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                                                     ABSTRACT 

The  weak  formulation  of  moving  boundary  problems  with  possibly  vanishing 

specific  heat,   that  is  governed  by  parabolic  and/or  elliptic  differential 

equations,   is  developed.     The  uniqueness  of  the  resulting  weak  solution 

is  then  proved.     This  approach  is  used  to  obtain  numerical  solutions  to 

some  physical  examples,  which  arise  in  electrochemical  machining  processes, 

and  in  saturated / unsaturated   flow  in  porous  media. 
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              ON  THE  WEAK  SOLUTION  OF  MOVING  BOUNDARY  PROBLEMS 

                                                           by 

               A.  B.  Crowley,  School  of  Mathematical  Studies, 
                          Brunel  University,  Uxbridge,  Middlesex.† 

§ 1.     Introduction

In  this  paper  the  extension  of  the  weak  formulation  of  the  classical 

Stefan  problem  to  more  general  moving  boundary  problems  with  parabolic 

or  elliptic  differential  equations  is  discussed.    This  formulation  of 

the  classical  Stefan  problem with  a  parabolic  differential  equation  is 

described  by  Oleinik  (1960).    The  theory  of  weak  solutions  for  the 

classical  Stefan  problem has  proved  most  helpful,   leading  as  it  does 

to  a  fixed  domain  formulation  of  this  moving  boundary  problem,  which  is 

particularly  advantageous  in  the  search  for  numerical  solutions  in multi- 

dimensional  situations.    This  approach  to  the  computation  of  solutions 

to  the  Stefan  problem was  pioneered  by  Rose  (1960).    Here  we  prove  the 

uniqueness  of  the  weak  solution  for  the  case  in  which  the  governing 

differential  equation may  be  elliptic  in  one  or more  regions,  but  in which 

the  problem  remains  time-dependent.  In  the  paper  by  Oleinik  (1960),  the 

proof  of  the  uniqueness  of  the  weak  solution  is  restricted  to  the  case 

where  the  differential  equation  is  parabolic  everywhere  in  the  domain. 

In  the  last  section  some  simple  examples  of  considerable  physical  interest, 

which  lie  outside  the  scope  of  the  earlier  results,  are  solved  numerically. 

 

†    Present  address:  Oxford University  Computing  Laboratory  ,  19  Parks  Road, 

      Oxford, OX1 3PL.
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Before  proceeding  further,  we  outline  the  weak  formulation  of  the 

classical  Stefan  problem  of  melting  ice  in  order  to  establish  some 

terminology.   In  each  phase  i = 1 , 2   (where   1   denotes   ice)   the 

governing  differential  equation  is 

                                    )iui(k
t
iu

ic ∇∇=
∂

∂
 

where  c  >  0  is  the  specific  heat,   u    the  temperature,  k  >  0  the  thermal 

conductivity,   and  the  density,   assumed  constant,   is  taken  as  unity. 

At  the  moving  boundary,   s(x ,t)   =  0,  between  the  ice  and  water  the 

boundary  conditions   are  that   the  temperature  is   the  melting  temperature, 

M
u , 
                                       u  =    on   s(

M
u x , t )  =  0  

 
and   that   heat  is  conserved, 
 

                    0,t),xs(on1s)u.(k2s)u.(k
t
sL =∇∇−∇∇=

∂
∂  

where  L  >  0  denotes   the  latent  heat,   the  density  being  again  taken  as 

unity, and   (k∇u. ∇s)i.   denotes   the  limit  of  k∇u. ∇s   as   the  boundary  is 

approached  from  phase  i.       Appropriate  initial  and  boundary  conditions 

are  also  given. 

 

By  introducing   the  variables 

                                 ∫ >+= u
Mu )MuuifL(c(v)dvH

usually  called  the  enthalpy,    and 

 
                                     ∫=φ u

Mu k(v)dv



3.

these  equations   may  be  reformulated   to  give 

                                                 φ∇=
∂
∂ 2

t
H  

where  this  equation  holds  in  a weak  sense.     In  the  classical  Stefan 

problem where  c  >  0,  k  >  0,   the  enthalpy  H  is   a  strictly  monotone 

function  of  φ,  while  φ  is  a  single-valued  function  of  H.  However  in 

a more  general  moving  boundary  problem  any  of  c1,  c , L  may  be  zero, 

in  which  case  the  temperature  function  φ  is  no  longer  a  single-valued 

function  of  the  enthalpy  H. 

As  mentioned  above,   in  the  classical  Stefan  problem  the  specific  heat 

c  is  required  to  be  strictly  positive.     Two  physical  problems  in  which 

this  is  not  so  are  described  and  solved  in  section  5.     The  first  of  these 

is  a  model  of  the  electro-chemical  machining  process,   in  which  the  metal 

to  be  shaped  is  used  as  the  anode  in  an  electrolytic  cell   (see  for  example 

McGeough  &  Rasmussen   (1974),   Fitz-Gerald  and  McGeough   (1968)).     Here  the 

'specific  heat'   is  zero  in  both  phases  resulting  in  elliptic  differential 

equations,  but  with  a  Stefan  type  boundary  condition   (L  >  0).    This  model 

also  describes   the  flow  of   an  incompressible  fluid  in  a  Hele-Shaw  cell 

(Richardson   (1972)).  The  second  problem  described  is  one  where  the 

specific  heat  vanishes  in  one  phase  only,  yielding  an  elliptic  equation 

in  this  phase,  with  a  parabolic  equation  in  the  other.   This  situation, 

considered  by  Hornung   (1978),   arises  in  the  study  of   saturated/unsaturated 

flow  in  porous  media,   and  has  aroused  interest  because  of  its  relevance 

to  irrigation  problems. 
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Moving  boundary  problems  in  general,  and  the  classical  Stefan problem 

in particular  have  attracted much  attention  in  recent  years. 

Kamenomostskaja  (1961)  showed  that  a  numerical  scheme  based  on  the 

weak  formulation  converged  to  the  unique  weak  solution.    Another 

approach which has  proved  successful  is  the  reformulation  of  Stefan 

problems  as  variational  inequalities  (Duvaut  (1975),  Elliott  (1977)), 

and monotonicity methods  (Brezis  (1971))  have  also  proved  powerful 

in  showing  the  existence  and  uniqueness  of  solutions  to  such  problems. 

However,  most  effort  has  been  devoted  to  cases  where  the  so-called 

temperature  function  φ  is  a  single  valued  function  of  the  enthalpy. 

For  the  reasons  explained  above,  we  are,  in  this  paper,  particularly 

interested  in  situations  where,  because  the  specific heat  vanishes 

over  some  temperature  range,  this  is  not  true. 

§2.    The  weak  formulation

We  consider  a  parabolic/elliptic  differential  equation,  which  is  to  be 

satisfied  in  some  region  Ω  x[0,T],  of  the  form 

                          iq)iu)i(ui(k
t
iu

)i(uic +∇∇=
∂

∂
                                  (2.1)

where  kj(uj)   >  0  ∀  ui,  ci   (ui)  ≥  0 ∀ ui,  qi   is  a  bounded  source  or  sink 

term,  and  the  subscript  i  denotes  the  i th  phase.    We  shall  consider  a 

two-phase  problem,  with  the  first  phase  being  defined,  after  suitable 

choice  of  origin,  by  u  <  0,  and  the  second  by  u  >  0.  Across  the  moving 

boundary  u  =  0,  or  s(x,t)  =  0,  the  boundary  condition 

                            s).1u1k2u2(k
t
sL ∇∇−∇=

∂
∂                             (2.2) 

 
is  to be satisfied,  where  L ≥ 0  is  called  the  latent  heat  by  analogy 

with  the classical  Stefan problem  outlined  inn the  previous  section. 
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Proceeding  as  in  the  case  of  the  classical  Stefan problem, and 

following  the  techniques  of  Oleinik we  introduce  the  functions 

                                                                                              (2.3a) dv,u
0 k(v)φ ∫=

                   H  =                                     (2.3b) 

⎪
⎪

⎩

⎪
⎪

⎨

⎧

∫ >≥+

=∈

<≤∫

u
0 0u;LLc(v)dv

0uL],[0,

0u0,dvu
0 c(v)

and 

                        Q   = Q(H)                                (2.3c) 

⎪
⎪
⎩

⎪
⎪
⎨

⎧

>

=∈

<

0uq(u)

0u(0)]2q(0),1[q

0uq(u)

where  k(v)  =  kj(v),  if  v  is  in  phase  i,  and  c(v),  q(v)  are  defined  similarly. 

For  the  uniqueness  proof  which  follows  we  require    that  Q be  a  smooth 

function  of  the  enthalpy  H. 

The  differential  equation  (2.1)   then  reduces  to 

                                           Q2
t
H

+φ∇=
∂
∂                    (2.4) 

which  holds  in  a weak  sense  throughout  the  fixed  domain Ω  x  [0,T]. We 

shall  refer  to  H,    as  generalised  enthalpy  and  temperature  functions 

respectively.    φ  is  a  strictly monotone  function  of  u,  and  thus  may be 

inverted  to  yield  u.    H  is  a monotone  function  of  u  and  hence  of  φ, 

but  since  we  permit  one  or  other  of  c1
,    c2  to  vanish  for  a  range  of 

values  of  u  neither  H  nor  φ  is  necessarily  sufficient  to  determine  the 

other.    This  contrasts  with  the  classical  Stefan problem where  the 

temperature  is  a well-defined  function  of  the  enthalpy  . 
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Let  the  initial  condition  be  given  as 

                                               φ  (x,0)     =     φ0  (X),                                                     (2.5a) 

and  consider  the  case  of  Dirichlet  boundary  conditions 

                                                 φ  | ∂Ω  =   f  ( x , t )                                                (2.6a) 

Since  H (φ)   is  not  single-valued  at  φ  =  0, we  consider that 

                                               H  (x,0)     =     φ1   ( x )                                            (2.5b) 
 
                                               H | ∂ Ω   =    f 1 (x , t)                                                 (2.6b)

are  also  given,   compatible    with   (2.5a),   (2.6a). 

A  weak  or  generalized  solution  of   (2.3)   -   (2.6)   is  defined  as   a  pair 

of  bounded  measurable  functions   {H,Φ},   such  that   (2.3)  holds  for  all 

x, t , 
 

                                   
dSdt

n
ΨfΩ

T
0dΩ)ΨΨ(x,0x(1φΩ(0)

Ω dtdφQΨ2φ
t
ΨHT

0

∂
∂

∫∂∫+∫−=

∫ Ω+∇+
∂
∂

∫
     

  (2.7)

 
for  all  suitable  test  functions   {ψ}.     The  set   {ψ}   consists   of  bounded 

continuous  functions   for  which  Ψ2Ψ,,
t
Ψ

∇∇
∂
∂  exist  and  are  continuous, 

and  which  satisfy  the  boundary  conditions 

 

                                         
T].[0,t0Ω|Ψ

0T),xΨ(

∈∀=∂

=
                                  

  (2.8)

In  the  following  sections   it  is   shown  that  the  weak  solution  here 

defined  is  unique,   and  extensions  of  the  proof   for  other  boundary 

conditions  are  indicated.     Then  in  the   final  section  two  physical 

examples   are  described,   recast   into  the  form   (2.4),   and  hence   solved 

numerically. 
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§3.    The  uniqueness  of  the weak  solution

In  this  section we  demonstrate  that  the  weak  solution  {H ,φ,}  defined 

in  section  2  is  unique.    Suppose  that  there  exist  two  weak  solutions 

{H1,φ1  },  {H2  ,  φ2 }.    Then  since  both  solutions  satisfy  (2.7)  by  definition, 

we  have by  subtraction 

      0dtd)2Q1(QΨ2
Ω )21(

t
Ψ)2H1(HT

0 =Ωψ−+∇∫ φ−φ+
∂
∂

−∫            (3.1) 

The  structure  of  the  uniqueness  proof  to  be  described here  is  similar 

in  style  to  that  given  by  Oleinik.    However  the  analysis  is  complicated 

by  the  fact  that  neither  H  nor  φ  is  a  strictly  monotone  function  of  the 

other.    Thus  the  ratio  (φ1  -   φ2  ) / (H1  -  H2  )   is  unbounded  and  0leinik’s 

original  method  breaks  down.    We  therefore  introduce  a  function,  strictly 

monotone  in  both  H  and  (φ,  defined  by 

                                                    F(φ,H)     =    H  +  γφ                                 (3.2) 

where  γ is  any  positive  constant.    A  second  relaxation  of  the  conditions 

imposed  by  Oleinik  is  that  we  require  the  source  term Q  to  be  a  smooth 

function  of  the  enthalpy,  rather  than  of  the  temperature.    When L  >  0 

this  permits  the  source  term  to  be  discontinuous  across  the  phase 

boundary. 

(3.1)  may  be  rewritten  as 

0tddAC ΨΨ2B
t
ΨA)2F1(FΩ

T
0 =Ω

⎭
⎬
⎫

⎩
⎨
⎧ +∇+

∂
∂

−∫∫                   (3.3)
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Where 

                                 

⎪
⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪
⎪

⎬

⎫

−

−
=

−

φ−φ
=

−

−
=

2H1H
2Q1Q

t)c(x,

2F1F
21t)B(x,

2F1F
2H1H

t)A(x,

                                   (3.4) 

and  A,   B,   C   are  defined  to  be  zero  when  φ1    =  φ2     and  F1   =  F2     From  the 

definition  of  F  it  follows   that 

and 
0     ≤    A     ≤   1, 

0     ≤     B     ≤ 1/Y,                                                         (3.5) 

while  since  Q  is  required  to  be  a  smooth  function  of  H,  we  have 

                                                          |C   ( x, t)|   <  M                                                (3.6) 

for  some  constant  M.     Thus   the   coefficients  of  Ψ,2,
t
Ψ

∇
∂
∂    ψ   in   (3.3) 

are  all  bounded  and  A  and  B  are  non-negative. 

We  note  that  the  introduction  of  the  function  F,  with  γ >  O,   is 

necessitated  by  the  possible  unboundedness   of   the  ratio  B/A,   due   to 

the  vanishing  of   the  specific  heat.     This  prevents  our  following 

exactly  Oleinik's  proof,  which  corresponds   to  taking γ  zero  in  (3.2) 

and  for  which  the  restriction  c  >  0  implies  B/A  is  bounded. 

The  object  is  now  to  show  that 

                                0dtdGA)2F1(FΩ
0

T
0 =Ω−∫∫

for  an  arbitrary  smooth  bounded  function  G(x,t),   using  procedures 

analogous   to  those  of  Oleinik.    Let  {An },   {Bm},   {Cl}  be  sequences  of 
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smooth  bounded  functions   such  that 

||A  -  An || < α/n, 1/n  <  An  ≤      1 

                                       ||B  -  Bm || < β/m, 1/m  <  Bm       ≤ 1/γ                         (3.7) 

                                       ||C  -  C1 || < 1/ℓ | C1   |   <  M 

where  α  and  β  are  constants. 

Now  consider  the  equation 

                                     t)G(x,mnlξ1Cmnlξ2
nA
mB

t
mnlξ

=+∇+
∂

∂
                     (3.8a)

with  the  boundary  consitions 

                             T][0,t0,Ω|ξmn1T,ton0mnlξ ∈=∂==                         (3.8b) 

for  an  arbitrary  smooth  bounded  function  G  such  that  

                                                            G | ∂ Ω   =  0. 

 

With  the  change  of  variable  t   =  T  -   τ    this  becomes 

                              τ)G(x,mnlξ1Cmnlξ2
nA
mB

τ
mnlξ

=+∇+
∂

∂−
 

                                T][0,τ0Ω|mnlξ0,τon0mnlξ = = ∈∂=                

(3.9)

The  coefficient   
nA
mB

is  continuous,  positive  and  bounded  below  away 

from  zero.     The  differential  operator  in     (3.9)  is  therefore  uniformly 

parabolic,   and  by  the  maximum  principle   (see  for  example  Friedman   (1964)) 

ξ m n l       is  bounded  independent  of  m,   n,   1.     Thus,  being  continuous  with 

continuous  derivatives                              ∇ ξm n l ,   ∇2 ξm n l  ∂ξm n l/∂ t ,   ξm n l   belongs    to 

the  set  of  test  functions {ψ }. 
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Writing   (3.3)  with ξ m n l      in  place  of ψ  and  substituting  for
t

mnlξ
∂

∂
 

from  (3,8)  yields 

(3.10)dtdmnlξ)1CnA)(AC2F1(FΩ
T
0

dtdmnlξ2B)m(B)nA(A
nA
mB

)2F1(FΩ
T
0dΩΩdGA)2F1(FΩ

T
0

Ω−−∫∫+

Ω∇⎥
⎦

⎤
⎢
⎣

⎡
−+−−∫∫=−∫∫

 

The remainder of the proof is then to demonstrate the right-hand side 

of (3,10) is  arbitrari ly small  as m, n,  1 →   ∞ .  This will  be shown in 

the  next  section.  Taking  this  as  given,  we  thus  obtain 

                                                                      (3.11) 0dtdG)A2F1(FΩ
T
0 =Ω−∫∫

for  an  arbitrary  smooth  bounded  function  F(x,t)   such  that  G |∂Ω   =  0. 
 

Therefore  we  have 

                                  A(F1  -  F2)   =  0    a.e.   in Ω   x  [0,T] 

which,  substituting  from  (3.4)  yields 

                                                       H1     =    H2       almost  everywhere 

Returning  now  to   (3,1),  we  have  Q1   =  Q2  a.e.   since  Q  is  required  to  be 

a  smooth  continuous  function  of  the  generalised  enthalpy  H,   and  thus 

(3.1)   reduces  to 

                                        0ΨdΩdt2)21(Ω
T
0 =∇φ−φ∫∫

where  ∇2ψ  is  an  arbitrary  smooth  bounded  function.     Therefore  φ1  = φ2 

almost  everywhere    in  Ω  x  [0,T],and  so  the  weak  solution  {H, φ}  is 

indeed  unique. 
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The  proof  given here  is  readily  extended  to  cover  more  general 

boundary  conditions  on  the  fixed  surface.     If   (2.6)   is  replaced  by 

                                                T][0,tΩ,on0,w0,w
ν
φ

∈∂≥=φ+
∂
∂

where  v  denotes  the  outward  normal,   then  (2.8)   is  changed  correspondingly, 

so  that  (3.8)  becomes 

                  ].T,0[t,on,0w,0w
ν lmn
mnl ∈Ω∂≥=ξ+

∂
ξ∂

In this case we appeal to comparison theorems (Friedman (1964)) to 

show that ξmnl   is bounded independent of 1, m, n.  The rest of the 

proof then proceeds as outlined above, with minor  modifications to 

some  estimates  in  section  4. 

 

§4.     Some  bounds

We  seek  now  to  estimate  the  terms  on  the  right-hand  side  of   (3.10)   in 

order  to  justify  (3.11).     (3.10)   is 

                              (4.1) 3I2I1ItddAG)2F1(FT
0

T
0 ++=Ω−∫∫

where 
 

                       

.dtdmnlξ)1CnA(AC)2F1(FΩ
T
03

,dtmnlξ2)mB(B)2F1(FΩ
T
02I

dt,dlmnξ2
nA
mB

)nA(A)2F1(FΩ
T
01I

Ω−−∫∫=

∇−−∫∫=

Ω∇−−∫∫=

I

Ωd  (4.2)

It  is  first  necessary  to  obtain  some  bound  for  lnm
2 ξ∇∫Ω
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Multiplying   (3.8)  by    where  θ   is  arbitrary   ,and  integrating ,mnlξ2θte ∇

over  Ω  x[0,T]  yields 

 

(4.3)dtdθtemnlξ2t)G(x,Ω
T
0

dtdmnlξ2θtemnlξ1C2)mnlξ2(θte
nA
mB tθemnlξ2

t
ξmnl

Ω
T
0

Ω∇∫∫=

Ω∇+∇+∇
∂

∂
∫∫

 

On  integrating  all  terms  except  the  second  on  the  left  hand  side  by 

parts,  using  the  conditions  ξm n l | ∂ Ω   =    0,  G | ∂ Ω   =    0,  ξm n l    =    0  on   t = T 

and  rearranging   (4.3)  becomes 

 

dtdcmnlξmnlξθteG2
mnlξθteΩ

T
0

dtd2)mnlξ(θt)e1C-θ
2
1(2)mnlξ2(tθe

nA
mBT

0 Ω

Ω∇∇+∇∫∫=

Ω
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∇+∇∫ ∫

 
and  hence 
  

dtd
2

)
1

c(2
mnl

ξ
mnl

ξ
θt

µ2
eG

2
mnl

ξ
θt

eΩ
T
0

dtd
2

)
mnl

ξ(
θt

)e
2
µ-C-θ

2
1(

2
)

mnl
ξ

2
(

tθ
e

n
A

m
B

T
0 Ω

Ω∇∇+∇∫∫=

Ω
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∇+∇∫ ∫

 
for  any  µ ,  θ   >  0.     Thus,   choosing   θ    >   2M  +  µ  (M  as   in  (3.6))  we  have 
 

                    dtd2)mnlξ(Ω
T
0dt,d2)mnlξ2(

nA
mB

Ω
T
0 Ω∇∫∫Ω∇∫∫  

 
bounded  above  independent  of  m , n,  by    say. 2

2
2
1 K,K



                                                                13. 

Returning  to  (4.2)   and  using  the  Cauchy-Schwarz  inequality 

                
2
1

dtd2)nA(A
nA
mB2)2F1(FΩ

T
01k1I ⎥

⎦

⎤
⎢
⎣

⎡
Ω−−∫∫≤

 

and,  if K3    =   ),2F1T](F[0,ΩxMax −  

                              
2
1

dtd
nA

2)nA(A
Ω

T
0.

2
1

γ

3K12K

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
Ω

−
∫∫≤

 
Let  E   denote   the   set   in  Ω  ×  [0,T]   on  which   I An I   < σ1 .     Then 
 

σ.2αdtd2
nA

2)nA(A
E1σdtd

nA

2)nA(A
E

(3.7)by2n1σ

2α2||nAA||
1σ

1dΩΩd
nA

2An)(A
T][0,E)(Ω

≤Ω
−

∫≤Ω
−

∫

≤−≤
−

∫ ×−

 

   and

Thus                                 2
1

.2n1σ

1
1σ

2
1
γ

α3k12k
1I ⎟⎟

⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
+≤                                   (4.4)

The  estimation  of  the  second  integral  is  similar,  taking 

[ ]21dtd2)mnlξ2(MB
2
1

dtd
mB

2)mB(B2)2F1(F2I Ω∫∫ ∇
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
∫∫ Ω

−
−≤                      

 

and  using 

                      2)mnlξ2(mB2)mnlξ2(
nA
mB

∇>∇                 (from  (3.7)) 

to  obtain 

                        I2    ≤      2K1  K3β .
2
1

2m2σ

1
2σ ⎟⎟

⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
+  

                      (4.5) 



                                                                 14. 

Lastly 

               { } { }
).

n
αM

1
1(3K

(4.6)
2

dtd2)nA(AΩ
T
0M3K2

1
dtd2c)(cΩ

T
03k

dtdmnlξ)]nA(Acc)[A(c)2F1(FΩ
T
03I

+≤

Ω−∫∫+Ω−∫∫≤

Ω−+−−∫∫=

 

 
Thus we have 

,
33I,

32I,
31I

∈
<

∈
<

∈
<     for    sufficiently    large    l,m,n,     and    hence 

in   the   limits  as  l,  m,  n,, → ∞  we  obtain,  as  stated   in  (3.11), 

                                   0.tddΩ)AG
2

F
1

(FΩ
T
0 =−∫∫

§5.    Some  numerical  examples

Here we  describe  the  numerical  solution  of  some  physical  problems  of 

practical  importance.    The  weak  formulation  of  these  problems  is 

developed,  and  equations  of  the  form  (2.4)  on  a  fixed  domain,  with 

appropriate  boundary  conditions,  are  then  solved  using  a  finite  difference 

scheme.    The  computational  advantage  of  this  approach  is  that  the 

moving  boundary  condition  is  automatically  satisfied  in  the  weak 

formulation,   and  so  need  not  be  explicitly  applied.    Thus  the  moving 

boundary  need  not  be  tracked,  but  simply  appears  as  the  surface  separating 

the  region where φ >  0  from  that  where  φ    <   0. 

In  the  proof  of  the  uniqueness of  the weak  solution, we  have  specifically 

considered  the  situation when  the  generalised  temperature φ is  not  a  single- 

valued  function  of  the  generalised  enthalpy  H. 
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Therefore  the  finite  difference  scheme  used  must  be  of  the  form 

                                               H(x,   t  +  δt)   -  H(x,   t) 

                      =   δt {θ ∇2 φ  ( x, t  +  δ t ) + (1-θ)  ∇2 φ  ( x, t ) }                                 (5.1) 

for  0  <   θ  ≤   1,  with  θ =  0  which  gives  an  explicit  scheme  being 

excluded.     An  implicit  scheme  of  the  type   (5,1)   calculates  a  linear 

combination  of  H  φ and  of  the  form  of  F(φ)   in  (3.2)   at  each  step, and 

since  this  function  is  strictly  monotone  in  both  H  and   φ,   the  values 

of  these  functions  are  uniquely  determined. 

From  numerical  experiments  it  is  known  that  the  finite  difference 

scheme  is  convergent,  although  this  has  not  yet  been  shown  analytically. 

The  vanishing  of  the  specific  heat,  which  excludes  the  use  of  explicit 

finite  difference  schemes,   also  causes   the  breakdown  of  the  convergence 

proof  for  implicit  schemes  described  by  Elliott   (1976). 

1.     Electro-chemical  machining

In  the  electro-chemical  machining  process  the  metal  piece  to  be  shaped 

is    used  as   the  anode  in  an  electrolytic  cell.     The  passage  of  current 

causes  metal  to  be  dissolved  from  the  surface  of  the  anode,  which  is 

therefore  a  moving  boundary.     This  is  basically  a  one-phase  problem, 

since  the  differential  equation  is  trivially  satisfied  in  the  other 

phase.   The  configuration  is  shown  in  Figure1.  In  the  quasi-steady 

model  derived  by  McGeough  and  Rasmussen  (1974)   the  differential  equation 

in  the  electrolyte  is 

                                                            ∇2  φ   =    0,                                                  (5.1) 

where  φ   is  the  electric  potential ,with  the  boundary  conditions  at  the 

anode 
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                                                           φ   =     0 

                                    0,M0,t),rs(ons.
t
sM >=∇φ−∇=
∂
∂                           (5.2) 

and 

                                           φ      =    -    v  <  0 

on    the     cathode    r    =    a. 

Thus  we  have  a  one-phase  problem  with  an  elliptic  governing  equation 

and  a  Stefan  boundary  condition  with  non-zero  latent  heat.     In  order 

to   cast  this  problem  into   the   form  (2.4)  we   introduce  an   'enthalpy' 

function,   simply  a  step   function  of    φ,  given  by 

                                                          (5.3)

⎪
⎪
⎩

⎪⎪
⎨

⎧

>φ

=φ∈

<φ

=

0.M

0M][0,

00

H

To  formulate  the  equations  on  a  fixed  domain,  we  regard   the  anode  as 

being  a  region  where  φ  =  0,  H  ≡ M.  The  problem  thus  becomes 

                                                         φ∇=
∂
∂ 2

t
H                                                (5.4)   

with  the  boundary  conditions   φ  =  -v,   H  =  0  on  r  =  a,   and  initially 

                         φ     =     -v,   H    =    0   ,     t    =   0,     outside   s(r,t)   =  0 

                            φ     =       0,   H    =   M  ,     t    =    0     within     s(r,t)  =  0 

The   conservation  form  of   (5.4)   across   a  surface  of  discontinuity 

s(r , t)   -  0  is 

                                           s].[
t
sM

t
s[H] ∇φ∇=

∂
∂

=
∂
∂           

where [ ] denotes the jump between the side where H ≤  0 and that where 

H ≥  M.  Therefore  s ince ∇φ  ≡  0  inside the anode,  (5 .2)  is  sat isf ied by 

a  solution  of   (5.4). 
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Two  calculations  were  carried  out  for  the  electrochemical machining  problem. 

In  the  first  the  case  where  the  initial  anode  surface  is  given by 

r = 9.25  +  0.25  sin  29  and  the  cathode  by r»10  is  solved  numerically, 

and  the  results  compared with  those  obtained,  both  numerically  and 

using  perturbation methods  by Christiansen  and  Rasmussen  (1976).    Since 

the  amplitude  of  the  perturbations  is  small,  this  example  is  not 

particularly  suitable  for  numerical  solution.    However  the  average 

radius  of  the  anode  is  accurately  predicted,  while  the  amplitude  of 

the  oscillations  is  in  agreement  until  it  is  of  the  same  order  as  the 

mesh  spacing. A  comparison  of  the  results  calculated  using  the  weak 

formulation with  those  of  Christiansen  and  Rasmussen  is  given  in Table  1. 

The  second  solution  calculated  for  this  problem is  the  rounding  of  an 

anode,  which  is  initially  a  square  of  half-diagonal  9.25,  when  it  is 

placed within  a  circular  cathode  of  radius  r  =  10.    The  position  of  the 

anode  surface  at  later  times  is  shown  in  Figure  2.   In  both  examples  the 

cathode  potential  is  taken  as  φ    =  1. 

2.    Saturated/unsaturated  flow  in porous  medium

In  the  flow  of  incompressible  fluid  in  a porous  medium,  governed  by  Darcy's 

law  two  distinct  regimes  occur.    In  the  first,  the  flow  is  unsaturated, 

that  is  the medium  is  only  partially  filled  with  fluid,  and  the  fluid 

content  may  change.     In  the  second  regime  the medium  is  saturated,   and 

no  further  fluid may  be  added. 

The  differential  equation  governing  the  flow  is 

                                            p)(k
t

H
∇−∇=

∂
∂  



                                                              18. 

where  H  is  a  measure  of  the  air  content  of  the  medium,  K  is   the 

hydraulic  conductivity  and  p  is   the  pressure  head.     Introducing  the 

velocity  potential  φ  ,  we  obtain 

                                                     .2
t

H
φ∇=

∂
∂                                                  (5.6) 

We  consider  the  case,   chosen  by  Horung   (1977),  where  with  a  suitable 

choice  of  origin  for  φ   the  relationship  between  H   and   φ  is  given  by 

                                               

⎪
⎪
⎩

⎪⎪
⎨

⎧

<φ

>φφ

=
0.0

02
2
1

H      (5.7)

Since  H  is  not  discontinuous  at  φ  =  0  the  condition    at  the  moving  boundary 
between  the  two  flow  regimes  requires   the  continuity  of  ∇φ. 

A  sample  problem  of  the  flow  resulting  when  an  initially  unsaturated 

medium,  with  H  =  0.5,  φ  =   1,   is  filled  by  a  constant  flux  of  fluid 

∇φ  =  ±  1   through  the  walls  x  =  +  1  was   solved  using  the  weak  formulation 

(5.6),   (5.7).     It  should  be  noted  that  the  solution  of  this  problem  ceases 

to  exist  when  the  medium  becomes  saturated  everywhere,   since  the  problem 

then  consists  of  an  elliptic  equation  in  a  fixed  domain,  with  Neumann 

boundary  conditions     Figure  3  shows   the  profiles  of  φ and  H  at  various 

times,   from which  the  time  when  the  medium  becomes  totally  saturated  is 

seen  to  be  t  =  0.5. 

It  may  be  seen  that  this  prediction  is  correct  from  the  following 

conservation  argument:     integrating  (5.6)  over   (-1,1)  x  (0,t)  and  using 

the  initial  condition  yields 

                  1.dtt)1,(xt)(1,x
T
0dxt)H(x,1

1 =−φ−φ∫−∫−
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When  the  medium  becomes  totally  saturated,   at  t  =  T,  say, H(x,T)   =  0, 

and  using  the  boundary  conditions  on  x  = ±1,   we  obtain  2T = 1 , 

The  non-existence  of  a  solution  to   (5.6)(5.7)   for  t  >  0.5  is 

indicated  numerically  by  the  failure  of  the  iterative  scheme  for 

solving  the  finite  difference  equations  to  converge  at  the  next 

time  step. 

From  these  examples, it  may  be  seen  that  the  weak  formulation, 

which  we  have  shown  to  possess  a  unique  solution,  provides a 

useful  fixed  domain method  for  the  numerical  solution  of  moving 

boundary  problems,   and  furthermore  the  results  are  in  agreement 

with  those  obtained  by  other  methods. 
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                                                           TABLE     1 

            Comparison  of  results  of  weak  solution  approach  with  those 

                               obtained  by  Christiansen  &  Rasmussen 

         Average  radius               Amplitude  of  oscillation   
 

 t 
wk.   soln. C  &  R 

Num. 
 C  &  R 

Pertn. wk.  soln. C  &  R 
Num. 

C  &  R 
Pertn. 

  0 9.25 9.25 9.25 0.25 0.25 0.25 

0.5 8.719 8.71 8.727 0.156 0.15 0.151 

  1 8.320 8.34 8.356 0.117 0.11 0.118 

1.5 8.031 8.03 8.048 0.094 0.10 0.100 

  2 7.781 7.76 7.778 0.094 0.09 0.089 

2.5 7.531 7.52 7.533 0.094 0.08 0.080 
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                                                              CAPTIONS 

Figure  1.              Sketch  showing  the  configuration  of  the  electrolytic 

                             cell  in  the  electrochemical  machining  problem. 

Figure  2. The  position  of  the  moving  boundary  at  various  times 

                             in  the  electrochemical  machining  of  an  initially 

                                square  anode. 

Figure  3.                The  profiles  of  Φ  and  H  at  various  times  for  the 

                              saturated/unsaturated  flow  problem. 
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S(t , t) = 0

∇2 φ = 0 

φ = -V 



                                                        24. 

 

s 

4 

t = 2 
3 

t = 1 

t = o 

2 

l

x7 5 6 1 3 8 4 



 



NOT TO BE 
 REMOVED 

                                          FROM THE LIBRARY 

                                                  XB 2356824 0 

  


	          
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	         TR/81                FEBRUARY   1978 
	                                                     ABSTRACT 
	Thus                                                                    (4.4) 
	The  estimation  of  the  second  integral  is  similar,  taking 
	Therefore  the  finite  difference  scheme  used  must  be  of  the  form 
	The   conservation  form  of   (5.4)   across   a  surface  of  discontinuity 
	In  the  first  the  case  where  the  initial  anode  surface  is  given by 
	Acknowledgements 

	                                                     REFERENCES 
	         Average  radius




