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Abstract 
 

Long-term working memory (Ericsson and Kintsch, 1995) is a theory covering empirical data 

from several domains, including expert behaviour. One difficulty in applying and evaluating this 

theory, however, is that it is framed in rather general terms, and that several mechanisms and 

parameters are left unspecified. This paper proposes a computer implementation of the theory 

for a domain that Ericsson and Kintsch cover in depth, namely chess memory. Simulations of 

Saariluoma’s (1989) experiment where both game and random chess positions are presented 

auditorily make it possible to analyse two key ingredients of the theory: encoding through 

elaboration of LTM schemas and patterns, and encoding through retrieval structures. In the 

simulations, these mechanisms were modulated by two parameters. The results show that 

random positions, but not game positions, are sensitive to these parameters’ values.  

 

 
The study of expert behaviour is currently an important area of research in cognitive science. Several theories, 
including the chunking theory (Chase & Simon, 1973), the skilled memory theory (Chase & Ericsson, 1982), 
Soar (Newell, 1990), ACT (Anderson, 1983), and the template theory (Gobet & Simon, in press) have been 
advanced to explain how certain individuals excel in their domain of expertise. Recently, an important attempt 
to offer an integrative theory of cognition and expertise has been proposed by Ericsson and Kintsch (1995) 
with their long-term working memory (LT-WM) theory. 

Long-Term Working Memory: Overview 
After a detailed review of research on expertise and on text comprehension, Ericsson and Kintsch (1995) 
conclude that experts in various fields can encode information into long-term memory (LTM) more rapidly 
than had been postulated by traditional models of human memory, such as those of Anderson (1983) or Chase 
and Simon (1973). Based upon this analysis, Ericsson and Kintsch (1995) extend Chase and Ericsson’s (1982) 
skilled memory theory into the LT-WM theory. The tenets of LT-WM are that “cognitive processes are 

viewed as a sequence of stable states representing end products of processing” and that “acquired memory 
skills allow these end products to be stored in long-term memory and kept directly accessible by means of 

retrieval cues in short-term memory [...]” (Ericsson & Kintsch, 1995, p. 211). Two intertwined mechanisms 

allow rapid storage into LTM : (a) encoding through a retrieval structure, and (b) encoding through 
knowledge-based associations connecting items either to other items or to LTM patterns and schemas, which 
allows for an integrated representation of the information in LTM. Ericsson and Kintsch also note that the 

demands that the task makes on memory will constrain which encoding mechanism will be employed, and that 
the relative roles played by encoding through retrieval structures or through LTM elaborations vary from task 

to task. 
An important component of LT-WM is the concept of retrieval structure. Retrieval structures are “a set 

of retrieval cues [that] are organised in a stable structure” (Ericsson & Kintsch, 1995, p. 216). It is assumed 
that, through practice and study, experts develop such structures for their domain of expertise. Perhaps the 
strongest empirical support for retrieval structures comes from the extremely detailed analysis of how SF and 

DD, otherwise unremarkable college students, became world-class experts in the digit-span task (Chase & 
Ericsson, 1982; Richman et al., 1995). The LT-WM proposal that SF and DD store groups of digits and 
additional semantic information in a hierarchical retrieval structure is well supported by a large set of data 

including reaction times, verbal protocols, and direct experimental manipulations. However, Ericsson and 

Kintsch also argue that retrieval structures alone are not sufficient, and that they need to be supplemented by 



LT-WM’s second mechanism, elaboration of previously stored semantic memory; this elaboration facilitates 

the encoding of information by providing redundant cues (see Figure 1).  
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Figure 1. Illustration of the two types of LT-WM encodings. The upper part depicts a hierarchical organisation 
of retrieval cues associated with units of encoded information. The lower part shows knowledge-based 
associations relating units of encoded information to each other along with patterns and schemas. (Adapted 
from Ericsson and Kintsch, 1995.) 

 
LT-WM conflicts with most traditional theories of working memory, which emphasise its transitory storage 
capacity. Given that LT-WM unifies empirical results from domains that are normally treated separately, it is 
quite impressive in its scope. However, it has also been criticised on several grounds (e.g., Gobet, 1998): LT-
WM in general, and the concept of retrieval structure in particular, are not sufficiently well specified to allow 
precise empirical predictions; the concept of retrieval structure is used inconsistently in the theory; and the 
empirical support for LT-WM is weaker than claimed by Ericsson and Kintsch. 

Application of long-term working memory to chess expertise 
Chess has been a very popular topic for developing theories of expertise, and has played an important role in 
the development of theories such as the chunking theory, the template theory, and the constraint attunement 
theory. Two advantages of chess, as compared to other domains of expertise, are that it already offers a large 
amount of empirical data and that its rating scale allows a precise and quantitative measure of players’ skill. 

Charness (1992) goes so far as to propose that chess is a model task in the study of expertise. In their paper on 

LT-WM, Ericsson and Kintsch (1995) also highly value results from chess expertise and state that “research 
on planning and memory of chess positions offers some of the most compelling evidence for LT-WM” (p. 
238). Chess is therefore a suitable domain to investigate both the strengths and the weaknesses of LT-WM.  

Ericsson and Kintsch (1995) suggest that strong chess players use a hierarchical retrieval structure 

corresponding to the 64 squares of the chess board. This structure, which both associates individual pieces to 
their respective locations and relates pieces to each other, allows a position to be represented as an integrated 
hierarchical structure. This structure allows a rapid encoding into LTM, where patterns and schemas are 

stored. Patterns and schemas can also encode new information rapidly, independently of the use of the 
retrieval structure, through knowledge-based associations between items and/or patterns and schemas. 
Ericsson and Kintsch suggest that the concept of retrieval structure accounts for chess masters’ excellent 

memory for chess material, as well as for their ability to plan and evaluate alternative sequences of moves. 
They support their claim by considering several types of data, including: recall experiments with game and 

random positions; experiments where a chess master has to rapidly access the location of pieces of a position 
he has just memorised; experiments manipulating the way pieces are grouped during presentation; 

experiments where multiple boards are presented; and anecdotal evidence showing that masters can play 



blindfold chess, which requires them to mentally manipulate and update the information contained in a 

position (or indeed in several).  

Limits of LT-WM as an explanation for chess expertise 
Ericsson and Kintsch thus suggest that chess provides some of the strongest support for LT-WM. However, as 

I have noted elsewhere (Gobet, 1998), their account of chess expertise is stated in rather general terms and 

does not specify many parameters and mechanisms that would seem crucial in accounting for the data. It is the 

goal of this paper to offer a first step in embodying LT-WM explanation of expertise as a computer program 

(see Kintsch, 1998, for a similar attempt with text comprehension).  

A simulation of Saariluoma's (1989) dictation experiment using LT-WM 
The lack of specificity of LT-WM for chess expertise has the consequence that there is an indefinite number of 

models that satisfy Ericsson and Kintsch’s (1995) description. Only some of them correspond to what Ericsson 

and Kintsch really have in mind. Even so, it is worthwhile to write a computer program that offers a plausible 

implementation of Ericsson and Kintsch’s description, in order to understand how the two critical LTM 

storage mechanisms (retrieval structures and elaboration of schemas and patterns) interact. One needs more 

specifications than offered by Ericsson and Kintsch if one wants to write a running computer program; hence, 

several decisions, sometimes arbitrary, had to be taken. 

Saariluoma’s (1989) dictation task  

Saariluoma’s (1989) dictation task has been chosen for illustration, as it is discussed at length in Ericsson and 
Kintsch. In this experiment, which uses a technique similar to that of the digit-span task, a chess position is 
dictated auditorily piece-by-piece at a rapid rate (typically, a rate of one piece every 2 seconds). Once all the 
pieces have been presented, the subject has to recall as many of the pieces as she can. Saariluoma found that 
masters were able to recall game positions almost perfectly, but that, with random positions, they did not recall 
more than around 60% (Saariluoma 1989). Using the same technique, Saariluoma (1989) has found that 
masters had big difficulties at memorising four random positions presented in sequence (around 10% correct 
per position), while they obtained reasonably good results with game positions (about 60% per position).  

 In the version of the task modelled here, each piece of a game position or a random position is dictated 
at a rate of 2 seconds per piece, using the algebraic notation widely used in the chess community (e.g., “white 
king on g1”). Since the positions had on average 25 pieces, the dictation of one position took 50 seconds. 

LT-WM account of the dictation experiment 

In their discussion of Saariluoma’s (1989) experiment with auditory presentation, Ericsson and Kintsch (1995, 
p. 237) apply LT-WM as follows:  

“If, on the other hand, chess experts had a retrieval structure corresponding to a mental chess board, they 
could store each piece at a time at the appropriate location within the retrieval structure. After the end of the 
presentation the experts would be able to perfectly recall the entire position if the presentation rate had been 

slow enough.” 

Random material1 is critical for evaluating the retrieval structure hypothesis, because, with meaningful 

material, it is difficult to tease apart the role of retrieval structures, on the one hand, and that of patterns and 
schemas, on the other. Ericsson and Kintsch (1995, p. 237) are very clear about chess experts’ ability to store 
information from random positions: “skilled chess players are able to encode and store the locations of 

individual chess pieces of a chess position in the absence of meaningful configurations of chess pieces.”  
Ericsson and Kintsch also state that meaningful patterns of relations between pieces can be encoded 

with game positions, which makes it possible for the position to be stored as an integrated structure. This is 

not possible with random positions. The ability to find higher-order relations in game positions, but not in 

random positions, explains why the former are easier to recall than the latter. 
Although it explains why game positions are easier to remember than random positions, this 

explanation is not quite satisfactory from a theoretical point of view, because Ericsson and Kintsch are explicit 

that Saariluoma’s (1989) experiments were discussed to show that “the ability to store random chess positions 

                                                           
1 In chess research, random positions are typically created by taking a game position and randomly 

reassigning its pieces to new squares. 



provides particularly strong evidence for the ability to encode individual chess pieces into the retrieval 

structure” (Ericsson and Kintsch, 1995, p. 237). However, the empirical data hardly support this point: the 

recall for random positions dictated auditorily is far from perfect even with masters, who do not recall more 

than about 60% (about 15 pieces) after a 50-second presentation. As noted by Gobet (1998), this level of 

recall is roughly predicted by the chunking theory (Chase & Simon, 1973), a theory that Ericsson and Kintsch 

criticise for encoding information into LTM too slowly. It would seem that the importance of encoding into 

the retrieval structure is overestimated in LT-WM. Computer modelling can help us to disentangle the role of 

elaboration encoding and retrieval structure. 

Components of the model 

The model consists of three components: an articulatory loop, LTM patterns and schemas, and a 

retrieval structure. The articulatory loop is similar to that proposed by Baddeley (1986) and can store up to 3 

pieces. Patterns and schemas, for which Ericsson and Kintsch do not provide any definition, are assumed to 

refer to the chunks used in traditional computer models of expert perception and memory in chess, such as 

MAPP (Simon & Gilmartin, 1973) and CHREST (Gobet & Simon, in press). In the simulations discussed 

below, we will focus on master-level performance, requiring around 100,000 chunks, the upper bound of the 

range proposed by Simon and Gilmartin (1973) for the number of chunks acquired by chess masters. These 

chunks were obtained from discrimination nets grown by CHREST, using a database of masters’ games as 

input. 

Finally, the 64-square hierarchical retrieval structure2 consists of the “square” level, where individual 

pieces may be associated with their location, and of higher-levels, where chunks of pieces (e.g. “white King on 

g1; white Pawn on g2; white Pawn on h2”) can be stored.3 Levels in the hierarchy are defined by the size of 
chunks, counted in pieces.  

Mechanisms of the model 

During the two seconds allotted for the dictation of each piece, it is assumed that the following steps take 
place: 

1. The dictated piece is stored in the articulatory loop. 
2. The dictated piece is stored in the corresponding square in the square level of the retrieval structure, with 

a probability of pcue. 

3. Using the dictated piece and the pieces stored in the retrieval structure that are ±2 squares away from it, 
the model attempts to match an LTM chunk. If successful, the chunk is added to the higher level of the 
retrieval structure corresponding to its size, with probability pcue. 

4. The model attempts to create a new chunk by combining the last chunk matched with the largest chunk in 
the retrieval structure. This mechanism corresponds to Ericsson and Kintsch’s idea of storage in LTM of 
new structures. The new chunk is created with probability pelaboration for last chunks > 3, and with 

probability (pelaboration * bias) with last chunks ≤ 3, where bias is equal to .25, .50, and .75 for chunks 

of size 1, 2, and 3, respectively. This bias then favours elaboration of large chunks, which seems consis-
tent with Ericsson and Kintsch’s description.  

During the recall phase, the model places pieces using information from three sources: the articulatory loop, 
the square level and the higher levels of the retrieval structure, and the chunks that were created during the 
presentation of the position. 

In order to understand the interaction betwen  retrieval-structure encoding and LTM-elaboration 

encoding , I now explore the effects of the two parameters of the model: 
1. pcue, the probability that a piece or chunk is successfully stored in the retrieval structure 

2. pelaboration, the probability that a chunk is elaborated successfully 

Consistent with Ericsson and Kintsch’s (1995) analyses, decreases in the values of these two 

parameters can be seen as reflecting the effects of proactive and retroactive interference. 

Simulations 

                                                           
2 For other ways to implement the concept of retrieval structure in chess, see Gobet (1993) and Saariluoma 

and Laine (in press). 
3 A chunk may contain a single piece; for example: “white King on g1”. 



The model was tested on the recall of 1,000 master game positions and 1,000 random positions. The number 

of pieces in each position varied from 15 to 32 with an average of 24.6 (in Saariluoma’s experiments, this 

number varied from 18 to 28) . The parameters pcue and pelaboration were systematically varied from 0 to 1.  

Results 

Estimated from the graphs of Saariluoma’s (1989) experiments 1 and 2, skilled subjects got 91% and 82% 

correct with game positions, and 62% and 57% correct with random positions. Figure 2 illustrates the results 

obtained in the simulations. Several features may be mentioned: (a) recall is easier for game positions than for 

random positions; (b) with pcue = 1, indicating that all attempts to encode information in the retrieval 

structure are successful, the model obtains 100% correct both with game and random positions; (c) recall of 

random positions is higher than observed by Saariluoma (1989) with runs where pcue ≥ .40; (d) in general, the 

higher the probability of successful encoding into the retrieval structure, the smaller the role of elaboration 

becomes; (e) with random positions, pcue plays an important role even with high values of pelaboration; (f) 

many values which get a good fit with game positions do not match the data well with random positions; (e) 

with random positions, the model covers a large portion of the possible outcomes; even when one omits the 

results where any of the two probabilities is equal to zero, the model covers about half the space of possible 

outcomes. 
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Figure 2. Percentage correct as a function of the probability of making an elaboration pelaboration and the 

probability of storing information in the retrieval structure (pcue). Left panel: game positions. Right panel: 

random positions. Asterisks indicate the results of the skilled subjects in Saariluoma’s (1989) experiments 1 
and 2. 

Discussion of Simulations 

In this paper, I have attempted to provide a computer implementation of the model presented by Ericsson and 
Kintsch for chess expertise. The simulations capture the important difference in recall performance between 

game and random positions. They also show that, with most values of pcue, the computer model overestimates 

human recall with random positions, and that the best fit is obtained with a low probability of encoding 
information into the retrieval structure (pcue = 0.0, 0.2, or 0.4). They also illustrate that Ericsson and 

Kintsch’s model, even with the additional assumptions made here, predicts a large number of possible 
outcomes, in particular with random positions. Without actually running the model and setting the values of 
the two parameters in question, it is impossible to estimate which value fits the data reasonably well. In 

particular, some values which fit the recall of game positions well do poorly with random positions. Using the 
verbal description of the model given by Ericsson and Kintsch, which does not explicitly consider the 
probabilities of encoding into the retrieval structure and of making LTM elaborations, one runs into the danger 

of inadvertently running “mental simulations” where these probabilities are not kept constant. This danger, 
obviously, is not specific to LT-WM, but to any theory formulated informally.  

While several pairs of values account for the recall of game positions, in particular if one takes into 
account the variability of human data, the random position data are more selective. Saariluoma does not report 

the variance or the mean square error of his data, but one can, as a first rough approximation, assume that the 
band 10% above or below the mean value of the two experiments (58%) includes the “true” value. Using this 
criterion, the following pairs of {pelaboration, pcue} lead to a result contained in this band: {0.2, 0.2}, {0.2, 



0.4}, {0.4, 0.2}, {0.4, 0.4}, {0.6, 0.2}, {0.8, 0.0}, {0.8, 0.2}, {1.0, 0.0}, and {1.0, 0.0}. All these values also 

lead to acceptable results with game positions. In none of these cases, the average of the two values is above 

.5, and that, in many cases, it is well below. This suggests that, as proposed elsewhere (Gobet, 1998), LT-WM 

has to use relatively low probabilities of encoding, either through the retrieval structures or though LTM 

elaborations, in order to account for human data.  

It is of interest to compare the results of these simulations with the simulations of the digit-span task 

carried out by Richman, Staszewski, and Simon (1995). Their model, EPAM-IV, incorporates both retrieval 

structures and LTM schemas, as well as a limited-capacity articulatory loop. They found that a forgetting rate 

of 25% in the retrieval structure accounted well for the learning of their human subject. EPAM-IV did not 

incorporate forgetting in the semantic net, but assumed that its construction is time-consuming: 8 seconds to 
create a new chunk, and 2 seconds to add information to that chunk. These time parameters, which are also 

used in the CHREST models of chess memory, have similar effects as pelaboration, the probability of 

elaborating items together or with LTM schemas and patterns. Thus, like the model discussed in this paper, 

EPAM-IV incorporates parameters which seriously either slow down or make less reliable the use of LT-WM. 

As noted by Richman, Staszewski, and Simon (1995), the simulations are quite sensitive to these parameters, a 

finding that was observed as well in the simulations discussed in this paper. 



Conclusion 
This paper has offered a computer implementation for LT-WM account of chess memory. In order to do so, 

several assumptions were made. Among the most important, one can mention: (a) an articulatory loop stores 

up to three dictated pieces; (b) patterns and schemas consist of chunks; (c) the hierarchical structure consists 

of a “square” level and of higher levels; the latter are defined as a function of the size of chunks; and (d) 

encoding into the retrieval structure is modulated by a parameter (pcue), and so is creation of new LTM 

structures (pelaboration). 

Three important conclusions may be drawn. First, even though the computer model is more specific 
than Ericsson and Kintsch’s description, it predicts a wide range of results, which are quite sensitive to the 

value of the model’s parameters. Second, the parameters that best fit one set of data may not do so with 

another set; without a quantitative model, there is no safeguard against inadvertently changing these 

parameters from one task to the other. Third, the sets of parameters best fitting the data suggest that the 

probability of encoding information in the retrieval structure and the probability of making new LTM 

associations are relatively small (not more than 0.5, on average). Taken with the simulations of Richman, 

Staszewski and Simon (1995), these results suggest that the two mechanisms proposed by LT-WM have to be 

constrained by assumptions about processing limitations, using either time parameters or probability 

parameters, in order to fit the empirical data. 
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