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Abstract

It is a classic result in cognitive science that chess masters
can recall briefly presented positions better than weaker
players when these positions are meaningful, but that their
superiority disappears with random positions. However,
Gobet and Simon (1996a) have recently shown that there i s
a skill effect with random chess positions as well. The im-
pact of this result for theories of expert memory is dis-
cussed. CHREST, a computational, chunking model of
chess expertise based on EPAM (Feigenbaum & Simon,
1984) accounts for this skill difference. The model is also
compared with human data from an experiment where the
role of presentation time for random positions was sys-
tematically varied from 1 second to 60 seconds.
Simulations show that the model captures the main features
of the human data, thus adding support to the EPAM theory.
They also corroborate earlier estimates that visual short-
term memory may contain three or four chunks.

Introduction
EPAM (Elementary Perceiver And Memorizer) is a cognitive
architecture first developed by Feigenbaum and Simon in the
early sixties. At its core lie mechanisms for encoding chunks
into long-term memory (LTM) through the construction of a
discrimination net and mechanisms for handling information
in short-term memory (STM). EPAM was originally built to
provide a unifying theory of verbal behavior (Feigenbaum &
Simon, 1962, 1984), was later used for simulating chess
memory (Simon & Gilmartin 1973), and has recently been
applied to letter perception and expert digit-span memory
(Richman & Simon, 1989; Richman, Staszewski & Simon
1995). Although not yet as influential as Soar (Newell,
1990) or ACT-R (Anderson, 1993), EPAM remains
attractive as a parsimonious, chunk-based explanation for
perceptual and memory phenomena. As added value, EPAM
addresses phenomena that are not yet accounted for by Soar
and ACT-R and may offer a useful extension of these
theories.

In this paper, I focus on chess memory and use CHREST
(for Chunk Hierarchy and REtrieval STructure; see De Groot
& Gobet, 1996, and, Gobet, 1993a, b, for earlier accounts of
the model), an expansion of Simon and Gilmartin’s (1973)
MAPP program, itself a program inspired by EPAM. After
discussing  the advantages of chess as a research domain, I
present some data from chess memory experiments, with a
special emphasis on the recall of random positions. These
data are used to compare some leading theories in the field of
expertise. I then describe CHREST in some detail and com-

pare its behavior with that of humans in experiments where
random positions are presented for durations between one and
sixty seconds. Finally, I discuss to what extent the EPAM
architecture can be used with visuo-spatial tasks.

Chess as a Research Domain
Historically, chess has been an important research domain in
cognitive science. Several concepts and techniques in the
field come directly from this domain, such as progressive
deepening, protocol analysis as a tool for studying problem
solving behavior, and De Groot’s recall paradigm, which
consists of a brief presentation of domain-specific material
followed by a recall test. As a consequence, chess is often
described as a key domain in research on expertise, an
increasingly influential subfield of cognitive science
(Charness, 1992; Ericsson & Lehmann, 1996).

How can we explain this popularity? As argued elsewhere
(Gobet, 1993b), several factors speak in favor of chess. To
begin with, chess is a complex and challenging domain,
while, at the same time, allowing a clean formal description
that makes it relatively easy to develop mathematical and
computational models. In addition, chess has good ecological
validity (Neisser, 1976), allowing one to study experts in
their usual environment. As a consequence, many exper-
imental manipulations are possible which are still close
enough to the “real thing” to ensure that chess players are
highly motivated. Moreover, the Elo rating1 (Elo, 1978) of-
fers a quantitative scale of  measurement widely used in the
chess community that provides the researcher with a fine-
grained classification. This makes it possible both to use
statistical techniques like regression analysis and to mean-
ingfully compare samples from different studies. Just think
of domains such as medical or physics expertise, where par-
ticipants are typically classified into three groups (novices,
intermediates, and experts), which are hard to compare from
one study to another, and you will readily realize the advan-
tage offered by chess and its rating system. Finally, chess is
a natural domain to consider for developing a computational

                                                
1The Elo rating scale is an interval scale ranking competitive

chess players, with a standard deviation of 200. Skill levels
have standard names, which are used consistently  in this paper
(in parentheses, the corresponding range in Elo points):
grandmaster (above 2500), international master (2400-2500),
master (2200-2400), expert (2000-2200), class A players
(1800-2000), class B players (1600-1800), and so on.
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model of cognition, because a large body of empirical data on
chess expertise already exists (see Holding, 1985, or Gobet,
1993b, for reviews).

A Short History of Random Positions
Much of what is known about chess expertise goes back to
De Groot’s seminal work (1946/1978). One of De Groot’s
important findings was that there are clear differences in a
memory task consisting in the brief presentation of a
position taken from a tournament game. Typically, players
at and above master level recall the entire position almost
perfectly, while weaker players are overwhelmed by the task
(see Figure 2 below). A natural extension of De Groot’s
work was to ask chessplayers to recall meaningless positions
(see Figure 1 for examples of game and random position).
This was first carried out in 1964 in Amsterdam by De Groot
and his students, who found that players of all skill levels
were identically poor at recalling meaningless positions.
Interestingly, they considered this result so obvious and
trivial that it did not deserve publication (Vicente & De
Groot, 1990). It was only in 1973 that a replication was
carried out (and published) by Chase and Simon, who
extended the Amsterdam work both experimentally, by
adding a copy task to the memory task,  and theoretically, by
developping what is commonly known as the “chunking the-
ory”  (Chase & Simon, 1973; Simon & Chase, 1973).
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Figure 1: Types of positions typically used in chess research
on memory. On the left, a game position taken from a tour-
nament game. On the right, a random position obtained by

shuffling the piece locations of a game position.

The use of meaningless material had two functions. First,
it served as a control condition for ruling out the possibility
that chess masters were performing better just because of
superior mental abilities. Second, it addressed one of the
challenges of cognitive science, which is, to put it simply,
to tease apart architectural components (the “hardware”) from
knowledge components (the “software”). The idea is that,
because knowledge structures are of little use in the case of
random positions, this type of material offers a baseline
condition with which knowledge-rich stimuli may be
compared. As is clear from research in neuropsychology and
in developmental psychology, this approach contains many
pitfalls, including the fact that the hardware/software
dichotomy may represent quite a simplification and may
collapse several levels of processing.

Like the unpublished data collected by De Groot and his
colleagues, the data obtained by Chase and Simon with ran-
dom positions were reassuring: there was no difference in re-
call between their three subjects, a master, a class A player,
and a novice. Taken together with grandmasters’ and masters’
massive recall superiority with game positions over weaker
players, the uniform poor recall with random positions was
such a vivid illustration of the principle that knowledge is
the key to expertise that it has become a classic finding,
widely cited in textbooks of cognitive psychology and in
papers on expertise. There is no doubt that the random
position experiment contributed to making Chase and
Simon’s papers “classics” in the field (Charness, 1992).

As usual, things are more complicated than the textbook
account. When Herb Simon and I were working on
CHREST, a re-implementation and extension of MAPP
(Simon & Gilmartin 1973), a program aimed at simulating
chess memory, it occurred to us that the model was making
predictions about the recall of random positions that were at
variance with the classical no-skill-difference result. As will
be described later in more detail, CHREST constructs a dis-
crimination net of chunks by scanning positions from a
database of master games and identifying patterns of pieces
in these positions. As expected, the model was getting better
and better at remembering game positions as the number and
the average size of its chunks increased. However, the model
was also showing a small, but robust increase in recall with
random positions. This was a matter of serious concern, for
it was clear that the simulations were correct and that the
skill differences in recall were due to a simple mechanism:
just by chance, it is more likely for a large discrimination
net than for a small one that chunks could be found in
random positions. We therefore decided to do a systematic
review of experiments using random positions.  Altogether,
we found 13 studies (Gobet & Simon, 1996a). In 12 of
them, masters did maintain some advantage, even if
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Figure 2: Mean number  (averaged over 13 studies) of pieces
placed correctly as a function of position type (game or ran-

dom) and skill level. Positions had 25 pieces on average, and
the presentation time was ≤ 10 s. Error bars indicate standard

errors of the means. After Gobet and Simon, 1996a.



it was less impressive than with game positions. The only
exception was Chase and Simon’s (1973) study, where the
master actually did worse than the novice!  While the skill
differences were not significant in most studies because of
lack of statistical power, it became clear that the effect was
genuine when the various studies were pooled together (see
Figure 2).

Random Positions as a Litmus Test for
Theories of Expert Memory

Our first reaction was to conclude that random positions do
not offer the kind of control stimuli hoped for. This is cer-
tainly an annoyance for the field, but not as bad as might be
feared, as independent evidence shows that there is no corre-
lation between chess skill and general cognitive abilities,
including visual memory for non-domain-specific material
(Gobet & Simon, 1996a; Holding, 1985). Our second reac-
tion was to realize that random positions offer a powerful
way of teasing apart current theories of chess expertise. A
comparison of four theories of chess skill (Gobet, in press),
shows that two of them, the chunking theory (Chase &
Simon, 1973), and the template theory (Gobet & Simon,
1996b), an extension of the chunking theory, predict mas-
ters’ superiority with random positions. It also shows that
two other approaches, the long-term working memory theory
(Ericsson & Kintsch, 1995) and Holding’s (1985) SEEK
theory do not account for the result, the former because it
overestimates recall performance with random positions, and
the latter, which emphasizes the role of high-level, con-
ceptual knowledge,  because it underestimates performance.

As mentioned above, the chunking theory proposes that
expertise in a domain develops by the creation of a discrimi-
nation net, through which stimuli can be rapidly recognized.
With learning, individual features or parts of stimuli are
chunked, which allows a more efficient storage of the in-
formation in short-term memory (STM). Now and then,
masters adventitiously recognize chunks in random posi-
tions, which explains their superiority with this type of ma-
terial.  The template theory adds to this view the idea that
chunks that recur often in the domain of expertise develop
into larger and more complex structures (templates), which
have slots that allow values of variables to be stored rapidly.
Templates are related to retrieval structures, which play an
important role in the skilled memory theory (Chase &
Ericsson, 1982) and in its extension, the long-term working
memory theory (Ericsson & Kintsch, 1995). The difference
is that the latter theories propose a general, multi-purpose
retrieval structure, while the template theory proposes sev-
eral, specific structures that may be used only after they have
been accessed by recognition processes. Since templates
contain large chunks, their access conditions are unlikely to
be met in random positions. On the other hand, the retrieval
structure proposed by Ericsson and Kintsch can be used even
with random positions; hence their incorrect predictions that
masters can store information from random positions
rapidly.

The skill difference in recalling random positions indicates
that this material does not tap hardware variables alone.
However, because the amount of knowledge used is low, this
material still offers a reasonable solution for reaching

tentative conclusions about the hardware of the cognitive
system and, therefore, for testing some of the system con-
stants proposed in the EPAM theory (Feigenbaum & Simon,
1984), from which both the chunking and template theories
stem. The template theory has been implemented in the
latest version of CHREST. Simulations show that templates
are almost never accessed with random positions, because the
conditions of their evocation are not met. Without templates,
the current implementation is close enough to the specifica-
tions of the chunking theory to allow us to study the tem-
plate and chunking theories together.

Description of CHREST
The model consists of the following components: recogni-
tion LTM, semantic LTM, and STM. STM is made of 2-5
visual chunks (simulations presented later will explore the
effect of varying STM size). STM is a queue, with the ex-
ception of the largest chunk met at any point in time (the
“hypothesis”), which is kept in STM until a larger chunk is
met. Figure 3 presents an overview of the model.

Hypothesis

Visual STM

Figure 3: Overview of CHREST (#Ch stands for Chunk).

Attention is modeled by eye movements (see Chapter 8 of
De Groot & Gobet, 1996, for more about mechanisms di-
recting eye movements). For each new fixation, the model
sorts the pieces found in the visual space through the dis-
crimination net. (The visual space is defined as the squares
located at most two squares away from the fixation point.)
Learning new chunks essentially occurs in the same way as
in the EPAM model, with the qualification that only one
type of (implicit) test is carried out in CHREST: “What is
the next item in the visual space?”, while EPAM allows for
testing various features of objects. The uniformity of tests
has been adopted in order to grow large nets; it is assumed
that other tests in addition to the location of pieces are car-
ried out by human players, such as tests dealing with threats,
plans, and other concepts.

The net is grown by two learning mechanisms, familiar-
ization and discrimination. When a new object is presented
to the model, it is sorted through the discrimination net.
When a node is reached, the object is compared with the im-
age of the node, which is the internal representation of the
object. If the image under-represents the object, new features
are added to the image (familiarization). If the information in



the image and the object differ on some feature or some sub-
element, a new node is created (discrimination).

Two other learning mechanisms (one for creating tem-
plates and the other for creating links between nodes) will
not be described here, since these features of the program are
almost never relevant with random positions.

Role of Presentation Time: Human Data
In order to test the plausibility of the parameters used in
CHREST, Gobet and Simon (1995) collected data from ran-
dom and game positions where the presentation time was
systematically varied from 1 s to 60 s. Data are based on 20
subjects: 5 grand or international masters (mean Elo=2498),
8 experts (mean Elo=2121), and 7 class A players (mean
Elo=1879). Positions for the random condition were created
by randomly placing pieces from a game position on the
chessboard, and were presented to subjects on a computer
screen. For the random condition, in which we are interested
here, one position was presented for each of the following
times: 1, 2, 3, 4, 5, 10, 20, 30, and 60 s. The results are
given in Figures 4 to 6 (thick lines).

Simulations
Learning Phase
Three nets, having 1,000, 10,000, and 100,000 nodes
(referred to below as, respectively, 1k, 10k and 100k nets)
were created by letting the program scan a database of several
thousand positions. The sizes of the three nets were chosen
in order to have nets of three different orders of magnitude.
The matching between the three nets and levels of expertise
(class A players, experts, and masters respectively) was
rather loose and based on earlier simulations. For ease of
exposition, I will directly compare these 1k, 10k, and 100k
programs with class A, experts, and masters, respectively.
The reader should, however, keep in mind that this is only
an approximation.

Performance Phase
Twenty random positions were presented for each of the pre-
sentation times. For each position, CHREST moved its
simulated eyes around the board, storing recognized chunks
into STM, and, when applicable, using the following learn-
ing mechanisms. First, as described before, CHREST chunks
two chunks together (that is, adds a chunk as a test to
another chunk). It takes 8 seconds to carry out this dis-
crimination operation, as in the EPAM theory (see Simon,
1976, for a discussion of this parameter). Typically, a new
test is added to the hypothesis. Second, chunks that have
been in STM for at least 4 seconds  are “flagged,” which
means that episodic cues that permit the access to this node
are added to the discrimination net. Flagging is a type of fa-
miliarization. Little is said in the EPAM theory about the
time needed to familiarize a node, except that this operation
is faster than discrimination.  This value has arbitrarily been
set to 4 s in CHREST. Flagged nodes can be recalled during
the reconstruction phase even if they are no longer in STM.
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Figure 4: Percentage correct as a function of presentation
time. Thick lines represent human data. Dotted lines

represent CHREST simulations with 1k nodes (upper panel),
10k nodes (middle panel), and 100k nodes (lower panel) with

STM spans ranging from 2 to 5.

The following parameters were used during the simula-
tions (see De Groot & Gobet, 1996, for the parameters re-
lated to eye movements):

• time to create a chunk in LTM   8 s
• time to flag a node  4  s
• time to place a symbol into STM 50 ms
• time to compare two symbols 50 ms
• time to carry out a test in the net 10 ms

The three versions of the program were used with 4 differ-
ent STM capacity parameters  (from 2 to 5 slots).
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Figure 5: Number of chunks as a function of presentation
time. Thick lines represent human data. Dotted lines

represent CHREST simulations with 1k nodes (upper panel),
10k nodes (middle panel), and 100k nodes (lower panel) with

STM spans from 2 to 5.

Recall of Random Positions as a Function of Skill
When presentation times equal or less than 10 seconds are
pooled, Gobet and Simon’s (1995) recall percentages (Class
A: 11.7%, experts: 17.0%, masters: 23.7%) show the same
pattern illustrated in Figure 2. Run on the positions used by
Gobet and Simon (1995), CHREST simulates the skill effect
with random positions, though the percentage of recall is
somewhat less than with humans. With a STM span of 4
slots, the 1k, 10k and 100k nets obtained performance of
10.5%, 15.6%, and 20.3%, respectively.

Role of Presentation Time
Percentage Correct  The results on percentage correct are  
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Figure 6: Size of the largest chunk as a function of pre-
sentation time. Thick lines represent human data. Dotted

lines represent CHREST simulations with 1k nodes (upper
panel), 10k nodes (middle panel), and 100k nodes (lower

panel) with STM spans from 2 to 5.

illustrated in Figure 4. Larger spans allow better recall,
though the effect is not as large as one might have expected.
This is due to the fact that chunks stored in STM or LTM
overlap, and, as a consequence, additional chunks bring less
and less new information. The model matches the human
data well for the three skill levels. The class A and expert
programs are slightly below human performance with one
and two seconds. It is possible that humans perceive config-
urations according to Gestalt rules that are not captured by
the way chunks are stored in the program. Additional time
allows more chunks to be found and compensates for this.

Number of Chunks  With humans, chunks are defined as
sequences of pieces having latencies of less than 2 seconds



between successive pieces. Pieces placed individually are not
counted as chunks, as they are often due more to guessing
than to memory. (The number of chunks for humans is thus
slightly underestimated.) As for CHREST, it sequentially re-
places the pieces contained in the nodes held in STM or
accessible from LTM through episodic cues. Such nodes are
counted as chunks only if they contain at least one piece not
already replaced. Obviously, the number of chunks stored
increases with STM span. Overall, the programs with a
small STM span obtain a number of chunks similar to that
of human players (Figure 5).

Size of the Largest Chunk  In general, the largest
chunk output by the program is slightly smaller than human
players’ (Figure 6), though the fit gets better with the master
version. The correlation between STM span and size of the
largest chunk is rather low (0.20, 0.27, 0.03, for the 1k,
10k, and 100k versions of the program).

Conclusion
In summary, the simulations show that CHREST, using
several parameters from the EPAM theory, successfully ac-
counts  for the role of presentation time in the recall of ran-
dom chess positions. Given that most of the EPAM appli-
cations were done with verbal material (see Feigenbaum &
Simon, 1984), it was important to show that EPAM pa-
rameters are plausible with visuo-spatial material as well.

Three sets of mechanisms were crucial for the success of
the simulations: (a) mechanisms allowing chunks to be
rapidly recognized and sorted by the discrimination net; (b)
mechanisms allowing chunks to be created or tagged when
the presentation time is sufficiently long; and (c)
mechanisms directing the attention of the program. Finally,
the results are consistent with the estimate that visuo-spatial
STM contains 3 or 4 chunks (Zhang & Simon, 1985).

In spite of its checkered history, the technique of using
random chess positions has provided a powerful tool for test-
ing theories of chess memory. It remains to be seen whether
similar techniques can show such a discriminative power in
other domains of expertise as well.

Acknowledgments
I am grateful to Herb Simon for his involvement in many
aspects of this research and to Julian Pine and Frank Ritter
for comments on this paper.

References
Anderson, J. R. (1993). Rules of the mind. Hillsdale, NJ:

Erlbaum.
Charness, N. (1992). The impact of chess research on cogni-

tive science. Psychological Research, 54, 4-9.
Chase, W. G., & Ericsson, K. A. (1982). Skill and working

memory. In G. H. Bower (Ed.), The psychology of learn-
ing and motivation (Vol. 16). NY: Academic Press.

Chase, W.G., & Simon, H. A. (1973). Perception in chess.
Cognitive Psychology, 4, 55-81.

De Groot, A. D. (1978). Thought and choice in chess. The
Hague: Mouton. First published in Dutch in 1946.

De Groot, A. & Gobet, F. (1996). Perception and memory
in chess. Assen: Van Gorcum.

Elo, A. (1978). The rating of chess players, past and present.
New York: Arco.

Ericsson, K. A., & Kintsch, W. (1995). Long-term working
memory. Psychological Review, 102, 211-245.

Ericsson, K. A., & Lehmann, A. C. (1996). Expert and ex-
ceptional performance: Evidence of maximal adaptation to
task constraints. Annual Review of Psychology, 47, 273-
305.

Feigenbaum, E. A., & Simon, H. A. (1962). A theory of
the serial position effect. British Journal of Psychology,
53, 307-320.

Feigenbaum, E. A., & Simon, H. A. (1984). EPAM-like
models of recognition and learning. Cognitive Science, 8,
305-336.

Gobet, F. (1993a). A computer model of chess memory.
Proceedings of 15th Annual Meeting of the Cognitive
Science Society  (pp. 463-468). Hillsdale, NJ: Erlbaum.

Gobet, F. (1993b). Les mémoires d’un joueur d’échecs.
Fribourg (Switzerland): Editions universitaires.

Gobet, F. (in press). Expert memory: Comparison of four
theories. Cognition.

Gobet, F. & Simon, H. A. (1995). Role of presentation
time in recall of game and random chess positions. CIP
Paper #524, Dept. of Psychology, Carnegie Mellon
University, Pittsburgh, PA.

Gobet, F. & Simon, H. A. (1996a). Recall of rapidly pre-
sented random chess positions is a function of skill.
Psychonomic Bulletin & Review, 3, 159-163.

Gobet, F. & Simon, H. A. (1996b). Templates in chess
memory: A mechanism for recalling several boards.
Cognitive Psychology, 31, 1-40.

Holding, D. H. (1985). The psychology of chess skill.
Hillsdale, NJ: Erlbaum.

Neisser, U. (1976). Cognition and reality. San Francisco:
Freeman & Company.

Newell, A. (1990). Unified theories of cognition.
Cambridge, MA: Harvard University Press.

Richman, H. B., & Simon, H. A. (1989). Context effects in
letter perception: Comparison of two theories.
Psychological Review, 3, 417-432.

Richman, H. B., Staszewski, J. J., & Simon, H. A. (1995).
Simulation of expert memory with EPAM IV.
Psychological Review, 102, 305-330.

Simon, H. A. (1976). The information storage system called
“Human memory”. In M. R. Rosenzweig & E. L. Bennett
(Eds.), Neural mechanisms of learning and memory.
Cambridge: MA: MIT Press.

Simon, H. A., & Chase, W. G. (1973). Skill in chess.
American Scientist, 61, 393-403.

Simon, H. A., & Gilmartin, K. J. (1973). A simulation of
memory for chess positions. Cognitive Psychology, 5,
29-46.

Vicente, K. J. & de Groot, A. D. (1990). The memory recall
paradigm: Straightening out the historical record,
American Psychologist, February, 285-287.

Zhang, G., & Simon, H. A. (1985). STM capacity for
Chinese words and idioms: Chunking and acoustical loop
hypothesis. Memory and Cognition, 13, 193-201.


