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Summary 

Avulsion of one or more ventral roots from the spinal cord leads to the death of the majority 

of affected motoneurons. This process is due to a cascade of events involving activation of 

astrocytes and microglial cells and the excessive amounts of excitotoxic glutamate release in 

the injured cord. The aim of the present study was to analyse and compare the therapeutic 

potential of transplanted NE-GFP-4C murine neuroectodermal cells applied in topically 

different transplantation paradigms and determine the factors responsible for the motoneuron-

rescuing effect. 

The lumbar 4 (L4) ventral root of Sprague-Dawley rats was avulsed and reimplanted 

ventrolaterally into the injured cord. Neuroectodermal stem cells were injected immediately 

following avulsion injury into the L4 segment, into the reimplanted ventral root or were 

placed in fibrin clot around the reimplanted root.  Three months after the primary surgery the 

L4 motoneuron pool was retrogradely labelled with Fast Blue and the numbers of 

reinnervating motoneurons were determined. Expression of various factors expected to 

prevent motoneuron death in the grafted cord was determined by PCR and 

immunohistochemistry in short term experiments. 

Animals that received intraspinal stem cell grafts have 70% of their L4 motoneurons 

regenerated into the vacated endoneural sheaths of the reimplanted root.  Morphological 

reinnervation was accompanied by significant functional recovery. Intraradicular neural stem 

cell grafting (transplantation into the reimplanted root) resulted in good morphological and 

functional reinnervation, while both negative controls and animals with perineural stem cell 

treatment showed poor motor recovery.  

Stem cell grafts produced the modulatory cytokines IL-1-alpha, IL-6, IL-10, TNF-alpha and 

MIP-1-alpha, but no neurotrophic factors.  The neurons and astrocytes in the ventral horn of 

grafted animals also produced IL-6 and MIP-1-alpha. The infusion of function-blocking 

antibodies against all cytokines into the grafted cords completely abolished their motoneuron-

rescuing effect, while neutralization of only IL-10 suggested its strong effectivity as concerns 

motoneuron survival and a milder effect on reinnervation. 

In this study we have provided evidence that significant numbers of motoneurons can be 

rescued both by intraradicular and intraspinal stem cell grafting. The pro-inflammatory and 

anti-inflammatory cytokines selectively secreted by grafted stem cells act in concert to save 

motoneurons and to promote reinnervation of the target muscles. 
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Introduction 

 

Morphology of spinal motoneurons 

The cell bodies of spinal motoneurons lie in lamina IX in the Rexed of ventral horn (Rexed, 

1954; Rexed, 1952; Jankowska and Lundberg, 1981; Schomburg, 1990). Motoneurons form 

four separate columns in the human cord: the ventromedial, the ventrolateral, the dorsolateral 

and the central column. (Romanes, 1964). Spinal motoneurons have larger soma diameter 

than most other nerve cells in the spinal cord. The α-motoneurons have the largest soma in the 

spinal cord ranging between 50 and 70 µm. The axons of α-motoneurons are the longest in the 

mammalian body and innervate extrafusal muscle fibers. The other type of motoneurons is the 

γ-motoneuron, also called fusimotor neurons innervates intrafusal muscle fibers within the 

muscle spindle. The soma diameter of γ-motoneurons ranges between 20 and 40 µm. The ß-

motoneurons constitute a third distinct category of motoneurons that innervate intrafusal 

fibers of muscle spindles with collaterals to extrafusal fibers.  

The spinal motoneurons are multipolar neurons with several dendrites. The average α-

motoneuron has 10-12 dendrites and the stem diameter of dendrites varies between 0.5 and 19 

µm (Cullheim et al., 1987a, 1987b). Dendrites typically show a binary manner. One dendrite 

has two daughters and each dendrite tends to form 12-14 terminal branches. The dendrites of 

γ-motoneurons show similar dendritic patterns as α-motoneurons but the dendrite branching is 

simpler and dendritic tree is smaller (Lagerbäck et al., 1981a, 1981b). The dendrites of 

motoneurons usually show transversally or longitudinally orientated patterns and form 

dendritic bundles. The motoneurons that lie in the ventromedial column, form vertical and 

longitudinal branches, whereas dendrites of motoneurons in the central and ventrolateral 

columns form transversally and longitudinally placed dendritic bundles. On the other hand, 

motoneurons in the dorsolateral columns rather have radial orientation (Scheibel and Scheibel 

1966a, 1966b). This arrangement of dendrites contributes to a precise control of movement 

and connection of segmental afferents. 

The spinal motoneuron has generally one axon giving off 1-5 axon collaterals before leaving 

the central nervous system (Cullheim and Kellerth, 1978). The first is the recurrent collateral 

that projects back to the motoneuron and modifies the activity of the cell. The motor axon is 

well myelinated in the peripheral nervous system. When the axon of the motoneuron enters 
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the skeletal muscle, they loose the myelin sheath and the terminal fibres run along the surface 

of the muscle fibres and finally form neuromuscular junctions. The motorneuron and the 

skeletal muscle fibers innervated by its axon is called collectively „the motor unit” (Cullheim 

and Kellerth, 1987a, 1987b). Groups of motor units work together to regulate the contraction 

of a muscle. 

 

Reaction of motoneurons to ventral root avulsion 

Adult motoneurons and their processes undergo reversible degenerative changes after an 

injury inflicting the axon far from the cell body, without loss of the affected motoneuron pool. 

On the other hand, axonal injury close to the cell body of the motoneuron results in severe 

changes which may eventually lead to death of motoneurons. Typical injuries affecting the 

initial part of the motor axon are most frequently avulsion injuries of the ventral roots. 

Therefore it is generally concluded that ventral root avulsion injuries are likely to result in 

motoneuron loss (Nógrádi and Vrbová, 1996; Koliatsos et al., 1994). 

 

Morphological changes of motoneurons after ventral root avulsion 

Morphological changes of damaged motoneurons are initiated within few days following 

ventral root avulsion. The cell body of the motoneurons becomes swollen and the nucleus 

migrates toward the periphery of cells.  Nissl (tigroid) bodies, first described by Franz Nissl 

(1894) and by Mihály Lenhossék (1895) are multilayered sheets of the rough endoplasmatic 

reticulum with attached ribosomes (Johnston and Sears, 1989). Following avulsion or 

axotomy this complex brakes up into several small units and tigroid bodies appear to dissolve. 

This process is known as chromatolysis (Nissl, 1894; Lenhossék, 1895).  

Neuronal injury results in the change of mRNA and protein synthesis, too. Tubulin, actin and 

the regeneration-associated protein GAP-43 mRNA levels increase after axotomy but 

expression of other proteins such as neurofilament proteins decreases (Tetzlaff et al., 1988).  

Dendrites are normally covered with numerous synaptic endings. Damage to the axon induces 

retraction of dendrites and to loss of many synaptic contacts on the dendrites of motoneurons. 

During and after regeneration and muscle reinnervation the motoneuron dendrites regain their 

dendritic area, but the pattern of dendritic arborization remains altered (Brännström et al., 

1992). 
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Motoneurons may develop regenerating axons following ventral root avulsion. The origin of 

the newly developed axon could be the cell body or the dendrite, in this case, the new axon is 

called “dendraxon” (Lindå et al., 1985). Axons from cell body are able to extend for a long 

distance within the gray matter (Havton and Kellerth, 1987). These aberrant axons usually 

show abnormal projection patterns within the grey and white matter and they express growth-

associated protein GAP-43, store choline acetyltransferase (ChAT) and form bouton-like 

swellings (Havton and Kellerth, 1987). 

 

Glutamate-mediated cell death after ventral root avulsion  

Ventral root injury of the spinal motoneurons induces biochemical cascades resulting in 

glutamate-mediated excitotoxic events (Mills et al., 2001a). Glutamate is an excitatory 

neurotransmitter in the central nervous system (CNS). Glutamate release is normally followed 

by rapid re-uptake from the synaptic cleft. Glutamate receptors can be divided into two 

groups: ionotropic N-methyl-D-aspartate (NMDA) and AMPA/kainate receptors or 

metobotropic receptors (Ha et al., 2002; Mills et al., 2001b). Metabotropic glutamate 

receptors are G-protein-coupled and their injury-dependent activation induces numerous 

intracellular cascades that have long-lasting effect after injury (Mills et al., 2001b). Injury 

upregulates the subtypes of NMDA and AMPA/kainate receptors which play a key role in 

glutamate-mediated excitoxic cell death (Beattie et al., 2010). Activation of NMDA  receptors 

leads to the influx of Ca
2+

 ions into neurons. Increased cytoplasmatic concentration of Ca
2+

 

ions induces various secondary processes resulting in cell death (Terro, 1998). Interestingly, 

spinal neurons are more vulnerable to AMPA/kainate than to NMDA toxicity while cortical 

neurons are rather vulnerable to NMDA toxicity (Regan, 1996).  

 

Role of astrocytes and microglia after injury 

Astrocytes  

Asrocytes are located in the CNS and their morphology depends on their location but their 

function and roles are similar in all regions of the CNS. Two forms of astrocytes occur in the 

CNS: the fibrillary (mainly present in the white matter) and the protoplasmic astrocyte 

(confined to the grey matter). Not only the levels of excitatory neurotransmitter glutamate in 

the synaptic clefts are modulated by them but they influence neuronal calcium, potassium 
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levels within extracellular space after action potential, too (Parpura et al., 1994; Walz et al., 

1984). In addition astrocytes play key role in the maintance of the optimal pH of CNS via 

converting carbon dioxide to water and proton (Hertz et al., 1988). Astrocytic' endfeet take 

part of the blood brain barrier (Vise et al., 1975). The deletion of functional GFAP gene gives 

rise to abnormal blood-brain-barrier function.  

After a CNS injury the morphology, the phenotypic characteristics and the protein expression 

pattern of the astrocytes are altered. These responses contribute to glial scar and chemical 

barrier formation. The expression of S100β and GFAP proteins is increased following CNS 

trauma but other proteins such as many of developmental markers including nestin and 

vimentin are started to be expressed by astrocytes (Vijayan et al., 1990; Corvino et al., 2003; 

Clarke et al., 1994). Moreover, the levels of inhibitory extracellular matrix molecules such as 

ephrins and chondroitin sulphate proteoglycans are increased by astrocytes (Morgenstern et 

al., 2002). Those astrocytes that undergo these changes are called reactive astrocytes. The 

reactive astrocytes can derive from astrocytes that are present at the time of the injury or from 

progenitor cells that are found around the central canal or the subpial region of spinal cord 

(Beattie et al., 1997). The glial scar formation is the other negative contribution of reactive 

astrocytes to the unsuccessful regeneration. The glial scar forms a physical barrier around the 

injury so the axons are not able to regenerate through this barrier (Beattie et al., 1997).  

However, atrocytes have several actions that contribute to the endogenous repair and 

neuroprotection of the CNS following injury. The astrocytes express various neurotrophic 

factors that probably contribute to survival of the damaged neurons (Ikeda et al., 2001, Krenz 

and Weaver, 2000). Furthermore, they express glial glutamate transporter (GLT-1) that is able 

to reduce excitotoxic cell death after injury (Rothstein et al., 1996). Although they produce 

several molecules that inhibit growth of neurites, they also express extracellular matrix 

molecules that are supportive to axon growth (Costa et al., 2002).  

 

Microglia 

Microglia give around 15-20% of all glia cells of CNS. They derive from bone marrow 

precursor cells and form the first line of defense. The activation status of the microglia can be 

divided into three classes: resting microglia, activated microglia and phagocytic microglia 

(Streit et al., 1988). In the healthy CNS microglia cells are in resting status. However, the 
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resting microglia exhibit very extensive activity. They extend and retract their fine processes 

throughout the neuropil to survey the local environment (Nimmerjahn et al., 2005). In 

addition to this they have many other roles in the CNS. During embryogenesis they 

phagocytose apoptotic neurons and promote the death of developing neurons (Bessis et al., 

2007). The microglia act as a regulator of adult neurogenesis in the subventricular zone and 

dentate gyrus (Battista et al., 2006; Walton et al., 2006).  

Damage to cells of CNS results in the release of ATP, glutamate and changes of extracellular 

ion content. Microglia cells are sensitive for these molecules and transform from resting status 

to amoeboid form and start to express various cytokines and chemokines. They undergo rapid 

ploriferation and begin to upregulate major histocompatibility complex (MHC) antigens and 

other antigens that make them as antigen presenting cells (Wang et al., 2002; Hickey and 

Kimura, 1988). Upon injury, microglia can be divided into two groups, M1 and M2 cells. In 

general, the M1 state is a defensive one. The activation of classical M1 pathway leads to the 

production of interleukin-1-beta (IL-1β), interleukin-18 (IL-18), tumor necrosis factor alpha 

(TNF-alpha), proteases and chemokines. Activation of M1 status is rapid and persistent 

(Kigerl et al., 2009). Nitric oxyde synthase is the most widely used marker to detect M1 

activation. In contrast, M2 is an alternative form that is responsible for anti-inflammatory 

responses as it produces the anti-inflammatory cytokine IL-10. The activation of M2 is 

associated with encapsulation of parasites, matrix deposition and tissue remodeling. Mannose 

receptor and arginase 1 facilitate to detect M2 activation. 

Some studies have shown that microglia remove the presynaptic element from the cell body 

and dendrites then their processes enwrap the cell body (Trapp et al., 2007; Blinzinger and 

Kreutzberg, 1968). These observations suggest that microglia may be involved in synatpic 

stripping following peripheral nerve injury.  

The microglial cells are able to produce numerous neurotrophins, neuroprotective factors and 

anti-inflammatory proteins, including IL-1 receptor antagonist (IL-1ra), IL-10, nerve growth 

factor (NGF), transfroming growth factor β (TGF-β), brain derived neurotrophic factors 

(BDNF) (Aloisi et al., 1999; Liu et al., 1998; Kiefer et al., 1998). The expression of these 

factors improves the survival of injured motoneuron and regeneration. However, it is not fully 

understood why activated microglia produce cytotoxic pro-inflammatory proteins and 

neurotrophic factors at the same time. 
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Effects of neurotrophic factors, pro- and anti-inflammatory cytokines on injured 

motoneurons 

Neurotrophic factors, pro- and anti-inflammatory proteins are critical mediators of the post-

traumatic reactions. Below a list of factors is provided that have been analyzed in our study 

and might be acting on injured motoneurons. We investigated the expression of a number of 

neurotrophic and immune factors known to play a role in the inflammatory and regenerative 

events following spinal cord injury and cell damage. 

Neurotrophic factors regulate motoneuron survival and appeare to be able to induce 

endogenous regenerative processes. The nerve growth family includes several members such 

as BDNF, neurotrophin-3 (NT-3) and neurotrophin-4 (NT-4). Members of this family act 

through two types of receptors, the receptor tyrosine kinases Trk and the low affinity nerve 

growth factor receptor p75. The activation of Trk receptors leads to the activatation of the 

survival pathways, Ras-ERK and PI3K/pAkt. Numerous studies have shown that endogenous 

BDNF induces sprouting and axonal growth following peripheral nerve lesion and promotes 

axonal regeneration of adult rat spinal motoneurons (Streppel et al., 2002; Zhang et al., 2000; 

Novikov et al., 1997). On the other hand, administration of exogenous BDNF protects 

motoneurons following ventral root avulsion (Zhang et al., 2000; Novikov et al., 1997). 

Receptor for NT-3 (Trk-C) is present in adult motoneurons but it is down-regulated following 

axotomy or avulsion injury (Hammarberg et al., 2000). In vitro studies have also shown that 

NT-4 is a survival factor for motoneurons (Henderson et al., 1993). Exogenous application of 

NT-4 in NT-4 knockout mice was able to induce improved regeneration compared to untreated 

control (English et al., 2005).  

The other potent factor in the transforming growth factor beta family is the glia derived 

neurotrophic factor (GDNF) that is able to induce motoneuron regeneration after ventral root 

avulsion (Pajenda et al., 2014). GDNF binds to the specific GDNF family receptor α (GFR α) 

proteins and the common transmembrane co-receptor c-ret (Airaksinen and Saarma, 2002). 

The receptor complex signal through the RET receptor tyrosine kinase leads to improved cell 

survival, proliferation and differentiation (Sariola and Saarma, 2003). Both receptors are 

upregulated in motoneurons following ventral root avulsion, thereby GDNF is able to induce 

motoneuron survival after avulsion injury. 
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The neuropoietic family includes interleukin-6 (IL-6), also known as a pro-inflammatory 

protein. IL-6 is expressed by inflammatory cells, astrocytes, microglia and neurons. IL-6 

interacts with the signal-transducing β-subunit of IL-6 receptor complex (gp130) and protects 

cerebellar granule neurons against NMDA-induced apoptosis, mediated by the JAK-STAT3 

and the PI3K-Akt signaling pathways (Liu et al., 2011) However in motoneurons gp130 

expression is downregulated following avulsion injury. Therefore this cytokine has no direct 

effect on injured motoneurons (Hammarberg et al., 2000). 

Interleukin-10 (IL-10) is regarded as an anti-inflammatory cytokine. In glutamate induced 

neurotoxicity IL-10 binds to the IL-10 receptor (IL-10R) that leads to the activation of janus-

associated kinases/signal transducers and transcription factors and phosphatidylinositol 3-

kinase-AKT pathways and enhances expression of antiapoptotoic peptides Bcl-2 and Bcl XL 

(Zhou et al., 2009a). In lateral hemisection model overexpression of IL-10 resulted in 

increased neuronal survival in the anterior quadrant of the spinal cord and improved motor 

function (Zhou et al., 2009b). IL-10 might be a good candidate to prevent motoneuron death 

following ventral root avulsion injury. 

Interleukin-1 (IL-1-alpha and IL-1-beta) is a highly inflammatory cytokine. IL-1-alpha and 

IL-1-beta can act on the IL-1 receptor (IL-1R) and induce various intracellular signaling. 

Following CNS trauma activated glial cells are the major source of IL-1 that is rapidly 

released. Several studies have shown that IL-1 forms a common link between various 

intracellular cascades and contributes to the cell death in CNS diseases (Rothwell and 

Luheshi, 2000). However, others have provided evidence that IL-1 imparts neuroprotective 

effect against excitotoxicity in a concentration-dependent manner (Carlson et al., 1999). 

TNF-alpha is produced by glial cells in the brain, and contributes to the pathogenesis of 

inflammatory neurodegenerative diseases (Tran et al., 2008; Chao et al., 1995). Interestingly, 

TNF-alpha can have both pro- and anti-inflammatory outcomes. Probably TNF-alpha alone 

causes only minor inflammatory changes but its expression in combination with other 

cytokines can induce neurotoxicity (Chao et al., 1995). On the other hand, others studies have 

reported that administration of TNF-alpha protects cultured neurons against an excitotoxic 

death (Carlson, et al., 1998). It has been suggested that the differential effect of TNF-alpha is 

receptor dependent:  TNF-alpha contributes to the protection of neurons against chronic 

NMDA-mediated excitotoxic death via activation of p55/TNFRI, but not p75/TNFRII 
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(Carlson, et al., 1998). 

MIP-1-alpha, also known as Chemokine (C-C motif) ligand 3 (CCL3) belongs to the family 

of chemotactic cytokines (chemokines). MIP-1-alpha induces the synthesis and release of 

other pro-inflammatory cytokines such as IL-1, IL-6 and TNF-alpha from fibroblasts and 

macrophages in the peripheral immune system (Maurer and Stebut, 2004). MIP-1-alpha can 

act through G-protein–coupled receptors and control the cytokine profiles in the injured CNS 

(Mennicken et al., 1999). Mechanical injury, neuroinflammatory processes and 

neurodegenerative processes induce chemokine actions via upregulated chemokine receptors. 

 

Experimental therapeutic approaches to prevent motoneuron loss occuring after ventral 

root avulsion 

Ventral root avulsion is an axon injury occuring very close to the cell body. One of the 

possible ways to rescue injured motoneurons is the reimplantation of the avulsed ventral root 

or peripheral nerve graft implantation. These permissive conduits provide a trophic support 

and regenerative pathways via vacated endoneural sheaths for the axon injured motoneurons 

(Li and Raisman, 1994). Reimplantation of ventral root induces motoneuron survival and 

injured motoneurons' axons are able to reinnervate the reinserted root (Nógrádi and Vrbová, 

1996). However in the case of delayed surgical repair the proximal nerve stump retracts and 

reimplantation is not possible anymore.  

Regenerating axons of motoneurons have two possible routes to reinnervate the implanted 

nerve graft or ventral root. One is that the regenerating motor axons grow along the pia matter 

and reach the nerve graft (Risling et al., 1992). The other way is that the motoneurons send 

their axons through a non-permissive environment and the axons grow straight into the 

peripheral nerve graft (Carlstedt, 1997). It is well known that a number of factors promote not 

only the motoneuron survival but the axon regeneration, too. Schwann cells release various 

trophic factors that present an attractive force for axons and these factors play key role in 

guiding of axons. Two phenotypes (motor and sensory) of Schwann cells have been identified 

by Höke and his colleagues (Höke at al., 2006). They express trophic factors differentially 

upon denervation and reinnervation. Another study by Su et al. (2013) has confirmed that 

following reimplantation of avulsed ventral root induces better motoneuron survival and 

regeneration than a peripheral nerve graft.  
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It has been shown, that reimplantion of an avulsed root combined with the treatment of the 

anti-excitotoxic compound riluzole (2-amino-6-trifluoromethoxybenzothiazole) rescued the 

majority of the injured motoneurons otherwise destined to die (Nógrádi and Vrbová 2001; 

Nógrádi et al., 2007; Pintér et al., 2010). Earlier studies have shown that riluzole not only 

prevented the death of the damaged lumbar and cervical motoneurons but also enabled them 

to regenerate their axons into the reimplanted ventral root and thus provided functional 

reinnervation for the denervated limb musculature (Nógrádi et al., 2007, Pintér et al., 2010). 

Another way to rescue injured motoneurons is the combination of intrathecal GDNF and 

intraperitoneal riluzole application which improve motoneuron survival and induce a number 

of axons to regenerate into the reimplanted ventral root (Bergerot et al., 2004).  

Recent attempts other than therapeutic efforts to reduce excitotoxicity to the damaged 

motoneurons have been made to rescue adult motoneurons following avulsion injury, 

including therapy only with only neurotrophic factors (Blits et al., 2004; Eggers et al., 2008; 

Novikov et al., 1995). In these studies neurotrophic factors were applied near the denervated 

motoneuron pool. Treated animals showed an increased survival of motoneurons, but 

motoneurons failed to extend their axons into the reimplanted root and did not produce 

functional recovery of the hind limbs. 

A recent strategy to rescue injured motoneuron following ventral root avulsion is progenitor 

and stem cell therapy (Su et al., 2009). In generally there are a great number of stem and 

progenitor cells that can be used in the CNS to induce neuronal survival, axon regeneration or 

replace missing cells. While many of these cell treatment strategies apply stem cells that bring 

little or not significant improvement in morphological restoration and in function, there are 

few therapeutic approaches where the applied cells are proven to be safe and effective at long 

term (Bottai et al., 2010). 

 

Fate of NE-GFP-4C cells 

In our studies we used a p53-deficient clonal neuroectodermal stem cell line subclone (NE-

GFP-4C) derived from E9 mouse embryonic forebrain (Schlett et al., 1997). These cells were 

identified geno- and phenotypically and expressed the green fluorescent protein (GFP) 

(Schlett and Madarász, 1997). Under normal conditions the NE-GFP-4C cells were able to 

divide continuously and express several non-differentiated neural stem cells markers without 
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showing any neuronal differentiation. In the presence of all-trans retinoic acid the NE-GFP-

4C cells started to differentiate into neurons and astrocytes and showed well-defined 

characteristics of neuronal and glial physiology and morphology (Herbert et al., 2002; Tárnok 

et al., 2002; Schlett and Madarász, 1997). If NE-GFP-4C cells were maintained in contact or 

noncontact perinatal astrocyte co-cultures, immature astrocytes enhanced the differentiation 

of these neural stem cells to neurons and astrocytes. (Környei et al., 2005). Transplantation of 

NE-GFP-4C cells into newborn or postnatal intact brains induced tumor-like formation and 

the grafted cells did not migrate and differentiate in the host tissue (Demeter et al., 2004). In 

contrast to newborn or postnatal grafting, NE-GFP-4C cells were able to survive and 

proliferate for long time without forming any tumor-like aggregates in the embryonic or adult 

brain (Demeter et al., 2004). Furthermore, these neural stem cells were able to survive and 

proliferate in the freeze-lesioned adult mouse brain cortices, although differentiation of these 

cells was not detected under these conditions (Zádori et al., 2011). Application of 

hypoperfusion-induced hypoxia in the lesioned mouse cortices induced differentiation of 

grafted neural stem cells into neurons and reduced the proliferation of these cells (Zádori et 

al., 2011). 
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Aims of the study 

 

 

In this study we intended 

1) to test whether grafted neuroectodermal stem cells are able to rescue injured motoneurons 

and promote the regeneration of their axons, 

 

2) to study the effect and capacity of stem cells grafted at various locations within and in the 

vicinity of the injured spinal cord segment, and 

 

3) to determine the factors which are responsible for the motoneuron-rescuing effect of 

grafted stem cells. 

  



13 

 

 

 

Material and methods 

Maintenance of NE-GFP-4C stem cells  

The clonal neuroectodermal stem cells (NE-GFP-4C cells, a gift from Dr. E. Madarász, 

Institute of Experimental Medicine, Hungarian Academy of Sciences, Hungary; also available 

from ATCC, No. CRL-2926 and Dr. Ernő Duda, Biological Research Centre, Hungarian 

Academy of Science, Hungary) were originally isolated from 9-day-old forebrain vesicles of 

embryos of transgenic mice lacking the tumour suppressor gene p53, and were made to 

produce eGFP as described previously. NE-GFP-4C stem cells were maintained on nuncloned 

petri dishes (VWR International, Debrecen, Hungary) in High-glucose Dulbecco Modified 

Essential Medium (H-DMEM, Sigma, Hungary) supplemented with 10% foetal calf serum 

(Gibco) at 37 °C and 5% CO2.  Floating cells appeared after 3 days and were passaged every 

2 days, using trypsin digestion and mechanical dissociation. The medium was changed daily. 

All cell cultures underwent at least two, but no more than five passages before transplantation. 

 

Ventral root avulsion-reimplantation and various transplantation paradigms 

All together 184 female Sprague-Dawley rats (Animal Research Laboratories, Himberg, 

Austria, and  Animal Facilities at the Faculty of Medicine, University of Szeged, weighing 

180-220 g body weight) were used. Animals survived for 2, 5, 10, 14 or 16 days or for 1, 3 or 

6 months. Out of these, ninety-four animals participated in retrograde labelling and 

immunohistochemistry, 48 operated and 9 intact animals in semiquantitative and qPCR 

studies, 8 animals in tension recording studies, 15 animals in functional blocking experiments 

and 16 in CatWalk semiautomated gait analysis. 

All the operations were carried out under deep ketamine-xylazine anaesthesia (ketamine 

hydrochloride: 90 mg/kg body weight, Ketavet, Pharmacia & Upjohn Co.; xylazine: 5 mg/kg 

body weight, Rompun, Bayer Co.) and sterile precautions. To maintain the body temperature 

at 37.0±0.5°C, the rats were kept on a heating pad during the surgery.  Laminectomy was 

performed at the level of T13–L1 vertebrae, the dura was opened and the left L4 ventral root 

was pulled out leaving the dorsal roots intact. Then the cut end of the ventral root was inserted 

into the lateral part of the spinal cord. To avoid damage to the cord, a small hole was created 

on the lateral surface of the cord, and the avulsed root was inserted into the hole using a 

watchmaker’s forceps (Dumont, Switzerland, No. 5).  Special care was taken to avoid damage 
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to the cord, including its motoneuron pool, or to the reimplanted root (Fig. 1A-B). The control 

experiments involved either intact animals or rats whose L4 root was avulsed and reimplanted 

without a stem cell graft (AR group, Fig. 1A). In group 2 animals (ARG-PR group) the 

reimplanted root was surrounded by 3 × 10
5
 stem cells applied in a loose fibrin matrix (Baxter 

Ltd, Vienna, periradicular grafting of stem cells, Fig. 1B). Group 3 animals (intraradicularly 

grafted rats, ARG-IR) received 3 injections of stem cells (5 × 10
4
 each) along a 3 mm length 

of the reimplanted root (Fig. 1C). The proximal injection was applied immediately at the re-

established ventral root-spinal cord junction zone, the second and the third injections were 

applied approx 1.5 mm from the junction zone and from the second injection site, 

respectively. Animals in group 4 (intraspinal grafting of stem cells, ARG group) had 3 × 10
5
 

stem cells injected into the caudal part of the L4 segment (Fig. 1D). The spinal cord was 

covered with the remaining dura, the wound was closed and the animals were allowed to 

recover (Nógrádi and Vrbová, 1996; 2001).  Animals survived for 5 or 10 days or for 3 

months. No immunosupressive treatment was applied. 

 

 

Figure 1. Schematic drawing depicting the various experimental paradigms  

Three experimental surgical approaches are shown: (A) After avulsion of the L4 ventral root 3 × 10
5
 

stem cells were mixed in fibrin clot and applied around the reimplanted root (B, group 2, ARG-PR). In 

other experimental groups stem cells were injected at three locations into the reimplanted root (5 × 10
4
 

cells at each site, group 3, in C, ARG-IR) or 3 × 10
5
 cells were grafted into the spinal cord along with 

reimplantation of the avulsed root (D, group 4, ARG).  

 

In the other experiments animals had 5x10
4
, 1x, 2x or 3x10

5
 stem cells were injected into the 

caudal part of segment L4.  All experiments were carried out with the approval of the Animal 

Protocol Review Board of City Government of Vienna and with that of the Committee for 
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Animal Experiments, University of Szeged and rules regarding the care and use of animals for 

experimental procedures were followed.  All the procedures were carried out according to the 

Helsinki Declaration on Animal Rights.  Adequate care was taken to minimize pain and 

discomfort. 

 

Retrograde labelling  

Three months after the surgery, the animals were deeply anaesthetized as described above. On 

the operated side, the ventral ramus of the left L4 spinal nerve was sectioned and the proximal 

stump of the nerve was covered with a few Fast Blue (FB) crystals. Four days after the 

application of this fluorescent dye, the animals were reanaesthetized and were perfused 

transcardially with 4% paraformaldehyde in 0.1 mol/l phosphate buffer (pH=7.4). 

 

Semiquantitative PCR, list of tested factors 

Spinal cords were homogenized twice for 10 sec in 600 µl RLT buffer + ß-MeETOH (Qiagen 

GmbH, Hilden, Germany) with a MagNaLyser (Roche, Rotkreuz, Switzerland) at a speed of 

5,500 rpm with an intermediate pause for 5 min on ice. The resulting lysates were incubated 

on ice and subjected to centrifugation at 13,000 rpm for 1 min at room temperature. The 

lysates were subsequently used for RNA extraction with the QIAcube robot system (Qiagen) 

and the RNeasy Mini Kit protocol for large samples (Qiagen). After DNaseI treatment (Turbo 

DNA-free Kit, Ambion, Austin, TX, USA), the RNA was measured both qualitatively and 

quantitatively with an Agilent 2100 Bioanalyzer (Agilent, Vienna, Austria). An RNA Lab chip 

(Agilent RNA 6000 Nano Reagents) was used to determine the RNA integrity number. cDNA 

was synthetized with a High-Capacity Reverse Transcription Kit (Applied Biosystems, Foster 

City, CA, USA) The appropriate 5' and 3
'
 primers for PCR were designed manually and then 

tested with AmplifX software (Mac version, Supplementary Table 1). The appropriate 

conditions (e.g. annealing temperatures) for each cytokine, chemokine and neurotrophic factor 

were first established by gradient-PCR, using a positive control consisting of mouse and rat 

embryo tissue or injured mouse and rat spinal cord. To establish the quantification in the 

linear range, different cycle numbers were used depending on the target genes: IL-1-alpha, IL-

1-beta, TGF-beta, MIP-1-alpha and PDGF-alpha were amplified at 30 cycles, while 

hypoxanthine-guanine phosphoribosyltransferase (HPRT), the other cytokines and the 
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neurotrophic factors were amplified at 35 cycles. The RT-PCR results for the cytokines, 

chemokines and neurotrophic factors at each time point (2, 5, 10 and 14 days after surgery) 

were expressed as a proportion of the corresponding intensity value of the HPRT product 

(densitometric measurement). 

 

List of genes studied in injured and grafted spinal cords 

Factor RefSeq accession Sequence (5' to 3') sense 

BDNF NM_007540 CTGGTGCAGAAAAGCAACAA 

GDNF NM_010275 ACATAGGGGAACTGTGCAGG 

IL-1-alpha NM_010554 AGACCATCCAACCCAGATCA 

IL-1-beta NM_008361 GACCTTCCAGGATGAGGACA 

IL-6 NM_031168 GAGGAGACTTCACAGAGGA 

IL-10 NM_010548 ATGGCCCAGAAATCAAGG 

NT-3 NM_001164035 TGCCGGAAGACTCTCTCAAT 

NT-4/5 NM_198190 AAGGATGGGATCAGGGAAAG 

PDGF-alpha NM_008808 GAGATACCCCGGGAGTTGAT 

PDGF-beta NM_011057 CCAGATCTCTCGGAACCTCA 

PTN NM_008973 TGTGAGGGCTTAAAACACCC 

MCP-1 NM_011333 TCACCTGCTGCTACTCATTCAC 

MCSF NM_007778 GAAAGTGAAAGTTTGCCTCGGTGCTCT 

MIP-1-alpha NM_011337 GGGCATATGGCTTCAGACACCAGA 

TGF-beta NM_011577 AGAACACCCACTTTTGGATCTCAG 

TNF-alpha NM_013693 TCAGCGAGGACAGCAAG 

Table 1. List of genes studied in injured and grafted spinal cords 

 

Tissue staining and laser capture microdissection (LCM), quality control of RNA 

All tissues were quick-frozen in liquid nitrogen and stored at -80 °C until further use.  LCM 

was performed with the Veritas instrument (Arcturus, CA, USA), equipped with a cutting 

laser (349 nm) to cut a narrower outline around the region of interest and a capture laser (810 

nm) to capture the entire region within the outline. The procedure has been described 

previously
30

. In brief, 10 µm thick tissue sections were cut on a Leica CryoCut Jung CM1800 

cryostat (Leica Instruments, Nußloch, Germany) by using an RNAse-free technique, mounted 

onto special membrane slides (Molecular Machines & Industries, Glattbrugg, Switzerland) 

and stained immediately after cutting with the HistoGene LCM Frozen Section Staining kit 

(MDS Analytical Technologies, Ismaning, Germany). The sections were then cleared in 

xylene for 5 min and either used directly for microdissection or stored at -80 °C until further 
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use. Regions of interest were cut and captured into CapSure Macro LCM caps (MDS, 

Ismaning, Germany).  The laser power setting ranged from 60 to 80 mW, and the pulse 

settings from 1,700 to 2,500 μsec. Spot size was determined prior to microdissection and 

adapted to each tissue type. During an LCM session, dissection of an area of approximately 

200,000 – 250,000 μm² (~ 1,000 cells) led to amplifiable results in the subsequent qPCR.  The 

remaining tissue on the slide was used for RNA quality measurement using the RNeasy Micro 

Kit (Qiagen) for RNA isolation. The protocol including the DNaseI treatment was carried out 

directly on the columns. After the overall procedures, the RNA quality measurements were 

analysed with the Agilent 2100 Bioanalyzer applying the RNA 6000 pico Lab chip (Agilent). 

 

Quantitative RT-PCR (qRT-PCR) 

A two-step qRT-PCR was performed with the High-Capacity Reverse Transcription Kit 

(Applied Biosystems) for cDNA synthesis and adjacent qPCR measurements were performed 

with the Power Sybr Green Kit (Applied Biosystems). The cDNA was synthetized on a 

StepOnePlus cycler (Applied Biosystems) and the qPCR was performed on the 7900HT 

Sequence Detection System (Applied Biosystems). The expression levels of different genes of 

interest (MIP-1-alpha, TNF-alpha, IL-1-alpha, IL-6 and IL-10) were measured by qRT-PCR. 

The relative expression levels of these genes were calculated in relation to two different 

house-keeping genes (glyceraldehyde-3-phosphate-dehydrogenase [GAPDH] and HPRT) 

using the ddCt method. As the data obtained with the use of GAPDH appeared to be more 

reliable, these are presented here. 

The primers of the assays used in this study were designed through the use of the Primer 

Express software version 2.0 (Applied Biosystems). The house-keeping gene assays were 

designed to detect mouse and rat mRNA transcripts and were based on mRNA alignments 

(SECentral software, Cary, NC, USA) using the following reference genes: mouse BC082592 

and rat X02231 sequences for GAPDH, and mouse NM_013556 and rat BC098629 for the 

HPRT assay. In order to exclude the detection of DNA, the primers were located on different 

exons. The primers used for the GAPDH assay were: sense: 5’- GGC CTT CCG TGT TCC 

TAC C -3´ and antisense: 5’- GCC TGC TTC ACC ACC TTC TT - 3´; and for HPRT: sense: 

5’- GGT GGA GAT GAT CTC TCA ACT TTA AC -3´ and antisense: 5’- TGT ATC CAA 

CAC TTC GAG AGG TCC -3´. 
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The genes of interest were designed to detect mouse and rat sequences, too. The primers used 

for the different assays were: MIP: sense: 5’- TGC CCT TGC TGT TCT TCT C - 3’ and 

antisense: 5’- ATT CTT GGA CCC AGG TCT CTT - 3’; PDGF: sense: 5’ – TAG ACT CCG 

TAG GGG CTG A – 5’ and antisense: CAA TAC TTC TCT TCC TGC GAA TGG - 5’; TNFa: 

sense: 3’- ACT GAA CTT CGG GGT GAT CG - 5’ and antisense: 5’- TTG AAG AGA ACC 

TGG GAG TAG A -3’; IL-1: sense: 5’- AGA CCA TCC AAC CCA GAT CA - 3’ and 

antisense: 5’- CGG TCT CAC TAC CTG TGA TG -3’; IL10: sense: 5’- ATG  GCC CAG 

AAA TCA AGG-3’ and antisense: 5’- CGA GGT TTT CCA AGG AGT TG -3’; IL6: sense: 

TTC CCT ACT TCA CAA GTC CGG-3’ and antisense: 5’- TAC AAT CAG AAT TGC CAT 

TGC A-3’; PDGFnew: sense: 5’- CTG GCT CGA AGT CAG ATC CAC -3’ and antisense: 5’- 

GGG CTC TCA GAC TTG TCT CCA -3’. 

All assays were validated by using standard dilution series of a positive control over at least 4 

log decades. The reaction efficiency was calculated from each standard curve via the formula: 

E: 10
-1/slope

 -1. 

 

Immunohistochemistry 

For spinal cords 25 μm transverse sections were cut on a cryostat (Leica CM 1850, Leica 

GmbH, Nussloch, Germany) and mounted onto gelatin-coated glass slides. Non-specific 

binding sites were subsequently blocked with 3% normal donkey, goat or horse serum. 

Primary antibodies were incubated overnight at 4 
o
C, washed, and then incubated with 

fluorescent-conjugated secondary antibodies for 1 h at room temperature. The following 

primary antibodies were used: anti-mouse IL-1-alpha, IL-6, TNF-alpha and MIP-1-alpha 

(1:50, all from R&D Systems, Minneapolis, MN, USA), anti-mouse IL-10 (1:400, Biolegend, 

San Diego, CA, USA), mouse anti-GFAP (1:100 Santa Cruz Biotechnology, Inc, CA, USA), 

polyclonal chicken anti-green fluorescent protein (GFP) (1:2,000, Chemicon), biotinylated 

Griffonia (Bandeira) simplicifolia lectin B4 (GSA-B4, 1:200, Vector Labs, Burlingame, CA, 

USA), anti-mouse/rat IL-1-alpha, IL-6, IL-10, TNF-alpha and MIP-1-alpha (1:200, all from 

Abbiotec, San Diego, CA, USA), goat anti-choline acetyltransferase (1:200, Millipore, 

Billerica, MA, USA), anti-mouse M6 (mouse-specific neuron marker, 1:400 DSHB, IA, 

USA), anti-mouse M2 (mouse-specific astrocyte marker, 1:400, DSHB), anti-mouse MOG 

(mouse-specific oligodendrocyte marker, 1:50, R&D Systems, Minneapolis, MN), anti-
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neurofilament 200kD (NF200, Abcam Ltd, 1:200, Cambridge, UK) and anti-SSEA-1 (stage-

specific mouse embryonic antigen-1, 1:400, DSHB). Secondary antibodies were used as 

follows: Alexa Fluor 594 donkey anti-rat, Alexa Fluor 546 goat anti-rabbit, Alexa Fluor 546 

donkey anti-goat, Alexa Fluor 488 goat anti-chicken, Alexa Fluor 488 goat anti-rabbit, horse 

biotinylated anti-goat IgG (H+L) and horse biotinylated anti-mouse IgG (H+L).  

Immunohistochemistry and lectin histochemistry were visualized with either the streptavidin 

Alexa Fluor 546 conjugate or the streptavidin Alexa Fluor 488 conjugate (1:400, Invitrogen).  

To validate TNF-alpha and IL-1-alpha immunohistochemistry, Mg
3
HeLa cells transfected 

with TNF-alpha plasmid (a kind gift from Ernő Duda, at the Biological Research Centre, 

Szeged, Hungary) and rat testis were used, respectively. 

Fluorescence signals were detected in an Olympus BX50 epifluorescence microscope 

equipped with a DP70 digital camera (Olympus Ltd, Tokyo, Japan).  Confocal microscopic 

images were obtained by using an Olympus FluoView® FV10i compact confocal microscope. 

 

Function-blocking antibody experiments 

Adult female rats (n=5 in each set of experiments) were deeply anaesthetized and the 

avulsion-reimplantation of the L4 ventral root and transplantation of 3x10
5
 NE-GFP-4C cells 

were performed as described above.  A mini-osmotic pump (Alzet Osmotic Pumps, Cupertino, 

CA, USA; type 1002, 100 μl volume) filled with a mixture of function-blocking antibodies 

against MIP-1-alpha, IL-1a, IL-6, TNF-alpha (4 μg/ml working concentration, all from R&D 

Systems, Minneapolis, MN, USA) and IL-10 (Biolegend, San Diego, CA, USA) was placed 

subcutaneously in the dorsal region. All antibodies were specific to mouse epitopes only.  A 

silicone tube (Degania Silicone Ltd, Kibbutz Degania, Israel, 0.3 mm in internal diameter) 

extended from the mini-pump to the spinal cord and its distal end was inserted into the cord at 

the site of grafting.  The tube was fixed to the surrounding musculature with 8-0 sutures 

(Ethilon) to avoid moving in or out of the spinal cord. In another set of experiments osmotic 

pumps filled with IL-10 antibody only (4 μg/ml working concentration) were used. Control 

animals received pumps filled with physiological saline only.  The pumps were removed 2 

weeks after the operation.  The animals survived for 3 months and were then processed for 

motoneuron counts and histological analyses. 

 



20 

 

 

 

Cell counts 

The number of retrogradely labelled cells was determined on 25 µm thick serial cryostat 

sections.  To avoid double counting of neurons present in consecutive sections, the 

retrogradely labelled neurons were mapped with the aid of an Olympus (Olympus Ltd, Tokyo, 

Japan) drawing tube, and their locations were compared with those of the labelled neurons in 

the previous section.  All sections from the L4 motoneuron pool were used (Nógrádi et al., 

2007). 

 

Quantification of astrocyte and microglia density 

To assess the density of GFAP-positive astrocytes and GSA-B4-positive microglia in injured 

and grafted ventral horns, we photographed injured, grafted and contralateral intact horns for 

each rat at a 10-fold primary magnification, using a Olympus BX50 epifluorescence 

microscope at a distance of 0.5, 1, 1.5, and 2 mm rostral and caudal to the reimplanted ventral 

root (n=5/group). With ImageJ Software (NIH), we measured the relative densities of GFAP 

and GSA-B4 immunoreactivity in the ventral horns. The background/autofluorescence of 

unstained samples as reference intensity was then subtracted from the intensity of injured 

grafted and of intact ventral horns in order to determine the final density. The GFAP and 

GSA-B4 intensity of the injured and grafted ventral horns was then divided by that of the 

contralateral intact ventral horns. We additionally performed automatic thresholding for each 

image by using NIH ImageJ software to determine the threshold for the specific signal. After 

the threshold had been set, the density above the threshold was quantified. 

 

Analysis of the locomotion pattern – the CatWalk semiautomated gait analysis 

For determination and analysis of the parameters of the hindlimb movement pattern in the 

different experimental paradigms, the 'CatWalk' automated quantitative gait analysis system 

was used (Noldus Ltd, Wageningen, The Netherlands, version 7). This computer-assisted 

method of locomotor analysis made it possible to quantify several gait parameters, including 

the duration and speed of different phases of the step cycle and print areas detected during 

locomotion. The following parameters were taken into account during the analysis:  

the print area (expressed in mm
2
): the total floor area contacted by the paw during the stance 

phase, 
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the print intensity (expressed in arbitrary units): the mean pressure exerted by one individual 

paw during the floor contact;  

the print width (expressed in mm): the parameters describing the width of the print area, 

the stance duration (expressed in s): the stance duration is the time of the stance phase, 

the swing speed (expressed in m/s): swing speed is computed from the swing duration and the 

stride length. 

the base of support of the hind limbs (BOS, expressed in mm): The base of support of the hind 

limbs is the distance between the two hind paws of the rat (Hammers et al., 2001; Hammers et 

al., 2006) 

 

Muscle tension recording 

The animals selected for tension recording (n=4 in both the control and the intraspinal group) 

were anaesthetized with ketamine-xylazine at the end of the 3-month survival period and the 

tibialis anterior and extensor digitorum longus muscles of both the reinnervated and the 

contralateral control hindlimb were prepared for tension recording. These muscles were 

chosen for tension recording because the motoneurons innervating them are mainly found in 

spinal segment L4 (Lowrie et al., 1984). The muscles of the contralateral leg were considered 

to be suitable controls because their tension increased with age in a similar way to that for the 

muscles of the normal, unoperated animals. The distal tendons were dissected free and 

attached to strain gauges, and the exposed parts of the muscles were kept moist with Krebs' 

saline solution. Isometric contractions were then elicited from the muscles by stimulating the 

ventral ramus of the L4 spinal nerve with bipolar electrodes.  The length of each muscle was 

adjusted so as to produce the maximum twitch tension. Single twitch and tetanic (40-100 Hz) 

contractions were displayed and recorded on a computer; all the additional recording 

hardware and software were developed by Supertech Ltd (Pécs, Hungary, system “Kellényi”).  

Maximum tetanic tension was achieved at a stimulation frequency of about 100 Hz.  An 

estimate of the numbers of motor axons supplying the muscles was obtained by stimulating 

the L4 spinal nerve with stimuli of increasing intensity and recording the stepwise increments 

of twitch contractions.  
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Statistical analysis 

The non-parametric Mann-Whitney U test and the One way ANOVA test and Two way 

ANOVA test with Tukey's all pairwise multiple comparison procedures were used to compare 

the data on the groups.  Values are reported throughout the thesis as means ± S.E.M and p < 

0.05 was considered significant. 
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Results 

 

General observations, functional improvement, the CatWalk gait analysis system in the 

different transplantation paradigms 

The aim of the next experiments was to compare the therapeutic potential of 3 x 10
5
 

transplanted NE-GFP-4C cells applied in topically different transplantation paradigms (see 

Fig. 1). Behavioral analysis was started two weeks after surgery and the first signs of 

functional recovery were observed 4-5 weeks after reimplantation of the ventral root. Control 

(AR) and ARG-PR (periradicular grafting) animals showed minimal improvement, i.e. their 

affected hind limb was placed laterally with minimal dorsiflexion of the ankle joint and the 

spreading reflex was minimal or completely missing. In contrast, animals that received grafts 

into the L4 ventral root (ARG-IR, intraradicular grafting) or into the spinal cord (ARG) 

developed a movement pattern closely similar to that of the intact hind limb. Movements of 

the ankle joint, especially dorsiflexion was extensive and toe spreading was present. 

Quantitative gait analysis obtained from the CatWalk automated gait analysis system showed 

that the earliest differences in functional recovery between these groups appear from week 6 

and these differences became significant by week 8 to 10 (Fig. 2). Improved footprint 

parameters (print area, intensity, print width, stance duration) in the groups ARG-IR and ARG 

indicated an improved stability of foot placing, while parameters characteristic of the step 

cycle (swing speed and base of support of the hind limbs) showed improved movement 

pattern in group ARG-IR and ARG animals (Fig. 2), too. Interestingly, animals that received 

intraspinal or intraradicular stem cell grafts did not show significantly different gait 

parameters.  

 

Retrograde labelling studies, number of reinnervating motoneurons in various grafting 

protocols  

The number of retrogradely labelled motoneurons, i.e those motoneurones that were able to 

send their axons into the vacated endoneural sheaths of the reimplanted ventral root correlated 

with the functional data. Control animals that had their ventral root avulsed and reimplanted 

but received no stem cell graft (AR group) had very few reinnervating cells (42 ± 10 SEM, n 

= 5). Similarly, in the spinal cords of ARG-PR animals which received a periradicular stem 
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cell graft, more retrogradely labelled motoneurons were found (65 ± 2.5 SEM, n = 5), without 

significant difference between these two groups (Fig. 3). On the other hand, grafting of NE-

GFP-4C cells into the reimplanted root (ARG-IR, n = 5) or into the spinal cord (ARG, n = 5) 

produced similarly good results: the numbers of reinnervating cells were 671 ± 26 SEM and 

711 ± 14 SEM, respectively (Fig. 3). It is noted, that the reinnervating cells in these two 

groups comprised 58% and 61% of the intact L4 motoneuron pool (1158 ± 14 SEM, n = 4), 

suggesting a very effective rescuing mechanism. 

 

 

Figure 2. Results of the CatWalk automated gait analysis  

The gait analysis revealed significant differences between the AR and ARG-PR groups and ARG-IR 

and ARG groups. The earliest significant differences in functional recovery between these groups 

appeared from week 8 in case of some parameters. Both the parameters indicating improved stability 

of foot placing (print area, intensity, print width, stance duration) and that of improved step cycle 

(swing speed and base of support of the hind limbs) suggested significant functional reinnervation in 

group ARG-IR and ARG animals. Note that the improved parameters of animals in ARG-IR and ARG 

groups approached the pre-training levels. Asterisks indicate significant differences between groups 
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AR and ARG-PR and groups ARG-IR and ARG by using the two-way measurement analysis of 

variance (ANOVA) computed according to Tukey’s all pair-wise multiple comparison procedures, p < 

0.05. The foot prints in the lower panel are taken from individual animals from each experimental 

group (green prints: intact hind limb, red prints: operated hind limb). Note the recovered print size in 

the case of intraradicular and intraspinal grafting paradigms.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Bar chart showing the results of retrograde labelling studies from the L4 spinal 

nerve 

Transplantation of stem cells into the reimplanted ventral root (ARG-IR) or into the spinal cord (ARG) 

resulted in equally high numbers of retrogradely labelled motoneurons in the L4 segment (no 

significant difference was found between these groups). Transplantation of the stem cells around the 

reimplanted root (ARG-PR) induced as limited reinnervation as reimplantation of the L4 root only 

(AR, control animals). * = Groups ARG-IR and ARG were significantly different from animals in both 

the AR and ARG-PR groups, p < 0.01, One-way ANOVA.  
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Differentiation and location of grafted neuroectodermal cells in various experimental 

groups 

The early differentiation and migration of the grafted cells was studied 5 and 10 days after 

grafting  in animals that received stem cells intraradiculary, periradicularly or intraspinally.  

Rats that received stem cell grafts embedded in fibrin clots and placed around the reimplanted 

ventral root (ARG-PR group), formed a well-defined tissue cuff around the reimplanted 

ventral root 5 days after grafting (Figs. 4A-D). The stem cells expressed the stage-specific 

embryonic antigen-1 (SSEA-1), an early murine stem cell marker and most of them 

maintained their GFP expression. However, by 10 days after grafting most of the cells became 

dispersed and only few of them were found around the reimplanted root (Figs. 5A-B). At this 

stage of development, these cells expressed the M2 and M6 antigens, characteristic of mouse 

glial and neuronal phenotypes, respectively, but morphologically they remained rounded, and 

undifferentiated (Figs. 5A-B, M2 not shown). In the animals that received intraradicular stem 

cell grafts (ARG-IR), numerous NE-GFP-4C cells were found within the L4 ventral root 5 

days after grafting (Figs. 4E-H). The cells formed clusters at the sites of injections and most 

of them were still able to express GFP. On the other hand, stem cells that expressed SSEA-1 

displayed a decreased or faint GFP expression, suggesting that the GFP expression pattern 

decreases with differentiation. Ten days after grafting we found fewer grafted cells at the sites 

of microinjections and most of the stem cells expressed SSEA-1 but many of them were 

already able to differentiate to glial or neuronal phenotypes (M2+ astrocytes and M6+ 

neurons, Figs. 5D-E). Interestingly, those intraradicularly grafted cells that were placed close 

to the spinal cord were able to migrate closer to, but not into the injured cord via the 

reimplanted ventral root and started to differentiate morphologically, too (Figs. 5D-E, M2 not 

shown). The intraspinal grafts (ARG animals) formed a large cluster of cells that first 

expressed the SSEA-1 antigen ((Figs. 4I-L) and then further differentiated to M2+ astrocytes 

and M6+ neurons, respectively (Figs. 6B-E). Five days after grafting mainly SSEA-1+ cells 

were found in the graft (Fig. 4I and Figs. 6B-B'), whereas by 10 days after grafting the 

presence of murine astrocytes and neurons was overwhelming (Figs. 6D-E'). During the next 

few days, the differentiated cells ceased their GFP expression and largely migrated away from 

the implantation site, leaving there only limited numbers of differentiated cells (16 days 

survival, n=4, Figs. 6F-G). Numerous stem cell-derived neurons (501±84) and astrocytes 
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(465±81) settled throughout segment L4 in the following weeks (1 month survival, n=5, Figs. 

6H and 6K), while only very few (45±16) oligodendrocytes of graft origin could be detected.  

The first signs of axon outgrowth was also observed 10 days after reimplantation in these 

samples: few regenerating axons visualized by neurofilament (NF-200 kD) immunostaining 

were seen in the reimplanted root of animals that received intraradicular or intraspinal grafts 

of stem cells (Fig. 5F and 5I), while such regenerating neurites were infrequently seen in the 

reimplanted ventral root of animals with periradicularly grafted stem cells (Fig. 5C). 

Interestingly, several regenerating axons were found in this latter group among the derivatives 

of stem cells close to the reimplanted root (Fig. 5B).  

Three months after grafting in the periradicularly treated animals (ARG-PR group) only few 

stem cell-derived neurons and astrocytes were sporadically seen along the initial segment of 

the reimplanted root, typically in the dorsal angle between the reimplanted root and the lateral 

surface of the spinal cord (Figs. 7A-B). Greater numbers of stem cell-derived neurons and 

axons were found in the spinal segments of animals with intraradicular grafts (ARG-IR 

group). These cells were located mainly at the periphery of the root, not in close contact with 

the regenerated axons (Figs. 7D-E). Interestingly, a number of M2+ astrocytes and M6+ 

neurons appeared to have migrated into the ventral horn of the damaged L4 segment where 

these cells were located around the reimplanted root and the reinnervating motoneurons (Figs. 

7D-E). Although many cells expressed M2 and M6 antigens on their membranes, only those 

cells appeared morphologically differentiated which settled in the spinal cord.  

The cells that stayed in the reimplanted root remained rounded and appeared morphologically 

undifferentiated while they expressed murine surface antigens characteristic of mature cells 

(Fig. 7D). In the spinal cords of animals that received stem cells intraspinally (ARG group), 

relatively well-differentiated derivatives of stem cells were found, scattered throughout the L4 

segment (Fig. 6J and Fig. 7C). The stem cells and their derivatives were rarely seen in contact 

with the injured motoneurons (Fig. 6I). Three months after grafting, the astrocytes and 

neurons were still confined nearly exclusively to the injured L4 segment (Fig. 6J). By a 

survival time of 6 months (n=5) their numbers had decreased critically (Fig. 6K). 
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Figure 4. Location and early differentiation of grafted stem cells in various experimental 

paradigms 

A-D shows differentiating NE-GFP-4C cells 5 days after transplantation around the reimplanted 

ventral root. The cells appear as a tissue mass outside the epineurium. E-H displays intraradicularly 

grafted stem cells just under the connective tissue sheath of the root (not labelled) and I-L indicates 

the location and gene expression pattern of intraspinally grafted stem cells, in both cases 5 days after 

grafting. Note that many of the grafted GFP+ cells in all experimental paradigm express SSEA-1, a 

murine stage-specific stem cell marker. A-H are confocal images. Note that the confocal images were 

obtained by the use of various optical thickness settings. Scale bar in A,E and I = 100 μm, in the rest 

of the figures = 20 μm.  
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Figure 5. Outgrowth of regenerating axons from the ventral horn of the injured cord 

into the reimplanted root 10 days after grafting 

A shows a hemicord that received a periradicular stem cell graft (ARG-PR group, Neurofilament 

200kDa immunohistochemistry - blue). Insets enlarged in B and C show the location of the M6+ 

grafted cells (red) within the ventral horn and the few NF200+ regenerating axons (arrows), 

respectively. Note the few axons (arrows) terminating around the surviving stem cells in B. In D a 

section of a spinal cord is displayed with the reimplanted root, into which the stem cells were grafted 

(NF200 kDa, ARG-IR group). E and F show the proximal injection site in the reimplanted root (E, M6 

mouse neuronal marker, red), and the site of reimplantation with numerous regenerating axons (arrows 

in F, NF200 kDa immunohistochemistry). In G- to I microphotographs taken form intraspinally 

grafted animals (ARG) are presented. Differentiating (M6 positive) stem cells (red) are located within 

the cord, at the end of the reimplanted ventral root (G and H). Numerous NF200kDa+ axons (blue and 

indicated by arrows) entered the reimplanted root. Scale bar in A,D and G = 100 μm, in the rest of the 

figures = 20 μm.  
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Figure 6. Differentiation and migration of grafted stem cells and their derivatives in the 

spinal cord 

A. Schematic drawing showing the surgical procedure of avulsion, stem cell grafting and 

reimplantation of the avulsed L4 ventral root (ARG group).  B,C. Expression of embryonic stem cell 

marker SSEA-1 by the grafted stem cells 5 and 10 days after transplantation. D,E. Initial 

differentiation of the grafted stem cells to M6+ neurons and M2+ astrocytes, accompanied by the loss 

of GFP expression.  F,G. Dispersion of the differentiated stem cells from the site of grafting, where 

only limited numbers of astrocytes and neurons of graft origin remain. H. Numerous M6+ neurons and 

M2+ astrocytes are present in the cord 1 month after grafting, whereas MOG+ oligodendrocytes are 

rarely found. I. Only a few stem cell-derived neurons and astrocytes, but no oligodendrocytes are 

located in the host cord 6 months following transplantation. J. Distribution of M2+ astrocytes (green 

dots) and M6+ neurons (red dots) in the injured L4 segment one month following grafting in a 

representative ARG animal.  Each spinal cord cross-section represents a 100 µm thick segment of the 
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cord. The vast majority of the stem cell-derived cells are located in the affected L4 segment.  K. The 

absolute numbers of stem cell-derived neurons, astrocytes and oligodendrocytes are shown at various 

time points after grafting, n=5. Data are presented as mean +/- S.E.M, p<0.05. The one-way ANOVA  

analysis with Tukey's post-hoc tests was performed. Scale bar in B-G= 500 µm, B'-E'= 200 µm, H= 

200 µm and 50 µm (insets), I= 100 µm 

 

 

Figure 7. Localization of the derivatives of the grafted stem cells in various experimental 

paradigms 

A and B show sections of the spinal cord (ARG-PR group, periradicular grafting) taken at the level 

where the reimplanted root (RI-VR) is closely apposed to the cord. The few retrogradely labelled 

motoneurons (arrows, Fast Blue +, FB) colocalise with the numerous surviving ChAT + motoneurons 
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(green) in the ventral horn. Few surviving undifferentiated cells (arrowheads, M6 + neurons in A and 

M2 + astrocytes in B) settled in the dorsal angle between the reimplated L4 root and the dorsolateral 

surface of the cord. C shows surviving (ChAT + , green) and reinnervating (Fast Blue+) motoneurons 

(arrows) in the ventral horn and stem cell-derived -like cells in the dorsal funiculus of an animal that 

received intraspinal stem cell graft (ARG group). Inset provides high magnification view of the M6 + 

cells. D and E display sections taken from intraradicularly grafted animals (ARG-IR group). Note the 

greater numbers of retrogradely labelled motoneurons (arrows) within the pool of surviving 

motoneuron pool (ChAT+, green), Stem cell-derived rounded astrocytes and neurons are present in the 

reimplanted ventral root (RI-VR, see inset for higher magnification in D), however, many of these 

cells migrated into the affected ventral horn and took up a more differentiated morphological 

phenotype (arrowheads, M6 + and M2 + cells shown in D and E, respectively). Scale bar = 200 µm.  

 

 

Stem cell grafts dramatically improve the reinnervation of hindlimb muscles by the 

rescued motoneurons  

To find out the most effective dose of stem cells we have set experiments where we 

transplanted increasing numbers of stem cells (5x10
4
, 1x, 2x and 3x10

5
 stem cells, n=5 in 

each group) to determine whether motoneuron survival and reinnervation of reimplanted 

ventral root depend on the number of the grafted cells.  

Retrograde labelling from the ventral ramus of the L4 spinal nerve 3 months after grafting 

revealed that large numbers of axons of surviving motoneurons (up to 65% of the total L4 

motoneuron pool) were able to enter the reimplanted root and reinnervate muscles in animals 

that received a stem cell graft (3x10
5
 stem cells) at the time of avulsion and reimplantation 

(ARG animals, Figs. 8A-B). In the non-grafted control animals (AR animals, n=5), however, 

only minimal numbers of motoneurons (46±5, 4% of the total intact L4 pool) contributed to 

the reinnervation of the hindlimb muscles (Fig. 8A). Increasing numbers of grafted stem cells 

(5x10
4
, 1x, 2x and 3x10

5
 stem cells, n=5 in each group) proved to induce proportionally 

increasing numbers of surviving motoneurons that reinnervated the targets, suggesting a 

motoneuron-rescuing mechanism dependent on the amount of factors secreted by the grafted 

cells (Figs. 8A-B). However, the number of grafted cells that could be utilized to rescue the 

motoneurons and promote their regeneration exhibited an optimum. Grafts involving more 

than 3x10
5
 stem cells (e.g. 5x10

5
 or 1x10

6
 stem cells) caused damage to the host cord, thereby 
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compromising the regenerative effects of the grafted stem cells. Such grafts were therefore 

excluded from the present study. In the subsequent work reported here each ARG animal 

received 3x10
5
 stem cells. Morphological reinnervation was confirmed by examinations 

proving functional reinnervation.  The higher numbers of motor units found in the grafted 

animals (21±1 [ARG] vs 4±1 [AR] motor units for the tibialis anterior, and 14±1 [ARG] vs 

4.5±1 [AR] for the extensor digitorum longus; Figs. 8C-D) produced significantly greater 

forces in the tibialis anterior (79%±3 operated/intact side [ARG] vs 7.5%±2.5 [AR]) and the 

extensor digitorum longus (73%±3 [ARG] vs 13%±4 [AR]) muscles (n=4, Figs. 8E-F).  

 

 

Figure 8. Reinnervation of peripheral targets by injured motoneurons rescued by 

grafted stem cells 

A,B. The extent of reinnervation of peripheral targets depends on the number of grafted stem cells.  In 

control animals (AR), only 46±5 retrogradely labelled cells were found, while the transplantion of 

3x10
5
 stem cells resulted in 736±32 reinnervating motoneurons, n=5.  C,D. The extensor digitorum 

longus (EDL) and the tibialis anterior (TA) muscles of grafted (ARG) rats are innervated by 

significantly greater numbers of motor axons than are the muscles of AR animals; individual twitch 

contractions of motor units (MU) are shown in C, n=4.  E,F. Greater numbers of reinnervating motor 

axons produced greater maximum tetanic muscle contractions in ARG animals, n=4; individual tetanic 

curves are shown in F. Data are presented as mean +/- S.E.M, p<0.05. Data were analysed by applying 

the non-parametric Mann-Whitney U test or one-way ANOVA analysis with Tukey's post-hoc tests 

was used.  Scale bar in B= 100 µm. 
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Stem cell graft downregulates glial microenvironment in the host cord 

We next investigated the glial environment of the injured motoneurons in the ventral horn of 

grafted (ARG) and control animals (AR).  Both astroglial and microglial activity are known to 

moderate cascades of negative effects on damaged neurons of the spinal cord, although the 

nature of the microglia/macrophages that participate in certain pathological processes is still 

controversial (Biber et al., 2007; Gaudet et al., 2011).  We therefore looked at the glial 

reactions within the spinal cords of AR and ARG animals in the critical first 10 days after the 

avulsion injury.  At 5 and 10 days after grafting, neuroectodermal stem cell transplantation led 

to significant decrease in the microglia/macrophage and astroglial reactions throughout 

segment L4 of ARG animals relative to AR animals (Fig. 9).  

 

Determination of secreted factors expressed in the grafted cord 

These data suggested that, in view of the lack of physical contact between the injured and the 

grafted cells, a paracrine secretory mechanism must be exerted by the graft to decrease the 

activity of the glial cells of the cord and prevent motoneuron death. To determine the factors 

acting in the grafted cords, we performed a series of semiquantitative PCR analyses of the 

segment L4 in ARG and AR animals, concerning neurotrophic and immune factors known to 

play roles in spinal cord injuries and their experimental treatment (Bartholdi and Schwab, 

1997; Ousman and David, 2001). It emerged that on postoperative days 2, 5, 10 and 14 there 

was no difference between the AR and ARG animals (n=4 in each group) in the mRNA levels 

of the investigated neurotrophic factors (BDNF and GDNF), but the mRNA levels of the 

interleukins IL-1-alpha, IL-6 and IL-10, TNF-alpha and MIP-1-alpha were significantly 

higher in the ARG than in the AR animals, typically at 5 and 10 days following grafting. 

However, the mRNA production of these factors had declined by 14 days after grafting (Fig. 

10). 

 

Differential mRNA expression of cytokines in the stem cells graft and in the ventral 

horns 

To distinguish between graft and host immune factor production, we used the laser 

microdissection technique to perform a qPCR analysis on identical parts of spinal cord 

sections (ventral horns) taken from AR and ARG animals and from the stem cell graft (n=5 in 

each group)  The stem cell grafts and the ventral horns of the ARG animals produced 
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considerable amounts of the cytokines investigated, with appreciable increases by 10 days as 

compared with 5 days after grafting (Figs. 11A-E); IL-10 proved to be an exception, as it was 

produced in greater amounts by the grafted cells 5 days after grafting.  In contrast, the ventral 

horns of the AR animals produced increased amounts of the mRNAs of these factors at 5 

days, with a moderate decline by 10 days after the avulsion injury; IL-10 was again an 

exception: it was not produced in the control cords at all (Fig. 11C). The cultured NE-GFP-4C 

cells (native graft source) did not display detectable levels of the mRNAs of any of the 

factors.  At a survival time of 10 days, the ventral horns of the ARG animals exhibited 

increased mRNA levels of all the factors, including IL-10, relative to the mRNA levels of the 

AR animals, suggesting a graft-induced upregulation of these factors at the mRNA level in the 

host cord. 
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Figure 9. Astrocytic and microglial/macrophage reactions in grafted and control spinal 

cords 

A-H. Reduced astroglial (GFAP) and microglial (GSA B4 isolectin) densities are shown in spinal 

segment L4 of ARG animals.  Asterisks indicate the significant differences in density between AR and 

ARG animals at various distances from the site of avulsion, n=5. Data are presented as mean +/- 

S.E.M, p<0.05. The two-way ANOVA analysis with Tukey's post-hoc tests was used.  Scale bar in E= 

250 µm. 

 

 

Figure 10. Results of semiquantitative PCR studies on the production of cytokines 

Semiquantitative PCR analysis of cytokine mRNA levels in the injured (AR) or grafted (ARG) L4 

segment.  Only those factors are shown that displayed a significant difference at any timepoint.  Note 

the great amount of IL-10 mRNA produced in the grafted L4 segment of the ARG animals (n=4 in 

each group). *=significant difference between the ARG and AR animals at the same timepoint. The 

non-parametric Mann-Whitney U test was used.   



37 

 

 

 

Protein expression patterns of cytokines in the grafted cells and in the spinal cord  

To test whether the mRNA levels are translated into protein production, the protein expression 

patterns of these cytokines were studied by immunohistochemistry.  Through the use of 

mouse-specific antibodies, strong immunoreactivity to all five factors was found to be exerted 

by the grafted cells at 5 days after grafting (Figs. 11F-J). It was noteworthy that the majority, 

but not all of the grafted cells were immunopositive for the cytokines tested. However, at 10 

days postoperatively only the strong expression patterns of IL-6, TNF-alpha and MIP-1-alpha 

were maintained (Fig. 12B, D and E). The immunofluorescence of IL-1-alpha and IL-10 was 

confined to some of the stem cells located at the periphery of the graft (Fig. 12A and C). On 

the other hand, immunohistochemistry with anti-rat/mouse specific antibodies indicated that 

the ventral horn neurons and glial cells of the ARG animals appeared to produce only IL-6, 

IL-10 and MIP-1-alpha. The expression patterns were uniform at both 5 and 10 days after 

grafting. Confocal microscopic analysis of double-labelled sections revealed that the glial IL-

6, IL-10 and MIP-1-alpha reactivity was confined to the astrocytes, and not to the 

microglia/macrophages of the host cord, even though the degree of astrogliosis in the ARG 

animals was limited (Fig. 13). A similar distribution pattern of these cytokines was observed 

in the AR animals, but the astroglial density was increased. Despite the relatively high mRNA 

levels of IL-1-alpha and TNF-alpha, no immunoreactivity to these factors could be detected as 

compared with the biological positive controls (see Experimental Procedures).  
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Figure 11. Elevated mRNA levels and immunohistochemical detection of cytokines 

produced by the grafted stem cells 

A-E. Relative gene expression levels of various cytokines in the ventral horns of AR and ARG animals 

and in the grafts removed by laser microdissection. There were significant increases in the RNA levels 

of all factors, and of IL-10 in the ventral horns and in the grafts of ARG animals by 10 days after 

grafting relative to the data at 5 days, n=4. IL-10 was produced only in the grafted cords, mainly by 

the grafted cells at 5 days after transplantation.  Ventral horns of 5d ARG animals are taken as 1 unit.  

RNA levels of intact ventral horns are not shown as they were negligible. F-J. Immunohistochemical 

detection of the murine factors produced by the grafted cells at 5 days after transplantation.  Note the 

partial expression pattern shown by the grafted cells, especially in the case of MIP-1-alpha, partially 

due to declining GFP activity. Data are presented as mean +/- S.E.M, p<0.05. The one-way ANOVA 

analysis with Tukey's post-hoc test was used.  Scale bar in F= 500 µm and 50 µm in insets. 
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Figure 12. Expression of various cytokines by the grafted stem cells in ARG animals 10 

days after surgery 

Immunofluorescence images of stem cell grafts in the ventral horns of ARG animals 10 days following 

grafting.  While the immunohistochemistry to IL-6, TNF-alpha and MIP-1-alpha still reveals a strong 

expression pattern, IL-1-alpha and IL-10 protein expression is limited to a small ventral and peripheral 

area of the graft. All immunohistochemical analyses were performed with mouse-specific antibodies 

against cytokines. Scale bar in A-E= 200 µm.  
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Figure 13. Confocal microscopic analysis of MIP-1-alpha, IL-6 and IL-10 expressions in 

the host cord 

Co-expression of MIP-1-alpha (A-B), IL-6 (C-D) and IL-10 (E-F) and microglial or astrocytic 

markers (GSA-B4 isolectin or GFAP, respectively), detected at 5 and 10 days postoperatively in AR 

and ARG animals.  The cytokine expressions are localized to astrocytes and neurons in the ventral 

horn. Microglial cells do not express the cytokines.  No IL-10 immunoreactivity was detected in AR 

animals (not shown). Scale bar for the MIP-1-alpha and IL-6 panels = 250 µm, for the IL-10 panel = 

200 µm. 
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Function-blocking antibodies abolish the neuroprotective effects of the grafted stem cells 

To test whether these cytokines are indeed responsible for inducing the prevention of 

motoneuron death, for 2 weeks we used osmotic pumps to infuse the mixture of function-

blocking mouse-specific antibodies produced against all five factors to the grafts (n=5, ARG + 

5-factor neutralization). Indeed, retrograde labelling from the ventral ramus of the L4 spinal 

nerve revealed virtually as few reinnervating motoneurons after 3 months as in the AR 

animals (57±5 [ARG+5-factor neutralization], 46±5 [AR]; Figs. 14A,D, and E). However, the 

question remained as to whether the considerable amount of IL-10 (the only cytokine with 

anti-inflammatory effects in the peripheral immune system) produced by the grafted cells 

would alone be able to prevent motoneuron death. In a search for an answer to this question, 

we set up another function-blocking experiment (n=5, ARG + IL-10 neutralization) in which 

only the anti-IL-10 mouse-specific function-blocking antibody was infused by osmotic pump 

to the grafted cord.  When the IL-10 function was blocked in this way, the reinnervation was 

dramatically improved in comparison with that in the AR and ARG + 5-factor neutralization 

animals (195±10 reinnervating motoneurons, Fig. 14E). In order to test whether the 

application of an osmotic pump induces a damage in the rescued motoneuron pool, pumps 

filled with isotype-specific IgG were used and no significant difference relative to the ARG 

animals was found (n=5, ARG+IgG; 695±44, Fig. 14E).  The significant difference in 

reinnervating motoneuron numbers between the two neutralization groups reveals a strong 

modulatory role for the other four factors in the injured cord (Fig. 14E and F); the blocking of 

IL-10 produced by the grafted cells was only partially able to inhibit the beneficial effect of 

the graft.  To establish whether the major beneficial effect of IL-10 involves the survival 

and/or the reinnervating capacity of the motoneurons, we made use of anti-choline 

acetyltransferase (ChAT) immunofluorescence to detect and count the surviving and intact 

motoneurons, including those “silent motoneurons” that are not able to regenerate their axons 

into the vacated endoneural sheaths of the reimplanted L4 root.  The proportion of surviving 

motoneurons compared to the total ChAT
+
 motoneuron pool in segment L4 was dramatically 

increased in the ARG animals but not in the other experimental groups (Fig. 14G), indicating 

that IL-10 is mainly responsible for the survival of the motoneurons in this experimental 

paradigm. On the other hand, the proportion of surviving motoneurons that are able to 

reinnervate peripheral targets (Fig. 14G) was again improved after blockade of the IL-10 



42 

 

 

 

function, which suggests an important, but not overwhelming role for IL-10. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14. Function-blocking antibodies inhibit the effects of stem cell grafts on 

motoneuron survival and regeneration 

A. Retrogradely labelled (FB
+
) and surviving (ChAT

+
) motoneurons in AR animals. Note the very few 

reinnervating motoneurons. B. Results of retrograde labelling in ARG animals (3x10
5
 stem cells).  

Nearly all surviving (ChAT
+
) cells seem to be able to reinnervate the ventral root. C,D. Limited 

numbers of reinnervating cells can be seen in ARG animals treated with function-blocking antibodies, 

especially in the case of neutralization against all 5 factors. E. Diagram showing the numbers of 
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retrogradely labelled neurons in various experimental paradigms. Neutralization treatment against all 5 

factors resulted in as low numbers of retrogradely labelled neurons as in AR animals, while treatment 

with isotype-specific IgGs (ARG+IgG) did not yield significantly less motoneuron survival compared 

with ARG animals, n=5.  F. The percentage of surviving injured motoneurons is shown by the 

proportion of ChAT
+
 operated/intact motoneurons in animals with various experimental paradigms.  

As neutralization of IL-10 considerably reduces the number of surviving motoneurons, IL-10 appears 

to be a strong survival factor for injured motoneurons, n=5. G. Percentages of reinnervating (FB
+
) 

motoneurons in various groups (FB
+
/op. ChAT

+
 motoneurons).  Note the reinnervating ability of 

motoneurons in ARG animals and the moderate ability after neutralization with IL-10 antibody, n=5. 

*=significant difference between ARG and AR, ARG+IL-10 neutralization and ARG+5-factor 

neutralization groups (SEM, p<0.05).  **=significant difference between ARG+IL-10 neutralization 

and ARG+5-factor neutralization groups (S.E.M, p<0.05). The one-way ANOVA analysis with Tukey's 

post-hoc test was performed. Scale bar in A-D= 250 µm.  Data are presented as mean +/- S.E.M. 
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Discussion 

 

Alternative route providing morphological and functional restitution of hindlimb 

locomotion by regenerating spinal motoneurons 

In this study we have provided evidence, that grafted embryonic neuroectodermal stem cells 

are able to rescue the vast majority of damaged motoneurons otherwise destined to die. 

However, rescue of injured motoneurons by grafted stem cells was only successful if the stem 

cells were placed into the affected segment of the spinal cord or into the reimplanted ventral 

root of animals whose L4 ventral root was avulsed to bring about motoneuron death.  

Adult motoneurons survive if their axons are damaged far from the cell body, but most of 

them die if the axonal injury is inflicted close to their soma. This latter type of injury is 

manifested in case of human brachial plexus injuries, where one or more ventral roots suffer 

traumatic avulsion due to harsh physical forces (Carlstedt 2008). Ventral root avulsion injuries 

can successfully be modelled in experimental animals and several experimental approaches 

have been reported to rescue motoneurons with avulsed axons. These experimental strategies 

are of outstanding importance as the axons of the rescued motoneurons can be redirected to 

their peripheral targets and this way  improved reinnervation of denervated muscles can be 

achieved (Carlstedt and Cullheim 2000; Carlstedt 2008).  

Earlier studies have shown that stem or progenitor cells grafted into the spinal cord following 

avulsion and reimplantation of one or more spinal ventral roots are able to rescue damaged 

motoneurons (Hell et al., 2009; Su et al., 2009). Furthermore, it has also been shown that 

embryonic spinal cord grafts containing neural progenitors induce the survival of the injured 

motoneurons and also promote the growth of the regenerating motor axons into the 

reimplanted ventral root and then further along the peripheral nerves until motor fibres reach 

the skeletal muscles and produce functional reinnervation (Nógrádi and Szabó 2008; Nógrádi 

et al., 2011).  

Grafting NE-GFP-4C stem cells into the spinal cord or into the reimplanted ventral root 

resulted in equally good survival of injured motoneurons and functional reinnervation. It 

appears feasible that stem cells placed into the spinal cord are able to rescue motoneurons as 

they are very closely related to the injured motor pool of the affected segment and the 

paracrine mechanisms exerted by the graft have a direct effect on the damaged cord. On the 
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other hand, stem cells transplanted in the reimplanted ventral root are not in the direct vicinity 

of the motor pool. It can be argued, however, that the amount of molecules secreted by the 

grafted stem cells was able to reach the intraspinal axon segment and the cell body of the 

injured motoneurons. The immunhistochemical analysis of the location and differentiation of 

the intraradicularly grafted cells showed that large numbers of stem cells were present 5 and 

10 days after the injury in the reimplanted root, closely related to the spinal cord and 

regrowing axons that were already present in the root as 10 days after avulsion. It could be 

noted that the distance between the intraspinal grafts and the rostralmost part of the rescued 

L4 motoneuron pool is in fact not greater than that of an intraradicular graft and the rostral L4 

motoneurons. It is thought that the diffusible factors produced by the grafts may reach the 

furthermost parts of the L4 segment, no matter whether they are secreted by an intraspinal or 

by an intraradicular graft. It has been reported that motoneurons after avulsion injury are 

responding to rescuing strategies if the treatment starts within 10 days following avulsion 

(Nógrádi et al., 2007). Therefore it appears likely that appropriate numbers of stem cells 

located in the reimplanted ventral root were able to exert a motoneuron-rescuing effect similar 

to that found in the case of intraspinally grafted stem cells. Moreover, the stem cells did not 

migrate into the spinal cord within the first 10 days after grafting, thus their effect was exerted 

from their original location. It was a surprising finding, that stem cells grafted periradicularly 

(i.e. around the reimplanted root in a fibrin clot) induced as little reinnervation as 

spontaneously regenerating surviving L4 motoneurons in the control animals that did not 

receive stem cells. The immunhistochemical analysis of the location of periradicularly placed 

stem cells showed that the stem cells and their derivatives were always in the close vicinity of 

the ventral root and the L4 spinal segment but likely not close enough to the injured motor 

pool, therefore they could not exert a direct effect on the damaged motoneurons. This view is 

further strengthened by results of the mapping of the stem cell-derived astrocytes and neurons 

in the treated spinal cords 3 months after grafting. While few hundreds of stem cell-derived 

glia- and neuron-like cells were found in the L4 segment of animals that received intraspinal 

and intraradicular stem cell grafts, no such cells could be located in animals treated with 

periradicular grafts. These findings suggest that the NE-GFP-4C cells were not able to 

migrate into the spinal cord from a periradicular location and as a consequence they were not 

close enough to the injured spinal motoneurons in the critical period of the first 10 days after 



46 

 

 

 

avulsion.  

Transplantation of stem or neural progenitor cells (Hell et al. 2009, Su et al. 2009) producing 

neurotrophic factors or viral-based overexpression of BDNF or GDNF in the spinal cord or in 

the reimplanted ventral root (Blits et al., 2004, Eggers et al., 2008) induced prominent 

survival of damaged motoneurons with avulsed axons, but these rescued motoneurons were 

unable to send their axons into the reimplanted roots due to the enormous sprouting of 

regenerating axons. On the other hand, our recent experiments have shown that 

spatiotemporaly limited expression of these neurotrophic factors may induce a limited but still 

successful regeneration of motoneurons (Pajenda et al., 2014). 

 

Activation of astroglia and microglia following ventral root avulsion-reimplantation 

In our study we have shown that intraspinal neuroectodermal stem cell transplantation 

significantly decreased astroglia and microglia reaction within the affected L4 segment of 

ARG animals rostral and caudal from the injury site at 5 and 10 days after grafting compared 

with controls.  

It is known that astrocytes have a complex role after CNS injury. In the mature intact CNS 

they modulate the levels of the excitatory neurotransmitter glutamate, buffer excess potassium 

in the extracellular space, and regulate neuronal calcium levels (Anderson and Swanson 2000; 

Norenberg, 1979; Schousboe et al., 2004; rewieved in Walz 2000; Walz et al., 1984, Parpura 

et al., 1994). 

Astrocytes that are located at the site of injury become reactive and contribute to the glia scar 

that inhibits axon regeneration. However, they produce various factors that protect neurons 

and express various chemokines that can attract macrophages from the periphery to the site of 

injury (Strack et al., 2002).  

We found, that host astrocytes in the grafted cord produced IL-6, IL-10 and MIP-1-alpha. 

Expression of these three cytokines were uniform at postoperative days 5 and 10 after grafting 

even though the extent of astrogliosis was limited in grafted animals. A similar distribution 

pattern of these cytokines was observed in the control animals, whereas the astroglial density 

was increased. Although we assume that despite the similar protein expression pattern in the 

two groups the decreased astrocyte reaction in grafted animals may provide better 

environment to the motoneuron survival.  
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Following CNS injury microglia activation is characterized by a number of biochemical and 

functional changes (Cullheim and Thams, 2007). Thus, activated microglia can produce N-

methyl-d-aspartate (NMDA) receptor agonists, free oxygen radicals, nitric oxide, proteases 

and cytokines (Giulian et al., 1993; Chao et al., 1992; Moore and Thanos, 1996).  In the first 

10 days following avulsion injury limited microglia reaction could be detected in the L4 

segment in intraspinally grafted animals compared with controls. This observation suggests 

that a limited microglia reaction provides a better milieu for motoneuron survival. 

 

Immunomodulatory molecules produced by grafted neuroectodermal stem cells 

prevented motoneuron death following ventral root avulsion 

In this study the pro- and anti-inflammatory cytokines have been shown to prevent 

motoneuron death after ventral root avulsion.  

Recent findings form our and other laboratories suggest that the rescue of injured neurons 

within the CNS by a composition of anti- and pro-inflammatory cytokines may be due to a 

twofold mechanism: First, the glial reactions and glutamate toxicity in the host environment 

are significantly reduced, second, at least some of the cytokines, especially IL-10 are thought 

to exert a direct neuroprotective effect on the injured neurons themselves. 

Numerous studies have provided evidence that the anti-inflammatory cytokine, IL-10, would 

suppress mechanisms leading to cell death and decrease astroglia and microglia reactions 

(Bachis et al., 2001, Boyd et al., 2003). Administration of IL-10 after traumatic or excitotoxic 

spinal cord injury promoted the survival of injured neurons, improved recovery of motor 

function and reduced tissue damage (Bethea et al., 1999; Jackson et al., 2005). On the other 

hand, in an other study in vivo application of IL-10 did not enhance axon growth and motor 

recovery (Takami et al., 2002). Recently the anti-inflammatory cytokine IL-10 has been 

shown to induce a number of signaling cascades through IL-10 receptor leading to the 

activation of the p50/p65 NfκB-mediated antiapoptotic pathway in neurons (Zhou et al., 

2009a, 2099b). As an end result, increased levels of Bcl-2 and Bcl-xL and reduced 

cytochrome-C release and caspase activation were found and these changes are thought to 

contribute to the survival of injured motoneurons.   

Proinflammatory cytokines such as IL-1-alpha, IL-6, TNF-alpha rapidly produced in spinal 

cord. These cytokines have overlapping function in the CNS. Recent studies have provided 

http://www.sciencedirect.com/science/article/pii/S0165017307000550#NEU1169
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controversial date on the effect of these cytokines. They reportedly modulate glutamaterg 

transmission, synaptic plasticity or NMDA activation and contribute to the survival of injured 

neurons (Coogan et al., 1997; Li et al., 1997). Activation of NfκB, JAK-STAT and/or PI3K-

Akt pathways activate various signal transduction pathways in the cells resulting in protection 

against metabolic-excitotoxic insults, stabilize [Ca2+] homeostasis and increased expression 

of the calcium-binding protein calbindin. (Wang et al., 2009; Cheng et al., 1994)  

Mechanical injury and neuroinflammatory processes induce chemokine actions via the 

upregulated chemokine receptors. MIP-1-alpha can act via G-protein–coupled receptors and 

the control of cytokine profiles in the injured CNS (Rossi and Zlotnik, 2000; Mennicken et 

al., 1999). However the exact role of MIP-1-alpha in neuroprotective mechanisms remains to 

be elucidated in future studies.  

Functional blocking of IL-10 in our experiment has shown that blocking of IL-10 secreted by 

grafted cells resulted in similar motoneuron survival as in control group or 5-factor blocking 

group.  Although the number of surviving motoneurons in the IL-10 blocking group showed 

the same results as a control group but number of reinnervating motoneurons was signficantly 

greater than in 5-factor blocking group. These data suggested that IL-1-alpha, IL-6, TNF-

alpha and MIP-1-alpha have a major role in promoting regeneration than in inducing survival 

of injured motoneurons. 

These data strongly support the view that acute or sub-acute exposure of the highly vulnerable 

injured motoneuron pool to these pro-inflammatory cytokines is not deleterious, although 

longer expression patterns of these cytokines is already thought to induce toxic effects. The 

fact, that the grafted stem cells remain clustered at the site of grafting for 10 days and show 

only limited differentiation along with significant rates of cytokine expression levels suggest, 

that this short period of time of stem cell differentiation provides satisfactory neuroprotection 

for the injured motoneurons along with considerable depression of macrophage and astrocyte 

activation.  It is noteworthy that the stem cell grafts induced expression of some of the 

cytokines, including IL-10 in the host ventral horn, and this was likely to contribute to their 

neuroprotective effects. The rapid differentiation process and migration of stem cells appears 

to cease cytokine expression after this beneficial period of time. 

These data, in conjunction with our findings, strongly suggest that pro-inflammatory and anti-

inflammatory cytokines selectively secreted by grafted stem cells act in concert to save 
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motoneurons and to promote reinnervation of the target muscles. These results raise the 

opportunity to investigate whether local treatment of injured motoneurons with a well-defined 

set and dose of cytokines may bring about the similarly great extent of cell rescue and 

reinnervation as treatment with stem cells. 

 

 

Conclusions 

 

In conclusion, it can be stated that stem cells that are able to rescue the vast majority of 

injured motoneurons destined to die following transplantation into the injured spinal cord 

segment are also able to induce the same effect if they are grafted into the reimplanted ventral 

root, close to the axons of the injured motor pool. These results suggest that the diffusible 

factors that modulate the environment of injured motoneurons are able to reach the ventral 

horn from more remote positions provided they are located still within the boundaries of the 

spinal cord and related spinal roots. 

Furthermore, cytokines produced by grafted neuroectodermal stem cells are likely to rescue 

damaged motoneurons following ventral root avulsion injury via two distinct mechanisms. 

Moreover, grafted stem cells interact with the host environment and induce a pattern of 

cytokine expression by host neurons and astrocytes. It is suggested that the anti- and pro-

inflammatory cytokines have a strong modulatory function in the CNS that promote the 

prevention of neuronal cell death and induce regeneration. 
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