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Glossary and Notations

This chapter summarizes the meaning of some commonly employed abbreviations and acronyms,
as well as the most important notational conventions used throughout the thesis. For convenience,
each entry contains a pointer to the place of definition or first occurrence.

Acronyms

3DXRD three-dimensional X-ray diffraction; see page 83

ANSI American National Standards Institute; see page 53

ART algebraic reconstruction technique; see page 6

CCD charge-coupled device; see page 29

CT computed / computerized tomography; see page 6

CUNY City University of New York; see page 83

DIRECT DIscrete REConstruction Techniques (framework); see page 54

DT discrete tomography; see page 7

EBSD electron backscattering diffraction; see page 101

ECAE equal channel angular extrusion; see page 102

EM electron microscopy; see page 14

ESRF European Synchrotron Radiation Facility; see page 83

FBP filtered backprojection; see page 6

FCC face-centered cubic (crystalline lattice); see page 104

FOM figure-of-merit; see page 62

GRAINDEX name of program for “tracking” associated diffraction spots back to
sample grains; see page 83

GRAINSWEEPER name of program for determining the basic orientations, orientation
spreads, centers-of-mass, and approximate morphologies of grains;
see page 90

xi



xii GLOSSARY AND NOTATIONS

HMI Hahn–Meitner Institut, Berlin, Germany; see page 36

KFKI Atomic Energy Research Institute (Központi Fizikai Kutatóintézet),
Budapest, Hungary; see page 36

LAC linear attenuation coefficient; see page 37

MCMC Markov chain Monte Carlo; see page 10

MRF Markov random field; see page 9

MRI magnetic resonance imaging; see page 6

NDT nondestructive testing; see page 35

PET positron emission tomography; see page 6

Risø Risø National Laboratory; see page 83

RT room temperature; see page 102

SA simulated annealing; see page 11

SEM scanning electron microscope; see page 101

SO(3) special orthogonal group in 3D; see page 16

SPECT single photon emission computed tomography; see page 6

VRML Virtual Reality Modeling Language; see page 56

General

A matrix A

|·| absolute value

c cardinality of the continuum, c = |R|

C field of complex numbers

|S| cardinality of set S

S × T Cartesian product of sets S and T

a× b cross (vectorial) product of vectors a and b

a · b inner (scalar) product of vectors a and b

e base of the natural logarithm (Euler’s number)

i complex imaginary unit

AB length of the line segment with end points A and B

N commutative semiring of natural numbers



GLOSSARY AND NOTATIONS xiii

‖·‖1 `1 norm (i. e. Manhattan metric)

‖·‖2 `2 norm (i. e. Euclidean metric)

Pr(·) probability measure

R field of reals

Tr A trace of square matrix A

v vector v

Z commutative ring of integers

Tomography

α weight of Φ(f) in γΦ(f), α ∈ R+; see Equation (2.14), page 13

[Bg] (x, y) backprojection transform of g, [Bg] (x, y) ∈ R; see Equation (2.5),
page 6

β inverse of the temperature, β = 1
T , β ∈ R+; see Equation (2.12),

page 13

D domain of f , D ⊂ R2; see Equation (2.1), page 3

E energy level of the incident radiation, E ∈ R+; see Equation (3.1),
page 27

E(X) energy of X, E(X) ∈ R; see page 11

f function to be reconstructed, f : D → R; see Equation (2.1), page 3

[F1g] (v) 1D Fourier transform of g(x), [F1g] (v) ∈ C; see Equation (2.3),
page 5

[F2h] (v, w) 2D Fourier transform of h(x, y), [F2h] (v, w) ∈ C; see Equation (2.3),
page 5

f̂ optimal approximation to fideal, f̂ : D → R; see page 9

fideal the unknown ideal solution being sought, fideal : D → R; see page 9

γB(f) objective function associated with f defined as a Boltzmann distri-
bution; see Equation (2.15), page 14

γ(f) (simple) objective function associated with f ; see Equation (2.13),
page 13

γG(f) objective function associated with f defined as a Gibbs distribution;
see Equation (2.16), page 14

γΦ(f) objective function associated with f and enhanced with Φ(f); see
Equation (2.14), page 13



xiv GLOSSARY AND NOTATIONS

H(X) (Hamiltonian) energy of X in joules, H(X) ∈ R; see Equation (2.9),
page 12

kB Boltzmann constant, kB ≈ 1.380 648 8×10−23 J
K ; see Equation (2.9),

page 12

µ attenuation map (with implicit assumption of E), µ : D → {0}∪R+;
see Equation (3.3), page 27

µtE LAC associated with material t and energy level E, µtE ∈ {0}∪R+;
see Equation (3.1), page 27

Ω probability space; see page 10

P collection of input projections; see page 4

p Metropolis ratio of acceptance, p ∈ R+; see Equation (2.7), page 11

Pf,ϑ simulated discrete projection given f at direction ϑ; see Equation (2.13),
page 13

Pϑ input discrete projection at direction ϑ; see Equation (2.13), page 13

P (X) probability distribution of X; see page 10

Φ(f) fitness of f with respect to a priori data; see Equation (2.14),
page 13

πB(X) Boltzmann distribution; see Equation (2.9), page 12

πG(X) Gibbs distribution; see Equation (2.12), page 13

Q (X|Y ) conditional probability distribution of X given the random variable
Y ; see page 10

R range of f , R ⊆ R; see Equation (2.1), page 3

[Rf ] (s, ϑ) Radon transform of f , [Rf ] (s, ϑ) ∈ R; see Equation (2.2), page 3

(s, u) the right-handed (x, y) coordinate system rotated about the origin
by an angle ϑ counterclockwise; see Equation (2.2), page 3

T temperature in kelvins, T ∈ R+; see page 11

T0 initial temperature, T0 ∈ R+, T0 ≥ Tmin; see page 11

Tmin minimal allowed temperature, Tmin ∈ R+, T0 ≥ Tmin; see Equa-
tion (2.8), page 12

ϑ projection angle, ϑ ∈ [0, 2π[; see Equation (2.2), page 3

X random variable, X : Ω→ R; see page 10

ZT ;X T -dependent partition function over all possible X, ZT ;X ∈ R+; see
Equation (2.10), page 13
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Parametrized Objects

A finite set of permissible LAC values, A ⊂ {0} ∪ R+; see Equa-
tion (4.1), page 37

C configuration space; see Equation (4.5), page 39

c configuration, c ∈ C; see Equation (4.4), page 39

c0 initial configuration, c0 ∈ C; see page 43

D finite 2D or 3D image domain of interest, D ⊂ Z2 or D ⊂ Z3; see
Equation (4.1), page 37

DP finite 1D or 2D projection domain of interest, DP ⊂ Z or DP ⊂ Z2;
see page 41

δ precision to use when estimating the maximal feasible radius of
a new randomly generated disc, sphere or cylinder, δ ∈ R+; see
page 46

ε tolerance used when making comparisons with reals, ε ∈ R+; see
page 41

ε1 minimal allowed magnitude of a parameter alteration during the
optimization of γ(fc), ε1 ∈ R+; see page 42

f digital image (attenuation map) to be reconstructed, f : D → A; see
Equation (4.1), page 37

fc digital image (attenuation map) determined by c, fc : D → A; see
Equation (4.7), page 39

fbin
c binary digital image determined by c, fbin

c : D → {0, 1}; see Equa-
tion (5.7), page 56

fgray
c gray-scale digital image determined by c, fgray

c : D → {0, 1
2Imax,

3
4Imax, Imax};

see Equation (5.6), page 55

fgray
co,cr

gray-scale digital difference image determined by co (original, i. e.
ideal target) and cr (reconstructed), fgray

co,cr
: D → {0, 1

2Imax, Imax};
see Equation (5.9), page 56

FOMCD figure-of-merit for the “configuration distance”; see Equation (5.19),
page 63

FOMRME figure-of-merit for the “relative mean error”; see Equation (5.16),
page 62

FOMSE figure-of-merit for the “shape error”; see Equation (5.17), page 62

FOMVE figure-of-merit for the “volume / area error”; see Equation (5.18),
page 62

γ(fc) objective function associated with fc; see Equation (4.10), page 42



xvi GLOSSARY AND NOTATIONS

H(fc) (Hamiltonian) energy of fc, H(fc) ∈ R; see Equation (4.9), page 41

hi (1 ≤ i ≤ N) height of the ith cylinder, hi ∈ R+, hi ≥ hmin; see Equation (4.16),
page 44

hmax height of the reconstruction area for a 3D D, hmax ∈ R+, hmax ≥
hmin; see Equation (4.12), page 43

hmin minimal allowed height for cylinders, hmin ∈ R+, hmax ≥ hmin; see
page 44

hTE height of the external cylinder of the tube, hTE ∈ R+, hTE ≥ hmin;
see Equation (4.15), page 44

hTI height of the internal cylinder of the tube, hTI ∈ R+, hTI ≥ hmin;
see Equation (4.15), page 44

HEIGHT number of cross-sections in the 3D f , HEIGHT ∈ Z+; see Equa-
tion (4.11), page 43

Imax maximal gray-scale intensity, Imax ∈ Z+; see Equation (5.6), page 55

λ factor of adjustment for configuration parameters when violating
geometrical constraints, λ ∈ R+, 0 < λ < 1; see page 51

λ1 factor of adjustment for the magnitude of a parameter alteration
during the optimization of γ(fc), used when violating geometrical
constraints, λ1 ∈ R+, 0 < λ1 < 1; see page 42

MERGEO upper bound for the center distance when merging discs found in
nearby 2D cross-sections into a single 3D geometrical primitive,
MERGEO ∈ R+; see page 51

MERGEr upper bound for the radius difference when merging discs found
in nearby 2D cross-sections into a single 3D geometrical primitive,
MERGEr ∈ R+; see page 51

µ0 LAC of the vacuum / air surrounding the object ( 1
pixel ), µ0 ∈ A; see

page 38

µD LAC of the discs ( 1
pixel ), µD ∈ A; see page 38

µ̂D estimation for µD, µ̂D ∈ {0} ∪ R+; see page 51

µ̂I estimation for µI, µ̂I ∈ {0} ∪ R+; see page 51

µ̂R estimation for µR, µ̂R ∈ {0} ∪ R+; see page 51

µ̂SC estimation for µSC, µ̂SC ∈ {0} ∪ R+; see page 51

µ̂T estimation for µT, µ̂T ∈ {0} ∪ R+; see page 51

µI LAC of the interior ( 1
pixel ), µI ∈ A; see page 38

µR LAC of the ring ( 1
pixel ), µR ∈ A; see page 38
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µSC LAC of the spheres and cylinders ( 1
pixel ), µSC ∈ A; see page 44

µT LAC of the tube ( 1
pixel ), µT ∈ A; see page 44

N number of discs, spheres or cylinders, N ∈ N; see Equation (4.4),
page 39

n number of projections, n ∈ N, n ≥ 2; see page 59

OC center of the reconstruction area, OC ∈ R2 or OC ∈ R3; see Equa-
tion (4.8), page 40

Oi (1 ≤ i ≤ N) center of the ith disc, sphere or cylinder, Oi ∈ R2 or Oi ∈ R3; see
Equation (4.4), page 39

(O, r) circle, disc or sphere with center O and radius r, O ∈ R2 or O ∈ R3,
r ∈ R+, r ≥ rmin; see page 38

(O, r, h) cylinder with center O, radius r and height h, O ∈ R3, r ∈ R+,
r ≥ rmin, h ∈ R+, h ≥ hmin; see page 44

ORE center of the external circle of the ring, ORE ∈ R2; see Equa-
tion (4.4), page 39

ORI center of the internal circle of the ring, ORI ∈ R2; see Equation (4.4),
page 39

OTE center of the external cylinder of the tube, OTE ∈ R3; see Equa-
tion (4.15), page 44

OTI center of the internal cylinder of the tube, OTI ∈ R3; see Equa-
tion (4.15), page 44

Pfc,ϑ 1D or 2D simulated discrete projection of fc at direction ϑ, Pfc,ϑ : DP →
{0} ∪ R+; see Equation (4.9), page 41

Pϑ 1D or 2D input discrete projection at direction ϑ, Pϑ : DP → {0} ∪
R+; see Equation (4.9), page 41

ri (1 ≤ i ≤ N) radius of the ith disc, sphere or cylinder, ri ∈ R+, ri ≥ rmin; see
Equation (4.4), page 39

rmax radius of the reconstruction area, rmax ∈ R+, rmax ≥ rmin; see
Equation (4.8), page 40

rmaxS maximal allowed radius for spheres, rmaxS ∈ R+, rmax ≥ rmaxS ≥
rmin; see Equation (4.13), page 44

rmin minimal allowed radius for geometric primitives, rmin ∈ R+, rmax ≥
rmin; see page 38

rRE radius of the external circle of the ring, rRE ∈ R+, rRE ≥ rmin; see
Equation (4.4), page 39

rRI radius of the internal circle of the ring, rRI ∈ R+, rRI ≥ rmin; see
Equation (4.4), page 39
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rTE radius of the external cylinder of the tube, rTE ∈ R+, rTE ≥ rmin;
see Equation (4.15), page 44

rTI radius of the internal cylinder of the tube, rTI ∈ R+, rTI ≥ rmin;
see Equation (4.15), page 44

SIZE number of rows and columns in the 2D f , SIZE ∈ Z+; see Equa-
tion (4.2), page 37

T temperature, T ∈ R+; see Equation (4.10), page 42

T0 initial temperature, T0 ∈ R+, T0 ≥ Tmin; see page 43

Tmin minimal allowed temperature, Tmin ∈ R+, T0 ≥ Tmin; see page 43

τ expected noise level in Pϑ, τ ∈ R+; see page 51

ZT ;fc T -dependent partition function over all possible fc, ZT ;fc ∈ R+; see
Equation (4.10), page 42

Quaternions, Rotations

0 the vector (0, 0, 0), representing the vectorial (imaginary) part of a
quaternion (a,0); see page 20

∆Q sampling unit of quaternion components (b, c, d) in HQ1c, ∆Q ∈ R+;
see Equation (8.3), page 99

H skew field of quaternions

H1 non-commutative multiplicative group of unit quaternions; see page 21

H1c set of unit quaternions in the canonical form; see page 23

HQ1c set of quantized unit quaternions in the canonical form, using sam-
pling resolution Q; see page 99

i, j, k imaginary units; see Equation (2.18), page 19

NQ(q) set of neighbors of q in HQ1c; see Equation (8.2), page 99

(n, θ) rotation about axis n by an angle θ (measured counterclockwise), n
is a unit vector in R3, θ ∈ [0, π]; see page 16

(ψ,ϕ1, ϕ2) rotation defined by Euler angles ψ, ϕ1 and ϕ2, ψ ∈ [0, 2π), ϕ1 ∈
[0, π], ϕ2 ∈ [0, 2π); see page 17

Q sampling resolution for the interval [−1, 1] of unit quaternion com-
ponents (b, c, d), Q ∈ Z+ odd, Q ≥ 3; see page 98

q−1 multiplicative inverse of quaternion q, q 6= (0, 0, 0, 0); see Equa-
tion (2.27), page 21

q1q2 = q1 · q2 product of quaternions q1 and q2; see Equation (2.23), page 20
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q1 + q2 sum of quaternions q1 and q2; see Equation (2.21), page 20

q1→2 = (a1→2,q1→2) transition quaternion expressing the rotation from q1 to q2, q1→2 ≡
(b1→2, c1→2, d1→2), q1 and q2 are unit quaternions; see Equation (7.21),
page 93

q = (a, b, c, d) quaternion with scalar (real) component a and vectorial (imaginary)
part (b, c, d), a, b, c, d ∈ R; see Equation (2.17), page 19

q = a+ bi + cj + dk quaternion with scalar (real) component a and vectorial (imaginary)
part bi + cj + dk, a, b, c, d ∈ R; see Equation (2.18), page 19

q = (a,q) quaternion with scalar (real) component a and vectorial (imaginary)
part q ≡ (b, c, d), a, b, c, d ∈ R; see Equation (2.22), page 20

q̄ conjugate of quaternion q; see Equation (2.20), page 19

q =
(

cos
(

1
2θ
)
,n sin

(
1
2θ
))

unit quaternion representing the rotation (n, θ), n is a unit vector
in R3, θ ∈ [0, π]; see Equation (2.29), page 21

|q| norm (magnitude) of quaternion q; see Equation (2.25), page 21

r = n tan
(

1
2θ
)

Rodrigues vector representing the rotation (n, θ), n is a unit vector
in R3, θ ∈ [0, π]; see page 18

r(q1, q2) distance of rotations (unit quaternions) q1 and q2, 0 ≤ r(·, ·) ≤ 1;
see Equation (7.22), page 94

Polycrystals

α weight of projection error term in L(P|o), α ∈ R+; see Equa-
tion (7.9), page 87

C a clique (of any kind) in D; see Equation (7.4), page 85

C+ set of all horizontal and vertical pair cliques in D; see Equation (7.4),
page 85

C+,` set of all horizontal and vertical pair cliques in D restricted to grain
g`; see Equation (7.16), page 90

Ck (0 ≤ k ≤ 6) sets of all cliques in D with 3 × 3 blocks of pixels modeling grain
morphologies in g; see page 90

C3×3 set of all cliques in D with 3×3 blocks of pixels; see Equation (7.6),
page 86

C× set of all diagonal pair cliques in D; see Equation (7.4), page 85

C×,` set of all diagonal pair cliques in D restricted to grain g`; see Equa-
tion (7.16), page 90
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D finite 2D sample domain of interest, D ⊂ Z2; see Equation (7.1),
page 85

d
(
o(i), o(j)

)
distance of orientations o(i) and o(j) (i. e. disorientation), 0 ≤ d(·, ·) ≤
1; see Equation (7.5), page 85

∆ minimal degree of separation of neighboring grains (i. e. misorienta-
tion), ∆ ∈ R+, ∆ ≥ δ; see Equation (7.7), page 86

δ maximal expected orientation spread within any grain, δ ∈ R+; see
Equation (7.5), page 85

FOMg figure-of-merit for g; see Equation (8.5), page 106

FOMo figure-of-merit for o; see Equation (8.6), page 107

G set of grain labels; see Equation (7.12), page 89

G number of grains, G ∈ Z+; see page 89

g 2D grain map to be reconstructed, g : D → G; see Equation (7.11),
page 89

g0 initial grain map; see page 92

g` subset of g associated with the grain labeled `; see page 89

γ(g, o) objective function associated with the pair (g, o); see Equation (7.19),
page 92

γ(o) objective function associated with o; see Equation (7.10), page 87

H1(g, o) homogeneity of o given g in H(g, o); see Equation (7.16), page 90

H1(o) homogeneity of o in H(o); see Equation (7.4), page 85

H2(g) grain borders of g in H(g, o); see Equation (7.17), page 91

H2(o) grain borders of o in H(o); see Equation (7.6), page 86

H(g, o) (Hamiltonian) energy of the pair (g, o); see Equation (7.15), page 90

H(o) (Hamiltonian) energy of o; see Equation (7.3), page 85

{hkl} Miller indexes of the set of all lattice planes that are equivalent to
(hkl) due to the symmetries of the lattice, h, k, l ∈ Z with greatest
common divisor equal to 1; see page 136

(hkl) Miller indexes corresponding to a set of lattice planes whose plane
normal is defined by coefficients (h, k, l) in terms of the primitive
vectors of the reciprocal lattice, h, k, l ∈ Z with greatest common
divisor equal to 1; see page 136

i a pixel of the sample domain, i ∈ D; see Equation (7.1), page 85

I1
C(o) binary indicator function for horizontal and vertical borders in C3×3;

see Equation (7.6), page 86
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I2
C(o) binary indicator function for diagonal borders in C3×3; see Equa-

tion (7.6), page 86

I3
C(o) binary indicator function for intermediate borders in C3×3; see Equa-

tion (7.6), page 86

{i, j} a pair clique in D formed by pixels i and j; see Equation (7.5),
page 85

κk;g (0 ≤ k ≤ 6) weight (potential) of Ck cliques in H2(g), κk;g ∈ R+; see Equa-
tion (7.17), page 91

κk (k ∈ {1, 2, 3}) weight (potential) of IkC(o) cliques in H2(o), κk ∈ R+; see Equa-
tion (7.6), page 86

` a grain label, ` ∈ G; see page 89

L sample–detector distance; see page 31

L(·) likelihood; see Equation (7.8), page 87

λ1 weight (potential) of C+ cliques in H1(o), λ1 ∈ R+; see Equa-
tion (7.4), page 85

λ1;g weight (potential) of C+,` cliques in H1(g, o), λ1;g ∈ R+; see Equa-
tion (7.16), page 90

λ2 weight (potential) of C× cliques in H1(o), λ2 ∈ R+; see Equa-
tion (7.4), page 85

λ2;g weight (potential) of C×,` cliques in H1(g, o), λ2;g ∈ R+; see Equa-
tion (7.16), page 90

N(Ck, g) number of occurrences of Ck cliques in g, N(Ck, g) ∈ N; see Equa-
tion (7.17), page 91

N
(
o(i)

)
set of neighbors of o(i) in O; see page 88

O set of crystalline orientations; see Equation (7.1), page 85

o 2D orientation map to be reconstructed, o : D → O; see Equa-
tion (7.1), page 85

o0 initial orientation map; see page 88

ω angle of rotation applied to the specimen with respect to the lab-
oratory frame of reference (i. e. projection angle), ω ∈ [−π, π[; see
page 31

P set of input diffraction patterns; see Equation (7.8), page 87

Po set of simulated diffraction patterns given o; see Equation (7.9),
page 87

Φ{i,j}(o) similarity measure of orientations for clique {i, j}; see Equation (7.5),
page 85
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S set of all (proper) symmetry rotations of the lattice; see page 94

θ Bragg angle associated with some reflection event; see Equation (C.2),
page 137
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Chapter 1

Introduction

Discrete tomography (DT), a relatively new field of image processing, deals with the reconstruc-
tion of images—or functions in the general mathematical setting—from their projections, given
the assumption that the range of the images / functions is a known, finite set. The latter con-
straint is, actually, rather easy to satisfy in many real-life problems, thus enabling the usage of
DT in these cases.

The present thesis discusses two very different applications of DT: The first one deals with the
reconstruction of images of objects composed of some geometrical primitives like tubes, cylinders
and spheres. The specific scenario considered here arose in industrial nondestructive testing of
objects using radiographic measurements. The second application, on the other hand, involves
the reconstruction of orientation maps and grain maps of deformed polycrystalline material
samples from X-ray diffraction patterns. These tasks can be very challenging but they are also
crucial for several materials scientific concepts.

The outline of the dissertation is as follows: A short introduction and overview of topics is
given in this chapter. Then, Chapter 2 and Chapter 3 summarize the necessary mathematical
and physical foundations, respectively. The next 3 chapters cover the first application of DT:
Chapter 4 presents the problem and the implemented algorithm, Chapter 5 portrays simulation
results, while Chapter 6 shows results obtained with physical phantoms. The second application
of DT is dealt with in the 2 subsequent chapters: the problem statement and the implemented
approach are described in Chapter 7, while simulation results are revealed in Chapter 8. Apart
from the aforementioned main chapters, further reconstruction results, algorithm details as well
as theoretic background are given in numerous appendices.

For the reader’s convenience, the thesis also includes a glossary and list of notations, lists of
figures, tables and algorithms, an extensive bibliography, and an index of the most important
terms.
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Chapter 2

Mathematical Background

Tomography is a tool of image processing for determining (reconstructing) an image (or a func-
tion, in general) from a set of measurements over it (called projections). Whereas (classical)
tomography considers functions whose range is infinite and possibly continuous, discrete tomog-
raphy deals with the special case when the range is a known, finite set. This chapter first gives
an overview of the fundamental mathematical constructs involved, as well as some typical use
cases where these techniques can be employed.

The subject discussed in Chapters 7 and 8 relies on the notion of orientation of 3D crystalline
lattices. Since orientations are fundamentally defined in terms of rotations, the rest of this
chapter provides a survey about the various ways for representing rotations in 3D, especially
focusing on the usage of unit quaternions.

2.1 Tomography
2.1.0.1 Mathematical Foundations

Let
f : D → R, (x, y) 7→ f(x, y) (2.1)

be a bivariate, compactly supported continuous function with domain D ⊂ R2 and range R ⊆ R.
Furthermore, let (s, u) denote the right-handed (x, y) coordinate system rotated about the origin
by an angle ϑ counterclockwise (ϑ ∈ [0, 2π[). Then the Radon transform [Rf ] (s, ϑ) of f is
given by

[Rf ] (s, ϑ) =

ˆ ∞
−∞

f(x, y) du =

=

ˆ ∞
−∞

f(s · cosϑ− u · sinϑ, s · sinϑ+ u · cosϑ) du .

(2.2)

This functional is illustrated by Figure 2.1. In fact, the formula above computes line integrals of
f along a set of parallel lines (all being parallel to u), as depicted in Figure 2.2(a). For a fixed
ϑ0, the univariate function [Rf ] (s, ϑ0) is called the projection of f at direction ϑ0, whereas
the collection

(
. . . , [Rf ] (s, ϑi) , . . .

)
, ϑi ∈ [0, 2π[, is dubbed the sinogram of f . (That is, the

sinogram is the collection of all the projections taken at every possible direction ϑi.) Analogously,
the lines parallel to u are called projection lines. By definition, projections corresponding to
direction ϑ0 +π are “mirror” images of those taken at ϑ0, obtained by flipping [Rf ] (s, ϑ0) about
the u axis.
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Figure 2.1. 2D Radon transform g(s, ϑ) := [Rf ] (s, ϑ) of function f(x, y).

The aforementioned transform was introduced in 1917 by Johann Karl August Radon, an
Austrian mathematician [160,161]. As can be seen, Equation (2.2) defines the 2D version of the
transform (producing 1D projections) in the Euclidean space, but it can also be generalized to
higher dimensions and other geometries [83,127,140].

The setup shown in Figure 2.2(a) uses parallel geometry (referring to the direction of
projection lines for any fixed ϑ0). Another widespread configuration is depicted in Figure 2.2(b),
the so-called divergent or fan beam geometry, where all projection lines pass through a
fixed point in the (s, u) coordinate system. (The analogous setup in 3D is called cone beam
geometry. See Section 3.1.1 for the physical motivation behind these projection geometries.)
It can be shown that the two setups yield equivalent results, as the projection lines of a fan-
beam configuration can be reordered—or re-interpolated—into groups of parallel projection lines.
(This reordering in known as rebinning.) More on this and on the practical implementation
of divergent geometry can be found e. g. in [149, 150]. In even more advanced settings, integrals
may be taken over more general subsets of f , e. g. along hyperbolas, as is the case in certain
applications of the wave phenomenon diffraction; such an application is discussed in Chapters 7–8
of the thesis.

Tomography is a field of image processing that deals with the following problem: Given
a collection P := (. . . , pi, . . . ), pi ∈ R, of integrals of an unknown function f over certain
subsets (manifolds) of its domain, determine f . (For practical reasons, P is often organized as a
vector or matrix.) This is called the reconstruction of f from its projections P. (It is evident
that tomographic reconstruction is a kind of inverse problem.) As a matter of fact, the word
“tomography” originates from the composition of the Ancient Greek τ óµoς (“tomos”; slice or
section) and γράϕειν (“graphein”; to write / draw).1 The reconstruction area—encompassing
the support of f—is determined as the intersection of projection lines for all possible values of ϑ.

1Due to the author’s laziness, the Greek words are typeset using mathematical symbols rather than the
appropriate text-mode Greek script.
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Figure 2.2. Projection geometries for the 2D Radon transform. (a) Parallel geometry. (b)
Divergent (fan beam) geometry.

This shape is a disc (i. e. a solid circle) when using parallel or divergent projection geometries.
In certain industrial and medical applications of tomography, the values f(x, y) can be iden-

tified with the emission intensity of a radioactive substance. In such a setup, projections need
to be computed by taking into account the propagation and weakening (attenuation) of emitted
radiation, thus resulting in projections quite different from those acquired via Equation (2.2).
(In fact, this difference in computation also implies that projections corresponding to ϑ0 and
ϑ0 + π are not simply mirror images of each other.) This technique is known as emission to-
mography, whereas the case described earlier is called transmission tomography. For more
details on the physical notions involved, see Section 3.1.1.

In practice, the Radon transform—and tomography—is often used to compute the projections
of a digital image (“image function”, with function values representing gray-scale intensities or
colors). This means that the domain D of f is a grid of some kind (e. g. the rectangular lattice
Z2 or the regular hexagonal grid). Even though f is not continuous in such cases (in fact, it
is a discrete function), it is possible to define its discrete Radon transform in analogy with
Equation (2.2), producing discrete projections.

The Radon transform has an interesting relation to the Fourier transform. In particular,
let [F1g] (v) and [F2h] (v, w) denote the 1D and 2D Fourier transforms of functions g(x) and
h(x, y), respectively:

[F1g] (v) :=

ˆ ∞
−∞

g(x)e−2πixv dx

[F2h] (v, w) :=

ˆ ∞
−∞

ˆ ∞
−∞

h(x, y)e−2πi(xv+yw) dxdy

, (2.3)

where i is the complex imaginary unit. Moreover, let [Rf ]ϑ0
(s) denote the 1D projection at

direction ϑ0. Then, the famous Fourier slice theorem (or projection-slice theorem) states
that [

F1 [Rf ]ϑ0

]
(v) = [F2f ] (v · cosϑ0, v · sinϑ0) . (2.4)

In other words, the 2D Fourier transform of f can be obtained by “overlaying” the 1D Fourier
transforms of [Rf ]ϑ0

(s) (for all ϑ0) in the 2D Fourier space at appropriate directions.
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2.1.1 Reconstruction Methods

It should be noted that the Radon transform is not injective, hence it cannot be uniquely inverted
in general (unless employing infinitely many projections). Instead, one can define the following
adjoint (dual transform) to g(s, ϑ) := [Rf ] (s, ϑ):

[Bg] (x, y) =
1

2π

ˆ 2π

0

g(s, ϑ) dϑ =

=
1

2π

ˆ 2π

0

g(x · cosϑ+ y · sinϑ, ϑ) dϑ

. (2.5)

[Bg] (x, y) is called the backprojection transform of g(s, ϑ). Although this transform can
be also used by itself for sake of reconstruction, it is usually employed in combination with
convolutional filtering. Specifically, higher quality results can be obtained when the projections
are first filtered with some convolutional kernel (e. g. sinc, cosine, Ram–Lak, Shepp–Logan or
Hamming) before being passed over to backprojection. The modified approach is known as
filtered backprojection (FBP), and is one of the first tomographic reconstruction techniques
devised.

The Fourier slice theorem provides another approach for reconstructing f . Namely, one can
take the 1D Fourier transforms of each projection [Rf ] (s, ϑ0), and store the resulting complex
vector into a common 2D matrix (or, in the continuous case, into C2) along a line incident with the
origin and oriented in the appropriate direction as per Equation (2.4). Finally, the reconstruction
result is obtained by applying the 2D inverse Fourier transform to the aforementioned matrix of
coefficients.

The aforementioned two approaches—namely backprojection (with or without filtering) and
Fourier reconstruction—are collectively known as transform methods. Besides, there are
numerous further techniques for tomographic reconstruction; a few are listed below without
completeness:

• Iterative algebraic techniques: algebraic reconstruction technique (ART) [75, 92], simulta-
neous iterative reconstruction technique (SIRT) [72], simultaneous algebraic reconstruction
technique (SART) [19].

• Probabilistic optimization: maximum a posteriori expectation maximization (MAP EM)
[86,131], expectation maximization (EM) [55], maximum likelihood (ML) [178].

• Other optimization: total variation (TV) minimization [87].

A detailed overview of the mathematical background of tomography, along with a thorough
discussion of related reconstruction algorithms and their usage in medical applications, can be
found in [85,95,151].

2.1.2 Applications

Probably the most well-known application of tomography is its usage in medical imaging. This
includes X-ray computed / computerized tomography (CT) [85, 95, 151], single photon emis-
sion computed tomography (SPECT), positron emission tomography (PET), magnetic resonance
imaging (MRI), and various other uses (e. g. angiography) [20, 87, 131, 178]. Further important
applications include: industrial radiography and nondestructive testing [172], optical tomogra-
phy [20,70], and acoustic tomography [56].



2.2. DISCRETE TOMOGRAPHY 7

Figure 2.3. A binary image and its 2 orthogonal projections (column and row sums).
Pixel intensities correspond to 0 / background (white) and 1 / foreground (black). (Image is
courtesy of Gabor T. Herman and Attila Kuba.)

2.2 Discrete Tomography

2.2.1 Mathematical Foundations

As a special case of the notions introduced in Section 2.1, one speaks of discrete tomogra-
phy (DT) when the range R of f is a known, finite set [88, 90]. In practical applications, this
corresponds to the scenario when f represents 2D cross-sections of an object, with each pixel
expressing some physical property of the material at that location (e. g. density, radiation attenu-
ation / absorption capability, intensity of emitted radiation, or even more exotic features like the
orientation of the underlying crystalline lattice). In many everyday situations, the object under
investigation is composed of only a few materials of known properties, therefore complete—or
at least an approximate—knowledge of R is available. An example is shown in Figure 2.3 for
a binary f (i. e. when |R| = 2). Though not an explicit requirement, most applications of DT
also assume that the number of projections accessible is rather low (2–10) for various reasons;
see Section 3.1.1 for a discussion.

DT is a relatively young field of image processing—dating back to the middle of the 20th

century—, having connections with discrete mathematics [12], combinatorics [43], number theory
[17], complexity theory [68], and graph / network theory [63]. Similarly to the subjects discussed
in Section 2.1—which we shall call continuous or classical tomography from now on—, the
central objective of DT is to reconstruct f from its projections. This problem is accompanied
by several additional matters that are investigated by DT:

Existence Given a collection P of measurements, determine if any solutions f exist at all hav-
ing projections P. In fact, this requires that the projections be consistent (“compatible”)
with each other, expressing the natural assumption that measurements shall not be contra-
dictory. This topic was first considered for measurable functions [134], and later for binary
matrices and 2 orthogonal projections [168,169] as well as for flow networks [63].

Uniqueness Given a collection P of consistent measurements, determine if there is exactly one
f having projections P. As it turned out, a necessary and sufficient condition for this is that
f does not contain so-called switching components (or switching operations). For
binary images over the rectangular grid and 2 orthogonal projections, these are represented
by the (sub)matrices ( 1 0

0 1 ) and ( 0 1
1 0 ) [168, 169]. (As is apparent, these matrices have



8 CHAPTER 2. MATHEMATICAL BACKGROUND

identical horizontal and vertical row sums, thus the reconstruction problem has at least two
solutions.) This idea was later generalized to measurable sets and 2 orthogonal projections
[124], to more than 2 projections [65], and to non-rectangular grids and higher dimensions
[109]. Further uniqueness issues are investigated e. g. in [67,113,114,119,120].

Solution space Given a collection P of consistent measurements, how many solutions f exist
having projections P? How are they related? What is the structure of the solution space
(also known as the search space)? How can one derive another solution f

′
from a known

f? In general, is there a systematic means for obtaining all solutions?

Complexity Given a class C of images / functions with some specific property, what is the best
achievable computational complexity of obtaining a reconstruction of any f ∈ C? While
this problem is NP-complete or even NP-hard for most of the cases [12, 54, 57, 67, 68, 97],
there are also a few polynomial results [24,25,28,54,118,119].

Stability Given some uncertainties or imperfections in the measurements P, how different are
reconstructions from the ideal solution? Some results can be found e. g. in [8,10,12,13,44,
96].

Convergence Given a particular reconstructions technique, determine under what conditions—
and how fast—it converges to a solution. Some results include [71]2 and [108,176].

For a detailed summary of the history of DT, along with a precise description of the aforemen-
tioned topics of interest, see [115,116].

All the notions mentioned earlier for continuous tomography can be re-formulated within
the frames of DT too. Thus one can speak of transmission and emission projections, parallel
and divergent geometries, continuous and discrete Radon transforms etc. As a matter of fact, a
related field of image processing dubbed geometric tomography deals with the reconstruction
of planar and higher-dimensional shapes [65].

2.2.2 Reconstruction Methods

Due to the low number of projections and the special restrictions onR, most classical (continuous)
reconstruction methods are of limited effectiveness in DT. (Exceptions do exist; for instance ART
can be tailored to the reconstruction of binary images, see below.) DT reconstruction techniques
roughly fall into either of two categories: those that produce exact reconstructions and those
seeking approximate ones.

Techniques for obtaining exact reconstructions These approaches are applicable when
projections are perfect (i. e. in the absence of noise or other distortions). They may further
assume that f possesses some special structure or property. Such methods usually rely on
logical, number-theoretic or combinatorial tools.

• Binary matrices from 2 orthogonal projections: (0, 1)-valued [124, 168, 169], general
[114].

• Convex / connected binary objects, polyominos: 2-SAT, [24,25,27,44,112,118,119].

• Graph theoretic techniques: [54].
2This paper discusses the convergence properties of the Gibbs Sampler when used in conjunction with simulated

annealing (SA) [101,185].
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Techniques for obtaining approximate reconstructions These methods assume that mea-
surements cannot be trusted, hence no exact solution can be expected in general. (Remem-
ber: By definition, no exact solution exists if projections are inconsistent.) Instead, they
aim for producing an f̂ that is as close to the ideal fideal as possible. This is usually at-
tained by formulating the reconstruction process as an optimization task, searching for a
global optimum of an objective function γ(f) defined over the set of all possible f . (See
Section 2.2.4 for a discussion of how such objective functions can be formulated.)

• Iterative algebraic techniques: BART [84], discrete algebraic reconstruction technique
(DART) [30,31].

• Probabilistic optimization: Markov random field (MRF) [40, 71, 192, 195], maximum
a posteriori estimation (MAP) [32,71,143], multiscale models [61].

• Deterministic optimization: iterated conditional modes (ICM) [36, 143], greedy algo-
rithms [5,59,78,126], tabu search [73,126], graduated non-convexity (GNC) [38], expec-
tation maximization (EM) [191], linear programming (LP) [44,137], gradient descent
/ steepest descent [159, Section 10.6] [32, 48], convex programming [195], difference-
of-convex-functions (D.C.) [176, 191], convex–concave regularization [176, 190], mean
field annealing (MFA) [37,195].

• Stochastic optimization (Monte Carlo, heuristics): simulated annealing (SA) [159, Sec-
tion 10.9] [101,103,143,185,188,190], Metropolis algorithm [40,81,141,192], modified
Metropolis dynamics (MMD) [98, 99]3, Gibbs Sampler [71]. This class of techniques
will be presented in more details in Section 2.2.3.

• Artificial intelligence: genetic algorithm [26, 74], machine learning [64], dynamic pro-
gramming [41].

An evaluation / comparison of some of the aforementioned approaches can be found in [27,46,187,
190]. See also [88,90] for a summary of these techniques, along with their possible applications.

It should be noted that, apart from trivial or very special cases, it is not viable to traverse
the solution space S in order to locate solutions. This is so because S is simply too enormous
and the associated solution graph too complex, so that classical graph search algorithms like
A*—but also backtracking or brute-force—cannot possibly deduce solutions in an efficient way.
(This is in perfect agreement with the complexity results mentioned earlier.)

The execution of certain DT algorithms can, sometimes, take a long time due to a slow con-
vergence rate, a huge solution space, or the stochastic nature of the approach. There are various
tricks for a speed-up, such as using look-up tables of precomputed values [15, 186], employing
graphics processing unit (GPU) acceleration [187], or initializing the algorithm with an f0 that
is as close to the desired fideal as possible. (Examples for the latter can be found in the rest of
the thesis.)

Reconstruction techniques can be also classified depending on the nature of the solution space.
A majority of methods directly operate on digital images or their equivalents (discrete functions
or matrices); these shall be called pixel-based methods from now on. On the other hand, some
techniques, called parametric methods, define f with a vector p of parameters (the number of
which is typically much smaller than the number of pixels in f). The purpose of such parameters
is to encode the abstract structure of the object represented by f ; see Section 4.1.2 for some
specific examples.

3These papers actually present applications in computer vision and image segmentation.
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2.2.3 Stochastic Optimization
Stochastic optimization is a form of optimization directly relying on random variables, random
objective functions, random constraints, or iterative steps guided by random decisions. One
specific application where such an approach has proven useful is the search for global optima
of functions (of multiple variables in most cases). Below we shortly overview some of these
methods that are essential to understand the reconstruction algorithms presented in the rest of
the thesis. It should be remarked that all the examples discussed here are iterative techniques:
they operate by starting from an initial guess X0 of the random variable X over some probability
space Ω, then construct a new approximation Xi+1 in each iterative step based on the current
latest approximation Xi .

Metropolis Algorithm

Though not an optimization technique fundamentally, the Metropolis algorithm [40, 81, 141,
192] (also called Metropolis–Hastings algorithm) lies at the core of—or had motivated—
several stochastic global optimization methods. It is part of a larger family of algorithms called
Markov chain Monte Carlo (MCMC); these repeatedly sample a probability distribution
P (X) in such a way that the sequence Xi of samples forms a Markov chain. MCMC approaches
are especially beneficial when the direct sampling of P (X) is difficult, e. g. because it depends
on multiple variables or its exact value is not known.

In order to apply the Metropolis algorithm, one needs a function h(X) that can be evaluated
for all X and it satisfies h(X) ∝ P (X) . It also requires a probability distribution Q (X|Y ) that
suggests a new approximation for X based on the previous value Y . (Q (X|Y ) is usually chosen
to favor values “close” to Y .) The outline of the process is given in Algorithm 2.1.

Algorithm 2.1. Metropolis algorithm
1 Choose X0 arbitrarily (or based on some a priori information)
2 Fix Q (X|Y ) as desired
3 i := 0
4 while termination criteria are not satisfied do
5 Draw X′ randomly from Q (X′|Xi)
6 Calculate the ratio p :=

h(X′)
h(Xi)

7 Accept X′ with probability min{1, p}
8 if X′ has been accepted then
9 Xi+1 := X′

10 else
11 Xi+1 := Xi

12 i := i+ 1

13 Xi is a sample from P (X)

Depending on the value of p (dubbed the Metropolis ratio of acceptance), the proposed
X ′ is either instantly accepted (when p ≥ 1), or accepted with probability p (otherwise); see line 7.
In practice, the latter action is implemented by taking a uniform random number r ∈ [0, 1) and
accepting X ′ if r < p.

As can be seen in the definition of p in line 6, the algorithm does not even need the exact
value of h(X); it suffices that the ratio h(X1)

h(X2) be computable for all (X1, X2) . This can be a big
advantage if, for instance, the definition of h(X) contains some constant factor c (independent
of X) that is very time-consuming to deduce:

h(X) := c · h1(X) . (2.6)
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Given the evaluation of h1(X) is not costly, the value of p becomes

p =
h(X ′)

h(Xi)
=
c · h1(X ′)

c · h1(Xi)
=
h1(X ′)

h1(Xi)
,

that is c cancels out, so this ratio does not require its knowledge. Because h(X) is proportional
to P (X),

p =
h(X ′)

h(Xi)
=
P (X ′)

P (Xi)
, (2.7)

that is the distribution of Xi indeed converges to P (X).
Iterations are carried on until some termination criteria are satisfied; these can be also

chosen as most appropriate for the specific case. For example, the loop can be stopped when i
or h(Xi) exceeds some preset threshold.

Besides returning samples Xi that follow P (X), the execution of the Metropolis algorithm
can be interpreted as the maximization (if ∀X : h(X) > 0) or minimization (if ∀X : h(X) < 0)
of the objective function h(X). This optimization is a stochastic one, however, since X ′ may get
accepted even when |h(X ′)| < |h(Xi)| (i. e., when h(X) worsens). This feature of the Metropolis
algorithm makes it possible to reach a global optimum of h(X), in spite of the existence of local
optima that otherwise would be traps for the reconstruction process. The output of the algorithm
is the X for which h(X) is maximal or minimal among all the values visited during the execution
of the algorithm.

The optimization procedure can, in theory, be started from an arbitrary X0, but the closer
the initial X0 is to the expected global optimum, the faster the convergence of the algorithm will
be (and the less the chance will be to get stuck in local optima).

Simulated Annealing

Simulated annealing (SA) [159, Section 10.9] [101, 185, 188] is a technique inspired by the
annealing (cooling) of metals in metallurgy. The idea is that, by carefully controlling the rate
of cooling, (poly)crystalline materials can achieve a significantly lower energy4 level—as well as
a reduced amount of internal defects—than what could be obtained by an abrupt or irregular
cooling. In terms of applying these concepts in the realms of optimization, if E(X) denotes the
“energy5” associated with the random variable X and T the “temperature” of the system,
the objective function h(X) ≡ hE,T (X) is interpreted as a function of E(X) and T , while the
slow annealing translates to a gradually decreasing probability for accepting a proposed X ′ that
results in a worse hE,T (X) value. (Note that, by optimizing hE,T (X), one is simultaneously
optimizing E(X) as well. Depending on how hE,T (X) is constructed, it is also possible that the
X that is a global maximum of hE,T (X) is actually a global minimum of E(X), or vice versa.)

As can be seen in Algorithm 2.2, SA is an adaptation of the Metropolis algorithm.
As shown in line 6, X ′ is picked from the set of “neighbors” of Xi, that is by applying

some small perturbation to Xi. (This notion corresponds to the analogously defined Q (X|Y ) in
Algorithm 2.1.)

The decision about the fate of X ′ in line 7 uses the same p ratio and logic introduced in the
Metropolis algorithm. There is one striking difference, though: here the evaluation of hE,T (X)
depends on the current temperature Ti. Specifically, Ti controls the acceptance ratio as follows: a
higher temperature increases the probability of accepting X ′ even when the value of the objective

4Specifically, this is the so-called thermodynamic free energy.
5It should be remarked that, contrary to its physical counterpart, E(X) is permitted to take on 0 or negative

values as well.
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Algorithm 2.2. Simulated annealing
1 Choose X0 arbitrarily (or based on some a priori information)
2 Set T0 to some high value
3 Fix the annealing schedule to be used
4 i := 0
5 while termination criteria are not satisfied do
6 Let X′ be a randomly chosen neighbor of Xi

7 Determine the acceptance of X′ with respect to Xi using the Metropolis ratio p :=
hE,Ti (X

′)

hE,Ti (Xi)

8 if X′ has been accepted then
9 Xi+1 := X′

10 else
11 Xi+1 := Xi

12 Let Ti+1 be the new temperature based on Ti and the annealing schedule
13 i := i+ 1

14 Xi is the global optimum of hE,T (X), hence it is also a global optimum for E(X)

function hE,T (X) declines, while a lower temperature “freezes” the system into accepting only
those X ′ that result in an improvement of hE,T (X).

The algorithm is started with a sufficiently high temperature T0 that then gradually gets
decreased according to a preset annealing schedule (see line 12). Some commonly employed
schedules are shown below:

Ti+1 := c · Ti

Ti+1 :=
T0

ln(i+ 2)

Ti+1 := max {Tmin, Ti −∆T}

. (2.8)

The first one essentially yields Ti+1 = ci+1 · T0 where 0 < c < 1 is some real close to 1, hence
realizing an exponential decrease. The second one, on the other hand, follows a much slower
logarithmic plan. Finally, the third one defines a simple linear model where Ti is decreased by
some ∆T > 0, while not letting it fall below a given Tmin > 0. As a special case, the temperature
can be also kept constant (either all the time or starting from some i); this expresses a trade-off
between adequate running speed and the possibility of getting stuck in unwanted local optima.

It is a common practice to define hE,T (X) so that it follows some probability distribution.
One widespread choice is the Boltzmann distribution [139]:

πB(X) :=
1

ZT ;X
e
−H(X)
kBT , (2.9)

named after Ludwig Boltzmann, an Austrian physicist and philosopher. Originally used in sta-
tistical mechanics and thermodynamics, πB(X) gives the probability that a system is in a certain
state with energy H(X) when the temperature of the system is T (given in kelvins). Moreover,
kB is the so-called Boltzmann constant, ZT ;X denotes the partition function6 (essentially, a
T -dependent normalization constant that is defined in terms of all possible solutions X), and the
energy function H(X) (also called the Hamiltonian operator in quantum mechanics) gives
the energy of X (originally expressed in joules). With the agreement E(X) := H(X), the setting
hE,T (X) := πB(X) can then be taken.7 The maximization of πB(X) is, in fact, equivalent with
the minimization of H(X).

6To be precise, the ZT ;X shown here is the so-called canonical partition function of a discrete system in the
context of classical mechanics.

7For all practical purposes, H(X) can readily replace E(X); the difference between them is purely notational
and kept for historical reasons.
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ZT ;X is computed by summing the exponential term of Equation (2.9) over all possible solu-
tions X:

ZT ;X :=
∑
X

e
−H(X)
kBT . (2.10)

Sometimes it is very time-consuming—or even outright impossible—to calculate ZT ;X like above;
this would naturally imply that hE,T (X) cannot be evaluated precisely. Thanks to the remarks
made about the Metropolis ratio p before, however, this is not an issue in practice: the expression
(called the Boltzmann factor)

hE,T (X1)

hE,T (X2)
=

e
−H(X1)

kBT

e
−H(X2)

kBT

= e
−H(X1)−H(X2)

kBT (2.11)

does not depend on ZT ;X anymore.
Another common option for hE,T (X) is the Gibbs distribution [40, 71, 192] (also called

Gibbs measure):

πG(X) :=
1

ZT ;X
e−

H(X)
T =

1

ZT ;X
e−βH(X) , (2.12)

where the positive real β corresponds to the inverse of the temperature. Named after Josiah
Willard Gibbs (an American mathematician, physicist and chemist), πG(X) provides a gener-
alization of πB(X) to infinite systems. Here, the relaxation parameter β is used to control the
acceptance ratio: a lower β yields higher acceptance ratios, while increasing β “freezes” the
system into accepting only improvements.

Gibbs Sampler

The Gibbs Sampler [71] can be considered a special case of the Metropolis algorithm. Instead
of needing to evaluate the joint distribution of multiple random variables, it draws samples from
a conditional distribution based on a local “neighborhood” of the current approximation Xi, thus
requiring smaller computational efforts. It can be used by itself as well as in conjunction with
SA.

2.2.4 Constructing the Objective Function over f

As mentioned in Section 2.2.2, the majority of reconstruction techniques for DT formulate the
reconstruction problem as a global optimization task. In particular, the aim is to find an approx-
imate solution f̂ that is a global extremum of a suitably chosen objective function γ(f) defined
over the set of all possible f .

The simplest γ(f) evaluates the distance of the simulated projections of f from the input
projections:

γ(f) :=
∑
ϑ

‖Pf,ϑ −Pϑ‖ , (2.13)

where Pf,ϑ denotes the simulated discrete projection of f at direction ϑ, Pϑ the input—i. e.
measured—discrete projection at direction ϑ, and ‖·‖ is some vector or matrix norm. Thus the
equation above takes into account the projection error only, so that the optimal f̂ is retrieved
by minimizing γ(f):

f̂ := arg min
f
γ(f) .
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A more sophisticated objective function can be obtained from Equation (2.13) as follows:

γΦ(f) :=
∑
ϑ

‖Pf,ϑ −Pϑ‖+ α · Φ(f) . (2.14)

Here, Φ(f) is a function measuring the fitness of f with respect to some a priori information
(see below), while the scalar α > 0 controls the relative strength of the regularization term Φ(f)
to the projection error. Essentially, Φ(f) acts as a penalty / cost term [49], favoring candidates
f with a better fitness and penalizing those having a worse fitness. With the new formulation,
the optimum is still found by minimizing γΦ(f).8

The aforementioned a priori information expresses some additional knowledge about the opti-
mum f̂ (which itself is unknown, of course). Such prior data may include (without completeness):
convexity, connectedness, homogeneity / smoothness, geometrical / topological constraints, ideal
/ reference model fideal (a “blueprint”), prototype object fproto, or a probability distribution.
(fideal may be a fixed model known beforehand, the result of a neighboring cross-section in a
3D set-up etc. fproto can be chosen as an abstraction of fideal, or it may be acquired via some
external method.) Specific examples will be given later in the thesis.

As mentioned in Section 2.2.3, objective functions can be also defined as probability dis-
tributions. In particular, taking the examples shown in Equations (2.9) and (2.12) brings us
to

γB(f) := πB(f) =
1

ZT ;f
e
−H(f)
kBT , (2.15)

based on the Boltzmann distribution, and

γG(f) := πG(f) =
1

ZT ;f
e−βH(f) , (2.16)

relying on the Gibbs distribution. In both cases, H(f) is constructed like Equations (2.13) or
(2.14), which is still to be minimized, so that the optimum is acquired by maximizing γB(f) or
γG(f):

f̂ := arg max
f

γB(f)

f̂ := arg max
f

γG(f)
.

2.2.5 Applications

DT has many applications in engineering, industry, and natural sciences. A listing of a few sam-
ple uses follows: electron microscopy (EM) [91,102], medicine [28,32,47,89,100,117], radiography
and nondestructive testing [23, 49, 111, 143, 172, 180, 187], reconstruction from limited view an-
gles [62,100,111,191], electron tomography [11], materials science [14,15,31,126,136,148,155], ge-
ometric tomography [28,66,67,69,108], emission tomography [28,118–120], geotomography [195].
Further examples for using DT in nondestructive testing and materials science are presented in
Chapters 4–6 and Chapters 7–8 of the thesis, respectively.

DT has also found an interesting use for leisure in the form of nonograms, a kind of graphical
puzzle [184].

8This aim does not contradict the phrase “fitness”; allowing negative values for Φ(f), the fittest f̂ is the one
where Φ(f̂) takes on the most negative value.



2.3. REPRESENTING ROTATIONS IN 3D 15

2.3 Representing Rotations in 3D
From a geometrical point of view, rotation is an affine transformation—specifically, an isometry—
that leaves a single point fixed (viz. the origin of the coordinate system). In linear algebra,
rotations form a subset of general linear transformations: they are realized as orthogonal n× n
matrices over the field R, forming a group under matrix multiplication. From now onwards, we
will be focusing only on the n = 3 case, i. e. on the properties of rotations in 3D. Unlike their 2D
companions, rotations in 3D are generally not commutative, which agrees with the well-known
fact that matrix multiplication is not commutative either in general. (It can be shown that the
multiplication of 2× 2 orthogonal matrices does commute, however.9)

A related and important concept is the orientation of a rigid body, what is usually under-
stood as the rotation needed to move the body to its current placement with respect to some
fixed frame of reference. As a special case, it is also possible to define the orientation of a crys-
talline lattice as the rotation that results in the current placement of atoms etc. forming the
lattice. (It should be remarked that this rotation R is not unique due to the presence of rota-
tional symmetries of the lattice: the same arrangement of lattice atoms etc. can be achieved by
applying any of the rotations R′ := R ◦S, where ◦ denotes composition and S is some rotational
symmetry operation [76, 77, 82]. This issue will be dealt with in Section 7.4.) In fact, we are, in
the current case, interested in how individual grains (as defined in Section 7.1) are oriented with
respect to the reference frame of the acquisition system, that is in the transformation that maps
the crystal lattice of a particular grain to the lattice of a hypothetical crystal aligned with the
reference frame. (Even though such a transformation may prescribe a translation as well, only
the rotation part matters from the orientation’s point of view.)

When one speaks of rotations in 3D as a whole, what is usually meant is the set of proper
rotations: transformations consisting of a sole rotation. On the contrary, improper rotations
(also called rotoinversions) are a combination of a rotation and an inversion in a point. (As a
consequence, rotoinversions reverse the handedness of the local coordinate system of the rotation
target.) While the latter are indeed interesting when describing the rotational symmetry group
of a crystalline lattice (dubbed the crystallographic point group), only proper rotations are
relevant for establishing—and preserving—the crystalline orientation and thus those containing
an inversion can be safely ignored [82].

There are numerous ways to represent a rotation in 3D; some of them are summarized below.
While each of the approaches is powerful enough to describe all proper rotations, they nevertheless
have vastly differing properties that may make them well-suited for certain applications but
possibly less convenient for others. In order to choose the method of representation that best
suits our goals (namely, to define crystalline orientations and orientation maps), the following
guidelines are to be satisfied:

• Easy sampling of the space of parameters describing a rotation; in particular:

– Minimal redundancy with respect to the number of parameters (i. e. compact repre-
sentation).

– Bounded parameter space.

• Unique representation of rotations.
9This comes from the following properties of complex numbers: According to Euler’s formula, eθi = cos θ +

(sin θ)i; any such unit complex number defines a (proper) rotation in the complex plane about the origin by the
counterclockwise angle θ. Moreover, any complex number a+bi can be also represented as the real matrix

(
a −b
b a

)
;

for eθi this yields the orthogonal matrix
(
cos θ − sin θ
sin θ cos θ

)
with determinant +1, which is the familiar rotation matrix in

2D. The commutativity of multiplication for such matrices then follows from the commutativity of multiplication
for complex numbers. See [53, Section 2.1] [135, Chapter 2] for more details.
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• No gimbal lock in parameter space.10

• Easy re-normalization of parameters (for sake of counteracting numeric computation er-
rors).

• Easy composition of successive rotations (in order to calculate the resultant transforma-
tion R′ := Rn◦· · ·◦R2◦R1 representing a sequence of two or more rotations Ri (1 ≤ i ≤ n)).

• Easy calculation of inverse rotations R−1.

• Having a “distance” metric (for measuring the “similarity” of two rotations).11

Though not essential, the following factors should also be considered:

• Intuitive representation.

• Easy visualization (especially using colors).

The subsequent list gives a quick overview of some representation schemes in widespread use.
(See also [7, 9] for a comparison of some further approaches.) It should be stressed that the
“disadvantages” indicated here are purely subjective and reflect the aforementioned requirements.

Axis-angle pairs: As stated by Euler’s rotation theorem [53, Section 3.1], every motion of
a rigid body with a fixed center is a rotation about an axis that runs through the center,
therefore any sequence of rotations can be expressed as a single resultant rotation. It is also
apparent that any sort of rotation leaves its axis invariant. That is why it appears to be
the most ordinary method to represent an orientation as the pair (n, θ), defining a rotation
about the directed axis (unit vector) n by an angle θ (usually measured counterclockwise
assuming a right-handed coordinate system). That makes a total of 4 parameters (3 for n,
1 for θ), so this representation is quite compact. Observing that (n, θ + π) and (n, θ − π)
establish the very same transformation, and the rotations determined by (n, θ), (n, θ+2kπ)
and (−n,−θ) are identical (k ∈ Z), the angle can be taken such that 0 ≤ θ ≤ π (in radians).
The representation of rotations thus becomes unique with this convention.

Cons:

• Composition of rotations is messy, basically reducing to a form of quaternion multi-
plication based on vectorial scalar and cross products.

• Visualization is a bit troublesome as 4 parameters need to be mapped to 3 color
primaries.

Rotation matrices: The rotation matrix R of a proper rotation is a 3 × 3 real orthogonal
matrix with determinant +1. (On the contrary, improper rotations are represented by
3×3 real orthogonal matrices having determinant −1.) They form the multiplicative group
called special orthogonal group (abbreviated as SO(3) for rotations in 3D). A minor
inconvenience of this representation is that it is quite redundant: a total of 9 parameters
need to be given (which are, of course, not totally independent of each other). On the other

10Gimbal lock is a sort of singularity or loss of degree of freedom occurring in some representation schemes
when using certain combinations of rotation parameters. Basically, it refers to the undesirable phenomenon that
not every change in the space of rotations can be realized by a change in the parameter space. See [18, 125] for
details.

11As it turns out, this criterion can be solved rather easily irrespective of the actual representation, provided
rotation inversion and composition are simple to devise. More details will be given in Section 7.4.
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hand, the composition of rotations and rotation inverse can be calculated trivially using
matrix multiplication and transposition, respectively. It is possible to extract the axis-
angle pair (n, θ) associated with the rotation expressed by a rotation matrix R, as well as
to directly determine the rotation matrix corresponding to (n, θ) (see e. g. [18, Sections 3.2–
3.3] or [125, Sections 3.4–3.5 and 7.5]). In particular, n is the eigenvector of R associated
with the eigenvalue +1, while cos θ = 1

2 (Tr R− 1) where Tr · is the trace operator.

Cons:

• Redundant representation (9 parameters), hence problematic sampling in parameter
space.

• Re-normalization is very costly, requiring to find the nearest orthonormal representa-
tion (using e. g. singular value decomposition or the matrix square root).

• Visualization is not trivial; the easiest is to extract the underlying axis-angle pair, but
that then leads to the issue mentioned above (4 vs. 3 values).

Euler angles, Cardan angles: The Euler angles (ψ,ϕ1, ϕ2) determine a sequence of 3 rota-
tions: the first is by an angle ψ ∈ [0, 2π) about axis1, the second is by an angle ϕ1 ∈ [0, π]
about axis2 6= axis1, and the third is by an angle ϕ2 ∈ [0, 2π) about axis3 = axis1. A
common choice is to have axis1 = axis3 = z-axis and axis2 = x-axis (the so-called zxz-
convention; see [14,153]), though many other possibilities exist. The Cardan angles (also
called Tait–Bryan angles) are different in that axis3 has to be chosen as the leftover
third coordinate axis, so that each rotation is about a different coordinate axis. The major
problems with these representations are their order dependence (a different result is ob-
tained when the order is altered) and non-uniqueness (given a fixed order, the same result
can be acquired using two different—and unrelated—sets of angles). Furthermore, both
schemes suffer from the presence of gimbal locks, irrespective of the choice of axes. (For
the zxz-convention, a gimbal lock happens when ϕ1 equals 0 or π. In those cases, only
ψ+ϕ2 or ψ−ϕ2 are uniquely determined, not the individual values of these angles.) Still,
they do have some appealing advantages: they possess the most compact representation
so far (requiring just 3 parameters—a value matched only by Rodrigues vectors as shown
below), their visualization is straightforward (each of the parameters being mapped to a
color component), and the orientation is described in terms of anatomical motion (hence
yielding a very intuitive representation). It is due to the latter property that Euler angles
are extensively used for navigation [125] (sailing, aviation, aerospace, satellites etc.), and
are also the representation of choice in crystallography [45].

Cons:

• Non-unique representation.
• At least one gimbal lock for any selection of axes.
• Composition of rotations is quite complicated to determine.

Unit quaternions: In a very simplified view, quaternions can be considered as vectors of
R4 obeying certain algebraic rules that allow the definition of multiplication, inversion,
exponentiation etc. of these objects. When restricting the length (Euclidean norm) of such
vectors to unit length, the resulting unit quaternions turn out to have a nice geometrical
interpretation. Specifically, any unit quaternion q := (a, b, c, d) =

(
cos
(

1
2θ
)
,n sin

(
1
2θ
))

can be shown to establish a rotation parametrized with the axis-angle pair (n, θ), where
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a is dubbed the scalar (real) component and (b, c, d) the vectorial (imaginary) part. (The
components of the unit quaternion formulated so are mostly called Euler–Rodrigues pa-
rameters, in honor to their “inventors” Leonhard Euler and Benjamin Olinde Rodrigues.)
The composition of rotations and rotation inverse can be then easily calculated using
quaternion multiplication and conjugation, respectively. This representation scheme con-
forms to most aforementioned guidelines except for two points: First, visualization is not
trivial (4 parameters are to be mapped to 3 color components), but this can be overcome
with a smart choice of the mapping function as demonstrated later (see Section 8.2.1). Sec-
ond, although q and −q determine the same rotation, it is possible to make a deterministic
choice between the elements of each pair {q,−q}, thus resulting in a truly unique represen-
tation. (A more rigorous and detailed description of quaternions, including the discussion
of how to resolve the recently mentioned two issues, will be given in Section 2.4.)

Cons:

• Achieving uniqueness needs some elaboration.

• Visualization is tricky.

Rodrigues vectors: There are several ways to combine the 4 parameters of an axis-angle pair
(n, θ) into just 3 values. Among them, the object formulated as r := n tan

(
1
2θ
)
is known as

the Rodrigues vector [167] (also called Gibbs or Gibbs–Rodrigues vector). As can
be seen, Rodrigues vectors can be obtained from unit quaternions as 1

a (b, c, d), that is by
multiplying the vectorial part by the inverse of the scalar component. It is, hence, evident
that the length of such vectors r∞ tends to infinity as θ −→ ±π, making the parameter
space unbounded. Moreover, as rotations about any fixed axis n by π and−π are equivalent,
the opposing vectors r∞ and −r∞ must be identified with each other, therefore making
computations prone to gimbal locks near θ = ±π. On the other hand, it is rather easy to
devise the composition of rotations and rotation inverse [60]. Despite the inconveniences
mentioned before, the use of Rodrigues vectors—along with unit quaternions—is rather
popular among materials scientists [60,145,146,152,153].12

Cons:

• Unbounded parameter space—also making visualization troublesome.

• Gimbal lock / singularity for rotations by θ = ±π.

As can be seen, no representation scheme is without flaws. Having weighed the associated
advantages and complications, unit quaternions were finally chosen for representing rotations and
orientations. The next section is devoted to the overview of the basic properties of quaternions
and their usage for representing rotations.

2.4 Quaternions and Rotations
Since orientations are inherently related to rotations, this section aims to review a mathematically
elegant and useful representation of rotations in 3D. Namely, this will be done using “quaternions”
that will be defined instantly.

12It should be noted that the problems mentioned here can be alleviated by restricting rotations to a bounded
subspace of the full Rodrigues space, which might be possible in the presence of rotational crystal symmetries.
On the other hand, doing so makes the notion of “rotation distance” more difficult to handle.
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What is the “distance” between the orientations defined by (n1, θ1) and (n2, θ2)? Heuristically,
we may argue that it should be (a monotonic function of) the smallest nonnegative angle θ3 such
that the rotation (n1, θ1) followed by the rotation (n3, θ3), for some unit vector n3, will result
in the orientation defined by (n2, θ2). At this stage it is far from obvious how such a distance
should be computed. Quaternions will provide us with a natural way of achieving that. (The
exact answer will be given in Section 7.4; see Equations (7.24) and (7.25).)

Quaternions and their applications to rotations and orientations have a well-developed theory
[18, 53, 60, 125, 147]. This section gives a summary of their most important aspects that can be
helpful for achieving our goals.

Quaternions are a particular example of a more general class of hypercomplex numbers,
that is they are a sort of generalization of complex numbers, first invented by Irish physicist,
astronomer and mathematician Sir William Rowan Hamilton. A quaternion q is a 4-tuple

q := (a, b, c, d) , (2.17)

often written as a formal linear combination

q := a+ bi + cj + dk , (2.18)

where a, b, c and d are real. By analogy with complex numbers, the symbols i, j and k are called
imaginary units, a the scalar component (or real component), and (b, c, d) the components
forming the vectorial part (also dubbed the imaginary part). The imaginary units satisfy the
conditions

i2 := −1 ,

j2 := −1 ,

k2 := −1 ,

ijk := −1 ,

(2.19)

which also imply
ij = −ji = k , jk = −kj = i , ki = −ik = j .

These rules are summarized in Table 2.1. As is apparent, the table is not symmetric; it can be
thus expected that the multiplication of quaternions cannot be commutative. Indeed, quaternions
form a non-commutative division algebra H (also called division ring or skew field), an algebraic
structure obeying every field axiom except for that of commutativity of multiplication.13

In analogy with the complex conjugate, the quaternion conjugate q̄ of q is defined as

q̄ := (a,−b,−c,−d) . (2.20)

Furthermore, double conjugation yields the original quaternion: ¯̄q ≡ q.
The addition of two quaternions is simply realized as the component-wise sum

q1 + q2 := (a1 + a2, b1 + b2, c1 + c2, d1 + d2) . (2.21)

It can be checked that the zero quaternion (0, 0, 0, 0) is the additive identity element, and
−q = (−a,−b,−c,−d) is the additive inverse of q:

(0, 0, 0, 0) + q = q = q + (0, 0, 0, 0) ,

q + (−q) = (0, 0, 0, 0) .

13It can be actually shown that such a construction of H is unique (see Hurwitz’s theorem [53, Section 6.4]):
With the definition of the quaternion norm and its multiplicative nature (see Equations (2.25) and (2.26)), there
exist—up to isomorphism—exactly 4 normed division algebras (also called composition algebras) over R: R itself,
C, H, and O (the algebra of octonions). These are of dimension 1, 2, 4, and 8, respectively.
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Table 2.1. Multiplication rules for quaternion imaginary units. Entries show the product
e1e2 of units e1 (left column) and e2 (top row).

e1

e1e2 e2
1 i j k

1 1 i j k

i i −1 k −j

j j −k −1 i

k k j −i −1

Although multiplication can also be carried out in the form introduced in Equation (2.18),
a more compact form can be achieved by interpreting quaternions as pairs consisting of a scalar
and a 3D “vector”14:

q := (a, b, c, d) = (a,q) , (2.22)

where q ≡ (b, c, d). In this notation, the product of two quaternions becomes

q1q2 := (a1,q1) · (a2,q2) = (a1a2 − q1 · q2, a1q2 + a2q1 + q1 × q2) , (2.23)

with q1 · q2 and q1 × q2 denoting the inner (scalar) and cross (vectorial) product of vectors q1

and q2, respectively. As expected, multiplication is not commutative but can be shown to satisfy
associativity, and so one can use unambiguously the notation pqr for the product of the three
quaternions p, q and r. Moreover, multiplication is distributive with respect to addition. It can
be also verified that

q1q2 = q̄2q̄1 .

For completeness, the components of the product q3 := q1q2 can be expanded as

a3 = a1a2 − b1b2 − c1c2 − d1d2 ,

b3 = a1b2 + b1a2 + c1d2 − d1c2 ,

c3 = a1c2 − b1d2 + c1a2 + d1b2 ,

d3 = a1d2 + b1c2 − c1b2 + d1a2 .

(2.24)

It is then easy to see that the quaternion (1, 0, 0, 0) becomes the multiplicative identity ele-
ment: for any q the following holds

(1,0)q = q = q(1,0) ,

where 0 denotes the vector (0, 0, 0).
It is a straightforward task to check that

(a1,0) + (a2,0) = (a1 + a2,0) ,

(a1,0) · (a2,0) = (a1a2,0) ,

(a1,0) · (a2,q2) = (a1a2, a1q2) .

14Strictly speaking, the imaginary part of a quaternion is a pseudovector [18, Section 12.3]: an object left
invariant under inversion in a point; whereas vectors change sign under inversion. There is an analogous difference
between scalars and pseudoscalars, the former ones being invariant under inversion, while the latter ones changing
sign. Though these are important distinctions in certain circumstances, the author will be deliberately ignoring
it from here onwards for simplicity—especially because only proper rotations are of interest.



2.4. QUATERNIONS AND ROTATIONS 21

Hence the quaternion (a,0) can be identified with the scalar a. In addition,

(a1, b1, 0, 0) + (a2, b2, 0, 0) = (a1 + a2, b1 + b2, 0, 0) ,

(a1, b1, 0, 0) · (a2, b2, 0, 0) = (a1a2 − b1b2, a1b2 + a2b1, 0, 0) ,

thus the quaternion (a, b, 0, 0) can be treated as the complex number a + bi. It is also evident,
though quaternion multiplication in general is not commutative due to the cross product in
Equation (2.23), that the multiplication of quaternions having the form (a, b, 0, 0) is indeed
always commutative. In other words, both R and C are embedded in H.

The norm (or magnitude) |q| of q is given by

|q| :=
√
qq̄ =

√
q̄q =

√
a2 + b2 + c2 + d2 . (2.25)

(This definition actually matches the Euclidean norm of (a, b, c, d) when considered as a vector
in R4.) It can be proven that the norm is multiplicative, that is

|q1q2| = |q1| · |q2| = |q2q1| . (2.26)

The (multiplicative) inverse q−1 of q 6= (0,0) is defined as

q−1 :=
q̄

|q|2
=

q̄

qq̄
. (2.27)

The inverse is uniquely determined for every quaternion with a nonzero norm, that is except
for the zero quaternion. It is clear that the multiplication of a quaternion by its inverse is
commutative, and the product equals the identity element:

qq−1 = (1,0) = q−1q .

Quaternions of norm 1 are called unit quaternions. It is obvious, for every nonzero quater-
nion q, that q/ |q| is always a unit quaternion. The inverse q−1 of a unit quaternion q happens
to equal its conjugate q̄ (cf. Equation (2.27)), which has again a unit norm. Furthermore, due
to Equation (2.26), the product of two or more unit quaternions is again a unit quaternion.
This means that the set H1 of unit quaternions is closed under multiplication and inversion,
multiplication is associative and has an identity element, therefore H1 forms a non-commutative
group. It is also apparent that H1 can be mapped bijectively onto the surface of the 4D unit
hypersphere.

Another useful property is that, if q1 is a unit quaternion and q2 is any quaternion, the
following holds:

if q3 := q1q2q̄1 or q3 := q̄1q2q1 =⇒ a3 = a2 , (2.28)

that is the first component of q3 is the same as that of q2.
A quaternion q is called pure if it has a zero scalar component, that is it is of the form

q = (0,q). If, in addition, q is of norm 1, one speaks of a pure unit quaternion. Pure
quaternions can be thought of as embeddings of R3 “vectors” in H.

There is a strong relation between the aforementioned multiplicative group of unit quaternions
and SO(3). In particular, let n denote an arbitrary unit vector in 3D. Every unit quaternion q
can then be written as

q :=
(

cos
(

1
2θ
)
, nx sin

(
1
2θ
)
, ny sin

(
1
2θ
)
, nz sin

(
1
2θ
))

=
(

cos
(

1
2θ
)
,n sin

(
1
2θ
)) (2.29)
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for some θ ∈ [0, π] and n. The unit quaternion given by this equation corresponds to a (proper)
rotation about the directed axis n by an angle θ (measured counterclockwise assuming a right-
handed coordinate system). (How such quaternions can be applied to perform rotations is de-
scribed below.) As a special case, setting θ to π results in a quaternion having a zero scalar
component. Hence every pure unit quaternion q = (0,n) defines a binary rotation about n,
including the imaginary units i, j and k as well.

Let q be a unit quaternion in the form Equation (2.29), and p = (0,p) the pure quaternion
corresponding to the 3D “vector” p. The most natural way to rotate p would be to multiply it
by q: p′ := qp. Nevertheless, this product would not always be a pure quaternion. The solution
is to apply the inverse q−1 = q̄ of q as well:

p′ := qpq̄ , (2.30)

known as the Hamilton–Cayley rotation formula [18, 53, 125]. It can be verified that p′ is
indeed a pure quaternion (0,p′), where p′ is the vector obtained from p by the rotation about the
directed axis n by an angle θ. (According to Equation (2.28), the first component of p′ matches
that of p, so the former turns out to be also a pure quaternion.) Two important consequences
of the non-commutativity of multiplication are presented here. First, q and q̄ do not cancel out
one another. Second, swapping q and q̄ (i. e. as p′ := q̄pq) establishes the inverse transformation
that can be obtained from Equation (2.30) by substituting θ by −θ.

Expanding Equation (2.30) gives

p′ := qpq̄ = (0,p′)

=
(
0,p + (sin θ)(n× p) + 2

(
sin2

(
1
2θ
))

n× (n× p)
)

=
(
0, (cos θ)p + (sin θ)(n× p) + (1− cos θ)(n · p)n

)
(2.31)

using the identities

sin2
(

1
2θ
)

=
1− cos θ

2
,

a× (b× c) = (a · c)b− (a · b)c .

This operation is called the conical transformation of p by q, since the transformed vector
p′ moves on a cone around the rotation axis n (see [18, Section 12.8] and [167]). Moreover,
|p| = |p′| because of the multiplicativity of the quaternion norm.

It can be shown that there is a 2-to-1 homomorphism of H1 onto SO(3) (also called a “double
cover”), namely the unit quaternions q and −q define the same rotation (see [53]). It should be
remarked that the parameters (n, θ) and (−n,−θ) determine the very same quaternion, what
is in agreement with their usual interpretation. Even though this notation of a rotation was
first introduced by the French banker, mathematician and social reformer Benjamin Olinde
Rodrigues as discussed in [18], the components of the quaternion in Equation (2.29) are mostly
called Euler–Rodrigues parameters (or simply Euler parameters). For an in-depth discussion
of the geometry of rotations represented using H1, see [140].

According to Euler’s rotation theorem, the most general motion of a sphere with fixed center
is a rotation, implying also that two or more successive rotations can be expressed as a single
resultant rotation. For the product of two or more unit quaternions is again a unit quaternion,
the composition of rotations—formulated as unit quaternions q1 and q2—is calculated as

p′ := q2(q1pq̄1)q̄2 = (q2q1)p(q̄1q̄2) = (q2q1)p(q2q1) = q3pq̄3 , (2.32)
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where q3 := q2q1 defines a sequence of rotations, namely the rotation by q1 followed by that
by q2. The net effect of these rotations is the rotation given by q3. When expressed in Euler–
Rodrigues parameters, q3 yields an effective approach for computing the composition of rotations
given as axis-angle pairs.

The composition of two binary rotations about a common axis n—that is the square of the
pure unit quaternion (0,n)—establishes a rotation by 2π, what is normally associated with the
identity. Thus it seems a bit surprising that

(0,n) · (0,n) = (−1,0) ≡ −1 .

This is, actually, in conformity with the definition of imaginary units in Equation (2.19). The
equivalent unit quaternions q and −q are, therefore, related as

−q = (−1,0) · q =
(

cos
(

1
22π

)
,n sin

(
1
22π

))
·
(

cos
(

1
2θ
)
,n sin

(
1
2θ
))

=
(

cos
(

1
2 (θ + 2π)

)
,n sin

(
1
2 (θ + 2π)

))
,

that is −q is associated with the rotation (n, θ + 2π). Along a similar reasoning, −(−q) ≡ q
corresponds to the rotation (n, θ + 4π).

Even though there are infinitely many (n, θ) pairs resulting in the same q (any of them ob-
tainable from any other by steps consisting of changing θ by 4π or simultaneously taking the
negative of n and θ), restricting θ to [0, π] makes (n, θ) unique for all θ < π. (The scalar com-
ponent of all such q is positive, whereas the equivalent −q has a negative first component.) For
binary rotations (i. e. when θ = π), q is a pure unit quaternion, so having to choose between q
and −q remains an issue. To resolve this, the author defines the canonization of unit quaternions
as follows: Considering the pair q and −q, the one whose leftmost nonzero component is positive
is said to be in the canonical form, where “leftmost” refers to the position of a component with
respect to the ordering in Equation (2.17). (The canonical form is indeed well-defined because ev-
ery unit quaternion has at least one nonzero component.) It is easy to see that, for any q, exactly
either of q and −q will be in the canonical form, hence the set H1c of canonical unit quaternions
provides a unique representation of rotations. (It should be remarked that H1c is not closed
under multiplication: the result of the product

(
1
2 ,
√

3
2 , 0, 0

)
·
(

1
2 ,
√

3
2 , 0, 0

)
=
(
− 1

2 ,
√

3
2 , 0, 0

)
is

not in H1c; its canonical form would look like
(

1
2 ,−

√
3

2 , 0, 0
)
. Therefore, an explicit canonization

has to be performed after executing any quaternion operation if the uniqueness of rotations is
important.)

2.5 Summary
We have established the mathematical foundations for continuous and discrete tomography, in-
cluding an overview of problematic topics involved. After a brief introduction of some widespread
reconstruction techniques, a few examples were shown regarding how tomographic approaches
can be employed for practical applications.

We have also considered some commonly utilized representation schemes for rotations in 3D,
discussing the basic properties quaternions in detail that will be later exploited in Section 7.4.





Chapter 3

Physical Background

This chapter first explains the minimally necessary physical foundations of radiography, focusing
on the terminology and methods relevant for the practical applications discussed later in the
thesis.

The rest of the chapter gives an overview of the fundamentals of X-ray diffraction techniques
(especially 3DXRD, described in Chapter 7 in detail), in particular focusing on the imaging
process from a computational point of view.

3.1 Radiography

3.1.1 Radiographic Basics

Radiography is an imaging technique that uses some kind of particle radiation to illumi-
nate the object under investigation. The amount of radiation passing through and leaving the
object is then measured and recorded by a detector, forming a so-called radiograph or, in
the terminology of image processing, a projection. In the most typical setup, the object is
placed somewhere between the radiation source and the detector, the beam is focused in the
direction of the object and the radiograph records the radiation transmitted through the object.
This kind of configuration, with the radiation source being located outside the object, is called
transmission radiography. In another kind of setup, the detector is still located outside the
object, but the radiation source is placed inside the object. (It is, of course, also possible that
the radiation gets emitted by the materials of the object itself, due to the presence of radioactive
isotopes.) This configuration is known as emission radiography. Both settings are demonstrated
in Figure 3.1.

Whatever the case, the radiation is subject to some alterations as it passes through the
object and arrives at the detector. Since the extent / magnitude of these effects usually depends
on both material properties and radiation energy levels, experiments are typically carried out
with a monochromatic beam, that is one comprising particles of a single common energy (or
of a narrow energy band). A few examples of such alterations are mentioned below without
completeness:

• A fraction of the radiation can be absorbed by the object, resulting in an attenuation
(reduction) of the measured intensity as compared to that of the radiation source. This
kind of imaging is dubbed attenuation contrast (or absorption contrast).

25
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Figure 3.1. Projection geometries for radiograpic experiments. (a) Transmission radio-
graphy using parallel geometry. (b) Transmission radiography using divergent (fan beam)
geometry. (c) Emission radiography.
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• Due to the refractive properties of the materials constituting the object, the phase (in the
sense of wave propagation) of the measured beam can become shifted with respect to that
of the radiation source.1 This approach is called phase contrast.

• When the materials forming the object possess some long-range order (i. e. having a crys-
talline lattice), a tiny portion of the radiation may undergo diffraction, resulting in a
collection of “deflected” rays in addition to the incident beam passing through without
being diffracted. This case is considered in Section 3.2.1 and Chapters 7–8 of the thesis.

A detailed comparison of the first two approaches can be found in [34, 79]. For the rest of the
section, we are going to restrict our attention to the usage of attenuation contrast imaging in
the transmission radiography setup.

A unique property of every material is its ability to attenuate radiation, which is expressed
by the following term: Let a particle of energy E move perpendicular towards a homogeneous
material t of unit thickness (here given in centimeters). If the probability of the particle passing
through the material without absorption is p ∈ [0, 1], then the linear attenuation coefficient
[138] (LAC) or absorption coefficient µtE associated with material t and energy level E is
given by

µtE := − ln p
1

cm
. (3.1)

Obviously µtE ≥ 0 real, with the two extrema being zero attenuation (µtE = 0) and complete
attenuation (µtE → +∞). As a consequence, if the intensity of radiation entering and leaving
the material is denoted by Iin and Iout (with 0 ≤ Iout ≤ Iin), respectively, the following holds:

µtE = − ln
Iout

Iin
= ln

Iin
Iout

= ln Iin − ln Iout . (3.2)

Furthermore, if the intensity of radiation measured at the source and the detector is designated
by Isource and Idet, respectively, the linearity of µtE implies

ln Isource − ln Idet =

ˆ det

source
µ(x) dx , (3.3)

where µ(x) denotes the LAC of the material at location x (for some implicitly assumed E), and
µ : D → {0}∪R+ with D defined as in Section 2.1.0.1. Since we are, most of the time, interested
in the value of the integral above, but can actually measure only Isource and Idet, a so-called
logarithmic transformation needs to be performed as per Equation (3.3). As a matter of
fact, the aforementioned integral expresses the Radon transform of the function µ(x) along the
projection line source→ det (cf. Equation (2.2)):

[Rµ] (s, ϑ) = ln Isource − ln Idet =

ˆ det

source
µ(u) du .

Equation (3.2) is, actually, obtained as a special case of the well-known Beer–Lambert (or
Beer–Lambert–Bouguer) law [35,39,128] of attenuation in optics:

T :=
Iout

Iin
= e−µl .

Here, T is the transmittance (or transmissivity), µ is the LAC of the material (with implicit
assumption of t and E), and l is the distance (path length) the radiation travels within the

1Obviously, this requires that the beam exiting the radiation source be coherent as well.
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material. The result is due to August Beer (German physicist, chemist, and mathematician),
Johann Heinrich Lambert (Swiss mathematician, physicist, philosopher and astronomer), and
Pierre Bouguer (French mathematician, geophysicist, geodesist, and astronomer).

When multiple projections are available (taken in different directions, e. g. by rotating the
object during exposure), the tools of tomography—especially those of discrete tomography—can
be employed to reconstruct the internal structure of the object. This combination of techniques
leads to the notion of transmission (emission, diffraction etc.) tomography. In such a setting,
the objective is to reconstruct the attenuation map µ(x) from radiographs.

As mentioned earlier, the number of projections practically attainable depends on several
factors, such as financial costs or acquisition time. Moreover, in many cases, the time of total
exposure—hence the number of projections taken—shall be limited in order to minimize radiation
dose (e. g. when irradiating a human patient) and to avoid damaging or “activating” the object
(i. e. inducing radioactivity). The low number of projections usually rules out the usage of classic
(continuous) tomographic techniques, thus letting them be replaced with discrete tomographic
approaches.

3.1.2 Projection Acquisition
The history of radiography can be traced back to German physicist Wilhelm Conrad Röntgen who
took the first X-ray of his wife’s hand in 1895, just after discovering this new kind of radiation.
There has been a lot of development in the field of radiography since then, so experiments can
now be carried out using a rich selection of radiation types; a few examples are given here without
completeness:

• Electromagnetic radiation:

– Radio waves: MRI

– X-ray: CT, industrial X-ray

– Gamma rays: SPECT, PET, industrial gamma camera

• Elementary particle rays:

– Electron: electron tomography

– Neutron

• Heavy ions: atom probe tomography (APT)

• Mechanical waves: acoustic tomography, geotomography

The results we are going to present in Chapter 6 are based on experiments using three imaging
modalities: X-rays, neutron rays, and gamma rays. X-ray beams can easily pass through
“soft”, low-density materials (e. g. air, muscle and fatty tissues), while they are largely blocked
/ absorbed by “hard”, high-density ones (e. g. metals, bone tissue). On the other hand, neutron
radiation behaves just the opposite way, passing through metals with less attenuation but being
absorbed more by light nuclei. Gamma rays can cross “soft” materials as well as most metals,
but they are blocked by very high density materials like lead or concrete.

All aforementioned experiments employed transmission radiography using parallel geometry;
an outline of the instrument set-up is depicted in Figure 3.2. The object of interest is attached
to a rotating stage. The beam leaving the radiation source is mechanically constrained into a
thick “block” of rays (mostly with the help of a collimator), which is then let pass through the
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Figure 3.2. Sketch of the radiographic apparatus. (Image is courtesy of Márton Balaskó.)

Figure 3.3. Projection of a cylindrical object taken with neutron radiation. No pre-
processing has been applied. (Image source: Márton Balaskó [KFKI].)

specimen. During its journey through the object, a fraction of the radiation gets absorbed (or
scattered in some direction); the rest will be captured and measured by a 2D detector plate
placed perpendicular to the beam (again typically having a collimator in front of it in order to
record only parallel rays). (The detector usually operates by emitting visible light in response
to absorbed neutrons or X-ray / gamma ray photons. Such scintillations are then guided by
mirrors and lenses onto a charge-coupled device [CCD] where they are recorded as digital
electric signals.) After a preset exposure time, the stage—and hence the specimen as well—will
be rotated by some amount, then the measurement procedure described above will start over
with the new setting.

3.1.3 Practical Issues

Like most physical measurements, real projections are subject to some distortions and artifacts
that may make the reconstruction task especially demanding. A few of these issues are listed
below, and some of them can be actually observed in Figure 3.3.
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• Noise: This is caused by several factors like scattering within the object, statistical errors,
detector imperfections, cross-talk between detector pixels, random fluctuations of the CCD,
inhomogeneities in the radiation source etc. While the statistical measurement error can
be described by the Poisson probability distribution, it is much harder to account for other
kinds of noise factors. Noise appears as inhomogeneous, randomized background patches
or “salt-and-pepper” intensity distortions. This artifact manifests as a positive projection
error term during reconstruction, and may influence the quality of reconstruction results
with respect to the theoretical optima.

• Detector / CCD non-uniformity: Despite a constant radiation intensity, one part of the
detector (or CCD) may record a different intensity level than other parts. This kind of
distortion can be corrected to some extent when an “empty” projection is also available
that records only background information (i. e. omitting the object under investigation).

• CCD pixel errors: These can appear as constant black or white spots found at a given
location on every projection. They can be efficiently got rid of using median filtering.

• Intensity fluctuation: If the intensity of the beam exiting the radiation source varies in time,
or the sensitivity of the CCD changes during the acquisition period, subsequent projections
will accordingly exhibit a variation in the maximal intensity available.

• Under- or overexposure: Too short or too long an exposure will result in overly dark or
light projections. In either case, the number of effectively available intensity levels will be
diminished.

• Detector tilts: Even minute inaccuracies of detector orientation (i. e. when the detector
plate is not exactly perpendicular to the beam leaving the radiation source) with respect to
the laboratory frame of reference may cause various perspective distortions in projections.

• Precession of sample: Due to the inaccuracies in the placement of the turntable, the sample
may precess with respect to the laboratory coordinate system. This can be corrected only
if the properties of the motion are known at least approximately.

In order to overcome / eliminate the aforementioned issues, real projections need to be pre-
processed in some way. Specific examples for this will be mentioned in Section 6.1.1.

3.2 Crystallography

3.2.1 Crystallographic Basics

In order to be able to compute simulated diffraction patterns, one shall be familiar with the
fundamentals of X-ray diffraction as well as some crystallographic terms. Since their description
is somewhat complex and they are not essential for the understanding of the rest of the thesis,
the associated material has been moved into Appendix C.

3.2.2 Projection Acquisition

The method presented in Chapter 7 is based on reconstruction using high-energy X-rays with
a set-up similar to that of conventional transmission tomography. The major difference is that
in CT the absorption of the incident beam through the sample is probed, while in 3DXRD the
diffracted beam is probed as it diverges from the sample on the exit side. The diffraction pattern
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Figure 3.4. Sketch of the 3DXRD geometry. Detectors are positioned perpendicular to the
beam at distance L1, L2 and L3. The double 2θ of the Bragg angle, the projection angle ω,
and the azimuthal angle η are indicated for a part of the microstructure that happens to give
rise to diffraction. (Image source: [156].)

on the detector typically is composed of a set of distinct diffraction spots. Acquiring images
at a set of rotation angles, each grain gives rise to ≈5–100 spots, with positions and intensity
distributions determined by the local orientation of the crystalline lattice.

A sketch of the data collection methodology is shown in Figure 3.4. The apparatus presented
there—dubbed a diffractometer—comprises the following parts: The specimen of interest is
attached to a rotating table. The beam exiting the radiation source is focused into a plane
perpendicular to the axis of rotation, then it is used to illuminate the sample at the appropriate
vertical position (along the z-axis as shown in the figure). The majority of the radiation simply
passes through the material (mostly) unchanged and gets captured by a beam stop. (This is
necessary so as to avoid damaging the detector.) A very tiny fraction will, however, be subject to
diffraction within the sample and deflected in some other direction (as described in Appendix C).
The direction of the diffracted beam is described by two angles: 2θ, where θ is the so-called Bragg
angle, and the azimuthal angle η. Diffracted photons will be then subject to interference; those
interfering constructively will result in a so-called reflection (or diffraction spot) as measured
by a 2D detector plate placed perpendicular to the beam at distance L from the origin O. (The
detector usually operates as described in Section 3.1.2, i. e. via recording the visible light emitted
by the detector with a CCD.) After a certain duration of illumination, the turntable—together
with the specimen—will be rotated by some amount, then a new set of measurements will be
taken using this setting.

Remark: Following the conventions introduced in [153] and elsewhere, the angle of rotation
applied to the specimen will be denoted by ω (ω ∈ [−π, π[, though the actual range is usually
smaller in practice). This clearly conflicts with the analogous notation of ϑ used throughout
Sections 2.1, 2.2 and Chapters 4–6, but the author wants to avoid any confusions regarding θ
(i. e. the Bragg angle) and ϑ.

Note that the data acquisition described here is similar to what is usual in DT, with the
important difference that the diffraction spots do not correspond to measured sums along straight
lines, but rather correspond to measured sums taken over more general sets. Our approach differs
in this sense from approaches formerly known in the DT literature.
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(a) (b)

Figure 3.5. Real diffraction patterns of an aluminum polycrystal taken at various sample–
detector distances and a fixed ω. (a) Projection taken at L = 7.6mm. (b) Projection taken
at L = 12.9mm. (Image source: [156].)

In order to make use of the phenomenon of diffraction and to achieve a substantial penetration
depth, monochromatic hard (i. e. high-energy) X-rays are employed, which are supplied by a
synchrotron.

3.2.3 Practical Issues

Like most physical measurements, real projections are subject to some distortions and artifacts.
For reference, two diffraction patterns are depicted in Figure 3.5.

The following imaging artifacts can be observed:

• Noise: This is caused by several factors like Compton (inelastic) scattering within the
sample, attenuation of diffracted photons (the so-called primary extinction), secondary
diffraction of already diffracted photons (dubbed the secondary extinction), statistical er-
rors, detector imperfections, cross-talk between detector pixels, random fluctuations of the
CCD, inhomogeneities in the X-ray radiation source etc. While the statistical measurement
error can be described by the Poisson probability distribution, it is much harder to account
for other kinds of noise factors. Noise appears as inhomogeneous, randomized background
patches or “salt-and-pepper” intensity distortions (especially apparent in the right image of
Figure 3.5). This artifact manifests as a positive projection error term during reconstruc-
tion, and may influence the quality of reconstruction results with respect to the theoretical
optima.

• Tails of the incident beam: Though the majority of the non-diffracted incident beam is
blocked by a beam stop, a small amount may still “slip through” and appear as a high-
intensity smeared patch. This can be observed as a large rectangular spot in the center of
both images of Figure 3.5. This artifact can be counteracted by manual pre-processing of
diffraction patterns, so that all pixels lying in this area are set to zero intensity.

In addition to artifacts, the following matters also make the acquisition of diffraction patterns
and subsequent reconstruction troublesome:

• Multiple sample–detector distance settings: The choice of L determines several important
properties (e. g. field-of-view for reflections, angular resolution for grain orientations), so in
practice measurements may be taken at multiple different settings of L (either in parallel
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using multiple detectors, or sequentially by adjusting L after a full scan of ω). Such a
scenario is presented in Figure 3.4 with 3 sample–detector distances.

• Detector tilts: Even minute inaccuracies of detector orientation (i. e. when the detector
plate is not exactly perpendicular to the beam leaving the radiation source) with respect to
the laboratory frame of reference may cause various perspective distortions in projections.

• Precession of sample: Due to the inaccuracies in the placement of the turntable, the sample
may precess with respect to the laboratory coordinate system. This will manifest as certain
diffraction spots appearing at a wrong location, or even at a wrong ω value.

• Overlapping diffraction spots: It may happen that the projections of two—possibly non-
adjacent—grains overlap on the detector. This can be an issue in case of large orientation
maps, especially in the highly deformed case, causing a further level of uncertainty.

• Multiple material phases: The presence of multiple crystal structures in the specimen means
an extra degree of freedom for the pixel parameters to be determined.

• Absence of material: The reconstruction area may contain void pixels—inside as well as
outside the specimen—that is, regions of space where sample material is missing.

3.3 Summary
A quick outline has been given for the core radiographic notions and the associated projection
acquisition process. Moreover, we have also introduced the physical and crystallographic foun-
dations for 3DXRD, including a crude overview of the imaging apparatus. As has been explained
in both cases, real measurements usually involve some imaging artifacts and other complications
that, nevertheless, need to be taken into account during reconstruction.





Chapter 4

Algorithm: Reconstruction of
Objects Parametrized with
Geometrical Primitives

The following mathematical problem was brought up while performing nondestructive testing:
We are given a 3D object made of homogeneous materials whose cross-sections comprise an
annulus (ring) and some disjoint discs, the number of which constituents are known beforehand.
(Some everyday objects indeed have such a structure, such as tubes, ball bearings, cables etc.)
The aim is to reconstruct the internal layout of the object from its projections obtained by
illuminating it with some radiation (e. g. X-ray or neutron beams). It should be taken into
account that the imaging process—hence also the projections—is subject to distortions by noise.
Moreover, the reconstruction is to be carried out using as few projections as possible.

This chapter presents a new discrete tomographic technique for solving the aforementioned
challenge. The object under consideration is expressed in terms of geometrical primitives, and the
reconstruction task is formulated as an optimization problem that can be solved with Simulated
Annealing.

The author published his results and achievements in [33,104,105,121–123].

4.1 Motivation

Many industrial processes—like construction, manufacturing, maintenance, or security inspection—
require the examination of the internal structure of some object, usually as a means of fault
analysis / detection or quality assurance. It is crucial that this evaluation be accomplished
without actually damaging the object under investigation. Sometimes it is even impractical or
expensive—both in terms of time and money—to disassemble the object, so a different approach
needs to be found.

Nondestructive testing (NDT) is a general label for a range of related examination tech-
niques that all aim at evaluating the properties of a material, object or system without causing
permanent damage. This can be achieved by a selection of methods: ultrasound, magnetic par-
ticles, liquid dyes, radiography, electromagnetic fields, heating, chemicals, surface probes, just to
name a few. NDT is in widespread use in engineering, forensic science, medicine, and even art.

35
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4.1.1 Problem Description

The following task was raised by the colleagues at the research reactor Hahn–Meitner Institut,
Berlin, Germany (HMI): We are given a hollow cylindrical object containing some solid balls,
which are presumably parts subject to wearing / aging. The cylinder is closed, hence only some
nondestructive imaging procedure may be applicable to get information about the location and
size of the balls inside. In this specific case, neutron imaging (called neutron radiography) was
chosen. Using neutron beams to irradiate an object produces an image (dubbed a projection
or radiograph) quite similar to everyday medical X-rays, the main difference being that neutron
rays are less absorbed by metals.

The acquisition of such a radiograph is very costly and time-consuming, therefore the main
goal is to devise a reconstruction method that is able to produce 3D object models of satisfactory
quality using only a few (2–4) projections. It shall be noted that, due to the limitations of the
imaging apparatus, only profile (i. e. side-view) images can be usually acquired. Furthermore,
the reconstruction is also impeded by various measurement distortions like noise effects. For
these reasons, the colleagues at HMI are struggling with the application of classical tomographic
reconstruction techniques.

A similar practical challenge was met in KFKI Atomic Energy Research Institute, Budapest,
Hungary (KFKI). Here, the object under investigation was a solid cylinder containing some round
bored holes.

4.1.2 Contemporary Approaches and Pitfalls

As mentioned earlier, classical reconstruction techniques like FBP or ART are not suitable for
the scenarios encountered at HMI and KFKI for several reasons. First, the inspected objects are
composed of nearly homogeneous materials of a few kinds (the exact composition might even be
known in several circumstances). Unfortunately, classical methods invariably produce continuous
(i. e. when the range of the image is an infinite subset of R) reconstructions, hence they cannot
take advantage of the finite set of material types constituting the object. (There are exceptions,
such as BART [84], whose results do have a finite range.) Second, these methods typically require
tens, hundreds—or even thousands—of projections in order to yield satisfactory results.

The knowledge of the object’s composition suggests that using some discrete tomographic
(DT) reconstruction technique may be more appropriate. This is especially so because there
are, most of the time, additional a priori data available about the object under investigation.
Some examples include: statistical distribution about the structure of the object, homogeneity
or smoothness of materials, geometrical constraints for object components, or similarity to some
ideal / reference object. Together, these two facts—viz. the presence of a finite set of materials
and other prior information about the object—enable DT methods to be successful even under
unfavorable conditions like a low projection count or a high noise level.

Both practical tasks explained in Section 4.1.1 have certain properties in common that in-
dicate that they should rather be approached as DT problems. In particular, in each case, the
object to be reconstructed has a well-defined geometrical structure, so this fact can be taken as a
priori data in addition to the knowledge of constituting materials. In fact, the reliance on geomet-
rical priors or other parametric image descriptions is not a new idea; there are already algorithms
utilizing polygons [142–144], polyhedra [32,144], solid discs [26], ellipses [183], ellipsoids [94], ma-
terial microstructure [148], prototype objects [150], or reference computer-aided design (CAD)
models [173]. There is even a branch of tomography—called geometric tomography—devoted to
the reconstruction of arbitrary1 planar or 3D shapes [65].

1To be precise, geometric tomography considers the reconstruction of finite measurable sets.
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The technique presented below is a special DT reconstruction algorithm employing the ad-
ditional a priori information that the 3D object to be reconstructed is composed of certain
geometrical primitives (namely, tubes, spheres, and cylinders), so that its 2D cross-sections can
be described with an annulus (circular ring) and some disjoint discs (i. e. solid circles) inside.
As will be demonstrated, unlike some other approaches that resort to solving 2D cross-sections
individually, our method can also perform a truly 3D reconstruction.

4.2 Reconstructing 2D Objects

Before coping with the original 3D problem in its entirety, we first focus on the analogous
sub-problem restricted to 2D. Due to the presence of noise and other distortions in physical
measurements, the reconstruction problem is formulated as an optimization task along the lines
of Section 2.2.4. Therefore, given a set of 1D input projections, the goal is to reconstruct a
2D cross-section having a prescribed geometrical structure, so that its simulated projections
approximate the input projections as closely as possible.

4.2.1 Prerequisites

Let
f : D → A, (x, y) 7→ f(x, y) (4.1)

denote the digital image to be reconstructed with domain D ⊂ Z2 and range A ⊂ {0} ∪ R+

(both being finite; exact definitions follow below). In our applications, projections are acquired
by illuminating the object of interest with some radiation and then measuring the amount of
radiation passing through. The elements of A, thus, express the ability of matter to attenuate
(reduce) the intensity of the incident beam; these elements will be called linear attenuation
coefficient (LAC) from now on. (A precise explanation of the measurement process, including
the definition of LAC, are given in Section 3.1.1.) Accordingly, f is occasionally dubbed an
attenuation map.

The domain D can be chosen according to the needs of the specific application. In the
forthcoming discussion, we are going to assume that D is the usual rectangular lattice of square
pixels in the xy plane, forming an image with dimensions SIZE × SIZE (where SIZE ∈ Z+

arbitrary):
D := {0, . . . ,SIZE− 1} × {0, . . . ,SIZE− 1} . (4.2)

The reason for considering only squarish images is justified by the shape of the reconstruction
area, which is a disc in case of transmission tomography (see Section 2.1.0.1). This definition of
D will be later extended for the 3D case too; see Section 4.3.1, Equation (4.11).

Image Model

The motivating practical applications introduced in Section 4.1.1 suggest that one shall exploit
the a priori information available about the object, and accept only conforming images f as
solutions. In particular, f is said to be valid if and only if it satisfies the following restrictions:

• Geometrical structure:

– f consists of exactly one concentric annulus (circular ring) and some discs (possibly
none).
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Figure 4.1. Geometrical structure and material composition of the 2D object to be recon-
structed.

– The annulus should fit within the reconstruction area of the image, and its thickness
is to be nonnegative. (See below for an explanation why a thickness of zero is also
permitted.)

– Discs must be pairwise disjoint and located entirely inside the annulus. Moreover,
their radius should be positive (actually, not smaller than some fixed minimal radius2
rmin).

• Material composition:

– f contains at most four kinds of materials, as shown in Figure 4.1:

∗ The vacuum / air surrounding the object having LAC µ0. (Actually, µ0 = 0 can
be assumed in most practical applications.)

∗ The material of the ring having LAC µR.
∗ The material of the area inside the ring having LAC µI. From now on, this area
will be dubbed the interior of the ring (or simply the interior).

∗ The material of the discs having LAC µD.

– Each LAC must be a nonnegative real given in unit 1
pixel .

– Equality among LAC values is permitted. (See below for some remarks.)

– All aforementioned materials are expected to be completely homogeneous.

The range A of f then becomes

A := {µ0, µR, µI, µD} , (4.3)

hence f is a quaternary (i. e. four-valued) image. As a special case, the classical binary images
considered in many other DT applications can be obtained using settings µ0 = µI = 0 and
µR = µD = 1. The aforementioned definition of A will be later extended to cover the 3D model
as well; see Section 4.3.1, Equation (4.14).

It is clear that any circle is uniquely determined by its center O = (x, y) and radius r,
which will be called the parameters of the circle (O, r) henceforth. Therefore, any circle
can be defined with a triplet of reals (subject to some geometrical restrictions; see below). The
complete structure of the object can, thus, be described with the configuration (or model)

c := (ORE, rRE, ORI, rRI, O1, r1, . . . , ON , rN ) . (4.4)

2Having such a lower bound on permitted radii is a sort of heuristics, thus forbidding the creation of tiny
(possibly “invisible”) shapes.
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Here, (ORE, rRE) and (ORI, rRI) describe the external and internal circles forming the ring,
respectively. (At the same time, (ORI, rRI) also determines the boundaries of the interior.)
The rest of the parameters (Oi, ri) (1 ≤ i ≤ N) define the discs, where N ∈ N denotes their
number.3 (The corresponding coordinates of the center are also subscripted in a similar way, e. g.
ORE = (xRE, yRE).) Since the annulus should be concentric, the setting ORE = ORI is enforced
in the current implementation.

The solution space C (also called configuration space) contains all candidate configura-
tions:4

C := R6+3·N , c ∈ C . (4.5)

When LAC values are not known exactly, it may be beneficial to include them as well in c and,
hence, in C:

c := (µ0, µR, µI, µD, ORE, rRE, ORI, rRI, O1, r1, . . . , ON , rN )

C := R4+6+3·N . (4.6)

These definitions of c and C will be later extended for the 3D case too; see Section 4.3.1, Equa-
tions (4.15), (4.16), (4.17) and (4.18).

It should again be stressed that all aforementioned circle parameters are reals. That is,
contrary to the discreteness of the domain D, we are looking for a continuous configuration c.
While this choice makes C much bigger, it also more closely reflects real-life situations.

Given a configuration c, one can define the digital image fc determined by c:

fc : D → A, (x, y) 7→ fc(x, y) , (4.7)

where D and A are as discussed earlier. (The exact procedure for how such a fc is constructed
will be described in Section 5.2.1; see Equation (5.5).) Since we are not interested in arbitrary
images f but only in valid ones, we shall solely focus on reconstructing fc hereafter.

Assumptions

The following assumptions are made:

• The object to be reconstructed has the geometrical structure and material composition
described above.

• The number N of discs is known exactly.

• LAC values µ0, µR, µI and µD are known at least approximately.5

Geometrical Constraints

The configuration c is said to be valid if and only if it obeys the geometrical restrictions discussed
earlier. By definition, the associated fc is valid only if c is also valid, therefore it is feasible—and
beneficial—to formulate these constraints in a geometrical framework. As will be demonstrated,
the restrictions are verified analytically based on the components of c, that is avoiding any
digitization involved in the construction of fc.

3Note that the same notations (Oi, ri) will be later employed to define spheres and cylinders in the 3D
configuration. Similarly, N will then denote the number of spheres or cylinders.

4This definition is slightly imprecise as it permits both ORE and ORI, even though they are strongly tied
together. Moreover, any further restrictions—e. g. the positivity of radii—are ignored here for simplicity.

5This can be problematic in case of real physical measurements; the algorithm presented in Section 4.5 will,
therefore, offer some means to determine these parameters from the input projections.
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1. The annulus is concentric.

This is established by the conditions

ORE = ORI

rRI < rRE
.

When concentricity is not strictly enforced, the following needs to hold instead:

OREORI + rRI < rRE ,

where AB denotes the length of the line segment with end points A and B.

2. The annulus fits within the reconstruction area of the image.

It is enough to ensure that
OREOC + rRE ≤ rmax ,

where
OC = (xC, yC)

xC := yC := rmax :=
SIZE− 1

2

. (4.8)

Here, the reconstruction area is represented by the circle (OC, rmax). (The aforementioned
definition of OC will be later extended to 3D configurations as well; see Section 4.3.1,
Equation (4.12).)

3. The thickness of the annulus is nonnegative.

This requires
rRI ≤ rRE ,

thus amending the respective condition in item 1. above.

Permitting a ring of zero thickness can be useful for situations like the one raised by KFKI
colleagues. Specifically, it can be used to model the cross-section of a 3D object consisting
of a solid cylinder containing some spherical or cylindrical cavities. This also implies that
µR is irrelevant in such cases. (Internally, this is realized by setting µR to zero.)

4. Discs are located entirely inside the annulus.

This means that, for 1 ≤ i ≤ N ,

ORIOi + ri ≤ rRI .

5. Discs are pairwise disjoint.

The following needs to hold:

OiOj ≥ ri + rj (∀1 ≤ i, j ≤ N , i 6= j) .

6. The radius of any disc is not smaller than rmin. (Actually, this implies that rRE ≥ rmin
and rRI ≥ rmin.)

This requires
ri ≥ rmin (∀1 ≤ i ≤ N) .
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The following conditions handle a few edge cases, ensuring that the reconstruction problem
remains well-defined:

7. LAC values µR, µI and µD are not all zero.

8. µI = µD is allowed only if N = 0.

This, essentially, makes µD irrelevant.

9. µR = µI implies rRI = rRE.

Note: As mentioned in item 3. above, µR = 0 will be assumed in this case.

10. µR = µI = 0 is allowed only if N > 0.

This point allows the modeling of more general objects consisting of a collection of disjoint
discs without any enclosing interior or annulus. As a consequence, parameters (ORE, rRE)
and (ORI, rRI) are rendered irrelevant. (In the current implementation, the settings ORE :=
ORI := OC and rRE := rRI := rmax will be applied.)

In order to compensate for numerical round-off errors, all comparisons are carried out using some
tolerance. For instance, instead of checking for a > b, c < d or e = f , the conditions a − b > ε,
c− d < −ε and |e− f | ≤ ε will be verified, where ε is a small positive real. (A similar approach
is used when comparing for ≤ or ≥ involving real values.)

4.2.2 Objective Function

In order to solve the reconstruction of fc introduced in Section 4.2.1, one needs to find an appro-
priate configuration c in the solution space C. It is easy to see that the size of the configuration
space is enormous (actually, infinite), namely |C| = c (i. e. the cardinality of the continuum). As
mentioned in Section 2.2.2, most direct graph search techniques are simply too slow for prac-
tical usage on such large spaces.6 The reconstruction problem is, therefore, formulated as an
optimization task with a suitably chosen objective function γ(fc). One major advantage of such
an approach is that it stays robust against most of the noise and distortions found in input
measurements.

Motivated by the literature of stochastic optimization (see Section 2.2.3), we decided to model
γ(fc) as a Boltzmann distribution. This, first, needs the notion of the energy (Hamiltonian) of
fc:

H(fc) :=
∑
ϑ

‖Pfc,ϑ −Pϑ‖2
2
. (4.9)

Here, Pfc,ϑ : DP → {0} ∪ R+ denotes the simulated discrete projection of fc at direction ϑ,
Pϑ : DP → {0} ∪ R+ the input—i. e. measured—discrete projection at direction ϑ, and DP ⊂ Z
the finite projection domain. (The exact definition of the latter as well as the computation of
Pfc,ϑ will be given later in Section 5.2.3; see Equations (5.10) and (5.15). Moreover, the meaning
of these notations will be later extended for the 3D case as well; see Section 4.3.2.)

As can be seen, H(fc) simply calculates the square of the projection error (measured with
the `2 norm) summed over all directions ϑ. While it is superficially similar to the γ(f) defined in
Equation (2.13), it is in fact of the form of γΦ(f) shown in Equation (2.14). In particular, α = 1,
while the fitness Φ(f) is implicitly encoded by the geometrical model and constraints associated
with c.

6Even though C could be made finite by permitting only parameter values up to some fixed precision (i. e. via
quantization), the resulting space would still be too large for direct searches.
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Having defined H(fc), now the aim is to maximize the objective function

γ(fc) :=
1

ZT ;fc

e
−H(fc)

kBT , (4.10)

where ZT ;fc is the partition function, kB the Boltzmann constant, and T the temperature,
respectively (cf. Equation (2.15)). As a matter of fact, the optimal f̂c that maximizes γ(fc)
simultaneously minimizes H(fc):

f̂c := arg max
fc

γ(fc) = arg min
fc

H(fc) .

That is, by maximizing γ(fc) we are looking for the f̂c that results in the lowest projection
error—and hence in the lowest H(fc).

It should be stressed that any solution f̂c must be a valid one (with respect to the geometrical
constraints). Since H(fc) is basically undefined for invalid configurations, γ(fc) has lots of
discontinuities that poses extraordinary challenges for the optimization process.

4.2.3 Optimization
The optimization of γ(fc) is carried out by utilizing SA, an iterative stochastic global optimization
method (see Section 2.2.3). As explained before, instead of trying to reconstruct fc directly by
modifying individual pixels, the optimization takes place in the configuration space C.

In each iterative step, a new candidate configuration c′ is constructed by perturbing the
current c in either of the following ways:

1. The center ORE = ORI of the annulus or the Oi of one of the discs is translated along a
line in some direction by some distance d.7

2. The external (rRE) or internal (rRI) radius of the annulus or the ri of one of the discs is
increased or decreased by some amount ∆r.

3. One of the LAC values {µR, µI, µD} gets increased or decreased by some amount ∆µ while
keeping them within a prescribed range.8

The choice among the aforementioned 3 rules, as well as that among the respective parameters,
is made with equal probability. Furthermore, the algorithm first attempts to determine the range
R of valid alterations, then picks d, ∆r or ∆µ from R randomly.9

If the c′ obtained so happens to violate some constraints, the magnitude of alteration is
corrected as d := λ1d (similarly for ∆r and ∆µ), then c′ gets updated accordingly. (Here the
0 < λ1 < 1 real determines the size of the correction.) This step is repeated until either c′

becomes valid, or the magnitude of alteration falls below some fixed threshold ε1. In the latter
case, the invalid c′ is discarded and a new iterative step is started.

Depending on the user’s choice, the construction of c′ can happen in 3 different manners: (a)
allow only geometrical changes (i. e. translation of a center or modification of a radius) and hold
{µR, µI, µD} fixed; (b) allow only changes to LAC values and hold the geometrical model fixed;
(c) allow both kinds of changes.10

7The distance and direction are expressed as polar coordinates.
8Actually the algorithm assumes that µ0 ≡ 0 throughout the optimization.
9The present implementation does not aim for a perfect R; its value is only approximately correct when the

perturbation involves the translation of a center.
10In fact (b) would only make sense if the task was to determine the LAC values with respect to a fixed, known

geometrical model. Thus only (a) and (c) are employed in practice.



4.3. RECONSTRUCTING 3D OBJECTS 43

The optimization procedure can, in theory, be started from an arbitrary initial configuration
c0, but—as explained in Section 2.2.3—having a c0 close enough to the expected global optimum
will result in faster and more successful reconstructions. The exact way of its construction is
discussed in Section 4.5.

The execution of SA also needs some further details to be specified: initial and minimal
temperatures (T0, Tmin), annealing schedule, and termination criteria. These will be given later
in Section 5.2.6.

4.3 Reconstructing 3D Objects
Building upon the foundations presented in Section 4.2, we can now continue with the original
aim of reconstructing 3D objects whose structure can be described with a couple of geometrical
primitives. The algorithm discussed below is a direct extension and generalization of the former
2D approach to 3D. As will be shown, this is done so that truly 3D reconstructions can be obtained
instead of simply reconstructing individual 2D cross-sections. Like for its 2D counterpart, the
reconstruction process is expressed as an optimization task.

4.3.1 Prerequisites
Most concepts introduced in Section 4.2.1 can be redefined for 3D in a pretty straightforward
way. For brevity, only the most important ones of these notions will be included here; the rest
can be devised by analogy.

We begin with establishing the domain D ⊂ Z3 of the 3D digital image f to be reconstructed
(cf. Equation (4.2)):

D := {0, . . . ,SIZE− 1} × {0, . . . ,SIZE− 1} × {0, . . . ,HEIGHT− 1} . (4.11)

That is, D is a square box (square cuboid) so that SIZE gives the length of the sides of 2D
cross-sections in the xy plane, while HEIGHT ∈ Z+ denotes the height of the image volume
along the z-axis. Accordingly, the reconstruction area becomes the cylinder (OC, rmax, hmax),
where (cf. Equation (4.8))

OC = (xC, yC, zC)

xC := yC := rmax :=
SIZE− 1

2

zC :=
HEIGHT− 1

2
hmax := HEIGHT

. (4.12)

Image Model

The image f is said to be valid if and only if it complies with the following restrictions:

• Geometrical structure:

– f consists of exactly one concentric tube and some spheres or cylinders (possibly
none, but only either kind of primitive).

– The tube should fit within the reconstruction area of the image, and its thickness is
to be nonnegative. Furthermore, the external and internal cylinders forming the
tube shall have common centers and heights.
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μ0

μI
μT

μSC

Figure 4.2. Geometrical structure and material composition of the 3D object to be recon-
structed, assuming spheres within the interior.

– Spheres (respectively, cylinders) must be pairwise disjoint and located entirely inside
the tube. Moreover, their radius should be not smaller than rmin, and the height of
cylinders should reach at least hmin.

– The radii and heights of the tube and cylinders are bounded by rmax and hmax.
Moreover, the radius of spheres has the upper bound

rmaxS := min

{
rmax,

hmax − 1

2

}
. (4.13)

– The axis of symmetry of the tube and all the cylinders must be parallel to the z-axis.

• Material composition:

– f contains at most four kinds of materials, as shown in Figure 4.2:

∗ µ0 and µI are kept as is.
∗ The interior (now also dubbed the interior of the tube) means the area inside
the tube. These primitives will, therefore, have the same centers and heights.

∗ The LAC µT of the tube replaces µR, while the LAC µSC of spheres and cylinders
takes the place of µD.

– All aforementioned materials are still expected to be completely homogeneous.

Thus the range A of f can be written as (cf. Equation (4.3))

A := {µ0, µT, µI, µSC} . (4.14)

Given the center O = (x, y, z) and radius r, which will be called the parameters of the
sphere, spheres will be denoted with the shortcut (O, r). Similarly, given the height h (the third
parameter of the cylinder), cylinders are represented as (O, r, h).

The 3D configuration c then becomes (cf. Equation (4.4))

c := (OTE, rTE, hTE, OTI, rTI, hTI, O1, r1, . . . , ON , rN ) . (4.15)

when having spheres inside the interior, and

c := (OTE, rTE, hTE, OTI, rTI, hTI, O1, r1, h1, . . . , ON , rN , hN ) . (4.16)

when having cylinders instead. Here, (OTE, rTE, hTE) and (OTI, rTI, hTI) describe the external
and internal cylinders of the tube, respectively. The remaining parameters (Oi, ri) and (Oi, ri, hi)
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(1 ≤ i ≤ N) correspond to the individual spheres and cylinders inside the interior, respectively.
According to the notes above, the settings OTE = OTI and hTE = hTI are enforced in the current
implementation.

The configuration space C thus turns into (cf. Equation (4.5))

C := R10+4·N (4.17)

or
C := R10+5·N (4.18)

depending on whether spheres or cylinders are being used, respectively. (Like in the 2D scenario,
C can optionally be further extended to include LAC values as well.)

As a special case, any 2D configuration can be represented in 3D with the settings HEIGHT =
hTE = hTI = hi = hmin = 1, so that every disc becomes a cylinder of height 1.

The definitions of f and fc, as well as the assumptions and geometrical constraints for them
are taken over and extended from their 2D counterparts.

4.3.2 Objective Function
Everything discussed in Section 4.2.2 remains valid and applicable to 3D configurations as well.
In particular, the Hamiltonian H(fc) expresses the “energy” of fc in terms of the projection
error, while γ(fc) is formulated as a Boltzmann distribution. The major difference is that the
simulated projections Pfc,ϑ and input projections Pϑ become two-dimensional, defined over the
domain DP ⊂ Z2 (see Section 5.2.3, Equation (5.11) for the actual definition).

4.3.3 Optimization
The optimization of γ(fc) is performed with SA along the lines of Section 4.2.3; most of the
concepts and remarks mentioned there also apply to the 3D scenario. The only change needed
is the way how the new candidate configuration c′ is obtained from the current one c:

1. One of the centers OTE = OTI or Oi gets translated along a line in some direction by some
distance.11

2. Either radius rTE, rTI, ri is increased or decreased by some amount.

3. A height parameter hTE = hTI or hi is increased or decreased by some amount.

4. One of the LAC values {µT, µI, µSC} gets modified by some amount.

Like before, the choice among these rules and the associated configuration parameters is made
with equal probability.

Similarly to the 2D case, optimization is started from an initial configuration c0 based on the
input projections Pϑ; see Section 4.5 for more details about its construction.

4.4 Generating Random Configurations
During the implementation and subsequent evaluation of the reconstruction algorithm described
earlier in this chapter, it became clear that it would have been desirable to be able to randomly
generate the parameters of geometrical primitives, or even to generate entire configurations c.

11The distance and direction are expressed as spherical coordinates.
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Specifically, such an ability would be useful for generating test configurations for reconstruc-
tion, building random initial configurations c0, or repairing an incomplete c0 by adding missing
geometrical primitives; these are explained in Sections 4.5 and 5.2.2.

The approach devised by the author is guided by the following principles:

1. The generated configuration c is valid, i. e. it satisfies the structural requirements and
geometrical constraints discussed earlier.

2. It is possible to generate all elements of the configuration space C.

3. Any potential c is chosen uniformly (i. e. with equal probability).

4. The generation process is reasonably robust. Especially, it tries to avoid getting into infinite
loops.

5. The generation of c is fast and has modest resource requirements.

6. The process is totally automatic with some user-tunable parameters.

The generation algorithm is presented in Appendix D in its entirety; here we resort to a simplified
description only. The overview of the process for 2D configurations is shown in Algorithm 4.1.
As can be seen, the parameters of the ring are generated first, followed by the centers Oi of discs
(with the temporary setting ri := rmin), and finally the radii ri.

Algorithm 4.1. Generation of a 2D random configuration (summary).
1 Let c be the empty configuration
2 Choose ORE = ORI randomly
3 Choose rRE and rRI randomly
4 Add annulus to c
5 foreach 1 ≤ i ≤ N do
6 Determine if it is possible to add a new disc (Oi, ri) to c with ri ≥ rmin
7 if No more discs can be added then
8 Error

9 Choose Oi randomly by assuming ri := rmin
10 Add disc (Oi, ri) to c with ri = rmin

11 foreach 1 ≤ i ≤ N do
12 Determine the valid range for ri with respect to other geometrical primitives in c
13 Choose ri randomly and update it in c

14 c contains the generated configuration

When generating Oi, the algorithm needs to decide if there is a chance at all to find a suitable
disc center. This step, shown in line 6, tries to estimate r′ := max ri based on the current partial
configuration c; this is controlled by the positive real δ that determines the precision of r′.

The generation of 3D configurations is performed by an analogous approach, but of course
establishing parameters for the tube, spheres and cylinders. For sake of easier testing of special
cases, it is also possible to optionally restrict the z coordinate of the centers of all spheres and
cylinders to a given range.

4.5 Constructing Initial Configurations
In order to speed up the convergence of the reconstruction process, as well as to hopefully
avoid unwanted local optima, the optimization of γ(fc) is started from a suitably chosen initial
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(a)

(b)

(c) (d) (e)

Figure 4.3. Superposition of the projection of multiple discs. Pixel intensities correspond
to 0 / background (white) and 1 / foreground (black). (a) Vertical projection of (c) at 10%
noise level. (b) Noiseless vertical projection of (c). (c) Binary image containing three discs.
(Frame added for better visibility.) (d) Noiseless horizontal projection of (c). (e) Horizontal
projection of (c) at 10% noise level.

configuration c0. In particular, c0 is constructed by scanning the input projections Pϑ so as to
extract the approximate parameters of constituting geometrical shapes. (The exact procedure is
discussed below in detail.)

This is, however, a very demanding task in general and cannot be solved by geometrical means
alone. On the one hand, measurements can become reasonably distorted as compared to ideal,
noiseless projections. On the other hand, every time a projection line crosses multiple shapes, the
measured value will equal the superposition (i. e. sum) of respective elementary projections.
In practice, this may manifest both as fewer and as more maxima than expected. This situation
is demonstrated in Figure 4.3. The image shown there contains three discs; still, the number
of maxima appearing is 2 (horizontal projection) and 5 (vertical projection), respectively. The
problem only gets worse with the addition of noise or other distortions.

The algorithm developed by the author is somewhat complex, the application of which will
nevertheless highly improve the overall reconstruction success rate. (See Sections 5.2.4 and 5.3 for
the relevant results.) Therefore a high-level summary will only be presented here; the complete
description, theoretical background and related pseudocode can be found in Appendix E.

The approach chosen is based on geometrical principles combined with some heuristics. As
explained above, no perfect result is expected from this procedure alone. In particular, the
algorithm may not always find all the discs, spheres or cylinders, or their parameters may not
match their ideal settings. Such discrepancies are, however, totally acceptable since c0 will be
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subject to further optimization.
As will be demonstrated, the algorithm attempts to perform a direct geometrical reconstruc-

tion by analyzing input projections Pϑ; this is done in an entirely automated and deterministic12
fashion. The procedure takes just a handful of input parameters: Pϑ, set {ϑ1, . . . , ϑn} of projec-
tion angles, N , and A.13 It is also assumed that the projection geometry and the computation
of simulated projections are defined as shown later in Section 5.2.3.

The 3D initial configuration c0 will be constructed as follows:

1. First, the initial locations of the tube and its interior are estimated from the projections (see
Figure 4.4(a)). This is done after using filtered versions of the input projections, obtained
by applying a Gaussian and several averaging filtering kernels to every projection.14 The
boundary of the projection of the tube, namely the coordinates of its axis of symmetry,
its external radius, and its upper and lower ends can be found by defining a threshold for
the background noise, and scanning the filtered projections for the leftmost, rightmost,
uppermost, and lowermost values above this threshold. The boundary of the interior of the
tube can be determined in a similar way. The threshold is calculated as a user-specified
percentage of the global maximum value of the projections, based on an assumed level of
noise.

2. Using the location of the tube and its interior, their projections can be subtracted from
the input projections.15 This is shown in Figure 4.4(b).

3. Next, the initial positions of the spheres or cylinders within the interior are to be guessed
based on the reduced projections (see Figure 4.5). In the present implementation this
task has, for simplicity, been reduced to 2D sub-problems. Currently this procedure is
performed in two steps:

(a) First, the locations of discs are found in each cross-section separately (see Figure 4.5(a)).
That is, the intersections of the spheres or cylinders with the 2D cross-sections or-
thogonal to the z-axis have to be found. Exact details are to follow below. (Note:
The number of discs in a given cross-section is unknown; this may be smaller than N ,
so partial 2D configurations are permitted.)

(b) Lastly, the initial positions of the spheres or cylinders are determined from the discs
found in neighboring cross-sections. Specifically, the discs detected in the previous
step are treated as solid cylinders of unit height. An auxiliary 3D configuration can
be built by stacking the cross-sections onto each other, that is placing these discs
into a 3D coordinate system. This configuration is then examined to find candidate
spheres and cylinders that will be included in c0. (These are located by successively
merging the stacked discs between neighboring16 cross-sections: a disc on section zi
and another on section zi + 1 will be merged into a single object when their centers
are close enough to each other and the difference between their radii is smaller than
some threshold.) This is demonstrated in Figure 4.6.

The processing of 2D cross-sections is accomplished by the following greedy algorithm:
12This, of course, does not apply to the discs, spheres and cylinders generated randomly in case of a partial

configuration. See later for an explanation.
13In fact, µ0 ≡ 0 is assumed during the course of the algorithm.
14In general, filtering and other “destructive” operations will be always applied to a temporary copy of the input

projections; the actual Pϑ will be left intact and used later during the optimization of γ(fc).
15Again, this is only done to a copy of Pϑ.
16Optionally, merging of discs can be also enabled between nearby—but not necessarily adjacent—cross-sections.
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(a) (b)

Figure 4.4. Elimination of the tube from 2D projections. Gray levels represent the amount of
attenuation from zero (black) to maximum (white). (a) One of the noiseless input projections
of the 3D object. The red lines indicate the cross-section considered in Figure 4.5(a). (b)
Reduced projection obtained from (a) by subtracting the projection of the tube and its
interior.

(a) (b) (c) (d) (e)

Figure 4.5. Detection of discs in 2D cross-sections after the elimination of the tube from
2D projections (or the ring from 1D projections). Pixel intensities correspond to 0 / back-
ground (white) and 1 / foreground (black). (a) Binary cross-section of the object depicted
in Figure 4.4(a). (Frame added for better visibility.) (b) Noiseless 1D horizontal projection
of (a). (c) Reduced projection obtained from (b) by eliminating the ring. (d) Elimination
of the projection of a disc from (c). (e) Candidate discs detected in (c).

x

z

y
zi

zi+1

Figure 4.6. Building a 3D initial configuration by stacking the 2D configurations determined
for individual cross-sections.
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(a) (b)

Figure 4.7. Back-projection of candidate discs detected in 1D projections. (a) Initial
intersections of the cross-section shown in Figure 4.5(a) using a horizontal and a vertical pro-
jection. Intersections are formed by the crossings of the middle projection lines of respective
candidate discs found in the aforementioned projections. Dashed circles represent the can-
didate discs centered about these intersections. (b) Deletion of intersections after choosing
the candidate disc (Oi, ri) with the largest radius (drawn with a solid line); (Oi, ri) will be
immediately added to the initial configuration c0. The dashed circle centered about the sole
remaining intersection will be chosen in the next iteration, thus completing c0.

1. Possible projections of discs are located within the 1D projections of the cross-sections (see
Figure 4.5(c)) by the application of model fitting [159, Chapter 15], i. e. disc parameters
are estimated. In particular, a deterministic iterative algorithm called gradient descent [159,
Section 10.6] [48] is used to find the parameters of the projection of a disc which best fits (a
part of) the 1D reduced projections. After storing these parameters, the projection of the
disc is eliminated from the already reduced projections (see Figure 4.5(d)). This process is
repeated until no more discs can be detected (see Figure 4.5(e)).

2. The centers of the candidate discs found in the previous step are “projected back” into the
plane of the 2D cross-section, thus forming several pairs of intersection points and radii
of the discs associated with them (see Figure 4.7(a)). Those intersections whose distance
from one another is below a given limit will be merged into a single intersection. Whatever
the case, the radius associated with a particular intersection is calculated by taking the
minimum of the radii of the corresponding discs found in the 1D projections.

3. The discs actually located in the 2D cross-section are selected by a greedy strategy: The
center of a candidate disc is chosen to be the intersection which was defined by the most
projections. Should there be more than one such intersections, the one with the largest
radius associated with it will be taken. The intersection chosen is instantly removed from
the list of intersections. We should remark here that some additional intersections may be
deleted as well in order to retain consistency between the intersections and the 1D projec-
tions (see Figure 4.7(b)). If this disc results in a valid configuration, it will be permanently
added to the 2D configuration of the cross-section. Otherwise, another intersection will be
chosen. This procedure is repeated until no more intersections are left.

If, after the completion of the aforementioned algorithm, c0 is incomplete, the missing discs,
spheres and cylinders will be generated using the approach presented in Section 4.4.17

17This is the only step that may make the construction process non-deterministic.
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As a “side-effect” of the elimination of the tube and its interior, the algorithm computes
estimated LAC values from Pϑ: {µ̂R, µ̂I} for 2D configurations, and {µ̂T, µ̂I} for 3D ones. (The
remaining estimates µ̂D and µ̂SC need to be determined manually, though.) Whereas these
estimates are not actually used during reconstruction, they are nonetheless a great aid for physical
measurements where LAC values may not be always known exactly.

The algorithm is governed by the following user-defined parameters: τ > 0 real (expected
noise level in Pϑ), 0 < λ < 1 real (factor of adjustment for radii and heights when encountering
an invalid configuration), positive reals MERGEO and MERGEr (upper bounds for the center
distance and radius difference when merging discs found in nearby 2D cross-sections into a single
3D geometrical primitive).

4.6 Summary
A stochastic DT reconstruction method has been presented that is able to reconstruct 2D images
of objects which can be described as a composition of simple geometrical primitives (namely, discs
and annuli). The approach was then extended to the analogous 3D setting, but allowing tubes,
cylinders and spheres. It shall be stressed that the latter algorithm provides a native 3D recon-
struction, i. e. the 3D result is not obtained by simply stacking the reconstructions of individual
2D cross-sections. Furthermore, the reconstruction process operates in the configuration space
C, that is finding solutions in terms of the parameters of constituting geometrical primitives.

In order to be able to test the efficiency of the reconstruction approach, an algorithm has
been shown that can automatically generate random configurations. Moreover, it has also been
demonstrated how one can devise initial configurations based on the input projections, which
can then become the starting point of the reconstruction methods.





Chapter 5

Simulations: Reconstruction of
Objects Parametrized with
Geometrical Primitives

The efficacy of the techniques is demonstrated by numerous simulation experiments, in order
to quantify how the reconstruction quality is influenced by the geometrical complexity of the
configuration, by the number of projections, or by the amount of noise. Moreover, the benefits
of using an automatically determined initial configuration (as opposed to a random one) are also
justified.

The results presented herein have been published in [33,104,105,121–123].

5.1 Implementation Details

5.1.1 Applications, Source Codes and Development Environment

The algorithms described in Chapter 4 have been implemented as a software package written in
ANSI C, accompanied by a bunch of supporting Unix shell scripts. The following listing describes
each application and its purpose:

pgm2dct Converts raw detector data (.pgm bitmap images) to the internal projection format
(DIRECT, see below), supporting both 1D and 2D projections.1

projconv Supports the conversion of 1D projections among various formats: DIRECT, PRN
(the format used by HMI), and SNARK file11 [2]. (Note: 2D projections are currently
supported in the DIRECT format only.)

projgen Allows the computation of simulated projections (1D and 2D), application of artificial
noise to projections, and generation of random configurations (2D and 3D).

specrec Entry point to the reconstruction algorithms for obtaining a 2D or 3D configuration
from a set of 1D or 2D projections, including the setting up of an initial configuration
(obtained automatically from the projections or generated randomly). Allows the tuning

1The 1D version of this tool is due to Zoltán Kiss; it was later extended by the author of the thesis for the 2D
scenario.
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of all reconstruction parameters, visualization of configurations, as well as the calculation
of quality metrics for results.

Both reconstruction methods support the projection format2 of the DIscrete REConstruction
Techniques framework (DIRECT) [1] for easier co-operation. (DIRECT is a framework for DT
reconstruction approaches developed at the Department of Image Processing and Computer
Graphics, University of Szeged.) Moreover, the 2D algorithm was also made available online as
part of DIRECT.3

Each application mentioned above has only a command-line interface, expecting inputs and
producing outputs via files.

Some source code statistics: 99 files, ≈ 1.09MB, 32 224 total lines of code.
All the timings mentioned later were measured under GNU Linux (Fedora 4 distribution) on

a PC having 1.25GB RAM and a 2.8GHz single-core 32-bit processor (Intel Pentium 4).

5.1.2 Speeding Up the Reconstruction Process
Stochastic methods are renowned not only for their ability to easily solve complicated problems,
but also because they tend to be slow as compared to deterministic approaches. Therefore,
considerable effort has been invested in optimizing the program code. The most important of
these improvements is presented below.

Quick Evaluation of the Objective Function

Let c and c′ denote the current and candidate configurations, respectively (see Section 4.2.3).
As discussed before, the execution of SA needs one to compute the Boltzmann factor of the
objective function γ(fc) (see Equations (2.11) and (4.10)):

γ(fc′)

γ(fc)
= e
−
H(f

c′ )−H(fc)

kBT .

Considering the numerator of the exponent only, the task is to calculate (cf. Equation (4.9))

H(fc′)−H(fc) =
∑
ϑ

(∥∥Pfc′ ,ϑ −Pϑ

∥∥
2

2 − ‖Pfc,ϑ −Pϑ‖2
2
)
, (5.1)

where Pfc,ϑ and Pfc′ ,ϑ can be expanded as shown later in Section 5.2.3 (see Equation (5.15)).
When having 2D configurations, these expressions can be calculated directly since the amount
of projection values involved is rather small.

The scenario looks more complicated for the 3D case, however. There the amount of pro-
jection pixels is increased manifold, namely with a factor of HEIGHT (see Equation (5.11)),
therefore the direct computation of Equation (5.1) would be very costly. After expansion using
(a− b)2 = a2 − 2ab+ b2, we get

H(fc′)−H(fc) =
∑
ϑ

(
Pfc′ ,ϑ

2 − 2Pfc′ ,ϑPϑ −Pfc,ϑ
2 + 2Pfc,ϑPϑ

)
,

where multiplication and exponentiation is meant element-wise and summed over all (s, z) co-
ordinates. A further expansion and simplification4 then leaves only the terms depending on the
kind of alteration in c′ vs c, whose computation is significantly faster than the direct evaluation
of Equation (5.1). In the current implementation, this new formulation alone had resulted in a
10–12-fold speed-up.

2Extensions specific to this thesis were introduced into the DIRECT format in cooperation with László Ruskó.
3This integration was entirely accomplished by Zoltán Kiss.
4This is not shown here for sake of brevity.
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5.2 Simulation Setup

5.2.1 Visualization
Visualizing 2D Configurations

The digital image f(Oi,ri) determined by disc (Oi, ri) (1 ≤ i ≤ N) is obtained as

f(Oi,ri)(x, y) :=

{
µD if (x− xi)2

+ (y − yi)2 ≤ ri2 ,
0 otherwise .

(5.2)

Analogously, the image f(ORI,rRE,rRI) of the ring (ORI, rRE, rRI) (with the assumption ORE =
ORI), as well as the image f(ORI,rRI) of the interior (ORI, rRI), can be formulated as

f(ORI,rRE,rRI)(x, y) :=

{
µR if rRI

2 < (x− xRI)
2

+ (y − yRI)
2 ≤ rRE

2 ,

0 otherwise ,

f(ORI,rRI)(x, y) :=


µI if (x− xRI)

2
+ (y − yRI)

2 ≤ rRI
2

and f(Oi,ri)(x, y) = 0, ∀1 ≤ i ≤ N ,

0 otherwise .

(5.3)

Furthermore, every pixel belonging to the background (air / vacuum surrounding the object)
gets assigned µ0 in the corresponding image f0:

f0(x, y) :=

{
µ0 if rRE

2 < (x− xRI)
2

+ (y − yRI)
2 ≤ rmax

2 ,

0 otherwise .
(5.4)

Finally, the digital image fc determined by the 2D configuration c can be composed as5

fc(x, y) :=f0(x, y) + f(ORI,rRE,rRI)(x, y)+

f(ORI,rRI)(x, y) +

N∑
i=1

f(Oi,ri)(x, y) .
(5.5)

Moreover, the rasterization of fc is carried out using nearest neighbor sampling, without
employing anti-aliasing or considering partial volume effects.

For sake of a consistent output irrespective of actual LAC values, the 2D configuration c gets
usually rendered as a gray-scale image fgray

c :

fgray
c (x, y) :=


0 (black) if fc(x, y) = µR ,
1
2Imax (dark-gray) if fc(x, y) = µI ,
3
4Imax (light-gray) if fc(x, y) = µD ,

Imax (white) if fc(x, y) ∈ {0, µ0} ,

(5.6)

where Imax denotes the maximal gray-scale intensity.
For convenience, fc can be also displayed as a binary6 digital image fbin

c :

fbin
c (x, y) :=

{
0 (white / background) if fc(x, y) ∈ {0, µ0, µI} ,
1 (black / foreground) if fc(x, y) ∈ {µR, µD} ,

(5.7)

5Strictly speaking, fc will actually be quinary (5-valued) when µ0 6= 0, namely A = {0, µ0, µR, µI, µD}, with
all the pixels outside the reconstruction area being set to 0.

6Even though the usual convention is to map 0 to black and 1 to white, the setting shown here better suits
the rendering of images against a white background (viz. the one used for this thesis).
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(a) (b) (c) (d)

Figure 5.1. Visualization of 2D configurations. Gray levels are as per Equations (5.6), (5.7)
and (5.8). (Frame added for better visibility.) (a) A general configuration with rRE > rRI
rendered as a gray-scale image. (b) (a) rendered as a binary image. (c) A configuration with
rRE = rRI rendered as a gray-scale image. (d) (c) rendered as a binary image.

when rRE > rRI and

fbin
c (x, y) :=

{
0 (white / background) if fc(x, y) ∈ {0, µ0, µD} ,
1 (black / foreground) if fc(x, y) = µI ,

(5.8)

when rRE = rRI. (This distinction is necessary because essentially µR = 0 when the thickness of
the annulus is zero.)

Let co and cr be the original (i. e. ideal target) and reconstructed configurations, and fbin
co

and fbin
cr

denote the binary digital images determined by these configurations. Then one can
define the gray-scale difference image fgray

co,cr
as

fgray
co,cr

(x, y) :=


0 (black) if fbin

co
(x, y)− fbin

cr
(x, y) = 1 ,

1
2Imax (dark-gray) if fbin

co
(x, y)− fbin

cr
(x, y) = −1 ,

Imax (white) if fbin
co

(x, y)− fbin
cr

(x, y) = 0 ,

(5.9)

so that common pixels appear white, foreground pixels found only in fbin
co

are painted black, and
those found only in fbin

cr
are drawn in dark-gray.

In all the aforementioned cases, the origin of the coordinate system is placed in the lower-left
corner of the image, so that the positive x-axis and y-axis run along the lower and left side of
the image, respectively.

Figures 5.1 and 5.2 give a few examples for the visualization options described above.

Visualizing 3D Configurations

3D configurations can be presented in two ways: First, they can be rendered as a series of gray-
scale or binary images corresponding to individual 2D cross-sections; these images are produced
exactly like described above for 2D configurations. In addition, it is possible to turn any 3D
configuration into a Virtual Reality Modeling Language (VRML) [4] model (to be viewed with
internet browser plugins or external utilities), thus providing a means for native 3D visualization
and interactive exploration. (There are, of course, other alternatives for rendering 3D discrete
volumes, e. g. iso-surface extraction and volume rendering, but the simplicity and interactivity
of VRML is sufficient for our needs.)

In analogy with the 2D case, one can construct the difference volume of the original (i. e.
ideal target) and reconstructed configurations. The voxels of this 3D volume can then be also
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(a) (b) (c)

Figure 5.2. Visualizing the difference of 2D configurations. Gray levels are as per Equa-
tions (5.6) and (5.9). (Frame added for better visibility.) (a) Original (i. e. ideal target)
configuration rendered as a gray-scale image. (b) Unsuccessful reconstructed configuration
rendered as a gray-scale image. (c) The difference of (a) and (b).

(a) (b) (c)

Figure 5.3. Visualization of 3D configurations using VRML models (oblique view). (a)
Original (i. e. ideal target) configuration. (b) Unsuccessful reconstructed configuration. (c)
The difference of (a) and (b).

visualized as a VRML model, so that each voxel gets drawn as a transparent cube. Specifically,
common voxels are hidden, voxels found only in the original configuration are drawn in yellow,
while those found only in the reconstructed configuration are drawn in cyan. This is demonstrated
in Figure 5.3.

5.2.2 Software Phantoms

The behavior of the reconstruction algorithms have been inspected using several test images
(commonly called phantoms); a few examples are shown in Figures 5.4 and 5.5. While some of
them were constructed manually, most of the experiments employed randomly generated config-
urations produced with the approach described in Section 4.4.

5.2.3 Computation of Simulated Projections

Acquisition Set-up

The acquisition set-up imitated the conditions found in physical experiments (see Section 3.1.2).
Moreover, computations were carried out in a somewhat idealized fashion. In particular, the
following assumptions had been taken:

• Instrument geometry: Measurements are based on attenuation contrast transmission to-
mography using parallel geometry. The radiation beam is monochromatic with negligible
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(a) (b) (c) (d)

(e) (f) (g)

Figure 5.4. A few 2D software phantoms used for later reconstructions. Gray levels are
as per Equation (5.6). Phantoms (d) and (f) were generated automatically, the rest were
constructed manually. (Frame added for better visibility.)

(a) (b)

Figure 5.5. A few 3D software phantoms used for later reconstructions (oblique VRML
view). Both configurations were generated automatically.
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Figure 5.6. Projection geometry for the 2D object to be reconstructed. Features depicted:
coordinate system, image domain D (dashed square), reconstruction area (dashed circle),
center of rotation OC, projection angle ϑ.

divergence and energy spread.7 There is no detector tilting or sample precession dur-
ing rotation. Projections are taken along equidistant projection lines at sample rotations
{ϑ1, . . . , ϑn} (n ≥ 2).8 Projection directions are defined as shown in Figures 5.6 and 5.7, so
that the object is rotated counterclockwise about OC (in 2D) or about the axis of rotation
passing through the reconstruction area and incident with OC (in 3D).

• Sample geometry: The sample—as well as the image f containing it—can be described
with square pixels / cubic voxels. The detector spacing matches the sample pixel spacing,
so that each detector pixel is determined by a single projection line hitting the pixel in its
center. Thus the projection domain becomes

DP := {0, . . . ,SIZE− 1} (5.10)

for 2D configurations and

DP := {0, . . . ,SIZE− 1} × {0, . . . ,HEIGHT− 1} (5.11)

for 3D objects.

• Imaging system: A sample pixel always contributes the same amount of absorption, no
matter how large fraction of the projection line passes through it. (That is, partial volume
effects are ignored.) The projection error term ‖Pfc,ϑ −Pϑ‖2

2 is computed, for any ϑ, by
comparing corresponding pixels in Pfc,ϑ and Pϑ.

Projection of a 2D Configuration

Let ϑ, (x, y) and [Rf ] (s, ϑ) be as defined earlier in Section 2.1.0.1. Since fc is entirely determined
by configuration c, the simulated discrete projection Pfc,ϑ of fc at direction ϑ can be also defined

7In other words, we assume that projections do not need intensity or beam hardening corrections. The actual
spectral distribution is otherwise irrelevant to us.

8For simplicity, all simulations were carried out using equiangular (i. e. equally spaced) projection directions,
even though the algorithm allows arbitrary ϑi values. On the other hand, it has been shown that such a setting
may not be always optimal: projections taken at different directions have varying amount of information that
could help avoid ambiguities during reconstruction [187].



60 CHAPTER 5. SIMULATIONS: PARAMETRIC OBJECTS

x

z

y

ϑ

SIZE

OC

SIZE

H
E
IG
H
T

Figure 5.7. Projection geometry for the 3D object to be reconstructed. Features depicted:
coordinate system, image domain D (dashed block), reconstruction area (enclosing dashed
cylinder), axis of rotation passing through OC, projection angle ϑ.

analytically—i. e. as if a continuous Radon transform—in terms of c. This is achieved in multiple
steps, as shown below. In order to avoid the need of computing the intersections of c with
projection lines having arbitrary orientations, c will be rotated about OC (see Equation (4.8))
by an angle −ϑ, essentially implying (s, u) ≡ (x, y). Therefore, it is enough to calculate the
vertical projection of the rotated configuration as follows.

The projection P(Oi,ri),ϑ of disc (Oi, ri) (1 ≤ i ≤ N) at direction ϑ is obtained as

P(Oi,ri),ϑ(s) :=

{
2 (µD − µI)

√
ri2 − (s− xi,ϑ)

2 if |s− xi,ϑ| ≤ ri ,
0 otherwise ,

(5.12)

where
xi,ϑ := (xi − xC) · cosϑ+ (yi − yC) · sinϑ+ xC .

Similarly, the projections P(ORI,rRE),ϑ and P(ORI,rRI),ϑ of (ORI, rRE) (external disc of the ring,
with the assumption ORE = ORI) and of the interior (ORI, rRI) at direction ϑ, respectively, can
be expressed as

P(ORI,rRE),ϑ(s) :=

{
2 (µR − µ0)

√
rRE2 − (s− xRI,ϑ)

2 if |s− xRI,ϑ| ≤ rRE ,

0 otherwise ,

P(ORI,rRI),ϑ(s) :=

{
2 (µI − µR)

√
rRI2 − (s− xRI,ϑ)

2 if |s− xRI,ϑ| ≤ rRI ,

0 otherwise ,

(5.13)

where
xRI,ϑ := (xRI − xC) · cosϑ+ (yRI − yC) · sinϑ+ xC .

Moreover, the projection P0 of the background (air / vacuum surrounding the object)—irrespective
of direction ϑ—is given by

P0(s) :=

{
2µ0

√
rmax2 − (s− xC)

2 if |s− xC| ≤ rmax ,

0 otherwise .
(5.14)
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(a) (b) (c)

Figure 5.8. Effects of LAC values on the projection. (a) 2D configuration to be recon-
structed. (b) Noiseless horizontal projection of (a) with (µR = 1, µI = 0, µD = 1). (c)
Noiseless horizontal projection of (a) with (µR = 1, µI = 2, µD = 3).

Thus Pfc,ϑ can be expanded as

Pfc,ϑ(s) := [Rfc] (s, ϑ) :=P0(s) + P(ORI,rRE),ϑ(s)+

P(ORI,rRI),ϑ(s) +

N∑
i=1

P(Oi,ri),ϑ(s) .
(5.15)

As can be expected, projections of a given configuration computed with different sets of LAC
values may appear very different from each other; this is demonstrated in Figure 5.8.

Projection of a 3D Configuration

The computation of projections for 3D configurations is carried out in analogy with their 2D
companions. The only differences are that the configuration gets rotated about the line passing
through OC (see Equation (4.12)) and parallel to the z-axis, and Pfc,ϑ is composed of the
projections of individual geometrical primitives (namely, the tube, the cylinder of the interior,
and the spheres or cylinders enclosed by the interior).

Modeling Noise

In order to come close to the quality of real transmission radiographs, varying levels of artificial
noise were applied to the simulated projections. The distortions of measurements are caused
by different kinds of phenomena: scattering, fluctuation of the intensity of the particle beam,
statistical error (the so-called Poisson or quantum noise), cross-talk between neighboring detector
pixels, etc. As an approximation to the cumulative effects of these distortions, the following
simple additive noise model was employed: Let us suppose that the value v := Pfc,ϑ(s) of a 1D
projection is to be distorted by L% of noise (L ≥ 0 real), and let M denote

M := max
s,ϑ

Pfc,ϑ(s) ,

that is the global maximal projection value among all directions ϑ. The noisy projection value
vnoisy was then defined as a uniformly distributed random number taken from

[
v −M L

100 , v +M L
100

]
,

subject to the constraint of non-negativity. It is evident that vnoisy can be positive even if v = 0
(i. e. the noise also affects background pixels).

For 2D projections (of 3D configurations) noise is applied by the direct extension of the above
method. The only difference is that M will then be computed over 2D projections.
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5.2.4 Initial Configurations
As presented in Section 4.5, the reconstruction process is started from an automatically de-
termined initial configuration c0. In order to assess the effect of c0 on reconstruction quality,
however, it is also possible to entirely skip the procedure mentioned before and start from a
random c0. Such random initial configurations are also generated using the approach presented
in Section 4.4. As will be shown in Section 5.3, it is indeed justified to use the automatically
determined c0 for it brings a lot of improvement in terms of reconstruction success rate.

5.2.5 Measuring the Quality of Reconstructions
The quality of the results were measured by four figure-of-merit (FOM) functions, FOMRME,
FOMSE, FOMVE and FOMCD, all given in percents. (The first 3 were adapted from [117,158].)

Let co and cr be the original (i. e. ideal target) and reconstructed configurations, and fbin
co

and
fbin
cr

denote the binary digital images determined by these configurations (as per Section 5.2.1).
Then, the “relative mean error” is computed as

FOMRME :=

∑
x,y

∣∣fbin
co

(x, y)− fbin
cr

(x, y)
∣∣∑

x,y f
bin
co

(x, y)
· 100% , (5.16)

expressing the ratio of the total pixel errors vs the number of foreground pixels in fbin
co

. Although
FOMRME is unbounded by default due to the accidental division by zero (when fbin

co
only contains

background pixels), this can be alleviated by using max{1, d} as the new denominator, where d
denotes the original denominator in Equation (5.16). With this correction, FOMRME ≤ |D|·100%
holds. (The maximum is reached when fbin

co
contains a sole foreground pixel and fbin

cr
is the

inverted image of fbin
co

.)
The “shape error” is given by

FOMSE :=
2 ·
∑
x,y

∣∣fbin
co

(x, y)− fbin
cr

(x, y)
∣∣∑

x,y f
bin
co

(x, y) +
∑
x,y f

bin
cr

(x, y)
· 100% , (5.17)

that is the ratio of the total pixel errors vs the total number of foreground pixels in both images.
(The factor 2 in the numerator is present to scale its range to match that of the denominator.)
It can be checked that FOMSE ≤ 200%, reaching the maximum when fbin

cr
is the inverted image

of fbin
co

.
The “volume / area error” is obtained as

FOMVE :=
2
∣∣∣∑x,y f

bin
co

(x, y)−
∑
x,y f

bin
cr

(x, y)
∣∣∣∑

x,y f
bin
co

(x, y) +
∑
x,y f

bin
cr

(x, y)
· 100% , (5.18)

providing the ratio of the difference of the number of foreground pixels vs the total number of
foreground pixels in both images. (Again, the factor 2 is necessary in order to get identical
ranges for the numerator and denominator.) It can be verified that FOMVE ≤ 200%, reaching
the maximum when either image only contains background pixels and the other one contains at
least 1 foreground pixels.

As can be seen, all the aforementioned FOM functions are based on the digital images ren-
dered from the configurations. On the other hand, the fourth FOM, called the “configuration
distance9”, is quite different: it expresses the normalized vector distance of configurations co and

9This FOM has not been published; it was devised as an extension and improvement upon the results published
earlier.
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cr. Specifically, it is defined as

FOMCD :=
1

dmax
min
c′r
‖co − c′r‖2 · 100% , (5.19)

where dmax is an approximate upper bound10 for the vector distance, while c′r is obtained from
cr by permuting its parameters (Oi, ri) (1 ≤ i ≤ N) of the discs (and analogously for spheres
and cylinders in the 3D case). The minimum operator runs over all such c′r, i. e. finding the
permutation that results in the smallest vector distance. By definition, FOMCD ≤ 100%, but
the maximum can never be reached because the dmax used here is not a tight bound.

As can be expected, each of these measures have different advantages and shortcomings:

FOMRME Its value is too biased towards fbin
co

; it gets exaggerated especially when the number
of foreground pixels is much lower in fbin

co
than in fbin

cr
.

FOMSE This measure performs quite similarly to FOMRME; its main advantage is the smaller
upper bound and the absence of bias.

FOMVE Unfortunately it says nothing about how close co and cr actually are (e. g. it can
have a pretty low value in case of a switching component, like the scenario shown later in
Figure 5.9). Moreover, it is sometimes “inconsistent” with the previous two measures in
the sense that if FOMRME (or FOMSE) is better for one particular reconstruction than for
some other, FOMVE can still be worse for the first reconstruction than for the second one.

FOMCD Its main advantage is that it is not prone to the pixel errors that are quite common
due to the simple rendering approach (namely the nearest neighbor sampling and the lack
of anti-aliasing; see Section 5.2.1). On the other hand, the number of c′r to try equals N !,
so this measure is not practical above N = 10 (where 10! = 3 628 800).

In all the cases, smaller values correspond to better reconstruction qualities, so that a perfect
reconstruction has an associated 0% error using either FOM. According to our experience, a
reconstruction is successful (i. e. “of good quality”) when FOMRME < 10%, FOMSE < 10%,
FOMVE < 3%, and FOMCD < 1.5%. Furthermore, FOMRME ≈ FOMSE (except for pathological
cases), 0.05 ≤ FOMVE

FOMRME
≈ FOMVE

FOMSE
≤ 0.15, and 0.15 ≤ FOMCD

FOMRME
≈ FOMCD

FOMSE
≤ 0.4 most of the time.

5.2.6 Reconstruction Parameter Settings
The configuration geometry was set up so as to mimic the circumstances met in physical ex-
periments. All phantoms were, therefore, constructed with varying number of discs / spheres /
cylinders whose radii and heights exceeded at least 5 pixels. As discussed earlier, ORE = ORI
was assumed in order to force the annulus / tube to be concentric. The image domain had the
dimensions of 100× 100 or 100× 100× 100 pixels.

µ0 was fixed at zero, while the remaining 3 LAC parameters (µR, µI, µD)—and similarly
(µT, µI, µSC)—were assigned either of 2 sets of values: (1, 0, 1) or (1, 2, 3). Again, to come close
to the limitations of real applications, only 2 (at ϑ = 0° and 90°) or 4 projections (at ϑ = 0°, 45°,
90° and 135°) were taken most of the time, usually distorted by 10% of artificial noise.

10In 2D,
(
O1O2

)2 ≤ (2rmax)2 and (r1 − r2)2 ≤ rmax
2 for any circle centers O1 and O2 and radii

r1 and r2. Since the annulus requires one center and two radii and any disc needs one center and
one radius, dmax := rmax

√
(4 + 2) + (4 + 1) ·N can be taken. The 3D case is slightly more compli-

cated: dmax :=
√

((4 + 2) + 4N) · rmax2 + (2 +N) · hmax
2 +NrmaxS2 when having spheres, and dmax :=√

((4 + 2) + (4 + 1) ·N) · rmax2 + (2 + 2N) · hmax
2 when having cylinders.
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(a) (b)

Figure 5.9. A pair of binary images having identical horizontal and vertical projections.
Pixel intensities correspond to 0 / background (white) and 1 / foreground (black). (Frame
added for better visibility.)

The optimization was typically started from an automatically determined c0. For the 3D
case, the merging of discs on neighboring or nearby cross-sections was also allowed during the
construction of c0. All LAC values were held fixed throughout the optimization. τ was set 5%
higher than the noise level.

The temperature was decreased at every 20 attempted iterations using a simple linear an-
nealing schedule (see case 3 of Equation (2.8)). Even though there are several more sophisticated
schedules available (e. g. [71,164] or [103,149,150]), we concluded that the aforementioned simple
strategy suffices when having a good enough c0.

The optimization procedure was stopped when the Hamiltonian H(fc) has fallen below a pre-
set threshold (currently: 10), or the number of configuration candidates c′ rejected subsequently
(i. e. in a row, without any accepted configurations in between) has exceeded some upper bound
(5000 in the present implementation). It would also be possible to terminate the process after a
certain amount of iterations, but this was never realized.

See Table 5.1 for a summary of settings in place.

5.3 Results

Like in other applications of DT, there are situations when multiple global optima exist. One
such case is depicted in Figure 5.9, showing a pair of binary images of common dimensions with
two discs in each. Both discs have the same radius, and their centers lie on opposing corners of
a square (a rectangle in general). The location, size and orientation of this “imaginary” square is
the same in both images. It is easy to see that these images have identical horizontal projections,
and the same is true for the vertical projections. (Essentially, these images behave as generalized
switching components, with discs playing the role of standalone pixels.) Therefore, when using
only 2 projections taken at the aforementioned directions11, exactly two solutions exist, and both
are “correct” from a mathematical point of view. Besides the effects of artificial noise added to
projections, the presence of such ambiguities also pose some complications to the reconstruction
process (albeit the ratio of such pathological cases over the rest is rather small).

The rest of the section is devoted to presenting the simulation results obtained for 2D as well
as 3D configurations.

11It should be noted that the reconstruction becomes a unique task—having a single solution—when using
projections in some other direction (e. g. along image diagonals) that contain more information about the relation
of discs with respect to each other [187].
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Table 5.1. Parameter settings for simulation studies using γ(fc).

Parameter Setting

Configuration geometry

SIZE 100

HEIGHT 100

ORE ORI

rmin 7 when generating phantoms, 5 otherwise

hmin 5

N varies for each phantom

δ 10−3

Projections

n 4 by default; sometimes 2 or 8

µ0 0

(µR, µI, µD), (µT, µI, µSC) (1, 0, 1) by default; sometimes (1, 2, 3)

noise level 10% by default; sometimes 0%, 20% or 40%

Optimization

c0 automatic by default; sometimes random

λ 0.95

λ1 0.5

τ 5% higher than the expected noise level

MERGEO 15

MERGEr 10

ε1 10−2

kB 1

annealing schedule linear (T0 = 100, ∆T = 0.1 @ 20 iters, Tmin = 1)

Miscellaneous

ε 10−6
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(a) (b) (c) (d)

Figure 5.10. Reconstruction of a 2D software phantom from 4 projections at 0% and
10% noise levels. (Frame added for better visibility.) Top row: noiseless projections;
FOMRME = 2.318%, FOMCD = 0.059%. Bottom row: 10% noise level; FOMRME = 3.281%,
FOMCD = 0.237%. (a) Original configuration. (b) Initial configuration. (c) Reconstructed
configuration. (d) Difference of (a) and (c).

5.3.1 Reconstructions of 2D Objects

The reconstruction algorithm was first tested with a couple of 2D software phantoms, some
constructed manually but most of them were generated randomly. All the reconstructions of
these phantoms were performed using 4 projections and the LAC settings (µR, µI, µD) = (1, 0, 1).
(See the end of this subsection regarding the case when other LAC values are taken.) As can be
seen in Figure 5.10, though the quality of the reconstructed configuration degrades (very) slightly
in the presence of noise, the result can still be considered an excellent quality reconstruction with
FOMCD = 0.237%. Further examples are shown in Appendix F, namely in Figures F.1–F.6. It
should be noted that, in most cases, the “precision” of the initial configuration constructed from
the input projections is remarkably good, partly thanks to the 4 projection directions.

The purpose of the next series of test runs was to give a quantitative measure of the algo-
rithm’s sensitivity regarding two factors: the geometrical complexity of the phantom, and the
amount of noise added to the simulated input projections. For each scenario, a collection of 10
random software phantoms were generated and reconstructed independently, then the resulting
FOM values got collected and aggregated into plots for easier visualization. Unless noted other-
wise, all tests assumed the following defaults: (µR, µI, µD) = (1, 0, 1), 2 projections, 3 discs, 10%
noise level, and automatic initial configurations.

As can be seen in Figure 5.11, the approach is able to reconstruct up to 3 discs with an
acceptable quality when using 2 projections, and up to 5 discs when having 4 projections. It is
also evident that, irrespective of the number of discs, worse quality measures are obtained when
the reconstruction process is started from a random initial configuration.

As indicated in Figure 5.12, good quality reconstructions can be expected even in the presence
of substantial amount of noise (≈ 25% or less), but that requires 4 or more projections. When
having only 2 projections, the upper bound for a “safe” noise level is estimated somewhere around
5–10%. To get a feeling of what a noise level of 20% or 40% does to simulated projections, see
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Figure 5.11. Quality of the reconstructions for 2D configurations at 10% noise level as the
function of geometrical complexity, based on 10 repetitions. Error bars indicate the standard
error. Smaller values correspond to better results. (a) FOMRME versus the number of discs.
(b) FOMCD versus the number of discs.

Figure 5.13.
The speed of convergence of the objective function γ(fc) is depicted in Figure 5.14 for a typical

reconstruction of the test object given in Figure F.2 using noiseless projections. As can be seen,
only 170 out of 37 428 SA iterations (≈ 0.45%) resulted in the acceptance of a new candidate
configuration c′; the rest of the proposals were rejected. During this time, the exponent of γ(fc)
rose from the initial −2 960 up to ≈ −8.4, spending altogether about 4 seconds. It is evident
that the objective function kept improving steadily for the first ≈ 40 accepted c′, but slowed
down dramatically thereafter. As can be observed, the objective function can get quite close to
0 in case of perfect LAC values and noiseless projections.

Some of the aforementioned reconstructions were repeated with a different set of LAC values,
namely (µR, µI, µD) = (1, 2, 3). Besides influencing the value of γ(fc), the reconstruction quality
is otherwise unaffected by such changes, implying that the algorithm is robust in this sense.

5.3.2 Reconstructions of 3D Objects
In analogy with the 2D studies presented in Section 5.3.1, the quality of reconstructions was
verified via numerous executions using 3D configurations. Two examples of such objects are given
in Figures F.7 and F.8, both showing nearly perfect reconstructions. As for the 2D scenario, the
automatically determined initial configurations are already pretty close to the ideal ones.

Similarly to the 2D case, we would like to determine how much the reconstruction quality is
affected by the geometrical complexity of configurations as well as the noise level in simulated
projections. Contrary to 2D executions where the geometrical complexity is solely related to the
number of discs within the interior, 3D configurations can comprise spheres as well as cylinders.
It may then come as a surprise that the algorithm behaves quite differently depending on which
kind of geometric primitive is being used. Specifically, good quality reconstructions can be
obtained even when having 6 spheres but only 2 projections (see Figure F.9)! On the other
hand, switching to cylinders makes the graphs resemble more to their 2D counterparts, as is
apparent in Figure F.10 (cf. Figure 5.11). It is also clear that using automatically constructed
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Figure 5.12. Quality of the reconstructions for 2D configurations containing 3 discs as
the function of noise level, based on 10 repetitions. Error bars indicate the standard error.
Smaller values correspond to better results. (a) FOMRME versus the level of noise. (b)
FOMCD versus the level of noise.
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Figure 5.13. Effects of the noise level on simulated 1D projections. (a) Noiseless original
projection. (b) Original projection at 10% noise level. (c) Original projection at 20% noise
level. (d) Original projection at 40% noise level.
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Figure 5.14. Speed of convergence of γ(fc) as the function of iterative steps. Reconstruction
of the 2D software phantom shown in Figure F.2 using noiseless projections. (a) Exponent
of γ(fc) versus the number of accepted candidate configurations c′ (out of 37 428 iterations
in total). (b) Exponent of γ(fc) versus the total number of iterations.
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initial configurations always yields better results in 3D too. (As a matter of fact, the usage of
random initial configurations seems to have a stronger detrimental effect in 3D than in 2D.)

Regarding sensitivity with respect to the noise level, the associated plots are in sync with their
2D companions; this is demonstrated in Figure F.11 (cf. Figure 5.12). The extent of distortions
caused by individual noise levels can be seen in Figure F.12.

Finally, Figure F.13 shows the typical convergence rate expected for 3D objects in the absence
of noise. Though exact iteration numbers and γ(fc) values are different than those shown for
the respective 2D case (cf. Figure 5.14), they both exhibit quite similar trends.

5.4 Summary
The performance of the algorithms has been investigated using numerous randomly generated
configurations as well as with a few manually constructed phantoms. It was demonstrated that 3
or fewer discs can be successfully reconstructed from 2 noisy projections (assuming a noise level
not exceeding 10%), and that reconstruction quality stays high for configurations with up to 5
discs when having 4 noisy projections. Good quality results can be expected up to ≈ 25% of noise
when having 4 projections or more. Similar statistics have been gathered for 3D configurations
containing cylinders.

It is remarkable that 3D configurations can be retrieved from 2 projections with pretty good
quality when having 6 or fewer spheres, so this scenario is apparently easier for our technique
than the one involving cylinders.

As expected, having a suitable initial configuration c0—as determined automatically from
input projections—always guarantees better quality results. On the other hand, starting from
a random c0 invariably yields much worse outcomes: the chance of a successful reconstruction
diminishes when having 2 or more discs or cylinders. (The detrimental effect of a random c0 is
especially striking in the 3D case.)

The aforementioned numbers give a justification for the viability of DT approaches based on
geometrical priors, even when facing reasonably high amount of noise in the measurements.



Chapter 6

Physical Phantoms: Reconstruction
of Objects Parametrized with
Geometrical Primitives

In order to verify the real-world applicability and robustness of the algorithms, several successful
reconstructions are presented based on physical measurements. To get a better insight into how
sensitive the algorithms are to projection distortions, measurements are taken with 3 different
radiation modalities.

The results shown below have been published in [22,33,104,105,121–123].

6.1 Experiment Setup

Except where noted otherwise, the assumptions, approaches and settings described earlier in
Section 5.2 are still valid for the physical experiments. In particular, the following aspects
remain unchanged: visualization of configurations, and computation of simulated projections.

Contrary to simulations, physical experiments are always started from an automatically de-
termined initial configuration. Moreover, the quality of results can only be verified visually, either
by comparing them with the outcome of an alternative reconstruction method (FBP in this case),
or by assessing how close they fit the schematic of the test object (if known). Specifically, since
the original (reference) configuration is unavailable, no FOM values can be determined.

6.1.1 Phantoms and Physical Measurements

Experimental studies were carried out using five series of measurements. The first of them (Test
Case I) was received from HMI1, while the rest (Test Cases II–V) were contributed by KFKI2. As
a matter of fact, all the KFKI experiments concerned the same phantom (a so-called “reference
cylinder”; see Figure 6.1), a solid cylindrical object with three round bored holes of varying depth.

A short description of the test cases follows below; a few additional technical details are given
in Table 6.1.

1These measurements were provided by Markus Strobl and Wolfgang Treimer (HMI).
2These measurements were supplied by Márton Balaskó (KFKI).

71
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Figure 6.1. Diagram of the phantom considered in Test Cases II–V. (Dimensions are shown
in mm.)

Table 6.1. Technical attributes of physical phantoms. ∆ϑ denotes the angular difference
between successive projection directions. Imaging modalities are abbreviated as: X-ray (X),
neutron (N), gamma (G).

2D Phantom 3D Phantom

Case IV

Parameter Case I Case II Case II Case III Full Clipped Case V

SIZE 90 155 155 137 113 113 365

HEIGHT – – 113 70 185 70 400

N 4 3 3 3 2 3 3

n 60 73 73 73 73 73 360

∆ϑ (°) 3 5 5 5 5 5 1

Modality N X X N G G N

# of materials 3 2 2 2 3 3 4
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Case I (series “jun1_a”) A 2D cross-section of an object composed of an annulus and four
discs inside; reconstructions of the cross-section obtained via FBP are depicted in Fig-
ure 6.2(a)–(b). Whereas this object was supposed to contain only two materials (air for
the interior, brass for the annulus and discs), the effective µR and µD have been found
to differ substantially (with an approximate ratio of 2 : 1). Furthermore, input projec-
tions Pϑ were only received partially: the left and right sides were absent, hence most of
the annulus’s projection had to be guessed and completed manually. This is apparent in
Figure 6.2(c)–(d).

Case II (series “GF”) A Plexiglas (poly(methyl methacrylate) [PMMA]) cylinder with air in
all the holes. The deepest (middle) hole contained some aluminum screws at the bottom as
a radiocontrast agent. Sadly, these turned out to be completely radiopaque, thus causing 0
intensity pixels in Pϑ (effectively corresponding to an infinite LAC). We had to, therefore,
discard the lower part of the input projections. As this series of measurements was the first
one received from KFKI, we also had the opportunity to reconstruct just a 2D cross-section
of it besides doing a full 3D reconstruction. (Test Cases III–V have only been reconstructed
in 3D.) Since some of the projections were damaged in the lower 180° direction range, only
those taken at ϑ ∈ [180°, 355°] were used. See Figure 6.3 for an overview of the input
projections.

Case III (series “AF”) An aluminum cylinder3 containing some amount of fluid in all the
holes: ethanol in the thinnest hole and water in the other ones. The upper part of every
hole is filled with air. Since both kinds of fluids were completely radiopaque to the neutron
radiation, the associated pixels of Pϑ had an intensity of 0, so the majority of the projections
again had to be thrown away. This is demonstrated in Figure 6.4.

Case IV (series “FF1”) An iron cylinder containing some lead in the two larger holes; the
rest of each hole is filled with air. As will be later shown in Section 6.2, it is possible to
reconstruct the lead-containing4 holes on their own using the whole projection, as well as
to reconstruct the upper part of all holes containing air separately. For a summary of the
respective projections, see Figure 6.5.

Case V (series “Polish1”) Similarly to Test Case III, this one is also an aluminum cylinder
with varying amounts of fluid in each of the holes, the rest of them being filled with air.
(Here, the fluid was acetone for the hole with the largest diameter, and water for the other
two holes.) On the other hand, the fluid-containing parts were not radiopaque this time, so
it was possible to reconstruct them using the whole projection.5 Even though projections
were of reasonably high resolution, they were also suffering from serious distortions and
noise.

In all the cases, input projections Pϑ were acquired using the instruments and setup discussed
in Section 3.1.2. (More details regarding the radiation source parameters, detector types etc.
used for Test Cases II–V can be found in [22].) For Test Cases II–V, Pϑ were provided as
raw detector measurements that first had to be converted by applying a suitable logarithmic
transform (as per Equation (3.3)) and intensity thresholding / windowing. (The Isource required

3The usage of Test Cases III and IV has not been published; they were investigated as an extension and
improvement upon the results published earlier.

4The air-containing upper parts of the holes will then appear as excessive “noise” in the projection error term
of γ(fc).

5Surprisingly, the LAC values of the two kinds of fluids were found to be approximately equal. Moreover, the
air-containing upper parts of the holes will contribute as “noise” to the projection error term of γ(fc).
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(a) (b) (c) (d)

Figure 6.2. Input projection and FBP reconstruction of Test Case I. (a) Reconstruction
from 60 projections using SNARK [2]. (b) Reconstruction from an unknown number (per-
haps even hundreds) of projections, including top-view measurements as well. (c) Original
projection at ϑ = 0°. (Zero level shown as a dotted line.) (d) Corrected projection obtained
from (c) by completing the missing parts of the ring. (Image (a) is courtesy of Zoltán Kiss
and László Ruskó. Image source for (b): HMI.)

(a) (b) (c)

(d) (e) (f)

Figure 6.3. Input projection and FBP reconstruction of Test Case II. (a) Original projection
at ϑ = 180°. (b) Projection profile of the cross-section marked in (a) with red lines. (Zero
level shown as a dotted line.) (c) The remainder of (a) after cropping the unusable part. (d)
Projection obtained from (c) by applying the logarithmic transform. (e) Projection profile of
the same cross-section in (d). (f) FBP reconstruction of the cross-section from 73 projections
produced by SNARK [2]. (Image (f) is courtesy of Zoltán Kiss and László Ruskó.)
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(a) (b) (c) (d)

Figure 6.4. Input projection and FBP reconstruction of Test Case III. (a) Original projec-
tion at ϑ = 0°. (b) The remainder of (a) after cropping the unusable part. (c) Projection
obtained from (b) by applying the logarithmic transform. (d) FBP reconstruction of one of
the cross-sections from 37 projections produced by SNARK [2]. (Image (d) is courtesy of
Zoltán Kiss and László Ruskó.)

(a) (b) (c)

(d) (e) (f)

Figure 6.5. Input projection and FBP reconstruction of Test Case IV. (a) Original pro-
jection at ϑ = 0°. (b) Projection obtained from (a) by applying the logarithmic transform.
(c) FBP reconstruction of the cross-section marked in (a) with red lines from 37 projections
produced by SNARK [2]. (d) The remainder of (a) after cropping the upper part. (e) Pro-
jection obtained from (d) by applying the logarithmic transform. (f) FBP reconstruction of
one of the cross-sections of (e) from 37 projections produced by SNARK. (Images (c) and (f)
are courtesy of Zoltán Kiss and László Ruskó.)
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(a) (b) (c)

Figure 6.6. Input projection and FBP reconstruction of Test Case V. (a) Original projection
at ϑ = 0°. (b) Projection obtained from (a) by applying the logarithmic transform. (c) FBP
reconstruction of the cross-section marked in (a) with red lines from 180 projections produced
by SNARK [2]. (Image (c) is courtesy of Zoltán Kiss and László Ruskó.)

(a) (b)

Figure 6.7. Benefits of the pre-processing phase for input projections. (a) Cropped-out
region of the raw projection of Test Case V at ϑ = 0°. (b) Projection obtained from (a) by
applying pre-processing steps. (Image (a) is adapted from Figure 6.6(a).)

for the logarithmic transform was determined experimentally as the average background intensity
in the raw measurements.) On the other hand, these steps were not necessary for Test Case I
because we had already received Pϑ as Radon transform values.

As explained in Section 3.1.3, physical measurements are sometimes prone to various dis-
tortions and imperfections. The experiments considered here are not exceptions either, unfor-
tunately. Therefore, before performing the aforementioned logarithmic transform and intensity
thresholding, Pϑ had to be pre-processed using several techniques: uniformity and intensity
correction, median filtering, motion correction using image registration techniques [42,182], etc.6
The benefits of these steps are demonstrated in Figure 6.7.

6.1.2 Reconstruction Parameter Settings
SIZE and HEIGHT were set to the corresponding dimension of the input projections Pϑ. More-
over, the number N of discs / cylinders were given as part of the a priori information.

Reconstructions were always carried out from 4 projections (at ϑ = 0°, 45°, 90° and 135° for
all experiments except for Test Case II where the directions 180°, 225°, 270° and 315° were taken)

6All the pre-processing steps mentioned here were entirely implemented and accomplished by Zoltán Kiss;
more details can be found in his thesis [103].
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Table 6.2. Parameter settings for physical experiments using γ(fc).

2D Phantom 3D Phantom

Case IV

Parameter Case I Case II Case II Case III Full Clipped Case V

rmin 2.5 3 3 3 3 3 5

hmin – – 5 5 5 5 5

µ̂R, µ̂T 60.126 0 0 0 0 0 0

µ̂I 0.0013 1.945 1.82 1.858 2.016 2.016 0.181

µR, µT 60.5 0 0 0 0 0 0

µI 0 1.93 1.75 1.9 2 2 0.21

µD, µSC 31.85 0 0 0 3.2 0.75 3.825

τ (%) 15 25 15 15 15 15 20

MERGEO – – 10 15 15 15 25

MERGEr – – 5 10 10 10 15

for sake of robustness and due to the bad quality of projections. (Even after the pre-processing
corrections mentioned in Section 6.1.1, some distortions could not be entirely eliminated from the
input projections, e. g. non-uniformity, precession of the object, or the vertical striping probably
caused by detector defects.)

Estimated LAC values µ̂R, µ̂T and µ̂I were determined automatically as part of the procedure
described in Section 4.5, while µ̂D and µ̂SC were devised manually after the elimination of the tube
and its interior from Pϑ. All the LAC parameters were then held fixed during reconstruction.

Finally, the noise threshold level τ had to be settled experimentally since the actual noise
level was unknown.

Table 6.2 gives a summary of all parameter settings in effect. With the exception of these
changes, the values listed in Section 5.2.6 were employed for all remaining parameters.

6.2 Results

This section presents the results obtained from physically measured projections for 2D as well
as 3D configurations.

6.2.1 Reconstructions of 2D Objects

The reconstruction of Test Case I, the first 2D physical phantom, is depicted in Figure 6.8. As
is apparent, the relative sizes and positions of all the discs approximately match their original
settings when compared to the reconstructions obtained with FBP. For reference, one of the
simulated projections is shown there as well; this is also in agreement with the respective input
projection.

Figure 6.9 shows one of the cross-sections reconstructed from Test Case II, along with the
reference FBP reconstruction. Though the two larger holes seem to have the correct locations



78 CHAPTER 6. PHYSICAL PHANTOMS: PARAMETRIC OBJECTS

(a) (b) (c) (d)

(e) (f) (g)

Figure 6.8. Reconstruction of Test Case I from 4 projections. (a) Initial configuration.
The two smaller discs were added randomly. (b) Reconstructed configuration. (c)–(d) FBP
reconstructions. (e) Failed reconstructed configuration from 2 projections. (f) Simulated
projection of (b) at ϑ = 0°. (g) Input projection at ϑ = 0°. (Images (c), (d) and (g) are
taken from Figure 6.2.)

and radii, the third one has too small a radius and is somewhat shifted from its ideal position.
Despite the rather noisy input projections (especially for Test Case II), the initial config-

uration constructed by the method is still quite close to the ideal one (which is unknown, of
course). The only issue is that discs with very small radii cannot be detected, and hence have
to be substituted with randomly generated ones; this can be seen in Figures 6.8(a) and 6.9(a).

As demonstrated by Figures 6.8(e) and 6.9(d), the algorithm sometimes gets stuck in a local
optimum when using only 2 projections. We hypothesize this might be caused by the distortions
remaining in input projections.

6.2.2 Reconstructions of 3D Objects

The reconstruction of the full 3D model of Test Case II is shown in Figure 6.10. While the hole
with the smallest radius cannot be detected (and thus gets supplied randomly), the algorithm can
nevertheless produce a pretty good result. In particular, the radius and position of the thinnest
cylinder is also correct, which is definitely an improvement over the 2D case (cf. Figure 6.9).

Test Case V could be also reconstructed with good precision (at least to the extent this can
be determined by visual comparisons); see Figure 6.11. This phantom was especially challenging
due to the large amount of distortions (e. g. non-uniformity, precession of the object).

Further results7 for Test Cases III and IV are given in Appendix F; see Figures F.14, F.15
and F.16. As mentioned in Section 6.1.1, Test Case IV could, actually, be reconstructed in two
ways: first with a focus on the two lead-containing parts of the holes (completely ignoring the
air-filled parts), and second by keeping only the upper region of input projections and targeting

7The results of Test Cases III and IV have not been published; they were obtained as an extension and
improvement upon the results published earlier.
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(a) (b) (c)

(d) (e) (f)

Figure 6.9. Reconstruction of a cross-section of Test Case II from 4 projections. The location
of the cross-section is marked in Figure 6.3(a) with red lines. (a) Initial configuration. The
largest discs at top right was added randomly. (b) Reconstructed configuration. (c) FBP
reconstruction. (d) Failed reconstructed configuration from 2 projections. (e) Simulated
projection of (b) at ϑ = 180°. (f) Input projection at ϑ = 180°. (Image (c) is taken and
image (f) is adapted from Figure 6.3.)

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.10. Reconstruction of Test Case II from 4 projections. (a) Initial configuration.
The smallest cylinder was added randomly. (b)–(e) Different views of the reconstructed
configuration. (f) FBP reconstruction of the cross-section marked in Figure 6.3(a) with red
lines. (g) Simulated projection of (b)–(e) at ϑ = 180°. (h) Input projection at ϑ = 180°.
(Images (f) and (h) are taken from Figure 6.3.)
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.11. Reconstruction of Test Case V from 4 projections. (a) Initial configuration.
(b)–(e) Different views of the reconstructed configuration. (f) FBP reconstruction of the
cross-section marked in Figure 6.6(a) with red lines. (g) Simulated projection of (b)–(e) at
ϑ = 0°. (h) Input projection at ϑ = 0°. (Images (f) and (h) are taken from Figure 6.6.)

the three air-filled holes. As is apparent in Figure F.16, the second kind of reconstruction of Test
Case IV is only satisfactory at best: the radii of the two smaller holes are larger than expected.

Like earlier for 2D objects, the automatically determined initial configurations are still very
good in most cases.

6.3 Summary
We have demonstrated that the new DT approach introduced earlier is able to produce successful
reconstructions from physical measurements as well. In particular, the algorithm was tested
with two 2D and four 3D objects whose projections had been taken with 3 different radiation
modalities. In all the cases, the accuracy of reconstructions was verified by comparing 2D cross-
sections—or top-view VRML renderings—with the result of a classical reconstruction technique
(FBP).

It was also shown that it is not always possible to obtain good results when taking only 2
projections (probably due to their bad quality even after pre-processing corrections), but this
issue goes away when having at least 4 projections.



Chapter 7

Algorithm: Reconstruction of
Deformed Polycrystalline Samples

The determination of the mesoscopic structure of poly-crystalline structures is a demanding and
fundamental task in crystallography. This chapter offers a new approach for rendering a 2D grain
map of a polycrystal based on an orientation map reconstructed from X-ray diffraction patterns.
The orientation and grain maps are produced by a Bayesian discrete tomographic algorithm,
applying image-modeling Gibbs priors and a homogeneity condition. The optimization of the
objective function is accomplished via the Metropolis algorithm. In order to express the structure
of the orientation map, the similarity of orientations is defined by means of unit quaternions.

The author published his results and achievements in [16,165,166].

7.1 Motivation

Many materials, natural or artificial, are found in crystalline forms (e. g., metals, ceramics,
minerals, precious gems, ice, bones and drugs). As such, crystalline structures are of basic
interest to various branches of science, including materials science, physics, geophysics, chemistry,
biology, pharmacy, and forensic science. Some typical fields of application incorporate structure
determination, deformation analysis (e. g., metals, plastic deformation), and examining the effects
of recrystallization.

Solid state physics deals with the structures and properties of rigid matter including crys-
tals [21,106], while crystallography deals with the symmetry and experimental determination
of crystal structures. The crystal structure is determined by the crystalline lattice (the so-
called Bravais lattice) and the (crystalline) basis. The latter is a physical unit (like a collection
of atoms or molecules) that is to be located at every lattice point. It is the crystal structure
that governs many of the physical, chemical, and mechanical properties of a crystalline material.
As a matter of fact, materials science, an interdisciplinary field, is occupied with investigating
the relationship between the microscopic structure of materials and their macroscopic properties.
For more on this topic, see [45,52,93,107] and the aforementioned references.

7.1.1 Problem Description

Most crystalline materials are polycrystals, i. e., they are composed of an assemblage of crystals,
called grains or crystallites. In case of an undeformed specimen, the lattice within each grain

81



82 CHAPTER 7. ALGORITHM: DEFORMED POLYCRYSTALS

is typically near-perfect. As such, each grain can be associated with one orientation. In case of
deformed specimens, the grains will further sub-divide into near-perfect sub-grains. For moderate
degrees of deformation the orientations within a grain will vary within a certain orientation range
around the so-called basic orientation. This spread will typically be smaller than the difference
between the basic orientations of neighboring grains.

A piece of specimen may, in fact, be a conglomeration of several different materials. On the
other hand, it is also possible to encounter vastly distinct crystalline solid states for a given
material, which also may occasionally coexist in a specimen. In either case, a region of material
that is chemically uniform and physically distinct (e. g. the crystal structures differ) is dubbed
a material phase (or simply phase for short). Accordingly, polycrystals consisting of a sin-
gle crystal structure (that is, when all the grains have a common crystal structure) are called
monophase, otherwise they are regarded as multiphase.

In the problem under investigation, the aim is to generate a so-called orientation map
[7, 45,80,82,107,147,163]: an image associating the underlying crystalline orientation with each
pixel. In addition, sometimes it is beneficial to establish a grain map: a labeling (coloring)
of a polycrystalline specimen, where each grain is represented by a color—or direction vector—
according to its basic orientation. (That is, sample pixels belonging to a particular grain are
to receive the same “grain label.”) As a matter of fact, the physical, chemical and mechanical
properties of a crystalline material is to a large extent governed by the geometrical features of
this 3D complex, including neighboring effects (such as the correlation between the orientation
of two neighboring grains and the morphology of the boundary separating them). Hence, the
ability to study the grain map as well is very important for certain materials science applications.

There is an inherent difficulty with the problem as stated above: even with the knowledge of
the location of the crystal lattice points in space (relative to some fixed coordinate system), the
“basic orientation” of the grain (in the sense of how it had to be rotated relative to some reference
position in order to get into its current position) is not defined in an obvious and unambiguous
manner. Consider, for example, the simple cubic lattice whose lattice points are at locations
(x, y, z) with x, y, z ∈ Z. Suppose further that we rotate the lattice by 3π

4 radians counterclock-
wise around the positive z-axis. The resulting arrangement of lattice points is indistinguishable
from what would be obtained by rotating the lattice by π

4 radians counterclockwise (or, for that
matter, clockwise) around the positive z-axis. Thus, due to the lattice structure (more specifi-
cally the so-called crystal symmetry), the same observable arrangement of lattice points can
be obtained by very different rotations; which of these should then be selected for the definition
of “orientation”? This important point will be revisited in Section 7.4, but its consequences will
be ignored in the discussion until then.

7.1.2 Contemporary Approaches and Pitfalls

Until a few years ago the only techniques for determining grain maps were surface probes such
as optical and electron microscopy (EM). X-ray scanning methods have recently been demon-
strated with sub-micrometer resolution [129]. The major disadvantage of these techniques is
that they are destructive, since the sample has to be prepared and sliced before examination.
Besides generating only 2D maps, these tools are inherently slow, thereby ruling out any study
of the dynamics of the individual grains during typical processes such as annealing or deforma-
tion. As a consequence of this lack of experimental studies, existing models of basic industrial
processes, such as deformation and annealing, are grossly simplified and typically deal only with
average properties of the grains. On the other hand, X-ray and neutron tomography allow for
the nondestructive characterization, but with serious limitations: no information is gathered
about orientations (as measurements convey only information on material density and radiation
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absorption), and the methods apply only to multiphase systems (where these techniques may be
nevertheless employed for discovering the distribution of material phases).

A breakthrough was the introduction of three-dimensional X-ray diffraction (3DXRD) mi-
croscopy, as has been established at beamline ID11 of the European Synchrotron Radiation Facil-
ity (ESRF). 3DXRD is a nondestructive imaging technique that uses high-energy monochromatic
X-rays and utilizes the physical phenomenon known as diffraction to produce an image of a
2D layer of the sample in the form of diffraction patterns. These patterns (also called projec-
tions) are recorded by a detector plate while the sample is rotated about an axis perpendicular
to the X-ray beam. As this technique is nondestructive, it makes dynamic studies feasible, e. g.
allowing for the creation of movies by repeated in situ acquisitions of grain maps during the
relevant treatment of the sample. In addition, it has an exceptional penetration depth (several
millimeters for steel and some centimeters for aluminum), and, as its name suggests, even 3D
reconstructions can be performed by imaging multiple cross-sections. Combined with dynamic
studies, in favorable cases 3D movies can be produced of grain growth processes [174,175]. The
acquisition of such data is seen as a prerequisite to establish first-principles models for industrially
very important processes such as recrystallization and phase transformation. (Detailed descrip-
tions of 3DXRD and information on its software implementation can be found in [14,153,154].)

Several methods based on 3DXRD have been proposed to extract grain maps and orientation
data. At the time of research this meant that, in all cases, the diffraction spots were first sorted
with respect to grains by some external tool, for instance performed by GRAINDEX [130]. Grains
were then reconstructed one-by-one either by projecting the outline of the relevant diffraction
spots back onto the sample plane [156], or by using an adaptation of ART [31, 136, 155]. These
techniques impose severe restrictions on the specimen:

• The number of grains should be small in order to have as few overlapping diffraction spots
as possible (since these have to be discarded); and

• The in-grain local variation of orientation ought to be negligible. (In other words, the
sample must be undeformed, requiring that the so-called mosaic spread of each grain be
below one degree. [153])

Even if these restrictions are met, the reconstructed grain map sometimes contains void regions
or overlapping grains—both phenomena are undesirable in practice.

The author was introduced to this field and the aforementioned topics during his scholarship
at City University of New York1 (CUNY) and internship at Risø National Laboratory2 (Risø for
short), supervised by professors Gabor T. Herman and Henning Friis Poulsen, respectively. This
culminated in a new method, as presented in the rest of the chapter, which can also be regarded
as an application of 3DXRD. However, it differs from all aforementioned techniques due to its
reliance on DT, which may be a suitable tool to get good results even if the aforesaid restrictions
are not satisfied. In particular, as will be demonstrated, we can study deformed specimens with
the new approach.

7.2 Reconstructing Orientation Maps
To overcome the problems mentioned in Section 7.1.2, we have chosen the following approach.
Two-dimensional sections (layers) of the sample are illuminated sequentially and reconstructed

1Discrete Imaging and Graphics Group, Department of Computer Science, The Graduate Center, City Uni-
versity of New York, New York, NY, USA

2Center for Fundamental Research: “Metal Structures in Four Dimensions”, Risø National Laboratory,
Roskilde, Denmark
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separately (and this can be achieved in practical settings). Instead of tracking and selecting
diffraction spots to build a grain map, the unaltered projections are used to reconstruct a 2D
orientation map from which we derive the grain map. That is, the aim is to reconstruct a
vector-valued image of a cross-section of the specimen from a set of X-ray diffraction patterns
acquired via 3DXRD. To the knowledge of the author, no transform or algebraic reconstruction
algorithm for reconstructing such a vector field was readily available at the time of research (see,
e. g., [153]).

This procedure is more natural than the techniques mentioned above, in the sense that it
takes advantage of every measurement, and that it returns a discrete solution as opposed to the
continuous one produced by ART. (In fact, these GRAINDEX-based methods are only applicable
to undeformed samples; they cannot work for deformed specimens, in which—by the nature of
plastic deformation—a range of orientations is associated with each grain.)

7.2.1 Prerequisites

The following assumptions are made:

• The sample is a monophase polycrystal with a known crystal structure (i. e., every grain
has the same crystal structure);

• The circumference of the sample in the layer to be reconstructed and a discretization of
this layer are both established;

• Orientations are defined with respect to the image acquisition system whose geometry and
technical parameters are known; and

• Orientations are allowed to vary arbitrarily in general—hence permitting both undeformed
and deformed samples—, but the probability of encountering a given orientation map is to
be driven by certain a priori known properties it exhibits:

– Neighboring sample pixels are encouraged to have similar orientations (within some
range);

– The presence of a major dissimilarity between the orientation of adjacent pixels con-
stitutes a grain boundary; and

– The layout of such boundaries can be described with a small set of pixel neighborhood
configurations (i. e. local image features).

Furthermore, since there are finitely many grains in the cross-section (though the total number
may be unknown), the set of possible basic orientations is also finite (although the value of the
particular elements is unknown). This way the problem becomes a DT reconstruction task. This
still holds even when allowing variations in the orientation of individual pixels of a grain: though
the set of permissible orientations seems infinite, it can be considered finite—though of enormous
cardinality—for practical purposes due to the aforementioned assumptions and the properties of
diffraction and the imaging system (see Section 3.2). (In fact, as will be later discussed, the set O
of crystalline orientations has been indeed chosen so that it is known and finite; see Section 8.1.2,
Equation (8.1).)
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7.2.2 Objective Function
Our reconstruction procedure is based on the Bayesian technique described in [51]. Whereas
the method from [51] deals with gray-valued images, some details have to be adjusted to be
applicable to orientations instead of gray levels.

Let a finite 2D section of the specimen of interest, D ⊂ Z2, be discretized into a set of pixels
i. Furthermore, let

o : D → O, i 7→ o(i) (7.1)

denote a 2D digital orientation map, that is a vector-valued image whose pixels i are assigned
an orientation o(i) ∈ O. While it is fairly straightforward to define pixel values in terms of density
(no matter whether it describes an absorption or an intensity), the representation of rotations—
let alone crystalline orientations—is more complicated. It is also important to see that the choice
of representation is a critical decision, for it has many effects on the feasibility and the efficiency
of an algorithm (such as how to define and compute the “distance” of orientations), and thus it
needs some deliberation. These issues are discussed in the forthcoming Sections 7.4 and 8.1.2;
the exact definition of O will be given thereafter (see Equations (7.20) and (8.1)).

Most DT methods employ some kind of a priori information about the object to be re-
constructed in order to get a reconstruction appropriate for the field of application. Since the
orientation of a pixel inside a particular grain is likely to be similar to that of its neighbors, we
decided to model orientation maps as a Markov random field (MRF), that can be character-
ized by its joint Gibbs distribution [40, 71, 192]. Using an MRF image model has the advantage
that only local features need to be specified, allowing for a compact image description and an
efficient algorithm. Such a formulation had earlier been successfully used for binary [47,132,137]
and multilevel DT [50,133].

The probability of occurrence of an orientation map o is given by the Gibbs distribution (cf.
Equation (2.12))

π(o) :=
1

Zβ;o
e−βH(o) , (7.2)

where β and Zβ;o correspond to the inverse of the temperature and to the partition function,
respectively. It is the construction of the Hamiltonian H(o) that carries the desired properties
of an orientation map o. As presented more precisely below, this function is calculated as a
weighted sum of clique potentials. It is defined as

H(o) := H1(o) +H2(o) , (7.3)

The first term of H(o) establishes a homogeneity condition:

H1(o) := −

 ∑
C∈C+

λ1ΦC(o) +
∑
C∈C×

λ2ΦC(o)

 , (7.4)

with

Φ{i,j}(o) := e−

(
d(o(i),o(j))

)2
2δ2 . (7.5)

C+ denotes the set of all horizontal and vertical pair cliques (i. e., pairs of adjacent pixel
indexes), while C× is that of all diagonal pair cliques. Actually, both classes comprise so-called
doubleton (i. e. 2nd order) pixel cliques well known in digital topology: C+ represents all the 4-
connected neighbors, while C× covers the remaining cliques of 8-connected neighbors. This
is demonstrated in Figure 7.1. The real-valued coefficients λ1 and λ2 determine the contribution
of each type of interaction (i. e. the associated clique potential), and the free parameter δ >



86 CHAPTER 7. ALGORITHM: DEFORMED POLYCRYSTALS

(a) (b)

Figure 7.1. 2nd order cliques formed by the black pixel in the center and one gray pixel.
(a) C+: 4-connected neighborhood. (b) C×: 8-connected neighborhood (excluding neighbors
that are also 4-connected).

0, together with the λk ( k ∈ {1, 2}), controls the degree of homogeneity. (As a matter of
fact, δ is related to the maximal expected orientation spread over all the grains, or, more
explicitly, to the maximal distance likely to be encountered between the orientations of adjacent
pixels within any grain.) The nonnegative function d

(
o(i), o(j)

)
measures the distance of two

orientations (i. e. it is a measure of the disorientation), a smaller value indicates more similar
orientations. Since the definition of d

(
o(i), o(j)

)
depends inherently on the representation of

crystalline orientations of O, it will be specified later in Section 7.4 (see Equations (7.24) and
(7.25)). Finally, Φ{i,j}(o) measures the similarity of orientations associated with the pair clique
{i, j} of o (inspired by Gaussian radial basis functions used in e. g. machine learning).

The second term in H(o), namely H2(o), models the borders between neighboring grains:

H2(o) := −
∑

C∈C3×3

(
κ1I

1
C(o) + κ2I

2
C(o) + κ3I

3
C(o)

)
. (7.6)

C3×3 denotes the set of all cliques with 3× 3 blocks of pixels, κk are scalars (k ∈ {1, 2, 3}), and
IkC(o) are {0, 1}-valued functions corresponding to the clique configurations shown in Figure 7.2.
For instance, I1

C(o) is defined as

I1
C(o) :=



1, if d
(
o(k), o(c)

)
≤ δ ∀k ∈ {w, nw,n, ne, e}

and d
(
o(k), o(s)

)
≤ δ ∀k ∈ {sw, se} and d

(
o(n), o(s)

)
> ∆ ,

1, if d
(
o(k), o(c)

)
≤ δ ∀k ∈ {w, sw, s, se, e}

and d
(
o(k), o(n)

)
≤ δ ∀k ∈ {nw, ne} and d

(
o(n), o(s)

)
> ∆ ,

1, if d
(
o(k), o(c)

)
≤ δ ∀k ∈ {s, sw,w, nw, n}

and d
(
o(k), o(e)

)
≤ δ ∀k ∈ {se, ne} and d

(
o(w), o(e)

)
> ∆ ,

1, if d
(
o(k), o(c)

)
≤ δ ∀k ∈ {s, se, e,ne,n}

and d
(
o(k), o(w)

)
≤ δ ∀k ∈ {sw, nw} and d

(
o(w), o(e)

)
> ∆ ,

0, otherwise .

(7.7)

Indexes c, n, ne, e, se, etc. (denoting center, north, northeast, east, and southeast, respectively)
are used to select individual pixels within a 3 × 3 clique. The first case in Equation (7.7), for
example, corresponds to the upper-left clique configuration in Figure 7.2 (labeled “horizontal”) in
which the orientation of every pixel labeled by “x” is similar to that of pixels labeled by “a”. Each
IkC(o) models borders in a particular set of directions, while the factors κk govern the strength
of each kind of interaction (i. e. the associated clique potential). It is obvious that δ, which
also occurs in Equation (7.5), directly determines the maximal distance of similar orientations.
Likewise, ∆ ≥ δ represents the minimal degree of separation of the basic orientations of
neighboring grains (called the misorientation in materials science [145,146]).
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Figure 7.2. Clique configurations for borders between different orientations. Pixels labeled
by “a” and “b” have dissimilar orientations. Pixels labeled as “x” all have orientations similar
to those labeled by either “a” or “b”. The legend on the left shows the meaning of pixel
indexes used in Equation (7.7). (Image source: [51].)

The actual value of the coefficients κk (k ∈ {1, 2, 3}) and λl (l ∈ {1, 2}) has to be determined
experimentally. As recommended in [51], they may be chosen so that 1

2κ3 = κ2 = κ1 and
λ2 = 1√

2
λ1. The first condition compensates for the fact that horizontal, vertical, and diagonal

border elements can always be found in pairs at the border between two regions. The second
encourages spatially isotropic interaction in the modeling of homogeneity. See Section 8.2.6 for
an overview of exact parameter values taken for reconstructions.

Having defined the desired distribution of orientation maps, we can now formulate the pos-
terior distribution in terms of the physical measurements. According to Bayes’ theorem,
the probability of an orientation map o given the set of input diffraction patterns P and the
prior π(o) is

Pr(o|P) =
L(P|o)π(o)

Pr(P)
, (7.8)

where L(P|o) is a probabilistic likelihood function for modeling noise [14]. We are looking for
the orientation map o that maximizes Pr(o|P). However, as Pr(P) is independent of o, it is
sufficient to maximize the numerator of Equation (7.8) over the set of all possible orientation
maps, because the o that maximizes Pr(o|P) is the same as the one that maximizes L(P|o)π(o):

arg max
o

Pr(o|P) = arg max
o
L(P|o)π(o) .

For convenience, we chose
L(P|o) := e−β(α‖Po−P‖1) , (7.9)

where Po denotes the set of simulated diffraction patterns given the orientation map o, ‖·‖1 is
the usual `1 norm, and α > 0 determines the relative importance of the projection error term
‖Po −P‖1.

Accordingly, the aim is to maximize the following objective function (cf. Equation (2.16)):

γ(o) := L(P|o)π(o) =
1

Zβ;o
e−β(H(o)+α‖Po−P‖1)

=
1

Zβ;o
e−β(H1(o)+H2(o)+α‖Po−P‖1) .

(7.10)
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This, effectively, implies that the sum H(o) + α ‖Po −P‖1 needs to be minimized. (This is
achieved by having H(o) as negative and the projection error term ‖Po −P‖1 as close to zero as
possible.) Such an optimization can be performed, for example, using the stochastic techniques
discussed in Section 2.2.3. Using either of these schemes means that the optimization progresses
iteratively, so that in each iteration step the orientation of a random pixel is altered conforming
to the probability distribution γ(o). It is an important aspect that the computation of the
posterior distribution Pr(o|P)—hence the computation of γ(o) as well—is local, due to the MRF
properties of π(o), so it can be accomplished in a quite efficient way.

7.2.3 Optimization
In the present implementation the optimization of γ(o) is carried out using the Metropolis algo-
rithm (see Section 2.2.3). A major advantage of this iterative Monte Carlo approach is that it
does not need the value of γ(o) itself during optimization.

At every iteration of the Metropolis algorithm, a new approximation o′ is constructed accord-
ing to the following principle:

1. The orientation o(i) of a pixel i may be replaced with one of the nearest neighbors in
orientation space of o(i) itself or of any of its 4-connected neighboring pixels. (See below
for an explanation.)

More specifically, o′ is generated from o as shown in Algorithm 7.1. Line 4 relies on the set
N
(
o(i)

)
of neighbors of orientation o(i). Since the interpretation of “orientation adjacency”

heavily depends on the choice of O, its definition will be given later (see Equation (8.4)).

Algorithm 7.1. One iterative step for obtaining a new orientation map o′.
1 Let o′(i) := o(i) for all i ∈ D
2 Randomly choose a pixel i ∈ D
3 Let J := { j ∈ D | j is a 4-connected neighbor of i }
4 Randomly pick o′(i) from {o(i)} ∪ N

(
o(i)

)
∪
⋃
j∈J

(
{o(j)} ∪ N

(
o(j)

))
5 Decide on whether to accept o′ based on the Metropolis probability po′

The optimization procedure can, in theory, be started from an arbitrary orientation map o0,
but—as in the case of parametric object reconstructions discussed in Chapter 4—the closer the
initial o0 is to the expected global optimum, the faster the convergence of the algorithm will be
(and the less the chance will be to get stuck in local optima). The exact way of its construction
is discussed in Section 8.2.4.

Iterations continue until some termination criteria are satisfied; these will be later detailed
in Section 8.2.6.

7.3 Reconstructing Grain Maps Directly
Once the optimization of γ(o) has finished, it is a rather straightforward procedure to derive
a grain map based on the optimal orientation map o. For instance, one can apply a standard
connected component (or labeling) algorithm [29, 177, 181] to o, using the disorientation
d
(
o(i), o(j)

)
as a similarity / distance measure (in particular, looking for grain boundaries based

on a fixed misorientation threshold). (These techniques classify the pixels of an image into
so-called regions by assigning a unique region label to every pixel.) However, as explained
in Section 8.3.1, the optimization of γ(o) progresses rather slowly for practical purposes. To
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overcome this concern, we make explicit use of the discrete and nonrandom nature of the mi-
crostructure. We assume that it is meaningful to associate the specimen with a grain map g as
well as an orientation map o, and attempt reconstructing both simultaneously. This is motivated
by the fact that the grain structure exhibits additional properties, which may be exploited in the
reconstruction:

• The grains can be approximated by discrete objects in the sense that a given voxel in the
sample either fully belongs to a given grain or not at all.

• The grains are simply-connected (i. e. 4-connected) 3D space filling objects within the
borders given by the sample geometry.

• The grain boundaries are smooth.

• The physics underlying the generation of the structure implies that grain maps tend to
resemble each other, once they have been scaled to the average grain size. Hence, it is
possible to describe local properties statistically.

The simultaneous reconstruction of o and g has several advantages. First, the configuration space
can be vastly reduced, bringing about a serious improvement in the speed of computation; see
Section 8.3.2. Moreover, this also allows for an incorporation of additional information about
the microstructure to be incorporated into the solution. Finally, as mentioned earlier, many
applications of materials science demand an accurate determination of both orientation maps
and grain maps.

We start by letting
g : D → G, i 7→ g(i) (7.11)

denote a 2D digital grain map, that is a scalar-valued image whose pixels i are assigned a grain
label g(i) ∈ G. The latter, in turn, is defined as

G := {1, . . . , G} (7.12)

where G denotes the number of grains in section D of the specimen. Clearly, if i and j are
pixels in the same grain, then g(i) = g(j). The notation g` will be used to designate the set
{ i ∈ D | g(i) = ` } of indexes of all the pixels i associated with the grain labeled ` ∈ G. In
addition, the special grain label 0 will also be employed during the course of reconstruction in
order to indicate so-called ambiguous pixels whose grain membership is not yet decided.

Two more concepts need to be established before proceeding. The basic orientation of a
set of orientations o(i1), . . . , o(iR) is represented by the orientation obasic ∈ O that minimizes∑R
r=1 d

(
o(ir), obasic

)
. (The exact definition of O and d

(
o(i), o(j)

)
will be given later; see Equa-

tions (7.20) and (8.1), as well as Equations (7.24) and (7.25), respectively.) The orientation
spread of grain g` is defined as the maximal distance between the basic orientation obasic;` of g`
and the orientation of any pixel constituting g`:

max
i∈g`

d
(
o(i), obasic;`

)
. (7.13)

7.3.1 Prerequisites
Besides the assumptions taken in Section 7.2.1, the following preconditions shall also hold:

• The number G of grains located in the 2D sample layer of interest is fixed and known
beforehand.
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• If an initially undeformed specimen is deformed, the boundaries between grains get dis-
torted. At the same time the lattice is no longer homogeneous within each grain, but
there is a spatial variation of orientation. With increasing amount of deformation, these
distortions become larger and larger. In the following we confine ourselves to moderate
degrees of deformation, which refers to the case in which it is possible to derive the corre-
sponding (deformed) grain map from a given orientation map. This restriction is expected
to allow reconstructions of acceptable quality even under unfavorable circumstances (e. g.,
high background radiation level or low photon count).

• An initial guess of basic orientations, orientation spreads, centers-of-mass, and approximate
morphologies of grains should be available. A program called GRAINSWEEPER [153] is
under development, its specific purpose is to provide such information on grain maps and
orientation maps via the analysis of 3DXRD diffraction patterns.

• The statistical distribution of typical grain morphologies in moderately deformed orienta-
tion maps is available.

7.3.2 Objective Function
Our reconstruction procedure is an extension of the Bayesian technique described in Section 7.2.
Furthermore, the algorithm presented below is a generalization of the stochastic algorithm for
undeformed specimens devised in [14,15] to moderately deformed samples. Since the orientation
of a pixel within a particular grain is likely to be similar to that of its neighbors, and all moder-
ately deformed grain maps show similar morphological features (depending on the material and
the magnitude of deformation, of course), we decided to model both maps simultaneously by a
Gibbs distribution. This has the advantage that only local features need to be specified, making
the description compact and the algorithm efficient.

The probability of occurrence of a grain map / orientation map pair (g, o) is given by, similarly
to Equation (7.2),

π(g, o) :=
1

Zβ;g,o
e−βH(g,o) , (7.14)

where the Hamiltonian H(g, o) carries the desired properties of a grain map g and of an orien-
tation map o. It is defined as

H(g, o) := H1(g, o) +H2(g) . (7.15)

The first term of H(g, o), again, establishes a homogeneity condition:

H1(g, o) := −
G∑
`=1

 ∑
C∈C+,`

λ1;gΦC(o) +
∑

C∈C×,`

λ2;gΦC(o)

 , (7.16)

with Φ{i,j}(o) exactly as defined in Equation (7.5). C+,` denotes the set of all horizontal and
vertical pair cliques (i. e., pairs of adjacent pixel indexes) within grain g`, while C×,` is that of all
diagonal pair cliques inside grain g`. Finally, the real-valued coefficients λ1;g and λ2;g determine
the contribution of each type of interaction (i. e. the associated clique potential).

The second term in H(g, o), namely H2(g), models the borders between neighboring grains.
That is, the purpose of this term is to capture typical grain-like features of moderately deformed
maps. This is achieved by expressing H2(g) in terms of appropriately chosen set of clique con-
figurations and associated potentials. Before proceeding with its exact definition, it should be
noted that this Gibbs distribution is, in fact, defined on multicolored images (viz. g). However,



7.3. RECONSTRUCTING GRAIN MAPS DIRECTLY 91

Figure 7.3. Obtaining 3×3 binary local configurations from multicolored grain map images.
Pixels having the grain label of the central pixel are considered white; the rest are mapped
to black. (Adapted from: [15].)

C1 C2 C3 C4 C5 C6

Figure 7.4. The configurations C1, . . . , C6 of a 3× 3 clique that we use in our model of grain
morphologies. Configurations not in any of C1, . . . , C6 are put into C0 (not shown). (Adapted
from: [14–16].)

in order to keep the number of parameters low, we compute H2(g) by suitably resorting to binary
configurations, as is explained below.

For each pixel in the multicolored grain map g, we define its local configuration as a 3× 3
array of black and white pixels as follows: the central pixel is always white and any other pixel
is white if, and only if, it belongs to the same grain as the central pixel. This is demonstrated
in Figure 7.3. These configurations are partitioned into seven equivalence classes C0, C1, . . . , C6,
each containing configurations of similar morphology, such as “grain interior,” “grain edge,” etc.
For 1 ≤ k ≤ 6, the class Ck consists of the configurations illustrated in Figure 7.4 and all the
configurations that can be obtained from it by a sequence of 90° rotations around the center and
mirror images about the central vertical line. Configurations not in any of C1, . . . , C6 are put into
C0. (The choice of these clique configurations was motivated by [14,15,132].)

Now we can define H2(g) as

H2(g) := −
6∑
k=0

κk;gN(Ck, g) , (7.17)

where the factors κk;g are scalars (0 ≤ k ≤ 6), governing the strength of each kind of interaction
(i. e. the clique potential associated with class Ck) [132]. On the other hand, N(Ck, g) counts the
number of times a configuration from Ck occurs in g.

Notably, the definition of H2(g) does not require a parameter analogous to ∆ that was needed
for H2(o). This is so because H2(g) defines grain boundaries based on Ck and g, whereas H2(o)
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uses the notion of misorientation of adjacent
(
o(i), o(j)

)
pixels belonging to different grains using

the distance threshold ∆.
The actual value of the coefficients κk;g (0 ≤ k ≤ 6) and λl;g (l ∈ {1, 2}) has to be set-

tled experimentally. λl;g can be, for instance, determined as λl since they serve an analogous
purpose. As to κk;g, these potentials shall be chosen so that random samples from the Gibbs
distribution resemble the arrangement of grains in polycrystals. As demonstrated in [14,15], the
effects of such a term are very robust with respect to the choice of clique potentials. Moreover,
moderately deformed grains, by definition, used to be undeformed before deformation. As the
morphology changes during deformation are relatively small, we claim that the κk;g employed
in aforementioned papers and the set of configurations shown in Figure 7.4 are appropriate for
moderately deformed grain maps too. Exact parameter values taken for reconstructions are listed
in Section 8.2.6.

Having defined the desired distribution of grain map / orientation map pairs, we can now
formulate the posterior distribution

Pr(g, o|P) =
L(P|g, o)π(g, o)

Pr(P)
, (7.18)

where L(P|g, o) is a probabilistic likelihood function for modeling noise. We are looking for the
grain map / orientation map pair (g, o) that maximizes Pr(g, o|P). For convenience, we chose
L(P|g, o) := L(P|o) because diffraction patterns are solely determined by o and independent of
g.

Accordingly, the aim is to maximize the following objective function (cf. Equation (7.10)):

γ(g, o) := L(P|g, o)π(g, o) =
1

Zβ;g,o
e−β(H(g,o)+α‖Po−P‖1)

=
1

Zβ;g,o
e−β(H1(g,o)+H2(g)+α‖Po−P‖1) .

(7.19)

Such an optimization can be performed using the same techniques employed for γ(o) before.

7.3.3 Optimization
Like in the case of γ(o), the optimization of γ(g, o) is carried out using the Metropolis algo-
rithm. At every iteration, a new pair (g′, o′) of approximations is constructed according to three
principles:

1. An ambiguous pixel may only be given the label and orientation of an adjacent non-
ambiguous pixel.

2. A non-ambiguous pixel may retain its association with a grain while its orientation may
be replaced with one of its nearest neighbors in orientation space.

3. A non-ambiguous pixel at a grain boundary may be given the same label and orientation
as a neighboring pixel associated with an adjacent grain. Note that the change of the grain
label should only be permitted if it did not result in the complete “vanishing” of any grains.
(That is, the condition |g`| ≥ 1 must hold all the time for every ` ∈ G.)

More specifically, (g′, o′) is generated from (g, o) as shown in Algorithm 7.2. As is apparent,
line 10 utilizes the notion N

(
o(i)

)
of orientation neighbors introduced earlier in Section 7.2.3.

The optimization procedure can, in theory, be started from an arbitrary pair (g0, o0) of maps,
but g0 is usually initialized so that most of the pixels be assigned the ambiguous label (at which
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Algorithm 7.2. One iterative step for obtaining a new grain map / orientation map pair
(g′, o′).
1 Let g′(i) := g(i) and o′(i) := o(i) for all i ∈ D
2 Randomly choose a pixel i ∈ D
3 if at least one 4-connected neighbor of i is non-ambiguous then
4 Randomly choose a non-ambiguous 4-connected neighbor, pixel j
5 if pixel i is ambiguous then
6 Set g′(i) := g(j) and o′(i) := o(j)
7 Accept (g′, o′) unconditionally
8 else
9 if g(i) = g(j) then

10 Randomly pick o′(i) from {o(i), o(j)} ∪ N
(
o(i)

)
∪N

(
o(j)

)
11 Decide on whether to accept (g′, o′) based on the Metropolis probability pg′,o′
12 else
13 if the grain with label g(i) has at least two pixels then
14 g′(i) := g(j)

15 o′(i) := o(j)
16 Decide on whether to accept (g′, o′) based on the Metropolis probability pg′,o′

pixels o0 is left undefined). The exact way of their construction is discussed in Section 8.2.4.
Whatever the case, no ambiguous pixels are expected to remain in g after the completion of the
Metropolis algorithm.

Like before, iterations are carried on until the fulfillment of some termination criteria; see
Section 8.2.6 for more details.

7.4 Similarity of Orientations
Based on the material presented in Sections 2.3 and 2.4, we begin by defining the orientation
of (a pixel of) a grain as the (proper) rotation required to obtain the current placement of the
crystalline lattice of the grain with respect to a hypothetical crystal aligned with the reference
frame of the acquisition system. Specifically, rotations are to be given as unit quaternions
interpreted according to Equation (2.29). The set O of crystalline orientations then becomes

O := H1 . (7.20)

Hence each pixel o(i) of the orientation map will be assigned a 4-element real vector comprising
the components of a unit quaternion. As mentioned earlier, mapping such objects to colors
for sake of visualization is not trivial; this issue will be dealt with later in Section 8.2.1. (It
should be also noted that this definition of O is not complete; the final one will be presented in
Section 8.1.2, Equation (8.1).)

We now return to the important issue of how to define the distance d
(
o(i), o(j)

)
between the

orientations at pixels o(i) and o(j) of the orientation map o. Initially we ignore the underlying
crystalline lattice, and discuss the distance, denoted by r(q1, q2), between rotations q1 and q2.

According to the heuristic stated in Section 2.4, such a distance between two rotations should
be a monotonic function of the smallest nonnegative angle θ1→2 such that the first rotation
followed by a third rotation (n1→2, θ1→2), for some unit vector n1→2, will result in the second
rotation. If the first rotation is represented by the unit quaternion q1, and the second by the
unit quaternion q2, then a unit quaternion q1→2 that corresponds to the desired third rotation
is

q1→2 := q2q̄1 , (7.21)
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since
q1→2q1 = (q2q̄1)q1 = q2(q̄1q1) = q2(1,0) = q2 .

The q1→2 = (a1→2, b1→2, c1→2, d1→2) defined in Equation (7.21) is called the transition quater-
nion expressing the rotation from q1 to q2 (see e. g. [82] or [125, Section 8.3]). (Analogously, the
inverse transition quaternion q̄1→2 = q2→1 = q1q̄2 corresponds to the rotation from q2 to q1.)
Since q1→2 and −q1→2 define the same rotation, the first component a1→2 is nonnegative for at
least one of them, and the corresponding smallest nonnegative θ1→2 must lie between 0 and π.
This is the value that indicates the dissimilarity, and so

r(q1, q2) := 1− |a1→2| (7.22)

can be used as the definition of distance.
Looking at the first row of Equation (2.24) for the product q2q̄1, we see that

a1→2 = a1a2 + b1b2 + c1c2 + d1d2 .

It is clear that a1→2 is nothing but the dot product of q1 and q2 when they are considered as
4D unit vectors. In particular, the |a1→2|, and hence r(q1, q2), does not depend on the choice
of the unit quaternions used to represent the first two rotations: if one used the alternative
representations −q1 and −q2 for one or both of these rotations, then the value of |a1→2| would
remain the same. Moreover, taking the conjugates (i. e. inverses) of both rotations at the same
time also leaves |a1→2| unchanged. It can be verified that r(q1, q2) = 0 if and only if q1 = ±q2,
and that r(q1, q2) = r(q2, q1) (in other words, we have the desirable property that the distance
from q1 to q2 is the same as the distance from q2 to q1). Also, it is the case that

r((1,0), q2q̄1) = r(q1, q2) = r(q̄1, q̄2) = r((1,0), q̄2q1) (7.23)

(here we made use of the fact that the conjugate of the conjugate of a quaternion is the quaternion
itself).

Now we return to the issue raised in Section 7.1, namely that orientations are associated
with a crystal structure, and hence the rotational crystal symmetries have to be taken into
account. To illustrate this problem, let q denote a fixed unit quaternion describing an arbitrary
rotation, and s be a unit quaternion describing a symmetry rotation of the crystal lattice (i. e.,
a rotation that maps every lattice point onto a lattice point). It is easy to see that the rotation
qs results in the same orientation of the lattice as the rotation q. Thus q and qs are said to be
crystallographically equivalent. Indeed, the study of relative orientations in the presence of
crystal symmetries has been an active field of research in the analysis of the texture of materials
for over 30 years [76,77,80,82,107,147].

We are now ready to define the distance d(q1, q2) between two orientations of the lattice
brought about by rotations represented by unit quaternions q1 and q2. If the quaternions q1 and
q2 correspond to the orientations of two neighboring grains, or of two neighboring pixels o(i1) and
o(i2) in the orientation map, then d(q1, q2) should measure the size of the disorientation between
the grains / pixels, taking into consideration the underlying crystal symmetries. Following the
methodology presented in [76, 77, 82], this can be done as follows. Let S denote the set of all
(proper) symmetry rotations of the lattice (i. e. the crystallographic point group). (The exact
setting of S used in experiments will be presented in Section 8.2.3.) Then, by definition,

d(q1, q2) := min
s1,s2∈S

r(q1s1, q2s2) , (7.24)

that is, the smallest distance between a quaternion that is crystallographically equivalent to q1

and another quaternion that is crystallographically equivalent to q2.
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We are now going to show that in fact

d(q1, q2) = min
s∈S

r
(
(1,0), sq2q̄1

)
= min

s∈S
r
(
(1,0), sq̄2q1

)
. (7.25)

We first recall that r(q1s1, q2s2) = r((1,0), s̄2q̄2q1s1), see Equation (7.23). The definition of
the latter needs the first component of

s̄2q̄2q1s1 = (s̄1s1)s̄2q̄2q1s1 = s̄1(s1s̄2q̄2q1)s1 .

Recalling Equation (2.28), we see that the first component of this product is the same as that
of s1s̄2q̄2q1. Since (1,0) is a crystal symmetry, the conjugate of a crystal symmetry is a crystal
symmetry, and obviously the product of two crystal symmetries is also a crystal symmetry, the
claim in Equation (7.25) follows. Therefore, computing d(q1, q2) requires finding the minimum
of r
(
(1,0), sq2q̄1

)
among |S| crystallographically equivalent quaternions. Possibilities for further

speedups will be discussed in Section 8.1.2.
Since the components of a unit quaternion have a magnitude less than or equal to 1,

0 ≤ r(q1, q2) ≤ 1 ,

0 ≤ d(q1, q2) ≤ 1 ,

where the smallest and largest distances correspond to values 0 and 1, respectively. The smallest
distance is measured when q1 = ±q2 (for r(q1, q2)) or q1 = ±sq2 (for d(q1, q2)). On the other
hand, while the largest distance of r(q1, q2) = 1 is encountered for q1 and q2 being orthogonal
as 4D vectors (i. e. associated with a transition rotation by π), the maximal value of d(q1, q2)
encountered in practice depends on S and can actually be smaller than 1.

The valid range of δ and ∆ defined earlier (see Equations (7.5) and (7.7)) also matches the
range of d(q1, q2). For convenience, these parameters can be also expressed in terms of the
disorientation angle θ1→2 corresponding to d(q1, q2) as per Equation (7.22):∣∣cos

(
1
2θ1→2

)∣∣ = 1− d(q1, q2) . (7.26)

Using the previously stated assumption θ1→2 ∈ [0, π], the absolute value can be dropped around
the cosine. For instance, when S contains the (proper) symmetry rotations of the simple cubic
lattice introduced earlier, the maximal disorientation angle θmax can be derived as [76,77,82,145]

tan
(

1
2θmax

)
:=

√
23− 16

√
2 , (7.27)

yielding θmax ≈ 62.7994° and corresponding to the maximal orientation distance dmax ≈ 0.1465.

7.5 Summary
Two related stochastic DT reconstruction techniques have been presented. The first one is very
modest in terms of the amount of prior information required, and it can deliver an orientation
map that most accurately matches the input set of projections. The second approach builds
upon the aforementioned foundations, extending it with the ability to produce a grain map and
an orientation map simultaneously, at the price of needing further a priori data in the form of
grain statistics, approximate locations and basic orientations.

In both cases, orientations are represented using unit quaternions, for this representation
scheme of rotations has been found to most suit our needs. In particular, by building on some
basic properties of quaternions, we were able to devise a means for expressing the similarity of
orientations in the presence of crystal symmetries.





Chapter 8

Simulations: Reconstruction of
Deformed Polycrystalline Samples

Numerous simulations have been performed to optimize the free parameters of the algorithms
and to quantitatively characterize the quality of the reconstructions as functions of magnitude
of orientation spread within grains, those of degree of morphological complexity of grain maps,
and of the artificial noise.

The results presented herein have been published in [16,165,166].

8.1 Implementation Details

8.1.1 Applications, Source Codes and Development Environment

The algorithms described in Chapter 7 have been implemented as a software package written in
ANSI C, accompanied by a bunch of supporting Unix shell scripts. The following listing describes
each application and its purpose:

diffrec Entry point to the reconstruction algorithms for obtaining an orientation map o or grain
map / orientation map pair (g, o) from a set of diffraction patterns. Allows the tuning of
all reconstruction parameters, as well as the measurement of various statistics regarding
the quality of results.

gmaptool Allows the manipulation of grain maps (introduction of ambiguous pixels), construc-
tion of grain maps from orientation maps, construction of new orientation maps based on a
subset of grains (using unchanged or homogeneous orientations within grains), calculation
of grain statistics etc.

omapconv Provides convenience functions for manipulating and converting orientation maps.
Supports some basic transformations (cropping, quantization and canonization of orienta-
tions), generation functions (constant or random orientation map, crystallographic equiva-
lents, add noise to orientation map pixels) and conversions between representation formats
(Euler angles, rotation matrices, unit quaternions).

projcalc Allows the generation of simulated projections (i. e. diffraction patterns), application
of artificial noise, and calculation of diffraction pattern statistics.

97
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Each application has only a command-line interface, expecting inputs and producing outputs via
files. The sole exception is diffrec that is able to show a graphical progress of the orientation
map; this feature uses the C++ based cross-platform Qt library (specifically, Qt/X11 v3.3.2).

Some source code statistics: 50 files, ≈ 736KB, ≈ 19 300 total lines of code.
All the timings mentioned later were measured in the same hardware and software environ-

ment described in Section 5.1.1.

8.1.2 Speeding Up the Reconstruction Process
As mentioned in Section 5.1.2, performance optimizations are very beneficial—and sometimes
essential—for reconstruction algorithms based on a stochastic method. For reference purposes,
some of these enhancements are summarized below.

Look-up Table for Binary Local Grain Map Configurations

Several look-up tables are utilized throughout the program to store pre-computed values of
certain functions whose evaluation should be as fast as possible; this approach had been already
used elsewhere with much success [186]. For instance, the potentials associated with any 3 × 3
binarized grain map configurations (i. e. the C1, . . . , C6 required for the computation of H2(g))
are stored in a 9D look-up table, as motivated by [15]. Another example is given below.

Look-up Table for Orientation Distances

Though it would be possible to determine the value of r(·, ·) in Equation (7.25) for each s ∈ S
one-by-one, and then choosing the smallest, this would really slow down the reconstruction
procedure. (For example, S has 24 elements for cubic lattices.) A more efficient method is to use
a look-up table of the values of min

s∈S
r
(
(1,0), sq

)
, based on a quantization (discretization) of

the unit quaternion q. We now show that there is a fairly easy way to implement such a look-up
table.

First, it should be recalled that the components of a unit quaternion have a magnitude less
than or equal to 1. For any rotation, the first component a of q can be chosen to be nonnegative.
Since a is uniquely determined by the other components, it can be ignored for the construction
of the look-up table. For the sake of simplicity, let us suppose that the whole range [−1, 1] of
the other three components (b, c, d) is sampled using Q values (Q ∈ Z+ odd). This way we get
a table T of Q3 values, such that, at those locations for which b2 + c2 + d2 ≤ 1, the element
tbcd is the needed value for the unit quaternion q = (a, b, c, d) for the corresponding nonnegative
a. If b2 + c2 + d2 > 1, the value of tbcd is undefined. This convention makes the table easily
addressable, at the cost of some wasted memory. The sampling resolution Q may simply be
chosen based on memory considerations. For example, having Q := 101 and using 8 bytes to
represent real numbers, T consumes 8 ·1013 bytes (about 7.86MB). (See Table 8.1 for a statistics
on T versus various Q settings.)

To find the desired d(q1, q2), calculate q1→2 = (a1→2, b1→2, c1→2, d1→2) according to Equa-
tion (7.21). If a1→2 is negative, replace q1→2 with −q1→2. Then d(q1, q2) is approximated by
tb′1→2c

′
1→2d

′
1→2

, where b′1→2, c′1→2, and d′1→2 are the sampling points nearest to b1→2, c1→2, and
d1→2, respectively.

Quantization of Orientations

As a matter of fact, discretizing unit quaternions as discussed above helps not only in the fast
computation of disorientations but is also beneficial for reducing the search space of orientations
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Table 8.1. Effects of the sampling resolution Q on the cardinality of HQ1c and on the look-up
table T for d(·, ·). For the latter, 8-byte double elements are assumed.

T T & HQ1c

Q ∆Q Storage size (MB) Total elements Valid elements

101 0.02 ≈ 7.86 1 030 301 523 249 (≈ 50.79%)

201 0.01 ≈ 61.96 8 120 601 4 187 801 (≈ 51.57%)

401 0.005 ≈ 491.95 64 481 201 33 507 829 (≈ 51.97%)

during the optimization of γ(o) or γ(g, o). (This is not only an issue of memory requirements
or reconstruction speed. Specifically, it is a fundamental property of 3DXRD that the obtain-
able spatial resolution—with respect to grain position inside the specimen—and the angular
resolution—related to the precision with which orientations can be measured—of detectors are
not independent. See [153] for a deeper discussion.) In addition, the usage of unit quaternions in
the canonical form allows for a unique representation for all possible orientations (disregarding
crystallographic equivalence). Letting HQ1c denote the set of quantized unit quaternions in the
canonical form for some sampling resolution Q, the final set O of crystalline orientations then
becomes

O := HQ1c . (8.1)

Clearly, O is known and finite, hence placing the reconstruction problems raised in Chapter 7
in the realms of DT. Specifically, |O| ∝ Q3, but the actual cardinality is always less than Q3

because about half of the combinations (b, c, d) are invalid (viz. when b2 + c2 + d2 > 1). (For
instance, having Q := 101 yields Q3 = 1 030 301, of which only 523 249 [≈ 50.79%] combinations
result in valid unit quaternions. Table 8.1 gathers similar statistics for some additional choices
of Q.)

When orientations are represented by such quantized unit quaternions q = (a, b, c, d) ∈ HQ1c
for some Q, one can speak of the set NQ(q) of neighbors of q:

NQ(q) :=



(a1, b−∆Q, c, d),
(a2, b+ ∆Q, c, d),
(a3, b, c−∆Q, d),
(a4, b, c+ ∆Q, d),
(a5, b, c, d−∆Q),
(a6, b, c, d+ ∆Q)


, (8.2)

where ∆Q denotes the sampling unit of quaternion components (b, c, d),

∆Q :=
2

Q− 1
. (8.3)

(For example, having Q := 101 results in a sampling unit of ∆Q = 0.02.) Moreover, the ai
(1 ≤ i ≤ 6) in Equation (8.2) shall be determined so that the resulting quaternion stays in HQ1c.
If no such ai exists, the associated (ai, bi, ci, di) will be discarded. (Therefore, 1 ≤ |NQ(q)| ≤ 6
for any Q and q.) With these definitions in place, we can now formulate the set N

(
o(i)

)
of

neighbors of orientation o(i):
N
(
o(i)

)
:= NQ(q) (8.4)

for some Q and q ∈ HQ1c representing o(i).
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Reduction of Crystallographically Equivalent Orientations

Given that crystallographically equivalent orientations lead to the same arrangement of lattice
points, it seems natural to partition O into equivalence classes by the equivalence of orientations,
then pick one representative element from each class and use the reduced collection O′ of such
elements instead of O. When the representative elements (n, θ) are chosen so that θ is minimal
and n falls within a certain subset of the 3D unit sphere, the resulting O′ is known as the
fundamental zone in materials science (see [60] and [76, 77] for derivations using Rodrigues
vectors and quaternions, respectively). Though it would be tempting—and indeed valuable in
further reducing the search space of orientations—to restrict the range of an orientation map o to
O′, this has not been actually employed by the author due to the inherent complications involved
regarding the computation of orientation distances d

(
o(i), o(j)

)
and the notion of “neighboring

orientations” N
(
o(i)

)
within O′.

Quick Evaluation of the Objective Function

The objective function γ(g, o) needs to be completely evaluated only once, right before optimiza-
tion is started. Whenever a pair (g′, o′) of maps is to be tested for acceptance—as per pg′,o′—as
the new approximation of the optimal maps (with (g, o) being the current pair of maps), γ(g′, o′)
is computed by updating γ(g, o) according to the changes caused by switching from (g, o) to
(g′, o′). In particular, terms H1(g, o), H1(g′, o′), H2(g), and H2(g′) are affected by only those
3 × 3 cliques that contain the pixel i being modified. (There are only 9 such cliques.) Further-
more, the simulated projections Po′ , and thus the error ‖Po′ −P‖1, can be directly derived from
Po by subtracting the projections on the detector generated by the old orientation o(i) and then
by adding those obtained with the new orientation o′(i). A similar trick is employed to speed up
the computation of γ(o).

8.2 Simulation Setup

8.2.1 Visualization of Orientations

In order to be able to visually inspect 2D orientation maps, a mapping of orientations to colors is
to be defined, so that o can be displayed as a regular color image. As explained in [7,162,193,194],
however, there is no such single color mapping that would fit all applications and purposes. In
particular, it is exceedingly hard to establish a color mapping that associates “similar” (i. e. close,
with respect to d(·, ·)) orientations with similar colors. (This is especially so in the presence of
crystal symmetries.)

For these reasons, we have decided to use the following simple mapping: Components (b, c, d)
of a unit quaternion q = (a, b, c, d) are assigned the color

(red, green, blue) := Imax (1− |b| , 1− |c| , 1− |d|) ,

where Imax designates the maximal intensity of any color primary. (As discussed earlier, a is
uniquely determined by the other components when using a canonical representation, hence it
can be ignored for sake of visualization.)

It is easy to see that q and −q are assigned the same color, which is desirable. A less
welcome consequence is that q̄ and −q̄ are also represented with this color. As a matter of
fact, the 16 quaternions (±a,±b,±c,±d) are all mapped to a common color—admittedly, this
is an unfortunate side-effect. A major shortcoming of this approach is its complete disregard of
crystal symmetries; equivalent orientations will thus be rendered with different colors. Moreover,



8.2. SIMULATION SETUP 101

such a linear mapping cannot possibly express the “similarity” of orientations via the choice
of similar colors. (After all, the RGB color space is unsuitable for measuring distances. The
latter aim could be better achieved by employing a more sophisticated color space like CIE 1976
(L∗, a∗, b∗).)

An interesting property of the aforementioned mapping is that it never produces the following
colors: black, pure red, pure green, pure blue. On the other hand, the special unit quaternions
(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), and (0, 0, 0, 1) are mapped to white, cyan, magenta, and yellow,
respectively. The darkest shade of gray is associated with b = c = d = ± 1√

3
(implying a = 0).

8.2.2 Software Phantoms
Four 64 × 64 pixel test maps of deformed monophase aluminum samples of varying complexity
were used. In all cases the reference orientation map was generated by electron backscat-
tering diffraction (EBSD) [6, 110]—a technique utilizing a scanning electron microscope
(SEM) to determine the distribution of grain orientations on a surface section of the specimen.1
These maps are depicted in Figure 8.1 using the color-mapping method described in Section 8.2.1.
(In order to make the orientation spreads within grains more visible, a contrast enhanced / “equal-
ized” variant of the maps is also shown, with as well as without edges overlaid.) They represent
different complexities in terms of the number of grains and of the orientation spread inside grains:

Case I (series “G015-a2”) This map comprises 11 grains; on average the orientation spread—
as per Equation (7.13)—within grains is 0.0003427 (i. e., equivalent to the disorientation
angle of ≈ 3°; see Equation (7.26)), while one grain has a spread of 0.0018652 (≈ 7°).

Case II (series “g3_15”) This map comprises 26 grains; the average orientation spread is
around 0.0018652 (≈ 7°), but the spread within grains varies from 0.0003427 up to 0.0183728
(≈ 3°–22°). The subdivision of some grains into sub-grains is also noticeable.

Case III (series “G01”) This map comprises 3 grains; the average orientation spread is 0.0074538
(≈ 14°).

Case IV (series “Na4-5cX”) The material is, in this case, too deformed to comply with be-
ing “moderately deformed” as defined in Section 7.3.1. Grains cannot be identified in an
unambiguous way and the orientation spread sometimes surpasses 0.0109841 (≈ 17°). This
case is included to test the limitations of the algorithms. (It should be remarked that this
map apparently contains some grains that seem to be 8-connected but not 4-connected;
this is in clear contradiction with our earlier assumptions.)

Hence, all data sets but Case IV represent orientation maps that were subject to moderate
levels of deformation. The exact details of the deformation process are summarized in Table 8.2.

In order to assess the applicability of the algorithms to undeformed samples too, the 128×128
pixel map of a monophase aluminum specimen examined in [14–16] has been taken.2 Its reference
orientation map has, again, been generated by EBSD and is shown in Figure 8.2. This map
exhibits the following properties:

Case V (series “abstrM1”) This map comprises 44 grains; the orientation spread is invari-
ably 0 (0°). This map is special because 5 986 out of 16 384 (≈ 36.54%) pixels are void.
(The exact way of handling of these pixels is described in Section 8.2.3.)

1All EBSD maps were provided by Jacob R. Bowen (Risø).
2The usage of Test Case V has not been published; this map was investigated as an extension and improvement

upon the results published earlier.
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(a) (b) (c) (d)

Figure 8.1. Deformed reference orientation maps. Top row: original color mapping. Middle
row: contrast-enhanced map. Bottom row: like middle row with edges overlaid. (a) Test
Case I. (b) Test Case II. (c) Test Case III. (d) Test Case IV.

Table 8.2. Technical attributes of deformed reference orientation maps. εvm denotes the
strain (a normalized measure of the deformation), RT stands for room temperature, ECAE
is a shorthand for equal channel angular extrusion (a kind of deformation procedure).

Test map Deformation Comment

Case I 15 pass ECAE at RT, εvm = 10,
annealed for 1h at 400 °C

a little mosaic spread, clear grain
boundaries

Case II 15 pass ECAE at 300 °C,
εvm = 10, as deformed

more grains, a little more spread,
yet still clear grain boundaries

Case III 1 pass ECAE at RT, εvm = 0.67
(≈ 50%), as deformed

few grains, much spread within
grains

Case IV 40% cold rolled few grains, much spread within
grains
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(a) (b)

Figure 8.2. Undeformed reference orientation map of Test Case V. (a) Original color
mapping. Black pixels represent void regions. (b) Like (a) with edges overlaid.

For each case, first a reference grain map was determined from the reference orientation
map via a connected component technique [29, 177, 181]. This procedure used d

(
o(i), o(j)

)
as

a similarity / distance measure in tandem with a fixed misorientation threshold, establishing
a grain boundary whenever the orientation distance of the pixel under consideration from its
already visited neighbors exceeded the misorientation threshold. After some experimentation,
the following thresholds were used for Test Cases I–IV: 0.00095 (≈ 5°), 0.0053 (≈ 11.8°), 0.0038
(≈ 10°), 0.0024 (≈ 8°). For Test Case V, the threshold 0.000038 (≈ 1°) was chosen.

The next step consisted of the determination of the center-of-mass pixel and the basic orien-
tation of each of the grains. These were later used to initialize (g0, o0) before the optimization
process as described in Section 8.2.4. These grain features, together with the number G of grains,
would constitute the minimal outcome of an external method (e. g., GRAINSWEEPER [153]) to
be used to retrieve such information by the pre-processing of 3DXRD diffraction patterns.

8.2.3 Computation of Simulated Diffraction Patterns

The usage of simulated diffraction patterns instead of relying on real—i. e. physically measured—
ones is due to several reasons. First, physical measurements are usually accompanied by certain
issues whose handling during reconstruction can be pretty complex (e. g. presence of void sample
regions or distortions caused by imperfect instrument geometry; see Section 3.2.3).

Second and most important, it is very complicated to establish a “ground truth”, i. e. validate
the reconstruction result via some independent method. At the time of research, the only alter-
native to 3DXRD was the usage of surface scans with SEM. 3DXRD cannot be employed near
specimen boundaries (e. g. to illuminate the topmost layer of the sample), whereas SEM can only
inspect grain orientations on the specimen surface. If 3DXRD were to be used on some lower
layer of the specimen, the sample would have to be polished to get rid of upper layers in order to
bring the layer of interest to the surface, so that it becomes accessible to SEM. Unfortunately,
polishing itself causes serious deformations to the specimen, essentially “destroying” the original
orientation map that was examined earlier with 3DXRD.3

Acquisition Set-up

For every test case, 3DXRD diffraction patterns P associated with the reference orientation
maps were simulated4 (see Equation (C.5)), optionally applying some synthetic noise as well. We

3It should be noted that some more sophisticated polishing techniques have appeared since the time of research;
these do not introduce any significant deformations to the sample.

4The original diffraction core subroutine is courtesy of Erik Bergbäck Knudsen (Risø). Additional improve-
ments have been made by the author and Arun K. Kulshreshth (CUNY).
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generated 91 projections corresponding to equally spaced rotation angles ωr from the interval
[−45°, 45°]. The acquisition set-up imitated that of the 3DXRD microscope at the ESRF at
the time (see Section 3.2.2). Moreover, computations were carried out in a somewhat idealized
fashion. In particular, the following assumptions had been taken:

• Instrument geometry: Measurements are performed at a single sample–detector distance
setting with L = 4.186mm to the center of the sample. The X-ray beam is monochromatic
at 50 keV, uses parallel geometry, and has negligible divergence and energy spread. The
detector has a resolution of 1024 × 1536 pixels, pixel size 2.3 × 2.3 µm2, and field-of-view
2.3552× 3.5328mm2. There is no detector tilting or sample precession during rotation.

• Sample geometry: The sample area consists of 64× 64 (Cases I–IV) or 128× 128 (Case V)
pixels, with pixel size 2.3× 2.3 µm2, and occupies dimensions 147.2× 147.2 µm2 or 294.4×
294.4 µm2 (Cases I–IV versus Case V). For Test Case V, void regions are known beforehand
exactly5. The vertical direction in the maps shown were all set to be perpendicular to the
incoming beam for ω = 0°.

• Sample composition: The sample is in monophase (made of aluminum), moderately de-
formed (Cases I–IV) or undeformed (Case V), and has a minimal associated diffraction
spot overlapping.

• Imaging system: All orientation maps—including reference data sets6—contain orientations
represented using elements of HQ1c with Q := 101. (This setting of Q was chosen for speed
and memory reasons.) A sample pixel always contributes the same orientation, no matter
how large fraction of the projection line passes through it. A reflection event is realized
as the deposition of a single photon impact into a single detector pixel.7 The projection
error term ‖Po −P‖1 is computed, for any ωr, by comparing corresponding pixels in Po

and P.8

The crystal structure of aluminum can be described with a face-centered cubic (FCC) lattice—
crystallographic space group 225, to be exact—as shown in Figure 8.3(a). This lattice is part of
the more general family of cubic crystal lattices (the other family members being the simple
cubic and the body-centered cubic lattices). These lattices have the same crystal symmetries S:
there are 48 symmetry operations, out of which 24 (= 1 + 3 · (4 − 1) + 6 · (2 − 1) + 4 · (3 − 1);
see Figure 8.3(b)) are pure rotations and the rest are rotoinversions. (As discussed earlier, only
proper rotations are relevant for describing crystalline orientations.) So, for every rotation q,
there are 23 other rotations that are crystallographically equivalent with it. Many important
metals have a cubic lattice. For instance, iron has a body-centered cubic lattice, while gold,
silver, copper, and lead all have a face-centered one (besides aluminum).

Diffraction patterns were computed by taking into account the following family of reflections
only (a total of 58 Miller indexes): {111}, {200}, {220}, {222}, and {311}. These correspond

5All orientation maps o—reference, initial, intermediate, reconstructed—are permitted to contain void pixels
(represented with the zero quaternion (0,0) and a special grain label); they will be simply ignored during the
computation of Po, γ(o) and γ(g, o). However, their exact position needs to be fixed; no void pixels will be
removed or introduced during reconstruction.

6The only reason for quantizing orientations in the reference map is to be able to reduce the projection error
term ‖Po −P‖1 to zero. This condition will not, of course, hold for physical measurements, thus manifesting as
a nonzero projection error.

7Real diffraction measurements are expected to be better describable by a more complex point spread function
(PSF).

8Admittedly, this naive approach is not perfect. A small change in orientation o(i) of pixel i may result in
a “leap” in ω, i. e. a diffraction spot previously appearing at ωr may “jump over” to ωr−1 or ωr+1. This will
certainly yield a higher projection error, even though the orientation difference in o(i) can be tiny.
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(a) (b)

Figure 8.3. Crystal structure of aluminum. (a) Face-centered cubic lattice. (Image source:
[21].) (b) Rotational symmetries of a cube and a regular octahedron. Proper rotation
operations: identity, 3 fourfold axes, 6 twofold axes, 4 threefold axes. (Image source: [58].)

to diffracted directions having the smallest 2θ value (see Section 3.2.2), thus being the most
prominent ones in practice. (The contribution of other Miller indexes with a greater 2θ angle is
negligible.)

Modeling Noise

In order to come close to the quality of real diffraction patterns, varying levels of artificial
noise were applied to the simulated projections. The distortions of measurements are caused by
different kinds of phenomena: scattering, fluctuation of the intensity of the X-ray beam, statistical
error (the so-called Poisson or quantum noise), cross-talk between neighboring detector pixels,
etc. Out of these, perhaps the Poisson noise is the most prominent, therefore only this sort of
deviation was taken into account. Let us suppose that the intensity (photon count) I0 of every
detector pixel is to be distorted by N % of noise (N ≥ 0 real). The noisy intensity Inoisy was
then, as an approximation to the Poisson distribution, defined as a uniformly distributed random
number taken from

[
I0
(
1− N

100

)
, I0
(
1 + N

100

)]
, subject to the constraint of non-negativity. A

trivial property of such a multiplicative noise is that Inoisy = 0 whenever I0 = 0 (i. e. no noise gets
introduced at background pixels); this can be contrasted with the additive noise model described
in Section 5.2.3 for parametric objects and attenuation contrast transmission radiographs.

8.2.4 Initial Grain and Orientation Maps
Before the optimization of γ(g, o) could be started, one first needs a suitable initial (g0, o0). The
following options were considered:

1. Let g0 be identical with the reference grain map. (Hence, there are no ambiguous pixels
in g0.) Moreover, construct o0 so that all the pixels of a given grain be set to the basic
orientation of the grain, thus arriving at a completely homogeneous map. (Basically, the
o0 acquired so will represent an undeformed orientation map.)

2. Start off from the outcome of option 1 and introduce some ambiguous pixels to g0 in
the vicinity of grain borders. This can be achieved, for instance, by applying binary
morphological erosion to each grain of g0.

3. Start with the outcome of option 1, then, for each ` ∈ G, keep the grain label at pixels i
that fall within the “incircle” of g` and set the rest of g` in g0 to ambiguous. (By “incircle”
we mean the discrete circle of maximal radius about the grain centroid so that the circle
completely lies within the grain.)
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(a) (b) (c) (d)

Figure 8.4. Options for setting up initial orientation maps for γ(g, o) (original color map-
ping). The initial grain map can be obtained by assigning unique labels to non-black con-
nected homogeneous regions and setting black pixels to ambiguous. (a) Complete homo-
geneous orientation map. Each pixel of any grain is assigned the basic orientation. (b)
Morphological erosion applied to (a). (c) Circles of maximal radii about the grain centroids
of (a). (d) Grain centroids of (a).

4. Modify the output of option 1 so that grain labels are kept in g0 only at pixels corresponding
to grain centroids, and set the rest of g0 to ambiguous. (These non-ambiguous pixels are
dubbed seed points.)

These scenarios are demonstrated in Figure 8.4. Whatever the case, pixels of o0 having the
ambiguous label in g0 will be left undefined. Of the aforementioned possibilities, option 4 seems
to be the most realistic and feasible from a practical point of view, so this approach was used
to obtain (g0, o0). (For Test Case IV, somewhat arbitrarily a set of 31 seeds were determined,
corresponding to 31 “grains”. However, these are not grains in the same physically meaningful
sense as in the other three cases.)

In the case of γ(o), the initial orientation map o0 can be also obtained in multiple ways:

1. Homogeneous (i. e. undeformed) map, like option 1 above.

2. Random map.

3. Constant map, that is o0(i) ≡ q0 (∀i ∈ D), where q0 ∈ HQ1c fixed.

4. Constant map with seed points, like option 4 above.

Reconstructions have been carried out employing all but the first of these possibilities. (Note:
Option 4 is somewhat unrealistic since the availability of grain statistics is not expected; see
Section 7.2.1 for a list of priors assumed for γ(o).)

8.2.5 Measuring the Quality of Reconstructions

The quality of the results were measured by two figure-of-merit (FOM) functions, FOMg and
FOMo.

FOMg := 1− M

|D|
, (8.5)

where M denotes the number of mismatching grain labels between corresponding pixels of the
reference and reconstructed grain maps, and |D| is the number of pixels. (FOMg is undefined
for γ(o), of course.) The second figure-of-merit is related to the distance between the original
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orientation oorig(i) and the resulting orientation orec(i) for each pixel i:

FOMo := 1− 1

dmax |D|
∑
i∈D

d
(
oorig(i), orec(i)

)
, (8.6)

where, for i ∈ D, oorig(i) and orec(i) denote the orientations at pixel i in the original and in
the reconstructed maps, and dmax represents the maximal possible value of d(·, ·), which equals
about 0.1465 (≈ 62.7994°; see Equation (7.27)) for the FCC lattice of aluminum. It can be easily
checked that both measures have the range [0, 1]. Evidently FOMg = FOMo = 1 for perfectly
reconstructed maps, while FOMg ≈ 0 and FOMo ≈ 0.5 for a random reconstruction. (These
can be contrasted with the properties of the measures defined in Section 5.2.5 for parametric
objects.)

8.2.6 Reconstruction Parameter Settings
The choice of the Gibbs potentials κk;g (0 ≤ k ≤ 6) was motivated by [14, 15] (there denoted
as U1). Moreover, as recommended in [51], the ratios 1

2κ3 = κ2 = κ1 and λ2 = λ2;g = 1√
2
λ1 =

1√
2
λ1;g were also respected. The value of κ1 = κ2 was chosen somewhat arbitrarily as 0.94. (As a

matter of fact, this is the optimal estimated value of κ1 established in [51] for a certain software
phantom; it might not be optimal for our applications.)

The value of δ was always guessed from the reference orientation map and kept constant all
the time. In particular, δ was set to 0.005 (≈ 11.5°), 0.01 (≈ 16.2°), 0.008 (≈ 14.5°), and 0.021
(≈ 23.5°) for Test Cases I–IV, respectively. For Test Case V, the setting δ = 0.000625 (≈ 4°)
was applied.

In the case of γ(o), ∆ was set equal to δ. (As a reminder, ∆ ≥ δ shall hold in general.)
Based on the five test cases, associated input projections, and initial maps as defined above,

a series of reconstructions were performed with varying system parameters α, β, λ1 = λ1;g, and
number of Metropolis iterations, as well as different noise levels. The variations of the FOMs
with respect to the aforementioned free parameters turned out to be small, implying that the
algorithm is robust. For the following the values α = β = λ1 = λ1;g = 1 have been employed.
The final set of parameters is listed in Table 8.3.

The optimization process was terminated when the projection error term ‖Po −P‖1 reached
0 or the number of Metropolis iterations exceeded a preset threshold, whichever occurred earlier.

8.3 Results
Due to the properties of diffraction, projections are very sparse (i. e., they contain very few
measurements); the fraction of detector pixels changed is around 0.01% for Test Cases I–III,
climbs to ≈ 0.017% for Case V and reaches ≈ 0.024% for Case IV. (This is clearly demonstrated
by the simulated diffraction patterns depicted in Figure 8.5.) For each grain, the nature of the
diffraction process implies that there is only a finite set of possible projections. The exact number
depends on the experiment, but it may be as low as 5—pretty small a value as compared to the
number 91 of projections taken. (For our choice of Miller indexes described in Section 8.2.3,
any pixel i of o gave rise to ≈ 14 reflections on average.) Intensities (i. e. photon counts) of
non-background detector pixels varied between 1–49 (Case V) down to 1–16 (Case IV), with
average intensities of ≈ 6.2 (Case V) down to ≈ 1.7 (Case IV). This sparsity of data interferes
with the aim of obtaining high quality grain maps.

The rest of the section is devoted to presenting the simulation results obtained using either
objective function.
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Table 8.3. Parameter settings for γ(o) and γ(g, o).

Parameter Setting

κ1 = κ2 0.94

κ3 1.88

(κ0;g, κ1;g, κ2;g, κ3;g, κ4;g, κ5;g, κ6;g) (0, 1.4, 0.71, 0.61, 0.79, 0.5, 0.61)

λ1 = λ1;g 1

λ2 = λ2;g
1√
2

α 1

β 1

δ, ∆ varies for each Test Case

(a) (b)

Figure 8.5. Simulated diffraction patterns of Test Case II in the absence of noise. Intensities
have been binarized for easier visibility; black pixels denote a photon count of zero, white
ones have a positive photon count. Only the lower third of the total detector area is shown;
the rest is completely black. The non-diffracted incident X-ray beam passes just below the
lower side of the detector (not indicated). (a) Projection at ω = −43°. (b) Projection at
ω = 27°.
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(a) (b) (c) (d)
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(e)

Figure 8.6. Failed reconstructions of Test Case I using γ(o) and noiseless projections. Top
row: random o0; FOMo = 0.528. Bottom row: constant o0 with q0 := (1,0); FOMo = 0.501.
(a) Reference orientation map (contrast-enhanced). (b) Initial orientation map. (Frame
added in bottom row for better visibility.) (c) Reconstructed orientation map (contrast-
enhanced). (d) Difference of the reference and the reconstructed orientation maps. The
intensity of the pixels is determined by the distance (disorientation angle) of corresponding
orientation pairs, as shown in (e). (Frame added for better visibility.)

8.3.1 Reconstructions using γ(o)

Reconstructions9 for the four deformed test cases were attempted using different initial orienta-
tion maps. In particular, every pixel of o0 was generated either by picking a random element
from O or by setting it to some fixed unit quaternion, thus resulting in a random or a constant
map, respectively. Sadly, both approaches invariably produced unusable reconstructions; two
such examples are shown in Figure 8.6 for Test Case I using ideal diffraction patterns. This is
very disappointing, and it indicates that the algorithm got stuck in a local optimum.

As a workaround, executions were repeated by using an o0 that was almost completely con-
stant but also contained seed points placed at grain centroids, with each seed having been set
to the basic orientation of the associated grain. With this change in place, the algorithm was
finally able to yield very good results in at most 2.5 million iterations (corresponding to about
17 minutes of computer time), as demonstrated in Figure 8.7 and some further results found in
Appendix G. The qualities of the reconstructions of Test Cases I and III are all very good with
FOMo being at or above 0.9996, implying that reconstructed maps are able to reproduce the
variations in orientation to high accuracy.

As can be seen in Figure G.1, the result obtained for Test Case II is not nearly optimal,

9The results using γ(o) have not been published; they were obtained as an extension and improvement upon
the results published earlier.
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(a) (b) (c) (d)
 
 
 
0°    1°    2°    3°    4°    5°    8°   10°  15°  180° 

(e)

Figure 8.7. Successful reconstruction of Test Case I using γ(o) and noiseless projections;
FOMo = 0.99987. (a) Reference orientation map (contrast-enhanced). (b) Initial orientation
map: constant o0 with q0 := (1,0) and seed points. (Frame added for better visibility.) (c)
Reconstructed orientation map (contrast-enhanced). (d) Difference of the reference and the
reconstructed orientation maps. The intensity of the pixels is determined by the distance
(disorientation angle) of corresponding orientation pairs, as shown in (e).

yielding a FOMo around 0.97. Interestingly, this could not be helped by raising δ, ∆ or the
number of iterations. (We hypothesize that including further 1–2 seeds placed in the erroneous
region could be a solution, but this has not been actually verified.)

The reconstruction of Test Case IV was also problematic; the result presented in Figure G.3—
with FOMo ≈ 0.99—was achieved by setting ∆ = δ = 0.035 (≈ 30.4°). When using the value
0.021 (≈ 23.5°) mentioned in Section 8.2.6, the algorithm was unable to correctly reproduce the
upper part of the orientation map, yielding a FOMo ≈ 0.95.

For comparison, Figure G.4 demonstrates a reconstruction of Case V using noiseless pro-
jections. Actually, the map shown there is a perfect reconstruction with FOMo = 1 and zero
projection error ‖Po −P‖1. (Of course, slightly worse results can obtained in less lucky situa-
tions, but the quality still remains high with FOMo values around 0.9999.) It should be noted
that this reconstruction was acquired by allowing 5 million iterations, taking about half an hour
to complete.

The speed of convergence of γ(o) is illustrated in Figure 8.8 for the reconstruction of Case I
in the absence of noise. As can be observed, only 856 567 out of 2.5 million Metropolis iterations
(≈ 34.3%) resulted in the acceptance of a new o′ map; the rest of the proposals were rejected.
During this time, the exponent of γ(o) rose from the initial ≈ −96 811.1 up to ≈ 12 878.7,
spending a bit more than 16 minutes. It is clear that the objective function kept improving
reasonably fast for the first ≈ 250 000 accepted o′ maps, but slowed down considerably thereafter.

To sum up, the application of γ(o) in the present circumstances is very questionable. One
either needs additional a priori data (e. g. in the form of seed points), or optimization shall be
carried out via some more sophisticated procedure like SA with a proper annealing schedule.
Unfortunately, SA and similar approaches are expected to involve even longer running times. (In
fact, reconstructions obtained with γ(g, o) are already twice as fast at least, as will be discussed
below.) Moreover, γ(o) cannot possibly deliver a grain map directly, and the Gibbs model being
employed is far not optimal for modeling grain boundaries in orientation maps. For these reasons,
no further investigations had been performed regarding the robustness of γ(o) (e. g. with respect
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Figure 8.8. Speed of convergence of γ(o) as the function of iterative steps. Reconstruction
of Test Case I using noiseless projections as per Figure 8.7. Value plotted: exponent of γ(o)
versus the number of accepted o′ maps (out of 2.5 million iterations in total).

to the effect of Gibbs terms or noise), and all efforts were focused on γ(g, o) instead.

8.3.2 Reconstructions using γ(g, o)

Reconstructions tended to converge quite rapidly, needing not more than 2.5 million iterations
(corresponding to about 8 minutes of computer time). Figures 8.9 through 8.12 present the
results for the four deformed test cases using ideal diffraction patterns. The qualities of the
reconstructions in the first three cases are all very good with both FOM values being at or above
0.99. Not only the grain contours but also the gradients (bands and domains) within the grains
are generally reproduced to high accuracy. Remarkably, a high quality orientation map—with
FOMo = 0.986—is derived also for Case IV. (In this case, we do not have a physically meaningful
grain map and thus FOMg is irrelevant.)

For comparison, Figure 8.13 demonstrates a reconstruction10 of Case V in the absence of
noise. As a matter of fact, this is a perfect reconstruction with FOMo = 1 and zero projection
error ‖Po −P‖1. (It should be remarked that not all results are so flawless in general; the
worst one encountered out of 10 random reconstructions had FOMo = 0.999894 with a total
of 4 mismatching pixels in o.) The presence of a substantial grain map error (FOMg = 0.987)
is somewhat surprising. After checking the reference orientation map, this turns out to be
caused by two adjacent brownish grains that happen to have almost identical orientations ((≈
0.19,−0.38,−0.52,−0.74) versus (≈ 0.15,−0.4,−0.52,−0.74), a disorientation of only ≈ 5°).

Similar reconstructions for 100% of noise are shown in Figures 8.14–8.15, and figures-of-
merit are summarized in Figure 8.16 for noise levels 0%, 100% and 200%, respectively. (The
latter plot was acquired by repeating every reconstruction 10 times using different seeds for
the pseudo-random number generator, where the error bars indicate the standard error due to
this variability.) Additional reconstruction results can be found in Appendix G. The noise in
experimental data is estimated to be of order 10%, so the effect is clearly exaggerated in these
simulations. Nevertheless, the FOM values of the reconstructions remain high.

In general, as expected, the errors in the grain map are primarily found to build up at the
grain boundaries. The results also reflect expectations that the orientation errors are usually
higher in those grains that have the larger orientation spreads. There is though a surprising fact:

10The results of Test Case V have not been published; they were obtained as an extension and improvement
upon the results published earlier.
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(a) (b) (c)

(d) (e)
 
 
 
0°    1°    2°    3°    4°    5°    8°   10°  15°  180° 

(f)

Figure 8.9. The reconstruction of Test Case I using γ(g, o) and noiseless projections;
FOMg = 0.9995, FOMo = 0.9996. (a) Reference orientation map (contrast-enhanced). (b)
Initial orientation map. The initial grain map can be obtained by assigning unique labels
to non-black pixels and setting the rest to ambiguous. (c) Reconstructed orientation map
(contrast-enhanced). (d) Difference of the reference and the reconstructed grain maps. Black
pixels denote identical grain labels, white pixels represent mismatching ones. (e) Difference
of the reference and the reconstructed orientation maps. The intensity of the pixels is deter-
mined by the distance (disorientation angle) of corresponding orientation pairs, as shown in
(f).
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(f)

Figure 8.10. The reconstruction of Test Case II using γ(g, o) and noiseless projections;
FOMg = 0.996, FOMo = 0.9994. Map arrangement and gray scales as for Figure 8.9.

(a) (b) (c)

(d) (e)
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(f)

Figure 8.11. The reconstruction of Test Case III using γ(g, o) and noiseless projections;
FOMg = 0.998, FOMo = 0.9994. Map arrangement and gray scales as for Figure 8.9.
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(a) (b) (c)
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(f)

Figure 8.12. The reconstruction of Test Case IV using γ(g, o) and noiseless projections;
FOMg = 0.857, FOMo = 0.984. Map arrangement and gray scales as for Figure 8.9. (Note:
(d) is irrelevant due to the lack of a meaningful definition of grains in this case; see text.)
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(f)

Figure 8.13. The reconstruction of Test Case V using γ(g, o) and noiseless projections
(original color mapping); FOMg = 0.987, FOMo = 1. Map arrangement and gray scales as
for Figure 8.9. Black pixels in orientation maps represent void regions. (Note: see text for
an explanation of the error in (d).)
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Figure 8.14. The reconstruction of Test Case I using γ(g, o) at 100% noise level;
FOMg = 0.994, FOMo = 0.997. (a) Reference orientation map (contrast-enhanced). (b)
Reconstructed orientation map (contrast-enhanced). (c) Difference of the reference and the
reconstructed grain maps. Black pixels denote identical grain labels, white pixels represent
mismatching ones. (d) Difference of the reference and the reconstructed orientation maps.
The intensity of the pixels is determined by the distance (disorientation angle) of correspond-
ing orientation pairs, as shown in (e).

Case III surpassed the others—including Case V—in quality by yielding figures-of-merit quite
close to 1. (Except for noise level 0% where Case V yielded the highest FOMo.)

The impact of terms H1(g, o) and H2(g) was investigated by performing some experiments
for Case II when one or both of these terms had been disabled. To get reliable statistics, all
simulations were repeated 10 times using different seeds for the pseudo-random number generator.
The results are presented in Figure 8.17 for noise levels 0%, 50%, 100%, 200%, 300% and 400%,
respectively. It is evident that including at least one of the additional terms is beneficial at higher
noise levels, and that H2(g) has a slightly higher influence than H1(g, o).

The speed of convergence of γ(g, o) is depicted in Figure 8.18 for a typical reconstruction of
Case II using noiseless projections. As can be seen, only 804 658 out of 2.5 million Metropolis
iterations (≈ 32.2%) resulted in the acceptance of a new (g′, o′) pair of maps; the rest of the
proposals were rejected. During this time, the exponent of γ(g, o) rose from the initial -55 352
up to ≈ 11 543.73, spending altogether slightly over 7 minutes. It is evident that the objective
function kept improving steadily for the first ≈ 100 000 accepted (g′, o′) pairs, but slowed down
dramatically thereafter.

8.4 Summary
We have demonstrated that the discrete tomography approach yields substantial improvements
over the continuous approach (such as ART) when both grain map and orientation map re-
constructions are desired. The discrete nature of the reconstruction task was exploited in two
ways:

1. By introducing labels and discrete grain maps. This has reduced the size of solution space
by orders of magnitude, thereby enabling the use of stochastic routines. We showed that
we provide reconstructions of a quality that is clearly superior to previous approaches.
The stochastic routines do need a priori information in terms of initial maps. However,
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(e)

Figure 8.15. The reconstruction of Test Case II using γ(g, o) at 100% noise level; FOMg =
0.984, FOMo = 0.996. Map arrangement and gray scales as for Figure 8.14.
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Figure 8.16. Quality of the reconstructions using γ(g, o) as the function of noise level, based
on 10 repetitions. Error bars indicate the standard error. Larger values correspond to better
results. (a) FOMg versus the level of noise. Test Case IV is not shown due to the lack of a
physically meaningful grain map. (b) FOMo versus the level of noise.
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Figure 8.17. Importance of various terms of γ(g, o) as the function of noise level, based on
10 repetitions of the reconstruction of Test Case II. Error bars indicate the standard error.
Larger values correspond to better results. (a) FOMg versus the level of noise. (b) FOMo

versus the level of noise.
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Figure 8.18. Speed of convergence of γ(g, o) as the function of iterative steps. Reconstruc-
tion of Test Case II using noiseless projections as per Figure 8.10. Value plotted: exponent
of γ(g, o) versus the number of accepted (g′, o′) pairs (out of 2.5 million iterations in total).
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this requirement is not that demanding; prior data can be supplied by external tools like
GRAINSWEEPER [153] as a pre-processing step.

2. By use of priors. To enable this, the methodology has been generalized from a two-level
(binary) to multi-level systems. The priors were shown to provide better maps in the cases
where the reconstructions based only on the projections deteriorated (few projections, high
noise, initial maps with little information). The results indicate that they are not strictly
required for noiseless data, but their inclusion is likely to improve substantially the time
resolution of dynamic measurements by allowing the use of data with very low count rates.

The case of γ(o) is, clearly, a negative result, as it could not deliver satisfactory reconstructions
without a proper initial map o0.

The presented work serves as a basis for further improvements. In fact, the algorithms
shown here have been incorporated in the crystallographic software package developed under
the auspices of the research program TotalCryst [3, 157]. Moreover, the present approach was
used as an initialization step for another method providing grain map / orientation map pairs of
moderately deformed specimens using importance sampling and backward projection of 3DXRD
diffraction patterns [126].
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Appendix A

Summary in English

Tomography is a tool of image processing for determining (reconstructing) an image (or a func-
tion, in general) from a set of measurements over it (called projections). Discrete tomography
(DT), a relatively new field of image processing, deals with the special case when the range of
the images / functions is a known, finite set. The latter constraint is, actually, rather easy to
satisfy in many real-life problems, thus enabling the usage of DT in these cases.

The present thesis discusses two very different applications of DT: The first one is concerned
with the reconstruction of images of objects composed of some geometrical primitives like tubes,
cylinders and spheres. The specific scenario considered here arose in industrial nondestructive
testing of objects using radiographic measurements. The second application, on the other hand,
involves the reconstruction of orientation maps and grain maps of deformed polycrystalline ma-
terial samples from X-ray diffraction patterns. These tasks can be very challenging but they are
also crucial for several materials scientific concepts.

Reconstruction of Objects Parametrized with Geometrical
Primitives

In order to tackle the industrial problem brought up in the motivation, the author devised and
developed a new stochastic DT reconstruction method that can reconstruct 2D cross-sectional
images of objects. These objects are assumed to possess a specific geometrical structure; namely,
they can be described as a composition of discs and annuli. Moreover, the object is allowed to
be composed of 4 kinds of homogeneous materials that will appear as different pixel intensity
levels. The algorithm expects a small number of projections as input taken with parallel beam
geometry. To improve robustness against measurement errors, the reconstruction problem is
formulated as an optimization task so that solutions are represented in terms of the parameters
of constituting geometrical primitives.

Next, the author extended the above approach to enable the reconstruction of 3D objects
containing tubes, cylinders and spheres. Instead of being reduced to 2D sub-problems, the
algorithm provides a native 3D reconstruction.

Driven by the need to have a large selection of test images, the author also developed an
algorithm that can automatically generate random configurations of object parameters in a way
that any configuration is chosen with equal probability.

In order to ensure a faster convergence of the optimization process, the author devised and
implemented a method for automatically and deterministically constructing initial configurations
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based on the input projections. Since the precise pixel intensities are sometimes unavailable for
physical measurements, the algorithm also provides estimates for these values.

The effectiveness of the reconstruction techniques, as well as their sensitivity to various fac-
tors, were first investigated using simulation studies. The following parameters were considered:
the geometrical complexity of the configuration, the number of input projections, the amount
of noise present in the projections, and the quality of the initial configuration. In order to get
closer to the circumstances found in physical measurements, the author implemented an additive
noise model that can be used to distort simulated projections.

Besides using an appropriate initial configuration to start the optimization procedure, further
speed-ups were achieved by carrying out several optimizations in the algorithm logic.

Finally, the author also had the opportunity to test the algorithms with several physical
measurements. These included 2D as well as 3D objects examined with X-ray, neutron and
gamma radiation.

The results shown above have been published in [22,33,104,105,121–123].

Reconstruction of Deformed Polycrystalline Samples

The scope of the second industrial application is to get an insight into the microstructure of
polycrystalline specimens. As a first attempt targeting the general case, the author devised and
implemented a new stochastic DT reconstruction technique that can reconstruct the orientation
map in a 2D cross-section of a deformed polycrystal from X-ray diffraction measurements. The
sample is presumed to be in monophase, i. e. being composed of one material and a single crystal
structure. For better robustness against measurement inaccuracies, the reconstruction problem
is formulated as an optimization task that seeks a solution in the space of all possible orientation
map images. After considering several alternatives, the author eventually decided to represent
orientations with unit quaternions and model orientation maps as a Markov random field.

Since the aforementioned general case seemed to be hard to handle efficiently, the author
extended the reconstruction method to be able to simultaneously produce both an orientation
map and a grain map, both of which are modeled as Markov random fields. This approach
is applicable to moderately deformed specimens where one can derive a grain map from the
orientation map in a sensible way.

For both techniques rely on the notion of orientation similarity, the author defined and
realized a process for expressing and efficiently computing this quantity in the presence of crystal
symmetries.

In order to make the reconstruction procedure fast enough for practical usage, the author
applied numerous optimizations in the algorithm logic.

Both reconstruction methods were subject to a series of simulation studies using undeformed
as well as moderately deformed orientation maps that were all acquired during physical exper-
iments. These investigations helped the author determine the influence of some factors on the
reconstruction quality: magnitude of orientation spread within grains, degree of morphological
complexity of grain maps, and the amount of noise present in the projections. So as to get a
more realistic test setup imitating physical measurements, the author implemented a multiplica-
tive noise model that can be used to distort simulated projections.

The results presented herein have been published in [16,165,166].
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Conclusions

Two industrial problems have been considered. While quite dissimilar in nature, they nonetheless
had a couple of common points: both assumed that the range of the image to be retrieved is a
finite, known set, and also that only a limited number of measurements are typically available.
These issues together pose serious obstacles to classic tomographic approaches.

With the help of some a priori information about the image sought, DT techniques can still
be successful in such situations. In the cases presented in the thesis, these priors included an
expected geometrical structure, as well as a statistical distribution of grain morphologies and
some other local image features. As has been demonstrated, the new methods developed by
the author could deliver good quality reconstructions by incorporating prior knowledge into the
reconstruction process.

Key Points of the Dissertation

The findings of the research presented in the dissertation can be divided into two thesis groups.
Table A.1 shows which thesis point is described in which publication by the author.

Reconstruction of Objects Parametrized with Geometrical Primitives

The results were published in the conference proceedings [122], papers [22,104,105,121,123], and
the book chapter [33].

I/1. The author devised and developed a new stochastic DT reconstruction method that is able
to reconstruct 2D discrete images of objects which can be described as a composition of
simple geometrical primitives (namely, discs and annuli), and are composed of 4 kinds of
homogeneous materials (represented as different pixel intensities). The algorithm expects
a small number of projections as input taken with parallel beam geometry. The recon-
struction problem is formulated as an optimization task operating in the configuration
space, that is looking for solutions in terms of the parameters of constituting geometrical
primitives. [122,123] (Section 4.2)

I/2. The author extended the approach to enable the reconstruction of 3D objects containing
tubes, cylinders and spheres, still composed of 4 kinds of homogeneous materials. Unlike
some other techniques, this method provides a native 3D reconstruction, i. e. the 3D result
is not obtained by simply stacking the reconstructions of individual 2D cross-sections.
[33, 104,105,121] (Section 4.3)

I/3. In order to be able to test the efficiency of the reconstruction approach, the author de-
veloped an algorithm that can automatically generate random configurations of object
parameters. This automated process strives to be able to generate all valid potential con-
figurations with equal probability. [104,122,123] (Section 4.4)

I/4. The author devised and implemented a method for automatically and deterministically
constructing initial configurations based on the input projections, which can then become
the starting point of the reconstruction methods. The approach chosen is based on geo-
metrical principles combined with some heuristics. As part of this procedure, the author
enhanced the algorithm so that it can provide estimates for the pixel intensity levels needed
for the reconstruction of the object, which may not be known accurately enough in case of
physical measurements. [104] (Section 4.5)
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I/5. The author investigated the efficacy of the reconstruction techniques using numerous sim-
ulation experiments, which included mostly randomly generated configurations as well as a
few manually constructed ones in both 2D and 3D. The goal of this study was to quantify
how sensitive the algorithms were regarding the following factors: the geometrical complex-
ity of the configuration, the number of input projections, and the amount of noise present
in the projections. The influence of using an automatically determined initial configuration
vs a random one was also determined. In order to simulate the imprecise nature of physical
measurements, the author implemented an additive noise model that can be used to distort
simulated projections. In all the cases, the precision of reconstruction results was measured
with several figure-of-merit functions; one of them was devised and implemented by the
author. For the sake of improving reconstruction performance, the author carried out sev-
eral optimizations in the algorithm logic. As a crucial step, the evaluation of the objective
function—required for the optimization process—was sped up by executing computations
in an incremental way, so that the current value of the objective function gets updated
according to the alteration made in the proposed configuration. [33,104,105,121–123] (Sec-
tions 5.1.2 and 5.3)

I/6. The author tested the algorithms with several physical measurements. For the 2D scenario,
two test objects were reconstructed whose projections had been acquired with X-rays and
neutron radiation, respectively. The technique was also evaluated in case of reconstructing
3D objects; in particular, the same test object was reconstructed from X-ray, neutron
and gamma radiation based projections. The accuracy of reconstructions was verified by
comparing 2D cross-sections with the result of a classical reconstruction technique (FBP).
[22,33,104,105,121–123] (Section 6.2)

Reconstruction of Deformed Polycrystalline Samples
The results were published in papers [165,166] and the book chapter [16].

II/1. The author devised and implemented a new stochastic DT reconstruction technique that
can reconstruct the orientation map in a 2D cross-section of a deformed polycrystal from
X-ray diffraction measurements. Unlike some other approaches, this method utilizes the
unaltered projections (diffraction patterns) and produces a discrete solution. The algorithm
is applicable to specimens consisting of one known material and a single crystal structure.
The reconstruction problem is formulated as an optimization task operating in the space
of all possible orientation map images, where each pixel represents the local orientation of
the crystalline lattice at that location expressed as a unit quaternion. Orientation maps
are modeled as a Markov random field based on a combination of a homogeneity term
and a collection of clique configurations conveying local image features (namely, grain
boundaries). [165] (Section 7.2)

II/2. The author extended the reconstruction method to be able to simultaneously produce both
an orientation map and a grain map. Besides the input projections (X-ray diffraction pat-
terns), the algorithm also requires some a priori data in the form of statistics about typical
grain morphologies, approximate locations and basic orientations. The extended approach
is applicable to moderately deformed specimens where a grain map can be meaningfully
derived from the orientation map. In order to take advantage of local image features, both
maps are modeled as Markov random fields. [16, 166] (Section 7.3)

II/3. The author defined and realized a process for expressing the similarity of orientations in
the presence of crystal symmetries. Besides the basic definition, the author also gave a



127

Table A.1. The connection between the thesis points and the author’s publications.

Publication

Thesis point [16] [22] [33] [104] [105] [121] [122] [123] [165] [166]

I/1. • •
I/2. • • • •
I/3. • • •
I/4. •
I/5. • • • • • •
I/6. • • • • • • •
II/1. •
II/2. • •
II/3. • • •
II/4. • • •
II/5. • •

formulation for the efficient computing of this measure. [16, 165,166] (Section 7.4)

II/4. For the sake of improving reconstruction performance, the author carried out several op-
timizations in the algorithm logic. One such enhancement was the use of look-up tables
for computation-intensive expressions. Additional speed-ups were gained by relying on
quantized unit quaternions to represent orientations, and by updating the objective func-
tion value incrementally according to the alteration made in the proposed map or pair of
maps. [16,165,166] (Section 8.1.2)

II/5. The author run numerous simulations to quantitatively characterize the quality of the
reconstructions, based on an undeformed and 4 moderately deformed orientation maps
that were all acquired during physical experiments. The aim of these investigations was to
determine the sensitivity of the algorithms regarding the following factors: magnitude of
orientation spread within grains, degree of morphological complexity of grain maps, and
the amount of noise present in the projections. In order to mimic the inaccuracies found
in physical measurements, the author implemented a multiplicative noise model that can
be used to distort simulated projections. In all the cases, the precision of reconstruction
results was measured with a pair of figure-of-merit functions, one defined over the grain
map and the other over the orientation map. [16,166] (Section 8.3)





B. függelék

Összefoglaló Magyar Nyelven

A tomográfia egy képfeldolgozási eszköz képek (vagy, általánosságban, függvények) megállapí-
tására (rekonstrukciójára) az azokon vett mérések (vetületek) alapján. A diszkrét tomográfia
(DT), a képfeldolgozás egy viszonylag új területe, azzal a speciális esettel foglalkozik, amikor a
képek / függvények értékkészlete egy ismert véges halmaz. Ez utóbbi feltételt sok valós életbeli
probléma esetén igen könnyű teljesíteni, ily módon lehetővé téve a DT használatát ezekben az
esetekben.

Jelen dolgozat a DT két eltérő alkalmazását tárgyalja: Az első olyan tárgyak képeinek re-
konstrukciójával foglalkozik, amik néhány geometriai alakzatból állnak, mint pl. csövek, hengerek
és gömbök. Az itt tekintett konkrét eset ipari nemroncsoló anyagvizsgálat közben merült fel, ahol
tárgyakat vizsgáltak radiográfiai mérésekkel. Másrészt, a második alkalmazás deformált polikris-
tályos anyagminták orientáció- és szemcsetérképének rekonstrukciójával foglalkozik, méghozzá az
azok röntgendiffrakciós mintáiból. Bár ezek a feladatok igen komplikáltak, mégis kritikusak sok
anyagtudományi téma szempontjából.

Geometriai Alakzatokkal Paraméterezhető Tárgyak Rekonst-
rukciója

Azért, hogy a motivációban felvetett problémát kezelni tudja, a szerző egy új sztochasztikus
DT rekonstrukciós módszert dolgozott és fejlesztett ki, amely tárgyak 2D keresztmetszeti képeit
képes rekonstruálni. Ezekről a tárgyakról feltételezzük, hogy egy konkrét geometriai szerkezettel
bírnak: egész pontosan, körlapok és körgyűrűk kompozíciójaként írhatók le. Továbbá, a tárgy
4-féle homogén anyagból állhat, amelyek eltérő pixel intenzitásszintekként fognak megjelenni.
Az algoritmus bemenetként kevés számú, párhuzamos geometriával vett vetületet vár. A mérési
hibákkal szembeni robusztusság céljából a rekonstrukciós problémát optimalizációs feladatként
fogalmazzuk meg oly módon, hogy a megoldásokat a tárgyat alkotó geometriai alakzatok para-
métereivel fejezzük ki.

A szerző ezután kiterjesztette a fenti megközelítést, hogy az képes legyen csöveket, hengereket
és gömböket tartalmazó 3D tárgyak rekonstrukciójára. Ez az algoritmus natív 3D rekonstrukciót
nyújt ahelyett, hogy 2D alproblémákra vezetné vissza a problémát.

Mivel a későbbi szimulációs futásokhoz nagyméretű teszt adathalmazra volt szükség, a szerző
kifejlesztett egy olyan algoritmust, ami a tárgyparaméterek véletlen konfigurációit képes auto-
matikusan generálni oly módon, hogy bármely konfigurációt azonos valószínűséggel válasszuk.

Azon célból, hogy biztosítsa az optimalizációs folyamat gyorsabb konvergálását, a szerző ki-
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fejlesztett és megvalósított egy módszert a kezdőkonfigurációk automatikus és determinisztikus
konstruálására a bemeneti vetületek alapján. Mivel a fizikai mérések során a pontos pixel inten-
zitások néha nem állnak rendelkezésre, az algoritmus ezek értékéről is szolgáltat egy becslést.

A rekonstrukciós módszerek hatásosságát, valamint azok érzékenységét különféle tényezőkkel
szemben először szimulációs tesztekkel vizsgáltuk. A következő paramétereket tekintettük: a
konfiguráció geometriai bonyolultsága, a bemeneti vetületek száma, a vetületekben jelenlevő zaj
mennyisége, valamint a kezdőkonfiguráció minősége. Azért, hogy minél közelebb kerüljünk a
fizikai méréseknél tapasztalható körülményekhez, a szerző egy additív zajmodellt fejlesztett ki,
amit a szimulált vetületek eltorzítására használhatunk.

Azon kívül, hogy megfelelő kezdőkonfigurációból indítjuk az optimalizációs folyamatot, to-
vábbi gyorsulást értünk el az algoritmus logikájának optimalizálásával.

Végezetül, a szerzőnek lehetősége volt számos fizikai méréssel is tesztelni az algoritmust. Ezek
között 2D és 3D tárgyak is voltak, amiket röntgen-, neutron- és gamma-sugárzással vizsgáltak.

A fentebb bemutatott eredmények itt kerültek publikálásra: [22, 33,104,105,121–123].

Deformált Polikristályos Minták Rekonstrukciója

A második ipari alkalmazás során a feladat az, hogy polikristályos minták mikroszerkezetét ha-
tározzuk meg. Az általános esetet megcélzó első próbaként, a szerző kitalált és megvalósított egy
új sztochasztikus DT rekonstrukciós technikát, ami egy deformált polikristály 2D keresztmet-
szetében képes rekonstruálni az orientáció-térképet röntgendiffrakciós mérésekből. A mintáról
feltételezzük, hogy egyfázisú, azaz egyféle anyagból és egyetlen kristályszerkezetből áll. Azért,
hogy robusztusabb legyen a mérési pontatlanságokkal szemben, a rekonstrukciós problémát opti-
malizációs feladatként fogalmazzuk meg, ami az összes lehetséges orientáció-térképet tartalmazó
térben keres megoldást. Számos alternatíva áttekintése után a szerző végül úgy döntött, hogy az
orientációkat egységkvaterniókkal reprezentálja, valamint az orientáció-térképet Markov valószí-
nűségi mezőként modellezi.

Mivel a fent említett általános esetet látszólag nehéz volt hatékonyan kezelni, a szerző ki-
terjesztette a rekonstrukciós módszert, hogy az képes legyen szimultán egy orientáció- és egy
szemcsetérképet gyártani úgy, hogy mindkét térképet Markov valószínűségi mezőként modellez-
zük. Ez a megközelítés mérsékelten deformált mintákhoz használható, amik esetében értelmes
módon lehetséges az orientáció-térképből a szemcsetérképet kinyerni.

Mivel mindkét technika az orientációk hasonlóságának fogalmán alapszik, a szerző definiált
és megvalósított egy módszert, amivel ezt a mennyiséget kristályszimmetriák jelenléte esetén
kifejezhetjük és hatékonyan kiszámolhatjuk.

A rekonstrukciós módszer gyorsabbá tétele érdekében a szerző számos optimalizálást alkal-
mazott az algoritmus logikájában, hogy a módszer megfelelő teljesítményt nyújtson gyakorlati
használatra.

Mindkét rekonstrukciós módszert teszteltük egy sor szimulációval, mind deformálatlan, mind
mérsékelten deformált orientáció-térképekkel, amik mindegyikét fizikai kísérletek során nyerték
ki. Ezek a vizsgálatok segítették a szerzőt, hogy meghatározza néhány tényezőnek a behatását
a rekonstrukciós minőségre: az orientáció szórásának nagysága a szemcséken belül, a szemcse-
térképek morfológiai bonyolultságának foka, és a vetületekben jelenlevő zaj mennyisége. Ahhoz,
hogy minél valósághűbb tesztkörnyezetet kapjunk, ami a fizikai méréseket imitálja, a szerző egy
multiplikatív zajmodellt valósított meg, amivel eltorzíthatók a szimulált vetületek,

Az itt bemutatott eredmények a következő helyeken lettek publikálva: [16,165,166].



131

Konklúziók

Két ipari problémával foglalkoztunk. Miközben eléggé eltérő természetűek, mégis volt pár közös
pontjuk: mindkettő feltételezte, hogy a kinyerendő kép értékkészlete egy véges, ismert halmaz,
továbbá hogy tipikusan csak limitált számú mérések állnak rendelkezésre. Ezek a problémák
együtt komoly akadályokat állítanak a klasszikus tomográfiai megközelítések elé.

A keresett képről rendelkezésre álló néhány előzetes információ segítségével a DT technikák
még ilyen szituációkban is sikeresek lehetnek. A dolgozatban bemutatott esetekben ezek az
előzetes információk egyrészt a várt geometriai szerkezetből, másrészt a szemcse-morfológiák
statisztikai eloszlásából és pár egyéb lokális képjellemzőből álltak. Amint demonstráltuk, a szerző
által kifejlesztett új módszerek jó rekonstrukciós minőséget tudnak nyújtani azáltal, hogy az
előzetes információkat beépítik a rekonstrukciós folyamatba.

A Disszertáció Tézispontjai

A disszertációban bemutatott eredmények két téziscsoportba oszthatók. A B.1 táblázat mutatja,
melyik tézispont a szerző melyik publikációjában van leírva.

Geometriai Alakzatokkal Paraméterezhető Tárgyak Rekonstrukciója

Az eredmények a [122] konferenciakiadványban, a [22,104,105,121,123] cikkekben, valamint a [33]
könyvfejezetben kerültek publikálásra.

I/1. A szerző kifejlesztett és megvalósított egy új sztochasztikus DT rekonstrukciós módszert,
ami olyan tárgyak 2D diszkrét képeit képes rekonstruálni, amik egyszerű geometriai alak-
zatok (konkrétan, körlapok és körgyűrűk) kompozíciójaként írhatók le, és 4-féle homogén
anyagból állnak (amelyek különféle pixel intenzitásként jelennek meg). Az algoritmus be-
menetként kevés számú, párhuzamos geometriájú vetületet vár. A rekonstrukciós problémát
optimalizációs feladatként fogalmazzuk meg a konfigurációk terében, tehát a megoldásokat
a tárgyat alkotó geometriai alakzatok paramétereivel fejezzük ki. [122,123] (4.2. alfejezet)

I/2. A szerző kiterjesztette a megközelítést, hogy az képes legyen csöveket, hengereket és göm-
böket tartalmazó 3D tárgyak rekonstrukciójára, amik továbbra is 4-féle homogén anyagból
állnak. Néhány más technikától eltérően ez a módszer natív 3D rekonstrukciót ad, azaz a
3D eredmény nem úgy születik, hogy az egyes 2D keresztmetszeteket egyszerűen egymásra
halmozzuk. [33,104,105,121] (4.3. alfejezet)

I/3. Azért, hogy lehetőség legyen a rekonstrukciós megközelítés hatékonyságának tesztelésére,
a szerző kifejlesztett egy algoritmust, ami a tárgyparaméterek véletlen konfigurációit ké-
pes automatikusan generálni. Ez az automatikus folyamat arra törekszik, hogy bármely
potenciális konfigurációt azonos valószínűséggel válasszuk. [104,122,123] (4.4. alfejezet)

I/4. A szerző kifejlesztett és megvalósított egy módszert a kezdőkonfigurációk automatikus és
determinisztikus konstruálására a bemeneti vetületek alapján, amely konfigurációk utána
a rekonstrukciós módszerek kezdőpontjává válhatnak A megközelítés geometriai elvekkel
kombinált heurisztikára épül. Ezen eljárás részeként a szerző kiterjesztette az algoritmust,
hogy az becslést tudjon adni a tárgy rekonstrukciójához szükséges pixel intenzitásokról,
melyek a fizikai mérések során esetleg nem elég pontossággal ismertek. [104] (4.5. alfejezet)
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I/5. A szerző számos szimulációs kísérlet segítségével megvizsgálta a rekonstrukciós technikák
hatékonyságát, amelyek nagyrészt véletlenül generált konfigurációt, másrészt néhány ma-
nuálisan konstruált konfigurációt használtak mind 2D-ben, mind 3D-ben. Ennek a ta-
nulmánynak az volt a célja, hogy meghatározza, mennyire érzékenyek az algoritmusok a
következő tényezőkkel szemben: a konfiguráció geometriai bonyolultsága, a bemeneti ve-
tületek száma, és a vetületekben jelenlevő zaj mennyisége. Az is meg lett határozva, mi a
befolyása, ha automatikusan megállapított kezdőkonfigurációt használunk véletlen helyett.
Azon célból, hogy szimulálhassuk a fizikai mérések pontatlan természetét, a szerző egy ad-
ditív zajmodellt fejlesztett ki, amit a szimulált vetületek eltorzítására használhatunk. A
rekonstrukciós eredményének pontosságát minden esetben több mérőszámmal mértük; ezek
közül az egyiket a szerző találta ki és valósította meg. A rekonstrukció teljesítményének
javítása érdekében a szerző számos optimalizálást hajtott végre az algoritmus logikáján. Az
egyik kritikus lépésként a célfüggvény – amire az optimalizáció miatt van szükség – kiér-
tékelése fel lett gyorsítva azáltal, hogy a számolásokat inkrementális módon hajtjuk végre,
tehát a célfüggvény aktuális értéke frissítésre kerül a javasolt konfigurációban elkövetett
változtatás alapján. [33,104,105,121–123] (5.1.2. és 5.3. alfejezet)

I/6. A szerző számos fizikai méréssel tesztelte az algoritmusokat. A 2D esetben két tárgy lett re-
konstruálva, amelyek vetülete röntgen- ill. neutron-sugárzással lett begyűjtve. A technikát
3D tárgyak rekonstrukciójával is kiértékeltük; konkrétan, ugyanaz a tárgy lett rekonstruálva
röntgen-, neutron- és gamma-sugárzással készült vetületekből. A rekonstrukció pontossá-
gát a 2D keresztmetszetek és egy klasszikus technika (FBP) eredményének összevetésével
ellenőriztük. [22,33,104,105,121–123] (6.2. alfejezet)

Deformált Polikristályos Minták Rekonstrukciója
Az eredmények a [165,166] cikkekben és a [16] könyvfejezetben kerültek publikálásra.

II/1. A szerző kifejlesztett és megvalósított egy új sztochasztikus DT rekonstrukciós módszert,
ami egy deformált polikristály 2D keresztmetszetében képes rekonstruálni az orientáció-
térképet röntgendiffrakciós mérésekből. Néhány más megközelítéstől eltérően ez a mód-
szer a változatlan vetületeket (diffrakciós mintákat) használja, és diszkrét megoldást nyújt.
Az algoritmus egyféle anyagból és egyetlen kristályszerkezetből álló mintákkal használ-
ható. A rekonstrukciós problémát optimalizációs feladatként fogalmazzuk meg, ami az
összes lehetséges orientáció-térképet tartalmazó térben keres megoldást, ahol minden pixel
a kristályrács azon pontján mért lokális orientációját reprezentálja egységkvaterniókkal. Az
orientáció-térképeket Markov valószínűségi mezőként modellezzük egy homogenitási feltétel
és klikk konfigurációk kombinációja segítségével, ahol az utóbbiak lokális képjellemzőket
fejeznek ki (konkrétan, szemcsehatárokat). [165] (7.2. alfejezet)

II/2. A szerző kiterjesztette a rekonstrukciós módszert, hogy az képes legyen szimultán egy
orientáció- és egy szemcsetérképet gyártani. A bemeneti vetületek (röntgendiffrakciós
minták) mellett az algoritmusnak egy kis előzetes információra is szüksége van, mégpe-
dig a tipikus szemcse-morfológiák statisztikája, valamint a szemcsék megközelítő helyzete
és alaporientációja formájában. A kiterjesztett megközelítés mérsékelten deformált min-
tákhoz használható, amik esetében értelmes módon lehetséges az orientáció-térképből a
szemcsetérképet kinyerni. A lokális képjellemzők előnyeinek kihasználása érdekében mind-
két térképet Markov valószínűségi mezőként modellezzük. [16,166] (7.3. alfejezet)

II/3. A szerző definiált és megvalósított egy módszert, amivel az orientációk hasonlóságát kris-
tályszimmetriák jelenléte esetén kifejezhetjük. Az alapdefiníció mellett a szerző arra is
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B.1. táblázat. A tézispontok és a szerző publikációi közötti kapcsolat.

Publikáció

Tézispont [16] [22] [33] [104] [105] [121] [122] [123] [165] [166]

I/1. • •
I/2. • • • •
I/3. • • •
I/4. •
I/5. • • • • • •
I/6. • • • • • • •
II/1. •
II/2. • •
II/3. • • •
II/4. • • •
II/5. • •

kitért, hogyan lehet ezt a mennyiséget hatékonyan kiszámolni. [16,165,166] (7.4. alfejezet)

II/4. A rekonstrukció teljesítményének javítása érdekében a szerző számos optimalizálást al-
kalmazott az algoritmus logikájában. Az egyik ilyen ötlet a look-up táblák használata
volt számolásigényes kifejezésekben. További gyorsulást értünk el kvantált egységkvater-
niók használatával az orientációk reprezentációja esetén, továbbá a célfüggvény értékének
inkrementális frissítésével a javasolt térképben vagy térkép-párban elkövetett változtatás
alapján. [16,165,166] (8.1.2. alfejezet)

II/5. A szerző számos szimulációt futtatott, hogy számszerűsítse a rekonstrukciók minőségét,
egyrészt egy deformálatlan, valamint 4 mérsékelten deformált orientáció-térképpel, amik
mindegyikét fizikai kísérletek során nyerték ki. Ezeknek a vizsgálatoknak az volt a céljuk,
hogy megállapítsák, mennyire érzékenyek az algoritmusok a következő tényezőkkel szem-
ben: az orientáció szórásának nagysága a szemcséken belül, a szemcsetérképek morfológiai
bonyolultságának foka, és a vetületekben jelenlevő zaj mennyisége. Azért, hogy jobban
utánozzuk a fizikai mérésekben megtalálható pontatlanságokat, a szerző egy multiplika-
tív zajmodellt valósított meg, amivel eltorzíthatók a szimulált vetületek. A rekonstrukciók
eredményének pontosságát minden esetben két mérőszámmal mértük, ahol az egyik a szem-
csetérképen, a másik az orientáció-térképen volt definiálva. [16,166] (8.3. alfejezet)





Appendix C

Crystallographic Basics

This appendix gives a brief introduction to the crystallographic notions relevant for the thesis;
thus it complements Section 3.2.1. Furthermore, the mathematical relationship between the
object and its projections is explained (following [130, 153]). For a deeper introduction we refer
to [21,58,106,189].

The contents of this appendix was adapted from [14] in its entirety; it is reproduced here
with the permission of the authors.

C.1 Lattices
In a crystalline material the atoms are arranged in a three-dimensional discrete lattice. The
crystalline lattice can be fully characterized by three properties:

1. The crystal’s regularity, i. e., the periodic array in which the repeated units of the crystal
are arranged, is captured by the concept of the Bravais lattice,

L = {x ∈ R3 | x = α1a + α2b + α3c, α1, α2, α3 ∈ Z } ,

where a,b, c ∈ R3 are given vectors not all lying in the same plane. Notably, for a given
lattice, a number of symmetry operations exist (such as translations, inversions, rotations
and mirror operations) that map the Bravais lattice onto itself. Lattices that are invariant
under such operations are said to exhibit the same crystal symmetry. Further definitions
and properties of the Bravais lattice are summarized below.

2. The (crystalline) basis: This is the configuration of atoms that is repeated at each point
in the Bravais lattice. It can be as small as a single atom (e. g. an unalloyed metal, leading
to a monatomic basis), a collection of atoms / ions (e. g. rock salt, formed by sodium and
chloride ions), or as large as a complex molecule (e. g. frozen and crystallized proteins).

3. The orientation of the lattice. Notably, due to crystal symmetry the orientation is not
uniquely defined (see Section 7.4 for more details). A polycrystal, as mentioned in Sec-
tion 7.1, consists of smaller crystals (grains or crystallites) at different orientations.

The vectors a, b and c above are called the primitive vectors of the lattice. In the crystallo-
graphic literature, one often specifies a lattice by six lattice parameters (a, b, c, α, β, γ) ∈ R6.
These parameters define the lengths of the primitive vectors and their interaxial angles, i. e.,

a := ‖a‖2 , b := ‖b‖2 , c := ‖c‖2
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and

α := arccos
b · c
bc

, β := arccos
c · a
ca

, γ := arccos
a · b
ab

,

where · denotes the scalar product.
Polycrystals containing two or more grains with different lattice structure are said to be in

multiphase, otherwise they are in monophase. It is this latter case that is considered in this
thesis.

Given a Bravais lattice with primitive vectors a, b and c, one defines the reciprocal lattice
to be the lattice with primitive vectors a∗, b∗ and c∗ fulfilling

a · a∗ = b · b∗ = c · c∗ = 2π

and
a · b∗ = a · c∗ = b · a∗ = b · c∗ = c · a∗ = c · b∗ = 0 .

Lattice planes—defined as planes containing at least three noncollinear Bravais lattice
points—are an essential notion for describing the diffraction process. These lattice planes are
usually described by Miller indexes, which are integers h, k, l ∈ Z, with greatest common divi-
sor equal to 1, defining the lattice plane normal to the vector ha∗ + kb∗ + lc∗ in the reciprocal
lattice. Miller indexes corresponding to a particular set of lattice planes are usually designated
by (hkl). For instance, (111) denotes the set of lattice planes whose normal is parallel to the
vector a∗+ b∗+ c∗ in the reciprocal lattice. The distance d between two adjacent planes among
the set of lattice planes associated with some Miller indexes (hkl) is called the lattice spacing.
Furthermore, the notation {hkl} is a shorthand for the (Miller indexes of the) set of all lattice
planes that are equivalent to (hkl) due to the symmetries of the lattice.

The orientation of a grain can be described by a (proper) rotation in 3D space. Given a
fixed coordinate system it is well known that such a rotation can be described by three angles
(ψ,ϕ1, ϕ2), the so-called Euler angles [45], expressing a sequence of 3 rotations. In this notation,
the first rotation is by an angle ψ ∈ [0, 2π) about the z-axis, the second is by an angle ϕ1 ∈ [0, π]
about the x-axis, and the third is by an angle ϕ2 ∈ [0, 2π) again about the z-axis (all angles
measured counterclockwise). Straightforward calculations of the three rotation matrices yields
the orientation matrix

U :=

u11 u12 u13

u21 u22 u23

u31 u32 u33

 , (C.1)

where

u11 := cosϕ1 cosϕ2 − sinϕ1 sinϕ2 cosψ ,

u12 := − cosϕ1 sinϕ2 − sinϕ1 cosϕ2 cosψ ,

u13 := sinϕ1 sinψ ,

u21 := sinϕ1 cosϕ2 + cosϕ1 sinϕ2 cosψ ,

u22 := − sinϕ1 sinϕ2 + cosϕ1 cosϕ2 cosψ ,

u23 := − cosϕ1 sinψ ,

u31 := sinϕ2 sinψ ,

u32 := cosϕ2 sinψ ,

u33 := cosψ .
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Figure C.1: A Bragg reflection from a particular family of lattice planes, with lattice spacing
d and angle of incidence θ. (Image source: [21].)

C.2 Diffraction

The physical principle that governs the data acquisition process of the 3DXRD microscope is
the principle of X-ray diffraction [58, 153, 189]. Diffraction spots on the detector appear if
X-ray beams reflected on parallel lattice planes interfere constructively. Bragg’s law states
that the condition for constructive interference for a wave of wavelength λ against a series of
lattice planes with lattice spacing d, rotated by the angle θ off the plane of reflection1 (called the
Bragg angle), is

nλ = 2d sin θ, n ∈ N . (C.2)

This is illustrated in Figure C.1. Reformulated in terms of the scattering vector g (defined as the
difference between the vector describing the incident beam and the reflected beam, normalized
so that ‖g‖2 = 2π/d), Bragg’s law states:

‖g‖2 =
4π

nλ
sin θ . (C.3)

For given Miller indexes (hkl) only the case n = 1 is relevant, as any higher order harmonics is
equivalent to an n = 1 case for another distinct Miller indexes (h′k′l′). For example, the n = 3
case for (111) is equivalent to n = 1 for (333).

C.3 Calculating Diffraction Spots

Three Cartesian coordinate systems are utilized: the laboratory system, the rotation table system
and the Cartesian grain system. In particular, the origins of the laboratory system and the
rotation stage coincide.

Let (xC,yC, zC) denote the Cartesian grain system which is fixed with respect to the recip-
rocal lattice (a∗,b∗, c∗) in the grain.

Let ghkl denote a scattering vector represented by the Miller indexes (hkl) in the reciprocal
lattice system. The correspondence between the Cartesian grain system and reciprocal space is

1Contrary to the convention in optics, the Bragg angle is indeed measured from the plane of reflection rather
than from the plane normal. See e. g. [21, Chapter 6].
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given by the matrix B: gC = Bghkl, with

B :=

a∗ b∗ cos γ∗ c∗ cosβ∗

0 b∗ sin γ∗ −c∗ sinβ∗ cosα
0 0 c∗ sinβ∗ sinα


and

cosα =
cosβ∗ cos γ∗ − cosα∗

sin γ∗ sinβ∗
.

Here (a, b, c, α, β, γ) and (a∗, b∗, c∗, α∗, β∗, γ∗) symbolize the lattice parameters in direct and
reciprocal space, respectively.

Given the orientation of the grain by the Euler angles (ψ,ϕ1, ϕ2), this scattering vector further
transforms by applying the orientation matrix U of Equation (C.1). Finally, taking the rotation
by an angle ω on the rotation table into account, we derive the representation in the laboratory
system by

gl = ΩUBghkl ,

where

Ω :=

cosω − sinω 0
sinω cosω 0

0 0 1

 .

Given the angles θ and η as in Figure 3.4 we deduce that

gl =
2π√

2− 2 cos(2θ)

 cos(2θ)− 1
− sin(2θ) sin η
sin(2θ) cos η

 .

Notice that gl is the diffraction vector, i. e., it is derived by subtracting the incoming beam
vector from the diffracted beam vector (in polar coordinates). Together with Bragg’s law in
Equation (C.3) we derive

gl =
2π

λ

 cos(2θ)− 1
− sin(2θ) sin η
sin(2θ) cos η

 . (C.4)

In summary, given a lattice plane we can calculate by Equation (C.4) the angles η and
θ fulfilling Bragg’s law, and thus infer that the beam is diffracted along a straight line with
direction vector

vl =

 cos(2θ)
− sin(2θ) sin η
sin(2θ) cos η

 .

Now, let (ydet(0), zdet(0)) denote the intersection of the detector plane with the incoming (non-
diffracted) ray passing through the origin O of the laboratory system, and L the distance between
O and the detector plane. Given a point (xl, yl, zl) of the grain (with respect to the laboratory
system), it easily follows that the associated diffraction point on the detector (L, ydet, zdet) can
be calculated by

ydet = −(L− xl) tan(2θ) sin η + yl − ydet(0) ,

zdet = (L− xl) tan(2θ) cos η + zl − zdet(0) .
(C.5)



Appendix D

Generating Random Configurations
for 2D Parametric Objects

This appendix explains the exact process of generating random configurations for 2D parametric
objects; it complements and expands upon the notions introduced in Section 4.4. The execution
of the algorithm starts at Function GenerateConfiguration. The input of this function is
the target number N of discs to be included, and its result is a valid generated configuration c
containing exactly N discs.

Generating the Annulus

The construction of the new configuration starts with laying down the annulus (see Proce-
dure AddRing). This is performed in two steps: First, the center ORE = ORI is generated
randomly within a certain circular neighborhood of OC (determined by a user-defined radius
about OC). The two radii rRE and rRI are then chosen within certain limits so that the config-
uration remains valid. (The range of rRE as well as the permissible ring thickness are controlled
by another set of user-defined parameters.)

Objectives

Having fixed the location and size of the ring, the process continues with the generation of disc
parameters. This step deserves some deliberation, though: On the one hand, it is only possible
to obtain a meaningful statistics on the quality of reconstructions when every element of the
configuration space C can be generated equally likely, i. e. if c is chosen with uniform probability.
On the other hand, the algorithm should also be robust enough in order to avoid non-terminating
conditions (namely, entering an infinite loop in the absence of any valid configurations). The
approach described below tries hard to satisfy these requirements as much as possible.

Generating Discs

The algorithm proceeds with randomly fixing the centers of all the discs at once, after which
disc radii will be generated individually (see Procedure AddDisc). The choice of disc centers
is driven by two guidelines: all radii should be greater than or equal to rmin (again specified by
the user), and it should be possible to decide if a new disc with some given radius ri can be
added to c so that it remains valid. Actually, the algorithm is able to answer a harder question:
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Oi

ORI

P1

P2

P1

P2

Oi

Oj

P1

P2 Oi
Oj

(a) (b) (c)

Figure D.1: Verifying if a new disc (drawn striped) with radius r can be added to c without
violating geometrical constraints. All mentioned algorithm lines are from Function Radius-
Good. (a) The case mentioned in line 4. (b) The case mentioned in line 11. (c) The case
mentioned in line 13.

O1

ORI

Figure D.2: Finding the maximal radius r2 of a new disc (drawn striped) in the presence
of a single disc (O1, r1) in c; see line 4 of Function MaxRadiusNewDisc.

Function MaxRadiusNewDisc—with the help of Function RadiusGood—gives an approxi-
mate upper bound for ri. Having generated disc centers, Function MaxRadiusExistingDisc
determines the maximal feasible radius for each newly added disc one by one (based on the
position of the disc with respect to the annulus and other neighboring discs); this information is
then used to randomly pick the final radius from the feasible range.

The aim of Function RadiusGood is to decide if a new disc with radius r can be added
to c while keeping the latter valid. This task is, in fact, related to the so-called Apollonius’
problem (named after Greek geometer Apollonius of Perga) that seeks to find circles tangent to
three given circles, lines or points in a plane. The algorithm presented here is a sort of heuristics
devised by the author; it is based on checking certain candidate centers as shown in Figure D.1.
The task is trivial to solve when c contains at most one disc; see Figure D.2 for the case of a
single existing disc. Using this information, Function MaxRadiusNewDisc finds an estimate
for the maximal feasible radius using a binary search over the interval [0, rRI]. The iterative
search stops when the width of the current interval falls below a given positive real δ.

Final Remarks

Regarding the aforementioned objectives, the probability of any given c mostly depends on the
properties of the pseudo-random number generator, as well as on the reliability1 of the estimated
maximal feasible radius. On the other hand, the algorithm might be unable to generate all
necessary disc centers when choosing too high a rmin. In the latter case, potential infinite loops
are spotted by setting a strict upper bound on the number of center candidates being tried.

1This is unknown, unfortunately; no analysis has been carried out to assess the actual precision / quality of
the radius estimate given here.



141

The generation of 3D configurations is performed by a direct extension and adaptation of
the aforementioned procedure. It is, of course, reasonably more complex due to the extra space
dimension, as well as due to the need for supporting two kinds of objects (spheres and cylinders)
within the interior.

Function GenerateConfiguration(N)
Input : number of discs the generated configuration shall contain (N)
Output : generated configuration

1 c := empty configuration
2 AddRing(c)
3 AddDisc(c, N)
4 return c

Procedure AddRing(c)
Input : configuration to amend (c)

1 Generate ORE
2 ORI := ORE
3 Generate rRE and rRI
4 Add ring parameters to c

Procedure AddDisc(c, N)
Input : configuration to amend (c), number of discs to add (N)

1 N
′

:= number of discs in c

/* Generating disc centers */
2 for i := N

′
+ 1 to N

′
+N do

3 r := MaxRadiusNewDisc(c)
4 if r < rmin then
5 Error

6 ri := rmin /* Temporary setting */
7 Generate Oi using temporary ri
8 if generation of Oi failed then
9 Error

10 Add disc (Oi, ri) to c

/* Generating disc radii */
11 for i := N

′
+ 1 to N

′
+N do

12 r := MaxRadiusExistingDisc(c, i)
13 Generate ri so that rmin ≤ ri ≤ r
14 Update ri in c
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Function MaxRadiusNewDisc(c)
Input : configuration to inspect (c)
Output : approximate maximal radius of a new disc that may be added to c without violating geometric

constraints

1 if there are no discs in c then
2 r := rRI
3 else if there is only a single disc in c then
4 r := rRI−r1+ORIO1

2

5 else
/* Find approximate maximal radius using binary search */

6 r := 0 /* May be smaller than rmin in worst case */
7 r

′
:= rRI

8 while r
′ − r ≥ δ do

9 x := r+r
′

2

10 if RadiusGood(c, x) then
11 r := x
12 else
13 r

′
:= x

14 return r

Function RadiusGood(c, r)
Input : configuration to inspect (c), radius to test for (r)
Output : true if a new disc with radius r may be added to c without violating geometric constraints;

false otherwise

1 N
′

:= number of discs in c

/* According to the logic in Function MaxRadiusNewDisc, N
′ ≥ 2 */

2 for i := 1 to N
′
do

3 if Oi 6= ORI then
4 Let P1 and P2 denote the centers of the circles with radius r along line ORIOi that are tangent to

the interior
5 if either of the discs (P1, r) and (P2, r) may be added to c without violating geometric

constraints then
6 return true

7 for i := 1 to N
′ − 1 do

8 for j := i+ 1 to N
′
do

9 r
′

:=
OiOj−ri−rj

2

10 if r ≤ r′ then
11 Let P1 and P2 denote the centers of the circles with radius r along line segment OiOj that

are tangent to either (Oi, ri) or (Oj , rj)

12 else
13 Let P1 and P2 denote the intersections of circles (Oi, ri + r) and (Oj , rj + r); these are the

centers of the circles with radius r tangent to both (Oi, ri) and (Oj , rj)

14 if either of the discs (P1, r) and (P2, r) may be added to c without violating geometric
constraints then

15 return true

16 return false
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Function MaxRadiusExistingDisc(c, i)
Input : configuration to inspect (c), index of disc to test for (i)
Output : maximal possible radius of disc (Oi, ri) in c without violating geometric constraints while

keeping Oi fixed

1 N
′

:= number of discs in c

2 r := rRI −ORIOi

3 for j := 1 to N
′
do

4 if i 6= j then
5 r := min

(
r,OiOj − rj

)
6 return r





Appendix E

Constructing Initial Configurations
for 2D Parametric Objects

This appendix describes the exact way of constructing initial configurations for 2D parametric
objects; it complements and expands upon the notions introduced in Section 4.5. Before dis-
cussing the complete procedure, however, we begin with recalling the definition of a well-known
operation of digital signal processing: Let m ≥ n be positive integers. The discrete convo-
lution of vectors f = (f0, . . . , fm−1) and g = (g0, . . . , gn−1) is obtained as the following vector
h = (h0, . . . , hm−1):

hi :=

{∑n−1
j=0 fi−j · gj if i ≥ n− 1 ,

0 otherwise .

f is dubbed the digital signal, its elements are samples, while g is called the convolution
kernel. The kernel is usually given in a normalized form, i. e.

∑n−1
j=0 |gj | = 1. If n is odd, h

can be also computed as follows:

hi :=

{∑n−1
j=0 fi+j−n−1

2
· gj if n−1

2 ≤ i < m− n−1
2 ,

0 otherwise .

In the formulas above, elements near the left and right ends of h do not necessarily have to be
set to 0. In order to avoid treating these elements specially, the signal f needs to be “extended”
in some way for all respective indexes outside the range [0,m − 1]. There are many options for
this: (a) “threshold” invalid indexes to stay within the valid range; (b) consider f as a periodic
signal; (c) extrapolate missing signal values. Since projection vectors are definitely non-periodic
(namely, there is no physical justification for them being treated as periodic measurements),
and extrapolation would probably yield no additional gain, option (a) was finally chosen. Thus,
missing elements fi were assumed to equal either f0 or fm−1, depending on which end of the
interval [0,m− 1] was closer to i.

Algorithm Entry Point

The execution of the algorithm starts at Function InitialConfiguration. The input of this
function is the set {ϑ1, . . . , ϑn} of projection angles, the input discrete sinogram

(
Pϑ1 , . . . ,Pϑn

)
(with all the Pϑi being 1D projections), the target number N of discs to be included in c0,
and the LAC values constituting A. (As mentioned earlier, µ0 ≡ 0 is assumed throughout the
algorithm.) The function produces a valid configuration c0 containing exactly N discs.

145
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Figure E.1: Normalized convolution kernels used for noise filtering and for approximating
the 1st numerical derivative.

(a) (b) (c) (d)

Figure E.2: Phases of noise filtering. (a) Noiseless original projection. (b) Original pro-
jection at 10% noise level. (c) Result of the Gaussian filtering of (b). (d) Result of the
averaging filtering of (c).

Locating the Annulus

The procedure sets off with trying to locate the annulus in the projections; see Function Lo-
calizeRing. Even though the rest of the algorithm operates on the original—possibly noisy—
projections, the localization of the annulus can be made more robust by first applying some noise
filtering.

(
Pϑ1

, . . . ,Pϑn

)
will be, thus, subject to two phases of convolutions: first with kernel(

1
13 ,

3
13 ,

5
13 ,

3
13 ,

1
13

)
—a rough approximation of a Gaussian—, then using the simple averaging

kernel
(

1
5 ,

1
5 ,

1
5 ,

1
5 ,

1
5

)
5 times in succession. (Figure E.1 shows a plot of both aforementioned ker-

nels.) As can be seen in Figure E.2, such a combination of filters is indeed effective in smoothing
out projections even in the presence of noise.1

The outer boundaries of the ring are are determined by scanning the original (unfiltered)
projections for the “leftmost” (s1) and “rightmost” (s4) value exceeding a given threshold t. As
can be seen in the definition of the latter (see line 2 of Function LocalizeRing), the τ > 0
real denotes the estimated noise level in agreement with the noise model presented earlier in
Section 5.2.3.

The location of the inner boundaries of the ring (which happen to define the boundaries of

1It should be noted that, as a side-effect of smoothing, these filters may slightly alter the height—and shift
the location—of local extrema.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure E.3: Phases of locating the annulus. (a) Binary configuration to be reconstructed;
µR = µD = 1, µI = 0. (Frame added for better visibility.) (b) Original vertical projection of
(a) at 10% noise level. (c) Result of the Gaussian filtering of (b). (d) Result of the averaging
filtering of (c). (e) Noiseless simulated projection of the annulus and the interior determined
from (b). (f) Projection remaining after the subtraction of (e) from (b). (g) 1st numerical
derivative of (c). (Zero level shown as a dotted line.) (h) 1st numerical derivative of (g) (i. e.
2nd numerical derivative of (c)).

the interior as well) is slightly harder to find. Usually it is enough to look for the “leftmost” (s2)
and “rightmost” (s3) local maxima of the noise-filtered projection (based on its first derivative),
but this may not be sufficient in scenarios where a disc is tangent to (i. e. touches) the inner circle
of the ring (see Figure E.3). This can be overcome by inspecting the second derivative to find
the first inflection point (if such exists) of the filtered projection to the “left” and to the “right”
of the local maxima. The numerical derivatives are approximated using the Savitzky–Golay
convolution filter [159, Sections 5.7 and 14.8] [170, 171, 179]. (A plot of the associated kernel is
depicted in Figure E.1.)

The aforementioned s indexes will then be used to compute some intermediate values that, for
each ϑi, are saved in vectors EXTRADIUS, DIFFRADIUS and LINE (storing the approximate
rRE, rRE−rRI and ORE values determined for a given projection angle, respectively). Having pro-
cessed all the projections, annulus parameters (ORE, rRE, ORI, rRI) will be obtained by averaging
the intermediate values mentioned above (with the usual assumption that ORE = ORI).

Function LocalizeRing concludes with calculating the estimates {µ̂R, µ̂I}, as well as refining
rRI using model fitting. The exact purpose and explanation of these steps will be given later.

Locating Discs in Projections

The algorithm proceeds with the detection of projections of individual discs appearing in the
unfiltered Pϑi ; see Function LocalizeDiscs. This first requires the “elimination” of the ring and
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the interior from the input projections.2 This is followed by the normalization of the remaining
projection data via dividing each element by (µD − µI) (as per Section 5.2.3). The latter step
ensures two properties: 1. the projection of any disc remains positive; 2. the projection of any
disc appears as if it had been taken at µD = 1. Finally, the remaining projection is once more
thresholded to get rid of any random spikes that presumably belong to the background. Any
elements located outside the annulus are also zeroed out. The effect of these procedures is shown
in Figure E.3(f).

After all this pre-processing, the remaining projection data is further inspected in an iterative
fashion. In each iteration, the widest interval [s1, s2] ⊆ DP is chosen so that the restriction of
P
′

ϑi
to [s1, s2] is all positive. The iteration is immediately aborted if no such interval exists.

Otherwise, an attempt is made to find the parameters (O, r) of a candidate disc whose projection
lies within [s1, s2] and matches P

′

ϑi
as closely as possible. Like in case of the annulus above, this

is carried out using the technique model fitting (details are to follow later). If the fitting has been
successful, (O, r) is added to vector DISC and the projection of the disc gets subtracted from
P
′

ϑi
. If no candidate disc has been found, [s1, s2] is deemed to contain only noise and discarded

by setting the respective elements of P
′

ϑi
to zero. This process continues until P

′

ϑi
becomes

constant 0.
The aforementioned procedure may occasionally detect more candidate discs than desired

(e. g. due to the high amount of noise or other distortions). Such situations are resolved using
a greedy strategy: only the N discs having the largest radius will be kept in DISCi for any
particular ϑi. It may as well happen that fewer than N discs are found for some projection
angle; these cases are signaled to the user but not given any special attention at this point.

Back-projecting Candidate Discs

The algorithm continues with Function GetIntersections that, basically, provides a purely
geometrical implementation for the back-projection algorithm. Specifically, each candidate disc
(O, r) in DISCi for some ϑi determines a line that passes through O and has a slope parallel to
the projection lines in direction ϑi. For all (ϑi, ϑj), i 6= j, the intersections of the respective lines
defined so are formed and stored in the vector INTSECT. Each such intersection has, besides its
coordinates, an associated radius that is computed as the minimum of the radii of the candidate
discs involved, as well as a record of the corresponding set {ϑi, ϑj} of directions.

In order to make the procedure more robust against noise effects, any two intersections (I1, I2)
in INTSECT being sufficiently close to each other will be merged into a single one. This new
intersection will be obtained as follows: its coordinates are computed as the average (centroid)
of (I1, I2); its radius becomes the minimum of the respective radii of (I1, I2); and the set of
projection angles will be formed by taking the union of the corresponding sets of (I1, I2). For
consistency, I1 and I2 may be merged only if 1. their corresponding sets of projection angles
are disjoint; or 2. for all common directions ϑi, I1 and I2 pass through the center of the same
candidate disc in DISCi.

Constructing the Initial Configuration

The algorithm ends with Function BuildInitialCfg whose task is to construct c0 based on
the outcome of the earlier steps. First, the annulus is added to an empty c0, then the process
proceeds in an iterative fashion. In each iteration, a new disc (O, r) is to be added to the current
approximation of c0, the parameters of which are determined from INTSECT. Like before, the

2Please note that this step is actually carried out on a copy of Pϑi ; the input projections are never modified
in any way!
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choice of I ∈ INTSECT is guided by a greedy strategy: the I associated with the most projection
angles will be picked; if there are multiple such elements, the one having the largest associated
radius will be preferred. (If the latter criterion still results in more than one elements, the one
encountered the earliest in INTSECT will be picked.3)

No matter how I gets chosen, it gets immediately removed from INTSECT and its coordinates
and radius will become O and r of the trial disc, respectively. Disc (O, r) will then be tentatively
added to c0. If the new configuration obtained so remains valid, (O, r) becomes finalized and
every DISCi involved gets updated by dropping all associated candidate discs. This, in turn, will
be followed with the removal of all conflicting elements of INTSECT to keep c0 consistent with
the input projections.

If the inclusion of (O, r) violates some geometrical constraint(s), r is gradually reduced by
being multiplied with the 0 < λ < 1 real. These adjustments are repeated until either c0 becomes
valid, or r drops below rmin. In the latter case, (O, r) is removed from c0 and the procedure
starts over with selecting a new intersection.

The aforementioned process continues until c0 contains the desired number of discs (N). In
less fortunate cases it may also happen, however, that INTSECT gets depleted before all discs
could have been found. In order to resolve this, c0 will be completed with randomly generated
discs by calling Procedure AddDisc discussed earlier in Appendix D.

Model Fitting

The aim of data modeling is to have a compact representation of some data—typically a
measurement sample—by a set of free parameters p1, . . . , pj and some function mp1,...,pj (x)
depending on them. Here, the univariate (with x being the variable) function m is dubbed the
model and p1, . . . , pj its parameters. (This definition of m can be extended to the multivariate
case as well.) Model fitting [159, Chapter 15] is the process of finding the parameter values
that yield the best-fitting m—the one that approximates the target data as closely as possible
with respect to some measure of fitness.4

Model fitting is, thus, a special kind of optimization problem (with respect to the fitness of
fitting m to the target data). While it can be also dealt with using general (global) optimization
techniques, there are more sophisticated approaches that perform better (in terms of efficiency)
for such problems. Of these, the author had first tried the Levenberg–Marquardt Method [159,
Section 15.5], an iterative technique suitable for non-linear models and based on the second partial
derivatives of the fitness function, and then an adaptation of the iterated conditional modes
(ICM) [36], but eventually switched to the much simpler gradient descent [159, Section 10.6]
[48] (also known as steepest descent). In both cases, the so-called chi-square measure [159,
Section 15.1] (expressing the weighted least-squares error) was taken as fitness.5

As mentioned above, model fitting is utilized in several occasions during the execution of the
algorithm producing c0. In all cases, the target data to fit against is the set

(
Pϑ1

, . . . ,Pϑn

)
of

input projections, while the models represent the simulated projections of individual geometrical
shapes constituting c0 (as per Section 5.2.3) and, hence, are all non-linear.

• Fitting the annulus (see line 19 of Function LocalizeRing): Aims to refine rRI while
ORE = ORI and rRE are held fixed. Starting at rRI := rRE−1, rRI is gradually decremented

3This is better then making an arbitrary choice among them, because this way the algorithm stays deterministic.
4Besides merely giving optimal parameter values, any model fitting procedure does also convey further details:

whether or not—and to what extent—the chosen model is appropriate to describe the target data, and error
in optimal parameter values. While very important in other applications, these aspects will be ignored for our
purposes hereafter.

5For simplicity, the standard deviation was assumed constant 1 for each data point.
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by 1 down to zero while collecting fitness values alongside in a vector f . The optimal rRI
is then found by looking for the longest convergent leading subseries in f (whose limit is
deemed rRI). Depending on the user’s choice, it is also possible to fit the LAC values
{µR, µI} within some range in tandem with rRI.

• Estimating LAC values (see lines 18 and 20 of Function LocalizeRing): The goal is to
give estimations {µ̂R, µ̂I} for the materials forming the ring and its interior. The process
is based on the “comparison” of input projections with the simulated projections of the
ring and the interior using LAC values of unity (i. e. settings µR = µD = 1 and µI = 0
for computing µ̂R, and settings µR = µD = 0 and µI = 1 for µ̂I). By “comparison” we
mean calculating the quotient of respective projections (namely, the input divided by the
simulated one); the piecewise quotients are stored in a vector q. The estimations µ̂R and
µ̂I are then found by sorting q in ascending order and looking for the leftmost longest
convergent subseries. While not actually used anywhere during the optimization of γ(fc),
these estimations are quite useful for physical measurements where {µR, µI} may not be
known to sufficient accuracy.

– Note: The estimation µ̂D still needs to be determined manually; this is easy if a
projection is known (or suspected) to contain an isolated candidate disc.

• Fitting candidate discs in Pϑi (see line 9 of Function LocalizeDiscs): Strives to determine
the parameters (O, r) of a candidate disc whose simulated projection best-fits Pϑi over some
interval [s1, s2] while keeping µD fixed. As a matter of fact, the fitting always fails when
s2 − s1 < 2rmin . Otherwise, fitting is attempted using either of three approaches (in this
order):

– Covering (“spanning”) the whole [s1, s2] with a single disc, so that O := s1+s2
2 and

s2−s1
2 − 2 ≤ r ≤ s2−s1

2 (see Figure E.4(b)).

– Individually fitting over all 6-element-wide sub-intervals of [s1, s2], and looking for
the leftmost (i. e. closest to s1) longest convergent subseries consisting of at least 3
elements (see Figure E.4(d)–(k)).

– Covering a “left” sub-interval of [s1, s2] with a single disc having as large a radius r as
possible (see Figure E.4(c)). That is, starting with r := rmin and going up to s2−s1

2 in
increments of 1, O is always set to s1 + r. The optimal r is found as the largest trial
value so that the simulated projection of (O, r) best-fits Pϑi over [s1, s1 + 2r] .

Extension to 3D

Though it would be theoretically possible to generalize and extend the aforementioned algorithm
to 3D configurations and 2D input projections, this had not been attempted. Instead, the
3D case was reduced to the individual 2D sub-problems corresponding to cross-sections taken
perpendicular to the axis of rotation of the object. The exact details of this process are described
in Section 4.5.
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(a) (b) (c)

(d) (e) (f) (g)

(h) (i) (j) (k)

Figure E.4: Fitting candidate discs. (a) Noiseless pre-processed input projection after the
elimination of the annulus and its interior, normalization and noise thresholding. The interval
[s1, s2] under inspection contains most of the projection except for the constant zero parts on
the left and right side. (b) A failed attempt to cover (“span”) the whole [s1, s2] in (a) with a
single disc (drawn with a green dashed line). (c) Covering the left sub-intervals of [s1, s2] in
(a) with successively larger discs (drawn with dashed and dotted lines). The second largest
disc drawn is the optimal fit. (d)–(k) Fitting over 6-element-wide sub-intervals of [s1, s2]
in (a) (drawn in red in front of the rest of the input projection shown in light-gray). The
leftmost 8 such sub-intervals are shown here; together they will define an optimum quite close
to the one found in (c).

Function InitialConfiguration({ϑ1, . . . , ϑn},
(
Pϑ1 , . . . ,Pϑn

)
, N , A)

Input : set of projection angles ({ϑ1, . . . , ϑn}), input discrete sinogram (
(
Pϑ1

, . . . ,Pϑn
)
), number of

discs the constructed configuration shall contain (N), LAC values (A = {µ0, µR, µI, µD})
Output : initial configuration

/* Assumption: µ0 ≡ 0 */

1

(
P
′
ϑ1
, . . . ,P

′
ϑn

)
:= a perfect copy of

(
Pϑ1

, . . . ,Pϑn
)

2 (ORE, rRE, ORI, rRI) := LocalizeRing({ϑ1, . . . , ϑn},
(
Pϑ1

, . . . ,Pϑn
)
,
(
P
′
ϑ1
, . . . ,P

′
ϑn

)
, µR, µI)

3

(
P
′
ϑ1
, . . . ,P

′
ϑn

)
:= a perfect copy of

(
Pϑ1

, . . . ,Pϑn
)
(to counteract any changes made by

LocalizeRing)

4 DISC := LocalizeDiscs(
(
P
′
ϑ1
, . . . ,P

′
ϑn

)
, N , A, (ORE, rRE, ORI, rRI))

5 INTSECT := GetIntersections({ϑ1, . . . , ϑn}, DISC)
6 return BuildInitialCfg(N , (ORE, rRE, ORI, rRI), DISC, INTSECT)
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Function LocalizeRing({ϑ1, . . . , ϑn},
(
Pϑ1 , . . . ,Pϑn

)
,
(
P
′

ϑ1
, . . . ,P

′

ϑn

)
, µR, µI)

Input : set of projection angles ({ϑ1, . . . , ϑn}), input discrete sinogram (
(
Pϑ1

, . . . ,Pϑn
)
), copy of

input discrete sinogram (
(
P
′
ϑ1
, . . . ,P

′
ϑn

)
), LAC of the annulus (µR), LAC of the interior (µI)

Output : parameters of the annulus

1 Let EXTRADIUS, DIFFRADIUS and LINE be n-element vectors

/* Determine external and internal boundaries of the ring */
2 t := τ ·maxs,iPϑi (s) , where τ ∈ R+ is the estimated noise level
3 for i := 1 to n do
4 s1 := the smallest s so that Pϑi (s) > t
5 s4 := the largest s so that Pϑi (s) > t

6 Apply noise filtering to P
′
ϑi

(Gaussian and averaging kernels)

7 Compute first and second numerical derivatives of P
′
ϑi

8 s2 := the smallest s > s1 associated with a local maximum or inflection point in P
′
ϑi
, whichever

happens earlier
9 s3 := the largest s < s4 associated with a local maximum or inflection point in P

′
ϑi
, whichever

happens later
10 EXTRADIUSi := s4−s1

2

11 DIFFRADIUSi :=
(s2−s1)+(s4−s3)

2

12 LINEi := projection line in P
′
ϑi

associated with s1+s4
2

/* Compute ring parameters */
13 rRE := average of EXTRADIUS
14 d := average of DIFFRADIUS
15 rRI := rRE − d /* Temporary setting */
16 ORE := average (centroid) of all the pairwise line intersections of LINE
17 ORI := ORE
18 Calculate estimated LAC values {µ̂R, µ̂I} based on

(
Pϑ1

, . . . ,Pϑn
)
and (ORE, rRE, ORI, rRI)

19 Determine rRI—and possibly {µR, µI}—more precisely using model fitting based on
(
Pϑ1

, . . . ,Pϑn
)
,

(ORE, rRE, ORI, rRI), µR and µI
20 Re-calculate estimated LAC values {µ̂R, µ̂I}
21 return (ORE, rRE, ORI, rRI)
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Function LocalizeDiscs(
(
P
′

ϑ1
, . . . ,P

′

ϑn

)
, N , A, (ORE, rRE, ORI, rRI))

Input : copy of input discrete sinogram (
(
P
′
ϑ1
, . . . ,P

′
ϑn

)
), number of discs the constructed

configuration shall contain (N), LAC values (A = {µ0, µR, µI, µD}), parameters of the annulus
((ORE, rRE, ORI, rRI))

Output : disc parameters for each projection

1 DISC := n-element vector of empty lists
2 t := τ ·maxs,iP

′
ϑi

(s) , where τ ∈ R+ is the estimated noise level
3 for i := 1 to n do

/* Pre-process P
′
ϑi

*/

4 Subtract the respective projection of the ring and the interior from P
′
ϑi

5 Normalize P
′
ϑi

(divide each element by (µD − µI))

6 Set each P
′
ϑi

(s) ≤ t
|µD−µI|

to zero, as well as those located outside the ring

/* Detect discs */
7 while P

′
ϑi

is not constant 0 do
8 Let [s1, s2] ⊆ DP be the widest interval so that ∀s ∈ [s1, s2] : P

′
ϑi

(s) > 0

9 Try to find the projection of a candidate disc (O, r) in P
′
ϑi

restricted to [s1, s2] using model

fitting; here O essentially becomes the s in P
′
ϑi

associated with the middle projection line passing
through the disc

10 if Candidate (O, r) found then
11 Subtract the projection of disc (O, r) from P

′
ϑi
, then set all negative elements of P

′
ϑi

to zero
12 if r ≥ rmin then
13 Add (O, r) to DISCi

14 else
/* [s1, s2] contains no useful data, so let us discard it */

15 Set P
′
ϑi

(s) to zero for all s ∈ [s1, s2]

16 Sort DISCi by r descending
17 Keep the first N elements in DISCi (i. e. those having the largest radii)

18 return DISC

Function GetIntersections({ϑ1, . . . , ϑn}, DISC)
Input : set of projection angles ({ϑ1, . . . , ϑn}), disc parameters for each projection (DISC)
Output : intersections (candidate disc centers, along with associated radii) formed from DISC

1 INTSECT := empty list
2 for i := 1 to n− 1 do
3 for j := i+ 1 to n do
4 Add all pairwise intersections of the middle projection lines of discs in DISCi and DISCj to

INTSECT, along with the minimum of the radii of the discs involved

5 Merge intersections in INTSECT whose distance is less than 2 · rmin; the new intersection will possess the
average (centroid) of the coordinates and the minimum of the radii of the original intersections involved

6 return INTSECT
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Function BuildInitialCfg(N , (ORE, rRE, ORI, rRI), DISC, INTSECT)
Input : number of discs the constructed configuration shall contain (N), parameters of the annulus

((ORE, rRE, ORI, rRI)), disc parameters for each projection (DISC), intersections (INTSECT)
Output : initial configuration

1 c := empty configuration
2 Add ring (ORE, rRE, ORI, rRI) to c
3 i := 1
4 while i ≤ N and INTSECT 6= ∅ do
5 I := the element of INTSECT associated with the most projections and having the largest

corresponding disc
6 Remove I from INTSECT
7 (Oi, ri) := the disc determined by I
8 Add candidate disc (Oi, ri) to c /* Might be temporary */
9 while c violates geometric constraints and ri ≥ rmin do

10 ri := λri , where 0 < λ < 1 is the factor of adjustment
11 Update ri in c

12 if ri < rmin then
13 Remove invalid candidate disc (Oi, ri) from c
14 else

/* Found a new disc (Oi, ri) in c */
15 for j := 1 to n do
16 if I is associated with Pϑj then
17 (O, r) := the disc in DISCj with the largest radius and whose middle projection line is

associated with I
18 Remove disc (O, r) from DISCj
19 if DISCj contains no more discs with center O then
20 Update all elements of INTSECT associated with the middle projection line of

(O, r), so that they will no longer be associated with Pϑj
21 Remove all elements of INTSECT that are only associated with a single projection

22 i := i+ 1

23 if i ≤ N then
/* Partial configuration; add missing discs randomly */

24 AddDisc(c, N − (i− 1))

25 return c



Appendix F

Additional Reconstruction Results
for Objects Parametrized with
Geometrical Primitives

This appendix shows some additional reconstructions1 of software and physical phantoms for
parametric objects. It complements the results presented in Sections 5.3 and 6.2.

1The results of Test Cases III and IV have not been published; they were obtained as an extension and
improvement upon the results published earlier.
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(a) (b) (c) (d)

Figure F.1: Reconstruction of a 2D software phantom from 4 projections at 0% and 10%
noise levels. (Frame added for better visibility.) Top row: FOMRME = 2.217%, FOMCD =
0.065%. Bottom row: FOMRME = 2.613%, FOMCD = 0.169%. Image arrangement as for
Figure 5.10.

(a) (b) (c) (d)

Figure F.2: Reconstruction of a 2D software phantom from 4 projections at 0% and 10%
noise levels. (Frame added for better visibility.) Top row: FOMRME = 1.747%, FOMCD =
0.051%. Bottom row: FOMRME = 1.71%, FOMCD = 0.158%. Image arrangement as for
Figure 5.10.
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(a) (b) (c) (d)

Figure F.3: Reconstruction of a 2D software phantom from 4 projections at 10% noise level;
FOMRME = 2.884%, FOMCD = 0.171%. (Frame added for better visibility.) (a) Original
configuration. (b) Initial configuration. (c) Reconstructed configuration. (d) Difference of
(a) and (c).

(a) (b) (c) (d)

Figure F.4: Reconstruction of a 2D software phantom from 4 projections at 10% noise
level; FOMRME = 2.294%, FOMCD = 0.166%. (Frame added for better visibility.) Image
arrangement as for Figure F.3.

(a) (b) (c) (d)

Figure F.5: Reconstruction of a 2D software phantom from 4 projections at 10% noise
level; FOMRME = 3.952%, FOMCD = 0.372%. (Frame added for better visibility.) Image
arrangement as for Figure F.3.
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(a) (b) (c) (d)

Figure F.6: Reconstruction of a 2D software phantom from 4 projections at 10% noise
level; FOMRME = 7.79%, FOMCD = 0.585%. (Frame added for better visibility.) Image
arrangement as for Figure F.3.

(a) (b) (c) (d)

Figure F.7: Reconstruction of a 3D software phantom containing cylinders from 4 projec-
tions at 0% and 10% noise levels. Top row: noiseless projections; FOMRME = 0.459%,
FOMCD = 0.32%. Bottom row: 10% noise level; FOMRME = 0.32%, FOMCD = 0.349%.
(a) Original configuration. (b) Initial configuration. (c) Reconstructed configuration. (d)
Difference of (a) and (c).
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(a) (b) (c) (d)

Figure F.8: Reconstruction of a 3D software phantom containing spheres from 4 projections
at 0% and 10% noise levels. Top row: FOMRME = 0.129%, FOMCD = 0.027%. Bottom
row: FOMRME = 0.226%, FOMCD = 0.307%. Image arrangement as for Figure F.7.
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Figure F.9: Quality of the reconstructions for 3D configurations containing spheres at
10% noise level as the function of geometrical complexity, based on 10 repetitions. Error
bars indicate the standard error. Smaller values correspond to better results. (a) FOMRME
versus the number of spheres. (b) FOMCD versus the number of spheres.
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Figure F.10: Quality of the reconstructions for 3D configurations containing cylinders at
10% noise level as the function of geometrical complexity, based on 10 repetitions. Error
bars indicate the standard error. Smaller values correspond to better results. (a) FOMRME
versus the number of cylinders. (b) FOMCD versus the number of cylinders.
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Figure F.11: Quality of the reconstructions for 3D configurations containing 3 cylinders as
the function of noise level, based on 10 repetitions. Error bars indicate the standard error.
Smaller values correspond to better results. (a) FOMRME versus the level of noise. (b)
FOMCD versus the level of noise.
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(a) (b) (c) (d)

Figure F.12: Effects of the noise level on simulated 2D projections. Top row: 3D configu-
ration containing cylinders. Bottom row: 3D configuration containing spheres. (a) Noiseless
original projection. (b) Original projection at 10% noise level. (c) Original projection at
20% noise level. (d) Original projection at 40% noise level.
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Figure F.13: Speed of convergence of γ(fc) as the function of iterative steps. Reconstruction
of the 3D software phantom shown in Figure F.8 using noiseless projections. (a) Exponent
of γ(fc) versus the number of accepted candidate configurations c′ (out of 44 220 iterations
in total). (b) Exponent of γ(fc) versus the total number of iterations.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure F.14: Reconstruction of Test Case III from 4 projections. (a) Initial configuration.
(b)–(e) Different views of the reconstructed configuration. (f) FBP reconstruction of a
cross-section. (g) Simulated projection of (b)–(e) at ϑ = 0°. (h) Input projection at ϑ = 0°.
(Images (f) and (h) are taken from Figure 6.4.)
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure F.15: Reconstruction of the lead-containing holes of Test Case IV from 4 projections.
(a) Initial configuration. (b)–(e) Different views of the reconstructed configuration. (f) FBP
reconstruction of the cross-section marked in Figure 6.5(a) with red lines. (g) Simulated
projection of (b)–(e) at ϑ = 0°. (h) Input projection at ϑ = 0°. (Images (f) and (h) are taken
from Figure 6.5.)
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure F.16: Reconstruction of the air-filled holes of Test Case IV from 4 projections. (a)
Initial configuration. (b)–(e) Different views of the reconstructed configuration. (f) FBP
reconstruction of a cross-section. (g) Simulated projection of (b)–(e) at ϑ = 0°. (h) Input
projection at ϑ = 0°. (Images (f) and (h) are taken from Figure 6.5.)





Appendix G

Additional Reconstruction Results
for Deformed Polycrystalline
Samples

This appendix shows some additional reconstructions of polycrystalline software phantoms using
γ(o) and γ(g, o) from noiseless as well as noisy projections.1 It complements the results presented
in Section 8.3.

1The results using γ(o) and those of Test Case V have not been published; they were obtained as an extension
and improvement upon the results published earlier.
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(a) (b) (c) (d)
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(e)

Figure G.1: The reconstruction of Test Case II using γ(o) and noiseless projections; FOMo =
0.972. Map arrangement and gray scales as for Figure 8.7.

(a) (b) (c) (d)
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(e)

Figure G.2: The reconstruction of Test Case III using γ(o) and noiseless projections;
FOMo = 0.9996. Map arrangement and gray scales as for Figure 8.7.
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(e)

Figure G.3: The reconstruction of Test Case IV using γ(o) and noiseless projections;
FOMo = 0.996. Map arrangement and gray scales as for Figure 8.7.
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(a) (b) (c) (d)
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(e)

Figure G.4: The reconstruction of Test Case V using γ(o) and noiseless projections (original
color mapping); FOMo = 1. Map arrangement and gray scales as for Figure 8.7. Black pixels
in orientation maps represent void regions.

(a) (b) (c)
 
 
 
0°    1°    2°    3°    4°    5°    8°   10°  15°  180° 

(d)

Figure G.5: The reconstruction of Test Case I using γ(o) at 100% noise level; FOMo =
0.997. (a) Reference orientation map (contrast-enhanced). (b) Reconstructed orientation
map (contrast-enhanced). (c) Difference of the reference and the reconstructed orientation
maps. The intensity of the pixels is determined by the distance (disorientation angle) of
corresponding orientation pairs, as shown in (d).
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(a) (b) (c)
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(d)

Figure G.6: The reconstruction of Test Case I using γ(o) at 200% noise level; FOMo =
0.995. Map arrangement and gray scales as for Figure G.5.

(a) (b) (c) (d)
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(e)

Figure G.7: The reconstruction of Test Case III using γ(g, o) at 100% noise level; FOMg =
0.998, FOMo = 0.9988. Map arrangement and gray scales as for Figure 8.14.

(a) (b) (c) (d)
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(e)

Figure G.8: The reconstruction of Test Case IV using γ(g, o) at 100% noise level; FOMg =
0.873, FOMo = 0.989. Map arrangement and gray scales as for Figure 8.14. (Note: (c) is
irrelevant due to the lack of a meaningful definition of grains in this case; see text.)
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(e)

Figure G.9: The reconstruction of Test Case V using γ(g, o) at 100% noise level (original
color mapping); FOMg = 0.975, FOMo = 0.997. Map arrangement and gray scales as for
Figure 8.14. Black pixels in orientation maps represent void regions.
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(e)

Figure G.10: The reconstruction of Test Case I using γ(g, o) at 200% noise level; FOMg =
0.987, FOMo = 0.995. Map arrangement and gray scales as for Figure 8.14.
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(e)

Figure G.11: The reconstruction of Test Case II using γ(g, o) at 200% noise level; FOMg =
0.971, FOMo = 0.991. Map arrangement and gray scales as for Figure 8.14.



172 APPENDIX G. ADDITIONAL RESULTS FOR POLYCRYSTALS

(a) (b) (c) (d)
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(e)

Figure G.12: The reconstruction of Test Case III using γ(g, o) at 200% noise level; FOMg =
0.995, FOMo = 0.998. Map arrangement and gray scales as for Figure 8.14.
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(e)

Figure G.13: The reconstruction of Test Case IV using γ(g, o) at 200% noise level; FOMg =
0.862, FOMo = 0.985. Map arrangement and gray scales as for Figure 8.14. (Note: (c) is
irrelevant due to the lack of a meaningful definition of grains in this case; see text.)
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(a) (b) (c) (d)
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(e)

Figure G.14: The reconstruction of Test Case V using γ(g, o) at 200% noise level (original
color mapping); FOMg = 0.967, FOMo = 0.993. Map arrangement and gray scales as for
Figure 8.14. Black pixels in orientation maps represent void regions.
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Index

a priori information, 13
absorption, 25

coefficient, see linear attenuation coefficient
contrast, see attenuation contrast

ambiguous pixel, 89
annealing schedule, 11
annulus, 37
Apollonius’ problem, 140
attenuation, 25, 37

contrast, 25
map, 28, 37

backprojection transform, 6
Bayes’ theorem, 87
Beer–Lambert–Bouguer law, 27
Boltzmann

constant, 12
factor, 13

Bragg angle, 137
Bragg’s law, 137
Bravais lattice, see crystalline lattice

Cardan angles, 17
charge-coupled device, 29
clique

pair, 85
potential, 85

collimator, 28
complexity, 8
configuration, 38

space, 39
valid, 39

conical transformation, 22
connected component algorithm, 88
consistency, 7
constraint (of a configuration), 39
convergence, 8
convolution kernel, 145
crystal

structure, 81
symmetry, 82, 135

crystalline
basis, 81, 135

monatomic, 135
lattice, 81, 135

cubic, 104
face-centered cubic, 104
parameter, 135
plane, 136
reciprocal, 136
simple cubic, 82
spacing, 136

crystallite, see grain, see grain
crystallographically equivalent, 94
crystallography, 81
cubic lattice, 104

face-centered, 104
simple, 82

cylinder, 43

data modeling, 149
detector, 25, 29, 31
diffraction, 27, 83

pattern, 83
spot, 31

diffractometer, 31
digital signal, 145
disc, 37
discrete convolution, 145
disorientation, 86

angle, 95

electron backscattering diffraction, 101
energy, 11

function, 12
Euler angles, 17, 136
Euler’s rotation theorem, 16
Euler–Rodrigues parameters, 17, 22
existence, 7
external circle (of the ring), 39
external cylinder (of the tube), 43
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face-centered cubic lattice, 104
figure-of-merit, 62, 106
filtered backprojection, 6
fitness, 13, 149
Fourier slice theorem, 5
Fourier transform, 5
fundamental zone, 100

gamma radiation, 28
Gibbs measure, see Gibbs distribution
Gibbs Sampler, 13
Gibbs vector, see Rodrigues vector
Gibbs–Rodrigues vector, see Rodrigues vector
gimbal lock, 15
grain, 81, 135

borders, 86
degree of separation, see misorientation
map, 82, 89

reference, 103

Hamilton–Cayley rotation formula, 22
Hamiltonian, see energy function
homogeneity

of materials, 38
of orientation map, 85

hypercomplex number, 19

image
binary, 38
function, 5
processing, 4
quaternary, 38
valid, 37

imaging modality, 28
interior

of the ring, 38
of the tube, 44

internal circle (of the ring), 39
internal cylinder (of the tube), 43

labeling algorithm, 88
likelihood, 87
linear attenuation coefficient, 27, 37
local configuration, 90
logarithmic transformation, 27
look-up table

disorientation, 98

Markov chain Monte Carlo, 10
Markov random field, 85

materials science, 81
method (reconstruction)

parametric, 9
pixel-based, 9
transform, 6

Metropolis
algorithm, 10
ratio of acceptance, 10

Metropolis–Hastings algorithm, see Metropolis
algorithm

Miller index, 136
misorientation, 86
model, see configuration

fitting, 50, 149
model (of data), 149
moderate deformation, 89
monochromatic radiation, 25

neighborhood
4-connected, 85
8-connected, 85

neutron radiation, 28, 36
noise, 61, 105
nondestructive testing, 35
normalization

of a convolution kernel, 145
of a projection, 148

objective function, 42, 87, 92
orientation, 15, 135

basic, 82, 89
distance, 85
map, 82, 85

reference, 101
neighbor, 88
similarity, 86
spread, 85, 89

parameter
of the circle, 38
of the cylinder, 44
of the sphere, 44

parametric method, 9
partition function, 12
phantom, 57
phase (material), 82
phase (optics), 27

contrast, 27
pixel-based method, 9
point group, 15
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polycrystal, 81, 135
monophase, 82, 136
multiphase, 82, 136

pre-processing (of input projections), 76
primitive vector, 135
probability distribution

Boltzmann, 12
Gibbs, 13
posterior, 87

projection, 3, 25, 36, see diffraction pattern
error, 13
geometry

cone beam, 4
divergent, 4
fan beam, see divergent geometry
parallel, 4

line, 3
pre-processing, 76

projection-slice theorem, see Fourier slice the-
orem

quaternion, 17, 19
addition, 20
additive identity element, 20
canonical form, 23
conjugate, 19
imaginary unit, 19
inverse, 21
magnitude, see quaternion norm
multiplication, 20
multiplicative identity element, 20
neighbor, 99
norm, 21
pure, 21
pure unit, 21
quantization, 98
sampling unit, 99
scalar component, 19
transition, 93
unit, 17, 21
vectorial part, 19

radiation, 25
gamma, 28
monochromatic, 25
neutron, 28, 36
source, 25
X-ray, 28, 30, 83

radiograph, 25, 36
radiography, 25

emission, 25
neutron, 36
transmission, 25

Radon transform, 3
discrete, 5

rebinning, 4
reconstruction, 4

area, 4
reflection (diffraction spot), 31
region, 88
regularization, 13
ring, see annulus
Rodrigues vector, 18
rotation, 14, 21

angle, 16
axis, 16
binary, 22
composition, 16, 22
distance, 93
improper, 15
matrix, 16
proper, 15

rotoinversion, see improper rotation

sample (of a digital signal), 145
scanning electron microscope, 101
search space, see solution space
seed point, 106
simple cubic lattice, 82
simulated annealing, 11
sinogram, 3
solid state physics, 81
solution space, 8
special orthogonal group, 16
sphere, 43
stability, 8
stochastic optimization, 9
superposition, 47
switching component, 7
switching operation, see switching component

Tait–Bryan angles, see Cardan angles
temperature, 11
termination criteria, 11
tomography, 4

classical, see continuous tomography
continuous, 7
discrete, 7
emission, 5
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geometric, 8
transmission, 5, 28

transform method, 6
tube, 43

uniqueness, 7

valid
configuration, 39
image, 37

void pixel, 33

X-ray diffraction, 137
X-ray radiation, 28, 30, 83
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