversion
to a continued fraction.

1 +ak(s—B)+ak(k—1)s+ak3(s—ﬁk)+m+akn_1(kn_1—1)s+aX2n_1(s—BXn_1)
-B)  G-BA)  (s—pr%)  (s—Pr°3) —pr2n2y  s—patnly,
(6.2)

We start by discussing the location of the roots of the denominator
polynomials of the convergents of these two continued fractions. Since
the elements of the continued fractions are clearly grouped in pairs,
we consider only even order convergents. The denominator polynomial
of the 2n convergent of (6.1) is of degree n in s, whilst for the
continued fraction (6.2) it is a polynomial of degree 2n in s.
Although for these polynomials we cannot, in general, determine the
exact position of the roots, we can locate them approximately to

within a certain order in A, such as for example, 0(A) as A — 0 or

0(%)as?» — oo . It is necessary to consider six cases in the ranges

of the parameters «a, 3, A. These are
0 B#0, Bz . 0<h<l;
() B#0, p=aA™ , 0<A<I;

(i) B=0, 0<A<1:
(V) P20, B£d™ or pA"Ea, A>1;
v) PB#0, B=oA"or BA"=a, A>1;

(vi) B=0, 2>1;

m being a positive integer > 0.
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Now the 2n™ denominator polynomial of (6.1) may be expressed in the
form

(s- B)(s- BA) _.(s- PA™ )+ o™ (14A+.. A" ) (s-B) (s- B A) . .. (s-B A™2) +......
+ o I (Tt AT (s-B)+ oA

or, alternatively as
s+ (144 A" (ar=B)s™ T+ A D2 (A" B) (ad™ ' B)...(ar-B).

- (6.3b)
If we define Cp 7 by
m _a-x" a-a"h a-anrHh
ct = . .
(1=2)  (1-22) (1-2")

r =123, ... ,c(()n) 1

the two polynomials (6.3a) and (6.3b) may be expressed as respectively

%arxnrcgn){n—l_r[—l(s_ﬁxp)} and %Xr(r—l)ﬂcgn){ ﬁ(axp_ﬁ)}sn—r,
p=0

r=0 r=0 p=n—r+1

n
where [ = [] =1.
p=0 p=n+l

(i)  P#0, P #£d™, 0<A< 1, m=123,

For these conditions the roots are s - BA" {1+0(}) } as A —O0,
r =0,1,2,... (n-1).  The order term is not best possible except

for r = (n-1), but it is adequate for our purposes. It appears, in fact,

that the roots are s = BA" {1 +0(*™™?} as L — 0, so that the
denominators are producing the earlier poles of Y(s,0) more closely
than the later ones. The order terms do not imply that the roots are
necessarily real.

(i) B #0, p=or", O0<A<1 for somem = 1,2,3,

Under these conditions it is clear from (6.3b) that the denominator
polynomial Qz, (s), say, has m roots at s=0 and the remaining roots
at s =B A" {1+0(A)} as A+0, for r=0,1,2,.. (n-m-1). Of course in this
case the continued fraction terminates and it is not necessary to

consider Q;, (s) for n>m.
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On the other hand if B —oA™ =0 for some m =1,2,3,.. then Qj, (s)
has m complex conjugate roots for m even, or (m+1) complex
conjugate roots for m odd, all located near s =0. This result is
not inconsistent with (i) but is providing additional information
concerning roots near s =0 when B -aA™ = 0,
(i) P=0,0<A<1.

In this case (6.3) reduces to
s w aA (LA A st e A D (A ) s a2,

(6.4)
or

§ arknrcgn) g — T

r=20

and all the roots are O(A") as A— 0. In fact they all lie on the
circle |s |= |a] A". For n odd, symmetry in the coefficients shows

that one root is s=-a A" exactly,

(viy B =0, A >1.
Having dealt with case (iil) it is convenient to consider next case (vi)
For these conditions we find that the roots are located at

s = o A1 +0(%)} as A— o for r -1,2,..n, and since (6.1)
is positive definite [see Wall, 1948] these roots are necessarily real.
(iv) B#0, B#aA™, A>1 for m=1,2, ...n.

In this case the roots are at s = -o A*" -1 {l+0(%)} as A— oo for

r = 1,2, ....n, but need not be real.
(v) B#£0 B = aA™ , A>1 forsome m=12 .. n.

The continued fraction again terminates at the m™ convergent.

However the polynomial (6.3) has mroots at s = 0 and the remaining
n-m roots are at s = - oA’ {1+0 (/11—) tas Ao,

We note that when A=1, the denominator polynomials Q, (s) reduce to
{s +a-B}" (6.5)

For the continued fraction (6.2) we find that for the 2n

denominator polynomial n roots are known exactly, and that this
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polynomial may be expressed in the alternative forms
(s-P)(s-PA)... (s-pA""") [(S'Bn) L (s-PATy 4

oA "(14A + .+ A D BAY .. (s-PA D)+, (6.63)
AN (1A ) (spAT) + @
and
(s-B)(s-B)...(s-BA" ) [s™H(ap)(1n. e amt ) an g™+

T (Q‘B)(Q-BK)...(Q—B?\,HQ)(1+x+...+ xn-l) Kn(n-l)s N
(6.6b)

£ o(@B)a-pr) . (a-pat ) A

The polynomial in the square bracket is the polynomial (6.3) with
B replaced by PAM

Using the same notation as for (6.3) the polynomials (6.6a) and
(6.6b) may be expressed as

{“ﬁé(s P }ﬁoa%mdﬂ) {mf_[:l(s - BxP)}
p= - =
and
{“ﬁl(s—mp} > anre {rﬁl(a—ﬁﬂ)}s“—f
p=0 r=0 p=0
where
-1 n-1
[MH=11=1
p=0 p=n

(1) B£0, B#aA™ , 0< A< I, m=1,23, . cccceerrrrnnn...
The roots of (6.6) are s=B", r=0,1,2,..(n-1) and O(A") as
A— 0 for n remaining roots.

(i) PB#£ 0, P=a", 0 <A<I.for some m=1,2,3,,..
Like the iterated series (4.1.2), the continued fraction (6.2)

does not terminate when B=al™ , but tends to the polynomial
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solution in the limit. The roots for this case are of the same
character as those for (i) above.

(iii)) p=0, O<r <1.
In this case the polynomial in the square brackets in (6,6)

reduces to (6.4),consequently there are n roots at s =0 and n
roots that as mentioned before lie on [s| =|a/A" . The roots of
(i) and (ii) will tend to these values as 3 — O .

(iv) B#0, o#BA , A>1 for some m=0,1,2 ....................
The roots of (6.6) are s = p* r=0,1, . .(n-1) ; s = p* [1+0 (%)]

as A— oo for r=n, (n+1) ,. .,(2n-2) ; s = (B-a)A ™' {140 (%)}

as A—oo.
v) B#0,0=8 A"=Xx>1 for some m=0,1,2....
From (6.6b) we find that the denominator polynomial has roots at

s = BM, r=0,1,.. (n-1); (n-m) roots at s =0; szﬁxr{lJrO(%)}
as A — oo for r =(2n-m), (2n-m+1),..(2n-2) ;s=(B -0)\*"" {1+ 0 (y)}

as A — oo In particular when a - B, the roots are
s = BA, r=0,1,...(n-1) and n roots at s = 0.
(viy Bp=0, A>1.
The roots of (6.6) are n at s =0 and s =-oA™" {1+O(%)}as A —00

for r =1,2,.. n.
For A =1 we see that (6.6) becomes
(s-B)" {sta-p)". (6.7)
Summing up we have for the roots of (6.3) and (6.6):
(6.3) (6.6)
() | BA {1+0(N)}, r=0(D(n-1). BA, r=0(1)(n-1) ; n roots O(")
(i) | A {1+0(N)}, r=0(D)(n-m-1) ; BA, r=0(1)(n-1) ; n roots O(A")
m roots s =0.
n roots O(A" ) on circle |o|A", n roots s=0 ; n roots O(A ).
oA {140, 1Y, 1 =1(1)n. BALr=0(1) (n-1) ; PA{1+0) .1, }.r=n(1) 2n-2);
v) (/1 ) (i )
(B=a)x 2" {1+0 (%) .
m roots at s =0; BA, r=0(1) (n-1); (n-m) roots at s =0;
B P {140, 1}, —nm)(1)(2n-2);
(B-a)\ ™" {1+0 (%) .
- 1
_axzr-1{1+0(%)}’ =1(1)n n roots s =0 ;-0\’ 1{1+O(;)} =1(1)n.

(6.8)
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Observing that when 3 =0, the continued fraction (6.2) reduces to

(6.1), we note that the significant difference in the roots tabulated

in (6.8) lies in cases (iv) and (v) where B#0 and A > 1. The roots
of the denominator polynomials of (6.2) are tending, as expected, to
the poles PBA"  given by (4,1.2), whereas the roots of (6.3) do not.
We now investigate the convergence of the continued fraction (6.2).

If P, (s)/Qn (s) is the n" convergent of (6.2) and R (s) 1is the
'remainder' function which when subtracted from the nth denominator

element makes

Y(s)5 (Pn -RaPut ,)/(Qn-RpuQun-t ) (6.9)

we find that

Y P =P P
o on (T2n%n1 20 Qan’ Ron/(Qanran Qano1)

(—1)n A nGn-1)12 {nﬁi (2P )Hnﬁi (s_ PP )}a n-lgn-lg
p= p=
(Qop ~RppQop )

As noted earlier some of the factors (s-BA?) , p=0,1,2,.. actually

occur in Qz,. (s) and in fact we may writeX

-1

Q oy ) = {nn (s —BXP)}Q%G) s)
p=0

6.10)

-1
Qyy 1 6)= {;F:[O(S ~paP )}Q ©

where Qg,e) (s), QE]O—)I (s) are polynomials in s of degrees n,n-1

respectively and associated with the even and odd order polynomials
Q2n (8), Qan1 () respectively. The above expression for (Q2,Y -Pj,.)

thus reduces to

(-1n 7yn(3n -1)/2 {nﬁl(l B Xp)}a2n —lsn—lR2n
p:

1
Qz y_Pz =
n n [Qge)_Rzn Q(0) }

(6.11 )
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The determinant formula for continued fractions shows that the roots

of Ql(qe) (s) are distinct from those of ng—)l (s). From (6.2) we see that

the function R,(s) can be expressed as the continued fraction attached

to the n™ element and so for 0< A<l we find that Ry, ()= 0 as n —ow

Hence for 0< % <1 and s #root of Q& (s), the R.H.S.of (6.11) — 0 as
n — o. At a root of Q%) (s), the R.H.S. of (6.11) becomes

(_1)n~1,n0n 1)/2{H - Xp)} 2n -1 n- I/Q(o)

and since ng_)lsé 0 at a root of Q%e) , this expression again tends to zero

as N—oo Hence for all o,B,s and o<A<l, the continued fraction

(6.2) converges.

We now consider the case of A > 1 .

m _ oS 1
For B # 0and A #o for m =0,1,2, ..., R, (s) = +T{1+O(k_n)}

as A —oo. To this order, this term is produced by the (2n+l)th partial

quotient, but for convenience we consider

P P P
__2n _[ 2n4+n _ _2n ]{IJFO(L)} as A — oo
n+l

Qop QLn+in n A
, (0 = 1)/2{1‘[@1’ )}xnzaznsn%nﬁl(s_ﬁxp)}(s_BMHH) {1+o( n1+1 )}
Q2nQZn+2
i O(Xn(Zn +1)) 2nsn(S _Bk2n+l) s 4 S .
(C)Q
2n+2

The roots of the denominator range from B to (B— a)k2n+1 {1+ 0(%)} as A — oo,

1

m) as A—>ooand the residue at
,n(3n-

The residue ats=f is O(

— (B— 2n+1 N 1 :
s = (B-a) A {1+0(X)} is O(—xn(2n+l)) as A — . The residues at
the remaining roots of the denominator lie between these extreme values.

Consequently for B#£0, B A" #a for m=0,1,2... , and A>1 we have
Y -P2,/Qn— 0 as n.— o.. For B #0, BAr "= 0o for some m=0,1,2,...,

Q,gle) (s) has (n-m) roots at s =0 and Qgﬁzl(s) has (n-m+ 1) roots at s=0.
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From preceding calculations

Ponsa _ Pop _ 00a"Cn D yen(s_pa2n+l) < o
Qn+2 Qm s-pe Y. c-prMR P
on +1 2n +1
= 0(kn(n ))(S_B}” ) as A — oo.

sh=2m +l g _gyg —BA)...(s —BADN){s M 4+ .}

if BA™ = a. Hence, provided 2m< n + 1 there is a pole of order (n-2m+1)

m-—1 —
at s = 0. Using (4.3.7.b) which has a general term { I (BXP - a)}O(km(zn m) )s —m
p=0
as A — oo, we find that in the above experssion the contributi on near s = 0
(041 3Tn+1)—m(4n —m+1)

sN=2m+1 a9 o o For m < 0.4 n this

1S

term —oas n — . From this we infer that the continued fraction

does not converge if for some integer m=0,1,2,.. PA" =0 From (4.1.4)

and (4.1.5) this was to be expected,

For B=0 and > 1, the odd convergents of Ry, are O(A™ ) as A — ocand

the even convergents are 0(%) as A —o. With these values

on +1
Pon a1 _ Pop _0(a"@ #Dys2n
Qon+1 Qop Qon Qop 41
n2n +1)
:0()” ) as A — oo,

sQ ge) Q go)

Near the root of smallest modulus,namely s =0 lee) =oA™) as A >

and ng) = 0\ Dy as A — o and so the contribution near s=0 is

O(l)/s as A —
On the other hand
2n +1
Ponsa  Pon _ o@D
Qons2 Qo ©q©

n+l

and at the root of least modulus of the denominator, namely
s=-oc7u{1+0{(%)} the residue is 0(%) asA — oo, whilst at the root

1

1
— 2n+1 i . : -
of greatest modulus, namely s=-a X {1+0(/1)} the residue is 0(kn(2n+1)'

The residues at the intermediary roots lie between these two

residuese
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Collecting together the wvarious results we have finally, that

(6.2) converges for all a,B, s and A > 0 except for A> 1 with either
BAr"= o for some m=0,1,2, ... or p=0. For B=0 and A >1, only the
even convergents of (6.2) tend to a limit function. This case will be
discussed further when dealing with the convergence of (6.1).

An analysis similar to that just carried out, shows that the continued

fraction (6.1) converges for 0 < A <1, for all a8 and s # 0. At s = 0

the even convergents of (6.1) converge to the expected value of !
a_

provided |a|<|B|. To prove this we use the result that the 2n™

convergent of the continued fraction

+
s + 1 + S 1
has at s = 0, the value
a a a aia,.a
L 4+ 4 1737 2n -1
A2 #4274 4284% 2p
(6.12)
Applying this result to (4,3.1), we find at s=0, the 2n™  convergent
has the value
Lo (t-Da 1 -Da A" _1a
(ah=B) (@ar=P) (@a?-p  (w-P) @ar2_p  (ar"-p)

_ 1 {1+(1—X)a}+(k—1)a 1+(1—X2)a N
@B || @r-pf @r-B|  (@rZ_p
|
RS R REU
(ax=P) " (aa""lp) (ar™ —p)

g p
[T(1-27) n
__ ] et g}
a-—B n
(=5 I -aPrp)y
L el
For 0 <A< 1 and |a|<|B|, the products involved converge as n— oo and the

|
a_

value of the expression tends to

For A> 1 only the even convergeuts of (6.1) tend to a limit function.
The roots of the denominator polynomials tabulated in (6.8) show that for

B#0, this limit function is different to that of (6.2). The reason for
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this appears to lie in the power series (4.2.2). As a function of A,
this series has a natural boundary at |A| =1 [see Hardy, 1949]. Now

the continued fraction (6.1) is not only attempting to analytically
continue the power series as a function of s, but also as a function

of .. As a function of s, the continued fraction (6.1) extends the range
from |[s| > |B| for the series for 0 <A <1 to the range all s# 0 . While,
as a function of A, (6.1) is giving a continuation for |A[>l. Since

|A| = 1 is a natural boundary we do not expect this continuation to be
unique.

The iterated series converges even for A>1 provided |o|<|f] and the
corresponding continued fraction (6.2) extends this range to A>1, B#0.
Nevertheless it is the natural boundary at [A|=] that produces the problems

with the iterated series, and in particular the B =0 case.

In order that the Laplace transforms should possess original it is necessary
for the real parts of the singularities of the transforms to be bounded

on the right. For 0 <A<1 this is always the case. For A>1 in the
continued fraction (6.1), this condition requires o >0. For A>1 and PB+#0
in the iterated series (4.1.2) this requires P<0 and in the continued fraction
(6.2) this condition requires B<0 and B-a<0.

For A>1 we do not expect the solution of Y(s,a) to be unique, since for

this range of A eigensolutions exist. These are discussed in Section 7.

Eigensolutions

We now discuss equation (2.4) which is

(-P)Ye(s) +  aYe(s/H) = 0 (2.4)

and note that for the initial condition y(0) = 0 to be satisfied
it is sufficient for

Yes) =0(1/s"™) o s> @ 5 >0 (2.5)

Setting s = 0 in (2.4) we have (a-f)Y. (0) =0. Assuming Y . (0)#0

this gives (a-f) - 0, and with this condition we have by iteration from
(2.4) that

Yo (s/20F
(1—s/B)1 =s/BA)... 1 —s/pAT)

Ye(s) = (7.1)
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For A > 1, s/A™" — 0 and the product converges as n -—oo. From

(7.1) we thus have the solution
o0
Ye(s) = YeOV{ TI 0(1—s/mp)} (7.2)
p:

for A > 1.
Approximating to Y. (S) by more than a single factor of the product
ensures that (2.5) is satisfied. The solution given by (7.2) is an
eigensolution to the problem for the case o= B.

Iterating from (2.4) in the opposite direction produces, for

0 < A < 1, the solution
Ye(®=Ye ) I1 (1~ s P /B )} (73)

Approximating to Y. (s) by a finite number of factors of (7.3) the
condition y(0) =0 in the original is not satisfied and there is no
eigensolution to our problem in this case.

The above analysis may be generalised by assuming that near s=0
Ye(s) = K(s/ a YW Al +0(6)} as |s|> 0 (7.4)

where v,K are constants.  Substituting in (2.4) shows that this form

is possible provided

o- BrY (7.5)

For given values of a,8,A this equation determines v; v may take complex

values.  Proceeding as before and using condition (7.5) we have
v = p
Ye(s) = K(s/ a)" /{ HO(I —-s/BAT)} (7.6)
p:

which for A > 1 1is an eigensolution. With n sufficiently large for the
condition (2.5) to hold, approximations to Y(S) may be obtained from (7.6).
For prescribed a, B,A and for values v; satisfying (7.5), the linear form
of (2.4) shows that other eigensolutions are given by

V. o0

Ye(s) = {zi K. (s/a) 13/ p];[o(l —sB APy (7.7)

These eigensolutions all possess originals if B<0.
The case P= 0 may be regarded as a limiting case of (7.5) with A > 1

and v —o0.
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Writing o/A" for B in (7.6) and then setting v+n for v, suggests

that we consider the function
0 _
Wn(s):Kn(s/a)V+n/{ H(l—s?»v 1O/oc)} (7.8)
p=—"n

Clearly
Wa (S/A)/Wa(s) = (1-sAV™a)/av™

— -s/o as n— oo for A>1.

Expressing (7.8) in partial fractions, the term in (1-sA¥"/a) !

has coefficient

p=0
(~1)NTR VDm0 )2 Gy -aPy
p=1 p=l

keeping r fixed and letting n — oo, the denominator converges for A > 1.

Thus with a suitable choice of K, we are led to consider the series

—(r+v-1)2
Wy -k § CDR 20 (19)
r==0  (1-sA¥"T/a) .
v,K being arbitrary constants. This 1is, essentially, the solution due
to Bowen and quoted in Fox et al [1971], This series satisfies
1,2
0 —(r+v—5)~</2
SWE) | wsih)=K S (=D)TA 2 (7.10)
(2 I=—00
For suitable choices of v ,K, W(s) satisfies
sY(s) + aY(s/A) = 1
but cases occur, where for particular values of v, W(s) satisfies
sY(S) + aY(s’/A) = 0
So that again eigensolutions exist. An obvious value is v = 0 in which

case the series in (7.10) vanishes (v = =1, £ 2,.. are all equivalent

to v=0) but there are also complex values of v which make the series
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vanish.  We observe that the function W(s) of (7.9) has essential
singularities at both s = 0 and s = o, and does not possess Taylor

series expansions about these two points.

Approximations to y(t)

Our principle objective was to solve the functional differential

equation
dfi() —ay(M)+  by(t) (1.1)
for t > 0 and y(0) = 1; a=-Aa and b = 3. We now derive approximations

to the function y(t) by finding the originals of the convergents of the
continued fraction and of the series of section 4.

Inverting (4.1. 6) we find

BmY(S,akm) (81)

Sl’l’l

y(H) =
r=1 p=l

The results of section 4 enable us to approximate Y(s,aA ) by sequences of

rational functions, each of which can be expressed in partial fractions.

To complete the inversion of (8.1), we therefore require the functions
m 2 m-1
p _.pt_ (pt) (pt)
em (p,1 = —m(s ~5=¢ [+ (PO + =5+ (o D) 1 (8.2)

When Y (s,a)l™) is approximated by n terms of (4.1.4), the original (8.1)

for0<A <1 andf # 0, becomes

0
ys(® =1+ Z {H (B~ 0t7»P)} ptK(@lem(B. )+ b rB—em(B%r,r)(fB)

=1 p=l =l pa-2F)
p=1
00 aXP
where, as in (4.1.5), K(o) = I1 (1+T)
D=l

The weights in (4.1.4) in general increase in magnitude for a certain
number of terms and then decrease, some weights can be very large. The

weights continual decrease if

LS

B
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The change o — a.A™ improves the convergence of the series and the
condition

Shm+l gy (8.4)
p
can be usefully used to fix the minimum size of m in (8.3). Notice

however that the change a — a A™ does not directly improve the coefficients
in (8.3). m should not be excessively large otherwise loss of accuracy
may be the forfeit.

Now the terms of (4.1.4) fit the poles of Y(s,a) in the order
B, AP, A*P... In (8.3) the m series terms are fitting y(t) for smallt
and for P > 0 the terms derived from (4.1.4) are fitting y(t) for t
large, consequently (8.3) provides excellent approximations to y(t)
when m is suitably chosen if >0 and A 1is nottoo closeto 1. For
some numerical results see table B,

We now use in (8.1) n terms of the iterated series to approximate
Y(s,aA™ ). For 0 <X <1 and B# 0, expanding the first n terms of the

iterated series (4.1.2) 1in partial fractions leads to

Koo ) il
Kn—1+ n-—2 B

KO[B
* 1
G-B  T-N6 -ph 2P )
p:

) (8.5)

where the coefficients K, are the partial sums of the series (4.1.5)

for K(a)
r(r+1)/2 r
K, (a)=1+ 3 . (—o/P) (8.6)
=L ILa-aP)
p:

The expression (8.5) inverts to

r
n-1 K@ )(?J PV

=0 [I(1-AP)
p=l1

(8.7)

The weights in (8.5) also normally increase in magnitude to a maximum,

which can be large, before decreasing. For sufficiently large n they

oA

tend to decrease if < 1-A
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Thus when (8.5) is inserted into (8.1) for Y(s,aA™), we obtain
the following approximation to y(t)

r
el P S CLE ) R AR
yiO=1+ ¥ {T] B-aAP)} =+ {[] (1-=2—)} T (8.8)
r=l p=l I p=l B "r=0 [1(1-1P)

p=l

and the condition (8.4) could again be used to choose the value of m.

Since the iterated series (4.1,2) matches terms in the series of
Y(s,a) for |s| large, all the terms 1in (8.8) are contributing to fitting
the function y(t) for small t. With m suitably chosen, for both positive
and negative f , (8.8) produces good approximations to y(t) for A <0.9
but the range in t diminishes as A is increased towards 1. Some numerical
results are recorded in table C.(8.8) is a more versatile formula than
(8.3), in fact the only virtue of (8.3) is that it can deal with large
values of t when B > 0.

For our third method we approximate Y(s,aA™) in (8.1) by the nth
Pr ()

n S
Q. (s) denote the numerator and denominator polynomials respectively.

Convergent of the continued fraction (4.2.4), where P, (s) and

Assuming B # aA™ for any positive integer m, the n roots of Q, (s)

are simple and for 0 < A < 1 tend to the values B A" while for A >1 they

tend to values -aA*""! , r=0,1,2...n-1. The roots are not necessarily
real, although they are tending to real values. On determining the roots

numerically the nth convergent can be expressed in partial fractions

Ph(s) _ Ph(pr)
n® Q' ()G -pr) (8.9)

where,r denotes a root of Q, (s). Considerable care must be taken in
evaluating P,(pr).Pn (pr) should not be calculated directly or from the
recurrence relations that generate P, (s). When p, 1is close to a root of
P, (s) many significant figures may be lost. The determinant formula
given in section 6 may often be useful used in this situation.

Since Q.(pr) = 0, we have

_1yn-1 -1
Py (pr)Q,_;(pr) ="M ”“nla—xP)nnl(B—axp)an—l (8.10)
p= p=
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and, provided p; is not close to a root of Q. ,(s), the P (p;)
can be calculated using only the denominator polynomials. If (8.10)

is used to find P (p;) the expansion (8.9) inverts to give

-1 -1 p..t
OO 1P - aPye Tl Y er
p=1 p=1

, 8.11)
r=1 Qn—l (Pr)Qn(pr)

But in practice to maintain accuracy it is often necessary to use a

mixture of methods in evaluating the P, (p;) .

When, in (8.1),Y(s,al™ ) is replaced by the expansion of its nth
convergent
Pp(,ad™) 0 Py(praa™)
QnG ar™) Z1Qp(pr.oh™)s —pyr)

(8.12)

we obtain the approximation to y(t)

n Pn(Pra(ﬁbm)
r=1 Qn(Pr,axm)Prm

-1 r
ve®=1+ T 1B -arP)) S+ (1B -arP) em (P, (8.13)
= p: . r=

where p, now denotes a root of Q, (s,aA™ ) and e, (p,t) is defined in (8,2).

These roots p, need not be real. Nevertheless when o and B are of
the same sign complex roots can be avoided by choosing m sufficiently
large. Using properties of real J fractions Wall [p.1191 , from a consider-
ation of the signs of the partial numerators of (4.2.3), with a replaced

by aA™ , we conclude that for its even convergents (8.12):

For 0 <A <1,

a) oand B both < 0 and | B [>|a|A™", the poles are simple, real and
negative, and have positive residues.

b) o and P both > 0 and P> aA™' , the poles are simple, real and
positive and have negative residues.

¢) o and B opposite in sign, the partial numerators of (4.2.3)
alternate in sign and the poles of (8.12) may be complex. In practice,
as n is increased pairs of complex poles coalesce and shed real poles

which then tend to values A" .
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For A > 1,

d) o> 0and either p>0 with aA™"' > B or p <0, the poles are simple,

real and negative and have positive residues.

e) o <0 andeither p <0 witha|A™"'> [B| or B >0,the poles are simple,

real and positive and have negative residues.

Thus complex roots need only arise when 0 <A <1 and a, B are opposite
in sign. When the conditions (e) hold the inversion of (8, 12) is not

meaningful, so that when A>1, y. (t) can only be useful for o>0.

The continued fraction is primarily matching terms in the series

in of Y(s,al™ ), consequently the functions y. (t) approximate y(t)

»n | —

well for small t. However for 0 <A <1 the continued fraction
progressively fits the poles P,A B,A*p and can produce good
approximations to y(t) for large t, certainly if B >0. Good approximations
are also obtained when A>1 and a>0. In table D we record some numerical
results. The advantages of this method is that it extends the solution

to values of A greater than one when a > 0, and further gives solutions

when A 1is near one.
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Solutions of the functional differential equation (1.1).

Mm=-a=+ 1.0

10

25

50

75

100
120
140
150
160
180
200
220
240
250
260

280
300

TABLE A using (1.3)

B =095

A =0.99

y(t)
1

0.95099
0.77378
0.59046
0.23707
3.06402
6.86576
7.45578
4.25506
-1.77213
1.39535
1.74588
1.22838
7.18998
1.71180
1.10332
3.73368
1.47881

3.43702
1.21665

E-02
E-04
E-06
E-05
E-03
E-02

E+05
E+10
E+17
E+24
E+27
E+31
E+38
E+46
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TABLE B using (4.1.4) in (8.1)

o=1 3=1 A=0238 a=-10 B=1 A =09

M- 15 N =5 M=45 N = 10
t y(®)

t y(t)
0 1.000000 0 1.000000
1 1.242853 1 1.741286  E+03
10 1.500779 E+02 10 3.038451 E+15
50 1.746529 E+19 50 1.908673  E+38
100 9.053594 E+40 100 1.643197 E+60
TABLE C using (4.1.2) in (8.1)

a=-2 B =-1 A =08 a = -1 = 1 A= 095

M=9 N = 15 M=50 N = 10
t y(t) t y(t)
0 1.000000 0 1.000000

1.684644 1 6,728839
10 1.588661 E+01 10 1.525186  E+07
50 2.755279 E+02 50 8.350665 E+27
100 1.096282 E+03 100 1.545544 E+50
TABLE D using (8.12) in (8.1)

a=-1 6 =1 X% = 09 Ma=-a=+1 B =09 A = 3.01I

M 5 N =15 M= 0 N = 12
t y(t)

y(t)

0 1.000000 0 1.000000
1 6.193152 1 0.951466
10 2.633091 E+06 10 0.620896
50 8.521912 E+24 50 0.131362
100 4.686615 E+46 100 0.309330 E-01

A =-a-+1, B =095 A =099
M=6 N= 20
produces y(t) in table A for t < 150.
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