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Abstract 

This research represents an attempt to model the child’s 
acquisition of syntactic categories. A computational model, 
based on the EPAM theory of perception and learning, is 
developed. The basic assumptions are that  (1) syntactic 
categories are actively constructed by the child using 
distributional learning abilities;  and (2) cognitive constraints 
in learning rate and memory capacity limit these learning 
abilities. We present simulations of the syntax acquisition of a 
single subject, where the model learns to build up multi-word 
utterances by scanning a sample of the speech addressed to 
the subject by his mother. 

Introduction 

This research represents an attempt to model the child’s 
acquisition of syntactic categories. A computational model, 
based on the EPAM theory of perception and learning, is 
developed. The basic assumptions are that  (1) syntactic 
categories are actively constructed by the child using 
distributional learning abilities;  and (2) cognitive 
constraints in learning rate and memory capacity limit these 
learning abilities. The aim of the project is to build a 
distributional learning mechanism that is not only capable of 
constructing grammatical categories, but also of doing so in 
a way that is consistent with recent findings in the 
developmental literature on the sequencing of grammatical 
category acquisition. 

Shortcomings of Cognitive-Semantic Constructivist 
Models 

There has been a growing awareness in recent years of the 
shortcomings of constructivist models of grammatical 
development based on the gradual extension of broad 
cognitive-semantic categories. First, there is the problem 
that children’s early grammatical knowledge does not appear 
to be restricted in the way that such models would seem to 
predict (e.g. Maratsos & Chalkley, 1980). For example, 
children tend to apply morphological markers (e.g. -ed past 
tense endings) to verbs whether those verbs refer to actions 
or not, while failing to overgeneralise the same markers to 
actional adjectives (e.g. ‘Noisy’, ‘Naughty’, etc.). Second,  it 
can be shown that the kinds of broad cognitive categories to 
which such models typically appeal are often only viable as 

the semantic core of categories in a subset of the world’s 
languages. For example, use of the semantic-cognitive  
category  ‘Agent’  as a way of bootstrapping up to the 
category of NP subject would represent a false step in the 
acquisition of some ergative languages which carve up the 
semantics of Agency in a different way from nominative-
accusative languages (e.g. Braine, 1988). Third,  there is 
now a wealth of evidence that children are capable of 
acquiring linguistic distinctions which have little or no 
semantic base from very early in development. This includes 
evidence regarding the mass-count distinction in English 
(Gathercole,  1985), noun/verb distinctions in Hebrew 
(Levy, 1988), and linguistic gender in a variety of different 
languages (e.g. Karmiloff-Smith, 1979); and suggests that 
children may be sensitive to distributional properties of the 
language they are learning from a very early age.  

Shortcomings of Nativist Accounts  

The demise of semantic models of grammatical development 
has coincided with a resurgence of nativist accounts of 
children’s early multi-word speech (e.g. Pinker, 1984; 
Valian, 1986; 1991). Such accounts typically use the 
semantic heterogeneity of children’s early multi-word 
speech to argue for a more abstract level of analysis 
involving adult-like syntactic categories. However, although 
coherent in their own terms, these accounts do not fit the 
developmental data all that well and tend to have particular 
difficulty accounting for the lexical-specificity of children’s 
early multi-word speech. Thus, as Braine (1988) points out, 
Pinker’s attribution of a S -> NPsub + VP rule to young 
language learning children ignores the fact that children 
initially tend to order different NPsub + VP sequences in 
different ways. Similarly, Valian’s attribution of a syntactic 
determiner category to young language-learning children 
hides lexical specificity in the contexts in which different 
determiners are used (Pine & Martindale, 1996; Pine & 
Lieven, in press); and her attribution of knowledge about 
nominative case-marking ignores the fact that there is 
typically no evidence for the contrastive use of case-marked 
pronouns in children’s early multi-word speech (Lieven, 
Pine & Baldwin, 1997).  

Perhaps the strongest challenge to nativist accounts of 
early multi-word speech, however, comes from Tomasello’s 
work on the development of the verb category. Tomasello 
argues on the basis of evidence both from naturalistic multi-
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word speech data (Tomasello, 1992) and from experimental 
studies (Olguin & Tomasello, 1993; Tomasello & Olguin, 
1993), that there is a developmental asynchrony in the 
acquisition of the noun and verb categories in English. Thus, 
whereas even very young children show great facility in 
slotting novel noun-arguments into familiar verb structures, 
their knowledge about SVO word order seems to be 
lexically-specific in that they not only fail to generalise it 
from one verb to another, but also seem unable to use it as a 
cue for sentence comprehension, at least in the absence of 
additional supporting cues such as animacy and/or pronoun 
case-marking.  

These findings are important for a number of reasons. 
First, they cast doubt on the validity of strong nativist 
accounts of children’s early multi-word speech; second, they 
are consistent with a more gradual category-formation 
process which capitalises on the kind of distributional 
learning abilities required by the child to acquire 
semantically arbitrary categories such as linguistic gender; 
and third, they provide information about the developmental 
sequencing of early category acquisition which can guide the 
modeller  by serving as a target for simulation and hence as 
a means of constraining the development of a viable 
distributional learning mechanism. 

Distributional Learning and Word Class 
Acquisition 

Distributional approaches to language have a long history in 
both Psychology and Linguistics. Moreover, recent work in 
this area has been quite successful in demonstrating just how 
much information is present in the statistical distribution of 
words in large text-based and conversation-based corpora 
(e.g. Finch & Chater, 1992). However, constructivist models 
based on such approaches have tended to be given rather 
short shrift in the language acquisition literature for a 
number of reasons. First, they have been criticised on logical 
grounds. Thus, certain formal properties of human 
languages, such as the presence of long-distance 
dependencies, have been seen as ruling out such accounts a 
priori. However, as recent work by Elman (1993) has 
shown, it is possible for a relatively simple distributional 
learning  mechanism to learn such dependencies, albeit in a 
toy language, provided that analysis is initially restricted, 
either by phasing the input or by constraining the size of the 
mechanism’s processing window. This suggests that such 
logical arguments should be treated with a certain amount of 
scepticism since they derive much of their power from the 
way in which they conceptualise language acquisition as a 
single logical problem rather than as a complex 
developmental process. 

Second, distributional learning accounts have been 
criticised for making unrealistic assumptions about the 
child’s processing abilities. Thus, Maratsos and Chalkley’s 
(1980) model assumes that  the child tabulates all the 
grammatical properties of all words and constituents in the 
input, so that the distributional analyser can flexibly find the 
‘best’ features around which to build particular linguistic 
categories. However, as Keil (1981) points out, there are far 
too many possible ‘grammatical properties’ in the input for 
such an approach to be viable. Indeed, Pinker (1984) shows 

that even using an impoverished criterion for ‘grammatical 
property’ a seven-word sentence has about 9,000,000 
possible ‘grammatical properties’. 

This is, of course, a very powerful argument against 
viewing language acquisition as a process of unconstrained 
distributional analysis. However, it is not an argument 
against a distributional approach to language acquisition per 
se. Moreover, it is worth pointing out that arguments against 
crediting the child with overly powerful distributional 
learning mechanisms are not the exclusive property of 
nativists and have actually been made on both sides of the 
nativist-empiricist divide. Thus Braine (1987) argues that 
one way of making progress in the area is to identify the 
limits of human distributional learning abilities and to use 
this knowledge as a constraint on the mechanisms proposed 
for natural language acquisition. According to Braine, 
experimental studies of artificial language-learning show 
that, under serial presentation conditions, subjects readily 
learn the positions of words or phrases with respect to a 
marker. However, they have great difficulty in learning 
arbitrary dependencies between classes of words. This, 
together with the results of Elman’s work, raises the 
question of the extent to which it might be possible to use 
such information processing constraints to avoid some of the 
pitfalls faced by more powerful distributional learning 
mechanisms. 

Modelling the Developmental Sequencing of 
Word Class Acquisition 

Our modelling approach has several aims. First, we want to 
explore the effects of imposing constraints on a relatively 
simple distributional learning mechanism. These include 
constraints on learning rate and memory capacity  (cf. 
Elman’s work). Second, we want to build a learning 
mechanism which can closely simulate at least some aspects 
of the developmental data on word class acquisition, 
including the developmental asynchrony in the acquisition of 
noun and verb categories in English, and the verb-specific 
nature of children’s early knowledge about SVO word order. 
Finally, we want to use this model to generate predictions 
about the precise shape of children’s grammatical 
knowledge at particular points in development. The 
intention here is to use the predictions generated by the 
model to guide the analysis of a very detailed corpus of early 
multi-word speech data being collected in a parallel research 
project (Lieven & Pine, 1995). 

As our computational framework, we have chosen EPAM, 
a theory that has a long history of successful simulation of 
human cognition, including: verbal learning behaviour 
(Feigenbaum & Simon, 1984), learning, memory and 
perception in chess (Simon & Gilmartin, 1973; Gobet 
1993a,b; De Groot & Gobet, 1996), the digit-span task 
(Richman et al., 1995), and the context effect in letter 
perception (Richman & Simon, 1989). (For alternative 
approaches to modelling early language acquisition, see 
Langley, 1987, Reeker, 1976, or Selfridge, 1981). 

EPAM models learning as the construction of a 
discrimination net. The basic mechanisms are as follows. 
During perception, an object is sorted through a sequence of 
tests, each related to some feature of the object. When the 
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description of the object mismatches the internal 
representation (the image) it has been sorted to, a new test is 
added in the tree, a test that relates to the mismatched 
feature. This mechanism is called discrimination. When the 
object is sorted to an internal representation that under-
represents it, new features are added to the image by 
chunking. This mechanism is called familiarisation. EPAM 
specifies learning parameters based on empirical data from 
verbal learning experiments, such as 8 s to create a new 
node, 10 ms to carry out a test, as well as parameters on the 
size of short-term memory (STM), which is about 7 slots—
an important question we are interested in in this research is 
the effect of varying this parameter on learning. 

Until now, EPAM has been explored mainly as a theory 
modelling access to long-term memory  (LTM). Simon 
(1989) has proposed that EPAM nets constitute an index to 
procedural and declarative memories, but has not given any 
details about how this should be implemented in a working 
computational model. One of the goals of our research is to 
show how procedural and declarative memories can be 
created by linking the nodes of the discrimination net. In 
order to give the system the capability of learning new 
concepts (in our case, grammatical categories), we will use 
both the notion of template (Gobet & Simon, 1996), which 
has been used to simulate experts’ behaviour, and which is 
related to Tomasello’s notion of verb-island, and the idea of 
similarity links created from the nodes of the discrimination 
net (Gobet, 1996). 

Description of the Model 

Components of the Model 

The model consists of a set of nodes accessible through a 
discrimination net (see Figure 1), which can be joined 
together by similarity links (see below for a description of 
the way in which these links are created). When nodes are 
accessed by recognition, they are activated. The duration of 
activation depends on the total number of nodes currently 
active, which is set by the parameter *maximum-number-of-
activated-symbols* (when few nodes are activated, they may 
correspond to short-term memory slots). Another parameter, 
*minimum-number-of-shared-links*,  is used to test whether 
a similarity link should be created between two symbols. 
 
 
 
 
 
 
 
 
 
 

 

Figure 1: Illustration of the concepts of nodes and test-links 
in the discrimination net. 

Learning Phase 

During the learning phase, a corpus of utterances is 
presented in sequence to the program. The program learns 
the words and groups of words by discrimination and 
familiarisation, noting only relations of proximity and order, 
using the primitive “next.” As learning proceeds, nodes 
grow tests for possible lexical items following them. When  
words (or groups of words) are recognised, the 
corresponding symbols are activated. Note that memory 
capacity, and therefore attention span, is counted in chunks, 
and not in syntactic units. Therefore, as the program learns, 
it will be able to augment the information contents of its 
activated memory as more chunks are recognised. We leave 
for future research the question of whether this knowledge-
based increase will go in parallel with a “hardware” 
increase, with the number of slots in activated memory 
increasing as a function of time (see Ellis 1995, for similar 
ideas). 

 

root-node

Eat

{the apple}

{the pie}

{the pear}

{the ball}{the pie}

{the apple}

Kick

Common links

Similarity links

 

Figure 2: Creation of similarity links. 

 
After a node is activated, the program tests whether there is 
another activated node that shares a number of similar test-
links equal to or greater than the parameter *minimum-
number-of-shared-links*. If this is the case, two similarity 
links are created between the two nodes, one starting from 
the first node to the second, the other starting from the 
second node to the first (see Figure 2). 

 
Thus, frequency and variety  of occurrences play a key 

role in the basic mechanisms we have outlined. We propose 
that lexically-specific ‘Subject-Verb’ chunks or ‘Verb-
Object’ chunks will be formed in this way. Let’s take the 
Verb-Object case as an example. In the first step,

1
 the 

individual words are learned. In the second step, nodes grow 
tests for possible lexical items following them. Later (third 
step), when two verb-nodes are activated, a comparison is 
made of the attributes of each of these verb-nodes. If it is 
found that the number of test-links common to both nodes is 
larger than the *minimum-number-of-shared-links* 
parameter, a similarity link is created between the two 
nodes. Testing for similarity in the test-links ensures that 
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similarity links are generally created only between nodes 
representing words of the same syntactic class, even though 
the program itself does not know these classes.  Finally,  the 
third process is repeated and leads to the creation of 
networks of links. These networks, which may be knowledge 
islands isolated from each other, can later be used by the 
program to generate ‘verb+object’ sequences (see 
“Performance phase”). Note that memory capacity limits the 
probability of learning such links. 

Performance Phase 

During the performance phase, the model produces 
utterances in two ways: (a) by recognition: the model 
outputs the image of a node and one of the test-links (this 
may be the symbol NIL, indicating that nothing follows the 
image); or (b) by generation:  the model outputs the image 
of a node and one of the test-links of a node linked by a 
similarity link. Note that, if enough learning has taken place, 
the output of the image may be a rather complex utterance, 
for example: (GOING TO PUT HIM IN THE BOX). 

Simulations 

Methods 

We now present a simulation of the early syntactic 
development of a single subject, Richard, between the ages 
of 1;9 and 2;3 years. As a simulation of the parental input, 
we use a sample of his mother’s speech, coded 
orthographically in CHILDES format,

2
 containing 5630 

utterances (some utterances are duplicated in the sample), 
recorded over a period of 16 months.  For Richard’s data, 
we use a sample of 789 bigrams, coded as types (i.e. all the 
bigrams occurring in Richard’s corpus of 610 multi-word 
utterances). 

The program learns by scanning the maternal sample. 
Each utterance is sorted through the discrimination net, and, 
when parts of the utterance are recognised, the 
corresponding symbol is activated. When the number of 
symbols activated is more than the *maximum-number-of-
activated-symbols* parameter, the symbol activated for the 
longest time is deactivated. After a new symbol is activated, 
the program tests whether there is another activated symbol 
which shares at least *minimum-number-of-shared-links* 
similar links with it. When this is the case, a link is created 
between the two symbols. This link may be used later to 
generate sentences, as described earlier. 

Results 

In these simulations, we were interested in the role played 
by the *maximum-number-of-activated-symbols* and  
*minimum-number-of-shared-links* parameters. Since the 
performance of the program changes little after the first run 
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For simplicity sake, we will assume that phonological 

segmentation has already been done, as is common in many current 

theories of syntax acquisition. In principle, phonological 

segmentation can be obtained with the set of mechanisms included 

in the model described here.  

 

through the sample (typically, the programs gains only 2-3% 
with the total number of sentences generated in the six next 
runs), we consider only the results after the first run here. 
Acquisition of Nodes and Similarity Links. The 
acquisition of nodes by the discrimination and 
familiarisation mechanisms is not affected by the two 
parameters in question. In all cases, 7851 nodes were 
learned. In the test phase, the program was able to recognise 
all individual words from the mother’s sample, but missed 
10% of the words from the child’s sample. The utterances 
containing any of these words were excluded from the 
following analyses. 

Figure 3 shows that the number of similarity links is 
sensitive both to the maximum number of nodes activated 
and the minimum number of shared links. The effects of the 
two variables are additive. In the worst case (*maximum-
number-of-activated-symbols* = 10 and  *minimum-
number-of-shared-links* = 3)  only 68 links are created. 
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Figure 3: Number of similarity links that are learned by the 
program, as a function of the maximum number of nodes 
activated and the minimum number of shared test-links to 

create a similarity link. 

 
 

Test with the Mother’s Sample (Teaching Set). In all 
cases, 74% of the utterances were recognised as such by the 
program. Figure 4 illustrates the proportion of utterances 
generated by the program. As can be seen, both parameters 
are important. There is no indication of an interaction. 
Test with the Child’s Sample (Testing Set). In all cases, 
34% of the utterances were recognised by the program. 
Figure 5 illustrates the proportion of utterances generated by 
the program. The results are similar to those observed with 
the mother’s sample, with the qualification that more 
utterances were recognised and less generated with the latter 
sample. 
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Figure 4: Proportion of the utterances from the mother’s 
sample that are generated by the program, as a function of 
the maximum number of nodes activated and the minimum 

number of shared test-links to create a similarity link. 

 
Qualitative Analysis. A qualitative analysis of those of 
Richard’s bigrams generated by the program and those 
which the program fails to generate illustrates the following 
properties of the model. First, it is highly sensitive to lexical 
patterns such as ‘a + X’ (20 instances), ‘where + X’ (16 
instances) and ‘X + gone’ (13 instances); second, it is able 
to generate instances of these patterns to which it has not 
been previously exposed; and third, its performance on these 
patterns is not an all-or-nothing affair. Thus, although the 
model’s generation of ‘a + X’ sequences suggests that it has 
picked up something like a ‘indefinite article + Noun’ 
pattern from the input, it actually fails to generate some of 
the ‘indefinite article + Noun’ bigrams generated by Richard 
himself. While in one sense this failure is obviously a 
weakness of the model, it does underline the fact that the 
model is building syntactic knowledge in a piecemeal 
fashion which is highly sensitive to the similarity structure of 
the input. This kind of piecemeal learning is consistent with 
a number of recent studies that suggest that although 
children are sensitive to the distributional properties of the 
input, their distributional knowledge is much more limited in 
scope that would be assumed by a traditional syntactic 
analysis (e.g., Braine, 1988; Tomasello, 1992; Pine & 
Martindale, 1996). It also suggests that the model has the 
potential to serve as a means of developing and testing 
hypotheses about the nature of relation between the structure 
of the input and the shape of the categories being learned. 

What are the qualitative effects of the constraints imposed 
by the two parameters we have manipulated in our 
simulations? As shown earlier, using weak constraints (i.e., 
large number of activated nodes and small minimum number 
of shared links) allows the program to reproduce up to 74% 
of the child’s bigrams (34% by recognition, and 40% by 
generation). The cost is  that it generates a  large quantity of  
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Figure 5: Proportion of the utterances from the child’s 
sample that are generated by the program, as a function of 
the maximum number of nodes activated and the minimum 

number of shared “links” to create a similarity link. 

 
non-grammatical utterances. For examples, when given as 
input “I” and asked to generate sentences, the model outputs 
things like (I WRONG) or (I ROAD), among some correct 
‘I + verb’ sentences. By contrast, when the constraints are 
high (*maximum-number-of-activated-symbols* = 10 and  
*minimum-number-of-shared-links* = 3), the program 
generates only correct ‘I + verb’ sentences. As with Elman’s 
simulations, this suggests some benefits of having a highly 
constrained cognitive system.  

Conclusion 

The computational approach to modelling syntax acquisition 
outlined above has several advantages over other work in 
this area: 1) Learning does not require feedback;  2) Nodes 
of the discrimination net and the semantic links between 
them are not defined in advance, but are dynamically created 
as a function of the input and of the current state of the 
system; 3) Since large discrimination nets and semantic 
memories can be developed, the model is not limited to 
“toy” domains; 4) All learning mechanisms are local, and 
respect psychological constraints; 5) The model allows us to 
study the role of memory capacity directly, a question that 
has mainly been addressed experimentally until now. In 
addition, the simulations described above suggest that 
constraints on memory capacity and minimum number of 
shared links may be necessary to ensure that the program is 
able both to generate and to restrict itself to grammatical 
sentences.  

Our intention is to develop this model further in the future 
and use it not only to simulate multi-word speech data which 
have already been collected, but also to generate further 
hypotheses about the shape of children’s grammatical 
knowledge at particular points in development. These will 
then be used to guide the analysis of a very detailed 
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multiword speech corpus currently being collected in a 
large-scale project in Nottingham and Manchester. 
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