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SUMMARY OF THE THESIS 

 

Bisphosphonates (BISs) are widely used for the treatment of osteoporosis and tumors with 

bone metastasis to inhibit osteoclast activity and bone resorption. Although BIS treatment 

undoubtedly improves the quality of life, osteonecrosis is a rare, but serious adverse effect 

that occurs mainly after invasive dental procedures, e.g. tooth extraction, with an increased 

incidence particularly after the use of third-generation BISs (e.g. zoledronate, ZOL). BISs 

together with other antiresorptive and antiangiogenic drugs induce necrosis of the oral 

bones, usually referred to as medication-related osteonecrosis of the jaw (MRONJ), but 

bone destruction is also seen less frequently in other bones of the skeleton. We 

hypothesized that a disturbed mandibular microcirculation may play a role in the 

pathogenesis of MRONJ. In this context, we designed a rat model where chronic BIS 

treatment was combined with an invasive dental procedure and where the processes of 

mucosal healing and bone destruction resembled the clinical manifestations of MRONJ. 

ZOL was applied intravenously (in a dose of 80 µg/kg/week) over 8 weeks, the first two 

right mandibular molar teeth were extracted in the third week, and various systemic and 

local parameters of the inflammatory cascade were investigated 6 weeks after tooth 

extraction. The incidence and severity of the gingival lesions were determined on the basis 

of a new scoring system, while jaw osteonecrosis was diagnosed by means of computed 

micro tomography. We also developed a method by which the mandibular periosteum can 

be visualized relatively simply and highly reproducibly by means of different microscopy 

methods (fluorescence intravital microscopy, orthogonal spectral imaging and confocal 

laser scanning microscopy) in rats. Furthermore, we compared the effects of chronic ZOL 

administration on the mandibular and tibial periosteal microcirculatory reactions (with or 

without tooth extraction). Intravital fluorescence videomicroscopy revealed significantly 

increased leukocyte–endothelial interactions (leukocyte rolling and adhesion on the 

endothelial surface) in the mandibular periosteum, but not in the tibia. Only the leukocyte 

count and NADPH-oxidase activity of the leukocytes displayes significant reductions, the 

other systemic inflammatory parameters not being affected by ZOL. We conclude that 

chronic ZOL treatment causes a distinct microcirculatory inflammatory reaction in the 

mandibular periosteum, but not in the tibia. The local reaction in the absence of augmented 

systemic leukocyte inflammatory activity suggests that topically different, endothelium-

specific changes may play a critical role in the pathogenesis of MRONJ. 
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1. INTRODUCTION 

1.1. Inflammatory processes in the oral and maxillofacial region. The potential role 

of periosteal reactions 

The oral cavity is particularly prone to inflammatory complications (e.g. 

periodontitis or abscesses), as it can be sensitively exposed to the external environment in 

the immediate vicinity of the teeth. The propagation of various infection-related 

inflammatory reactions within the soft tissues (e.g. sinusitis, phlegmon or intracranial 

abscesses) is at least partially due to the rich blood supply of the oral and maxillofacial 

region, favoring the spread of these inflammatory processes. A special nutritive aspect of 

the jaw (i.e. it is predominantly supplied by the periosteal circulation) also predisposes to 

various pathological conditions of the bones, ranging from abscess formation to the more 

severe osteomyelitis and osteonecrosis [Scoletta M 2010]. The present thesis is based on 

the assumption that morphological and functional changes in the microcirculation in the 

periosteum play a decisive role in the pathogenesis of various mandibular pathologies. 

In general, the role of the periosteal integrity in bone physiology is well recognized, 

not only as it relates to the maintenance of the vascular supply, but also from the aspect of 

the active regulation of the bone metabolism and regeneration. It is similarly well known 

that successful healing after fractures requires the regeneration of the peri- and endosteal 

circulations [Macnab I 1974]. Likewise, periosteal damage leads to perturbed bone healing 

with consequent delayed union or pseudoarthrosis formation [Utvag SE 1998, Gustilo RB 

1990, Esterhai JL 1991]. With regard to the mandible, clinical observations show that 

defective angiogenesis of the mandibular mucoperiosteal tissues is evoked by long-term 

treatment with bisphosphonate (BIS), resulting in severe conditions such as osteonecrosis 

of the jaw [Wehrhan F 2011]. It follows that periosteal microvascular alterations can be of 

importance in the pathomechanism of oral diseases associated with a deterioration of tissue 

perfusion and with inflammatory complications.  

 

1.2. Special features of the jaw bones with respect to the blood and nerve supply 

and bone remodeling 

The continuous blood supply of the bones is necessary in order to ensure 

physiological bone remodeling, metabolism and regeneration, but differences are observed 

within the skeletal system. While the appendicular long bones receive their vascular supply 

from the nutritive arteries, the epiphyseal and metaphyseal vessels [Hooper 1987, Johnson 

EO 2004, Findlay DM 2007], the circulation of the maxillofacial bones, and especially the 
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lower jaw, is provided by the mucoperiosteal tissue through the inferior alveolar and 

sublingual arteries [Huelke DF 1965, Shannon J 2011]. This underlines the role of the 

periosteum in the bone remodeling and regeneration processes of the jawbones [Støre G 

1999, Elshahat A 2004]. The innervation pattern of the mandible also differs from that of 

appendicular long bones such as the tibia. The mandibular nerve, the third and inferior 

division of the trigeminal nerve, provides the innervation of the lower third of the 

maxillofacial region, containing both afferent and efferent fibers [Rodella LF 2012]. While 

networks of nerves spread across the surface of the mandible, the tibial periosteum displays 

a longitudinal orientation. Vasoactive intestinal polypeptide-positive nerve fibers also form 

small networks with individual fine varicose fibers in the mandibular periosteum, whereas 

larger networks are to be seen at the tibia. These fine fibers are associated with both 

vascular and nonvascular elements, suggesting specific functions in the mandibular 

periosteum [Hill EL 1991].  

The jaw region additionally possesses particular regeneration and remodeling 

characteristics. As opposed to long bone fractures, which heal mainly through 

endochondral ossification, intramembranous ossification has a higher impact in the 

mandible [Yu YY 2012]. In line with this, periosteum-derived stem cells, which play an 

important role in the bony regeneration processes, have been shown to possess the highest 

osteogenic potential in the mandible, while tibial periosteum or bone marrow stem cells are 

superior in terms of chondrogenesis [Park JB 2012]. Further, mandible bone marrow stem 

cells have been demonstrated to have a marked capacity to induce bone formation both in 

vitro and in vivo [Aghaloo TL 2010]. The fact that this phenomenon may be observed in 

vivo [Schmidt BL 2002, Ueno T 2002] indicates that the mandible possesses a particularly 

high degree of osteogenesis potential among the different anatomical locations [Solheim E 

1995]. It was recently shown that distinct differences in the expression pattern of bone 

development-related genes exist between mandibular and tibial osteoblasts [Reichert JC 

2013]. Systemic disorders such as osteoporosis have also been reported to influence bone 

remodeling differently in the mandible and the tibia, the mandible being significantly less 

affected in experimental osteoporosis [Yamashiro T 1998, Mavropoulos A 2007, Liu H 

2014]. Intense mechanical loading of the alveolar process during mastication may protect 

the alveolar bone from the osteoporosis-related bone loss observed at other skeletal sites 

[Mavropoulos A 2007].  

BISs also exert unique effects on the bones in the maxillofacial region. The regional 

BIS uptake reaches a higher concentration in the mandible in comparison with the 
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appendicular and other axial bones [Wen D 2011]. The receptor activator of nuclear factor 

κB (RANK)/receptor activator of nuclear factor κB ligand (RANKL)/osteoprotegerin axis, 

a signaling pathway that regulates osteoclast differentiation and activation, is also diversely 

affected by BIS, causing a decrease in RANKL values in the mandible and the opposite 

effect in the tibia [Çankaya M 2013]. Furthermore, BIS treatment exerts site differential 

effects during the early healing processes of tibial and mandibular fractures by delaying 

callus, cartilage and bone remodeling specifically in the mandible [Yu YY 2012]. The 

potential regional differences in microcirculatory reactions, however, are less well clarified. 

 

1.3. Microcirculatory inflammatory reactions 

 Acute inflammation is a complex biological response of the cells, tissues and organs 

to harmful stimuli, such as pathogens, damaged cells or irritants. Almost all of the cardinal 

symptoms (redness/rubor, swelling/tumor, increased heat/calor, pain/dolor, and loss of 

function/functio laesa) can be linked to changes in the microcirculation. Behind these 

symptoms, characteristic changes within the microcirculation can be evidenced such as (1) 

an impaired vasomotor function, (2) decreased capillary perfusion, (3) increased 

microvascular permeability, (4) activation of the coagulation cascade and enhanced 

thrombosis, and (5) the adherence of leukocytes and platelets.  

Tissue trauma or ischemia–reperfusion brings about a very complex antigen-

dependent or independent activation of the immune system. Briefly, infection, oxido-

reductive stress or tissue disintegration (usually caused by free radical-mediated injury) 

creates noxious signals which lead to the release of pro-inflammatory cytokines such as 

complements, tumor necrosis factor-alpha (TNF-alpha) and interleukin-1 (IL-1) and -6 (IL-

6) and also induce direct endothelial injury [Serrick C 1994, Kurose I 1997, Carden DL 

2000, Loukas M 2008]. In the initial phase, a local hyperemic reaction occurs as a result of 

the rapid release of vasoactive mediators (histamine, bradykinin, neuropeptides, 

prostaglandins and nitric oxide) produced by inflammatory cells (mast cells, macrophages, 

fibroblasts, parenchymal and endothelial cells) [Cooper D 2002]. These changes are also 

associated with an increase in microvascular permeability/edema formation promoted by 

various mediators (histamine, bradykinin, leukotrienes, platelet activating factor, substance 

P and the vascular endothelial growth factor (VEGF)), the activation of neutrophil 

leukocytes resulting in further tissue injury through the transmigration of 

polymorphonuclear leukocytes (PMN) [for a review, see Kvietys PR 2012].  
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A complex activation of the inflammatory cascade is initiated through the release of 

chemoattractants, leading to the activation of PMNs and promoting their accumulation 

within and around the injured tissue. These processes result in the enhanced expression of 

various adhesion molecules on the surface of leukocytes and endothelial cells, such as 

immunoglobin-like adhesion receptors (intercellular adhesion molecule-1, platelet 

endothelial cell adhesion molecule-1 and vascular cell adhesion molecule-1), integrins 

(CD11/CD18), and selectins (E-, P- and L-selectin) [Springer TA 1990, Eppihimer MJ 

1997]. This is followed by the adhesion of PMNs and platelets to the activated 

endothelium, with the resultant development of cell-to-cell interactions (rolling, sticking 

and migration of PMNs) [Wanner GA 1996, Loukas M 2008]. The PMNs produce further 

reactive oxygen species via NADPH-oxidase and myeloperoxidase and release the 

lysosomal enzymes elastase, collagenase and phospholipase, which promote tissue necrosis 

and apoptosis [Cooper D 2002]. The propagation of inflammatory processes toward remote 

organs is mediated by activated PMNs or the spreading of pro-inflammatory cytokines 

[Springer TA 1990, Eltzschig HK 2004, Tapuria N 2008].  

Free radicals, nitric oxide and PMNs have been shown to play a role in various oral 

inflammatory and neoplastic diseases [Battino M 1999, Scott DA 2012, Choudhari SK 

2013]. Furthermore, inflammatory processes play a part not only in oral pathologies, but 

also in bone healing [Thomas MV 2011]. An increased release of pro-inflammatory 

cytokines has been demonstrated in chronically BIS-treated patients [Sharma D 2013].  

 

1.4. Assessment of the periosteal microcirculatory reactions in intraoral and 

systemic diseases 

Studies of the microcirculation in the oral region attracted considerable attention 

when the predictive value of mucosal perfusion deficits was demonstrated in septic shock 

patients [Verdant CL 2009, Top AP 2011]. Another intraoral manifestation of a systemic 

menace was revealed during cardiac surgery [Bauer A 2007] and the intraoral 

microcirculation proved to correlate well with the gastrointestinal perfusion changes 

[Verdant CL 2009]. On the other hand, oral infection may also exert systemic effects as the 

blood-borne oral lipopolysaccharides and oral bacteria have been shown to provoke the 

release of the cytokines (e.g. IL-6 and TNF-alpha), which in turn brings about an acute 

phase response [Williams RC 2005]. The periosteal microcirculatory aspects of systemic 

and intraoral diseases, however, have been far less well clarified.  
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The vascular architecture of the intraoral region, including the periosteum, can be 

examined by imaging methods such as computer tomography (CT), magnetic resonance 

imaging and to some extent scintigraphy or histology [Berggren A 1982, Nobuto T 1989, 

Bhatt R 2000, Fayad LM 2005]. 

Nevertheless, these tools are not relevant when dynamic changes or functional 

aspects of the periosteal microcirculation are to be investigated. The methods utilized for 

examinations of the functional characteristics of the microcirculation, such as hemoglobin 

absorptiometry combined with laser-Doppler flowmetry, may provide information on tissue 

oxygenation and perfusion, but in this case the tissue mass is rather robust, e.g. the gingival 

[Milstein DM 2013]. If more accurate detection or improved spatial resolution of the 

microcirculation is needed, fluorescence intravital microscopy (IVM) can provide an 

opportunity for real-time examination of the microcirculation of superficial layers of 

different organs. Conventional fluorescence IVM has many advantages. It can visualize not 

only changes in the efficacy of microvascular perfusion, but also leukocyte–endothelial 

interactions (such as rolling and adhesion), metabolic variables or signs of apoptosis [Horie 

Y 1996, Abshagen K 2006].  

 For observation of the microcirculation of superficial tissue layers, nonfluorescence 

techniques such as orthogonal polarization spectral imaging (OPS) [Groner W 1999] and 

sidestream dark-field imaging have also been developed [Milstein DM 2010]. These 

methods have the advantage that the use of fluorescence markers is not necessary and this 

allows the possibility of human applications in the oral cavity [Milstein DM 2010, De 

Backer D 2013]. Observation of the periosteal compartment would still necessitate surgical 

exposure, but the imaging of individual vessels and cells is possible without disturbing their 

functional characteristics.  

 The calvarian periosteum can be visualized in experimental settings [Stuehmer C 

2009], but examination of the microcirculation of the jaw bones runs into many technical 

difficulties. We earlier developed methods suitable for visualization of the tibial periosteum 

and the synovial membrane in the knee joint in rats [Varga R 2008, Hartmann P 2012], but 

such approaches were not available for the exposure and in vivo investigation of the 

mandibular periosteum. We therefore considered it important to address this issue, in part 

to solve the technical problems and in part because the physiology or the 

pathophysiological reactions of the jaw may differ from those in other bones of the 

skeleton. Specifically, BISs have been demonstrated to cause osteonecrosis in the jaw after 

invasive dental procedures, but such reactions do not occur in the bones of the appendicular 
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skeleton [Stadelmann VA 2008, Blazsek J 2009]. This observation suggests that potentially 

different microcirculatory reactions may evolve in the periosteum at different anatomical 

locations. For this reason, in Study 1 we set out to compare the microcirculatory 

characteristics of the mandibular and the tibial periosteum through the use of a 

microsurgical approach and microscopic methods that are suitable for the in vivo 

visualization of individual microvessels.  

 

1.5. Medication-related osteonecrosis of the jaw (MRONJ) 

1.5.1. Pharmacology of BISs 

BISs are widely used for the treatment of rheumatologic and oncological diseases 

with bone metastasis and are commonly administered in osteolytic conditions (e.g. Paget’s 

disease and myeloma multiplex) [Ruggiero SL 2014].  

BISs are pyrophosphate analogs in which oxygen is replaced by a carbon atom, 

resulting in a backbone P-C-P which is stable against enzymes with hydrolytic activity. 

Although BISs have a similar core structure, they also contain two side-chains or groups, 

R1 and R2, attached to the central carbon atom. All the recently developed BISs contain a 

hydroxy side-group at position R1, increasing their binding to bone. Differences in the 

physicochemical and biological properties of BISs are due to the differences in the R2 side-

group, where the presence of nitrogen and its orientation within the R2 side-chain can 

influence their overall potency [Luckman SP 1998, Rodan GA 1998, Mönkkönen H 2006, 

Ebetino FH 2011, Rogers MJ 2011]. 

 The BISs are generally classified as first- (e.g. etidronate, clodronate), second- (e.g. 

alendronate and pamidronate) or third-generation (e.g. zoledronate (ZOL), olpadronate and 

neridronate) compounds. The taxonomy of BISs based on their chemical structure, such as 

their nitrogen content, is clinically more relevant as more severe side-effects (i.e. 

osteonecrosis) have been attributed to BISs containing nitrogen [Marx RE 2003, Ruggiero 

SL 2014]. The main therapeutic effect of BISs is linked to the inhibition of the activity and 

apoptosis induction of osteoclasts altering the bone metabolism (Figure 1) [Rodan GA 

1998, Brozoski MA 2012]. This leads to the inhibition of bone resorption and a reduction 

of bone turnover [Borozoski MA 2012], but the mechanism of action shows differences as 

a function of the nitrogen content. Non-nitrogen-containing BISs (etidronate and 

clodronate) are intracellularly incorporated, their accumulation leading to osteoclast 

apoptosis by inhibiting ATP-dependent enzymes [Rodan GA 1998, Rogers MJ 2011]. The 

more potent nitrogen-containing BISs (alendronate, ZOL and pamidronate) inhibit farnesyl 
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diphosphate synthase, which is responsible for an enzymatic process during the mevalonate 

pathway (cholesterol synthesis), inducing apoptosis and decreasing the functional activity 

of osteoclasts [Luckman SP 1998, Rodan GA 1998, Mönkkönen H 2006, Ebetino FH 2011, 

Rogers MJ 2011]. 

 Depending on the therapeutic indication and the severity of the skeletal disorders, 

these drugs can be administered orally or intravenously (i.v.) in different doses and 

frequencies. However the biological utilization during gastrointestinal absorption is not 

appropriate (~ 1%), while 60% of i.v. administered BISs can bind to the bone surface [Ezra 

A 2000]. Owing to their long half-life (~ 10 years), the effects of BISs on bone remodeling 

can be evidenced for several years [Brozoski MA 2012].  

 Antiangiogenic effects of BISs are also known. This feature is particularly favorable 

in oncological cases, where this adjuvant treatment reduces tumor invasion and the 

progression of bone metastases. Antiangiogenic effects of BISs brought about by the 

modification of VEGF or VEGF receptor expressions or by other factors have been 

observed in both in vitro [Wood J 2002, Ziebart T 2013] and in vivo studies [Fournier P 

2002, Bigi MM 2010, Guevarra CS 2013, Smidt-Hansen T 2013, Ohba T 2014, Pabst AM 

2014]. BISs can inhibit the migration of different cell types, influencing regeneration [Koch 

FP 2011, Ziebart T 2013, Hagelauer N, 2014, Ohba T 2014], and also modulate 

immunological processes [Fujimura T 2013, Sasaki O 2013, Kalyan S 2014].  

 

 

Figure 1.  The effects of BIS [based on Holen I 2010] 
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1.5.2. Side-effects of BISs. Osteonecrosis of the jaw 

 Treatment with BISs induces various side-effects with relatively high incidence. 

These include influenza-like symptoms after the first BIS administration, but mucosal 

irritation, hypocalcemia, cardiac conduction disturbances and an impaired renal function 

have also been reported [Bunyaratavej N 2009, Han GY 2009, Rossini M 2013]. 

 Although BIS treatment undoubtedly improves the quality of life of the patients 

[Endo N 2012, Kerschan-Schindl K 2012, Wilson S 2012], osteonecrosis is a serious 

adverse effect in a number of cases [Kühl S 2012, Yamashita J 2012]. BIS-related 

osteonecrosis of the jaw was first reported in 2003 [Marx RE 2003], but it was later proven 

that other antiresorptive (e.g. denosumab) [Aghaloo TL 2010, Niibe K 2014, O'Halloran M 

2014, Vyas S 2014] and antiangiogenic (e.g. bevacizumab or sunitinib) drugs [Serra E 

2009, Van Poznak C 2010, Koch FP 2011] also bring about MRONJ [Ruggiero SL 2014]. 

This occurs mainly after invasive dental procedures, e.g. tooth extraction or a periodontal 

disorder [Kang B 2013, Ruggiero SL 2014], with an increased incidence particularly after 

the use of third-generation BISs (e.g. ZOL) [Drozdzowska B 2011, Brozoski MA 2012]. 

MRONJ occurs predominantly in molar and premolar regions in the mandible [Ruggiero 

SL 2009, Otto S 2012].  

The most recently position paper published by the American Association of Oral 

and Maxillofacial Surgeons specifies that MRONJ can be divided into the following stages 

with (a)typical symptoms (Table 1) [Ruggiero SL 2014]: 

 

Stages 
Common complaints 

of the patient 
Clinical manifestations Radiological findings 

Patients 

at risk 

no apparent necrotic bone in asymptomatic patients treated orally or i.v. with 

an antiresorptive or antiangiogenic drug 

0 atypical symptoms 

(odontalgia, dull, 

aching bone pain, 

sinus pain) 

no necrotic bone, 

loosening of teeth, 

periapical/periodontal 

fistula without pulpal 

necrosis  

alveolar bone loss, 

changes in trabecular 

pattern, osteosclerosis, 

periodontal ligament 

thickening (Figure 2A) 

1 no symptoms exposed and necrotic 

bone, or fistula without 

signs of infection 

see above  

2 pain see above + infection  see above 

3 pain see above + osteolysis  

(Figure 2B) 

see above 

Table 1. Stages of MRONJ [Ruggiero SL 2014]. 
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A         B 

 
 
Figure 2. Radiological manifestation of the osteonecrosis on the right side of the mandible in a BIS-

treated patient (A). Clinical manifestation of bilateral, extended osteonecrosis of the maxilla in 

another BIS-treated patient (B). 

 

 Many theories and risk factors have been taken into account during examinations of 

the pathogenesis of MRONJ [Mehrotra B 2006]. The epidemiological data on MRONJ are 

often not comparable because of its multifactorial etiology [Yamashita J 2010]; insomuch 

as it can be influenced by the administered drug (orally or i.v., non-/nitrogen-containing 

BIS), the duration of the therapy, the indication of BIS administration (osteoporosis, 

oncological reason or other), co-morbidities, the concomitant use of other drugs 

(corticosteroids or chemotherapeutic drugs), poor oral hygiene, genetic factors (CYP2C8) 

[Sarasquete ME 2009], age, an invasive dental procedure and other conditions 

[Drozdzowska B 2011, Brozoski MA 2012, Ruggiero SL 2014]. Local contamination and 

infection evoked by invasive dental procedures in the presence of BIS treatment have also 

been emphasized in the development of MRONJ [Mawardi H 2011, Wei X 2012], since 

BISs can take part in the development of biofilm formation [Sedghizadeh PP 2008, Kumar 

SK 2010]. Osteonecrosis, however, can develop several years later, which may be 

explained by the long half-lives of these medications [Brozoski MA 2012] and not by the 

acute infectious induction. Moreover, BIS treatment has been shown to cause sterile 

inflammatory reactions such as aseptic peritonitis [Calligeros D 1993, Norton JT 2011] and 

an enhancement of leukocyte–endothelial cell interactions in the knee joint [Zysk SP 2003]. 

These effects may be linked to an upregulation of pro-inflammatory cytokines such as IL-1 

and TNF-alpha [Zysk SP 2003, Norton JT 2011, Anastasilakis AD 2012] in response to 

BIS administration. The effects of BIS also show spatial differences, because certain 

inflammatory reactions were confined to the mandible, but were not present in the femur 

[Senel FC 2010]. In another model, the stability of femoral implants was even enhanced 

after BIS treatment [Stadelmann VA 2008]. Nevertheless, the exact pathomechanism of 
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MRONJ has not yet been clarified, and the possibilities of its prevention or the use of 

curative modalities are also limited. 

Tooth extraction is normally accompanied by tissue ischemia, which initiates a 

cascade of inflammatory reactions promoting the expression of different hypoxia-induced 

angiogenic substances [Sharma D 2013]. Among these factors, a considerable contribution 

of VEGF in the pathogenesis of MRONJ can be presumed. Specifically, antibodies against 

VEGF alone induce osteonecrosis of the mandible [Pakosch D 2012] and bevacizumab 

increases the incidence of MRONJ [Aragon-Ching JB 2009]. The predictive value of 

plasma VEGF levels regarding the risk of MRONJ has also been assumed [Vincenzi B 

2012]. Further, BIS treatment has been shown to downregulate the expression of 

angiogenic factors, with the simultaneous upregulation of inflammatory cytokines [Mozzati 

M 2012]. This is supported by the fact that BIS treatment combined with an anti-

angiogenic drug (bevacizumab) can also increase the prevalence of MRONJ [Aragon-

Ching JB 2009].  

 The periosteal perfusion significantly influences bone healing and determines the 

prognosis of adjacent soft tissue traumas as well [Schaser KD 2003]. However, little is 

known about the microcirculatory effects of BIS, and especially the microcirculation of the 

mandible. Likewise, no data are available to date on the periosteal changes after invasive 

dental procedures involving BIS treatment. In Study 2, we hypothesized that a disturbed 

mandibular microcirculation may play a role in the pathogenesis of MRONJ. 

  

2. MAIN GOALS 

 

The main goals of the present studies were: 

1. To develop a novel microsurgical procedure for the in vivo visualization of the 

mandibular periosteal microcirculation through the use of different microscopy 

methods (fluorescence IVM, OPS and confocal laser scanning microscopy (CLSM)) 

in rats. 

2. To examine the systemic and local mandibular periosteal inflammatory 

microcirculatory reactions in comparison with those in the tibia in a clinically 

relevant model of BIS-induced MRONJ in rats. 
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3. MATERIALS AND METHODS 

 

All chemicals were purchased from Sigma Aldrich (St. Louis, MO, USA) unless indicated 

otherwise. The study was performed in accordance with the Guidelines laid down by the 

National Institutes of Health (NIH) in the USA regarding the care and use of animals for 

experimental procedures, and with the 2010/63/EU Directive and was approved by the 

Animal Welfare Committee of the University of Szeged (V/1639/2013). 

 

3.1. Microsurgical exposure of the mandibular and tibial periosteum for in vivo 

microscopic examinations 

 Sprague-Dawley rats (their average weight at the time of the experiment was 320 ± 

10 g) were anesthetized intraperitoneally (i.p.) with an initial dose of sodium pentobarbital 

(45 mg/kg). After cannulation of the trachea, the penile vein was cannulated to administer 

fluids and drugs (supplementary dose of sodium pentobarbital: 5 mg/kg). During 

preparation and microcirculatory investigations, the rats were placed in a supine position on 

a heating pad to maintain the body temperature at 36-37 °C. 

For in vivo examination of the mandibular periosteum, the fur of the animals in the 

mandibular region was shaved, and a lateral incision parallel to the incisor tooth was made 

in the facial skin and the underlying subcutaneous tissue, using a careful microsurgical 

approach under an operating microscope (6x magnification; Carl Zeiss GmbH, Jena, 

Germany). The masseter muscle consists of superficial and deep parts, the latter being 

further divided into anterior and posterior sections in rats [Cox PG 2011]. The fascia 

between the anterior part of the deep masseter and the anterior superficial masseter was cut 

with microscissors (Figure 3A). By this means, the periosteal membrane covering the 

corpus of the mandible laterally to the incisor tooth was reached and it was gently separated 

from the covering thin connective tissue (Figure 3B). Stitches with 7.0 monofilament 

polypropylene microsurgical thread were placed into the surrounding masseter muscles for 

retraction and better exposure of the region of interest. We applied this surgical approach 

on both sides of the lower jaw. With this preparation technique, the periosteal 

microcirculation of the mandible could be examined by in vivo microscopic methods at the 

anterior margin of the molar region. 

 The medial/anterior surface of the tibia was exposed by complete transection of the 

anterior gracilis muscle with microscissors, and careful atraumatic microsurgical removal 

of the connective tissue covering the tibial periosteum (Figure 3C,D) [Varga R 2008].  
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3.2. Experimental protocols 

3.2.1. Protocol for in vivo examination of the microcirculatory characteristics of the 

mandibular periosteum using different microscopic approaches in rats 

 In Study 1, 10 male Sprague-Dawley rats were used. After the surgical procedures 

and exposure of the mandibular and tibial periosteum on both sides, recordings were 

performed on the right side with OPS, which does not require any fluorescence labeling. 

After this, the animals received i.v. injections of fluorescein isothiocyanate (FITC)-labeled 

erythrocytes (0.2 mL; Sigma Aldrich) (Figure 5A,B) [Ruh J 1998] and rhodamine-6G 

(0.2%, 0.1 mL; Sigma Aldrich) for the staining of leukocytes (Figure 3C,D), and IVM 

recording was performed at the previous locations. Subsequently, 50 µL of the nuclear dye 

acriflavin (1 mM) was applied topically to the tibial periosteal surface on the left side, and 

rinsed off with warm physiological saline solution after an exposure time of 1 min, and 

CLSM recording was then performed (Figure 6B). The same staining procedure was 

carried out for the mandible on the left side (Figure 6A). This was followed by an i.v. 

injection of the plasma dye FITC-dextran 150 kDa (0.3 mL, 20 mg/mL solution dissolved 

in saline; Sigma Aldrich), and CLSM (Figure 6C,D) and IVM recordings (Figure 5E,F) 

were made on the tibia and the mandible on the right side 5 min after the injection of the 

tracer. 

 The exposed periosteum of the corpus of the mandible or the tibial periosteum on 

the right side was positioned horizontally on an adjustable stage and superfused with 37 °C 

saline. The periosteal membranes were first visualized with an OPS device (Cytoscan™, 

Cytometrics, PA, USA), which provides optimal imaging of the microvascular structures at 

a chosen focus level (penetration depth: approx. 200 µm [Groner W 1999]) (Figure 4A,B). 

This technique utilizes epi-illumination with linearly polarized light at 548 nm (which is 

the isobestic point of oxy- and deoxyhemoglobin) to visualize hemoglobin-containing 

structures without the additional use of a fluorochrome. Images were recorded on a SVHS 

video recorder (Panasonic AG-MD 830; Matsushita Electric Industrial Co., Tokyo, Japan) 

and a personal computer. 

Confocal imaging of the surface of the mandibular and tibial periosteum was 

performed with a Five1 Optiscan device (Optiscan Pty. Ltd., Melbourne, Victoria, 

Australia) (Figure 6). In vivo histology was employed by placing the Optiscan probe on the 

surface of the periosteal membranes and by changing the focus level through virtual 

sections of 7 µm during the confocal imaging (penetration depth: 0-250 µm). Cell nuclei 

were first stained with topically applied acriflavin (see above) on the left side, and this was 
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followed by recordings on the contralateral side after i.v. injection of the intravascular 

tracer FITC-dextran (see above). Images were stored on a personal computer provided by 

the manufacturer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Exposure of the mandibular and tibial periosteum for in vivo microscopic examinations. 

Access to the mandibular periosteum was achieved by making a lateral incision parallel to the 

incisor tooth in the facial skin and the underlying subcutaneous tissue, which was followed by 

gentle separation of the fascia between the anterior part of the deep masseter (dm) and the anterior 

superficial masseter (asm) muscles (A, B). Finally, the thin connective tissue covering the 

periosteum was gently incised with microscissors. By this means, the periosteal membrane covering 

the corpus of the mandible laterally to the incisor tooth was reached. The tibial periosteum was 

reached by transecting the anterior gracilis (ag) muscle completely in the middle (and a part of the 

posterior gracilis muscle (pg) too) and gently removing the thin connective tissue covering the 

periosteum (C, D). The bar denotes 2,500 µm. 

 

3.2.2. Protocol for the induction of BIS-induced osteonecrosis and examination of its 

periosteal microcirculatory consequences in rats 

 In Study 2, 20 male Sprague-Dawley rats were randomly allocated to saline vehicle-

treated control (n=10), or i.v. ZOL-treated (n=10, ZOL) groups. ZOL (Zometa®; Novartis 

Europharm, Budapest, Hungary) was administered through a tail vein in a dose of 80 μg/kg 
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once a week for 8 weeks. At the end of the 3rd week of the protocol, the first and second 

molar teeth on the right side were extracted from the mandible under ketamine and xylazine 

(i.p. 25 and 75 mg/kg, respectively) anesthesia. The teeth were luxated with an 18G needle 

and the extraction was performed with extraction forceps. The roots were also removed 

with a dental drill under a Zeiss operating microscope (6x magnification, Carl Zeiss GmbH, 

Jena, Germany). By these means, the defect was equal in size and severity in all rats. For 

pain relief, intramuscular ketoprofen (Ketodex Forte, Berlin-Chemie AG, Berlin, Germany; 

5 mg/kg) and oral metamizole sodium (Algopyrin, Sanofi-Aventis, Budapest, Hungary; 75 

mg/kg) were administered for 3 days. Mucosal healing processes were monitored 

continuously throughout the experimental period. Through fluorescence IVM, the 

microcirculatory variables were compared in the mandibular and tibial periosteum in the 

9th week of the protocol. FITC-labeled erythrocytes (0.2 mL i.v.) were used to stain red 

blood cells, and rhodamine-6G (0.2%, 0.1 mL i.v.) to stain leukocytes. Leukocyte 

function/activation and inflammation were examined by assessing the NADPH-oxidase 

activity of neutrophil leukocytes, whole blood free radical production, the expression of 

CD11b adhesion molecule on neutrophil leukocytes and the plasma TNF-alpha content. 

The incidence and severity of mucosal lesions were also assessed. Mandibular 

osteonecrosis was evidenced by computed microCT analysis and standard histology (see 

later). 

 

3.3. Methods for the visualization of the mandibular and tibial periosteal 

microcirculation 

3.3.1. OPS technique 

In Study 1, the periosteal membranes were first visualized with an OPS device 

(Cytoscan™, Cytometrics, Philadelphia, PA, USA), which provides optimal imaging of the 

microvascular structures at a chosen focus level (penetration depth: approx. 200 m; 

[Groner W 1999]) (Figure 4 A,B). This technique utilizes epi-illumination with linearly 

polarized light at 548 nm (which is the isobestic point of oxy- and deoxyhemoglobin) to 

visualize hemoglobin-containing structures without the additional use of a fluorochrome. 

Images were recorded on a SVHS video recorder (Panasonic AG-MD 830; Matsushita 

Electric Industrial Co., Tokyo, Japan) and a personal computer. 



21 

 

 

 

Figure 4. Micrographs showing the mandibular (A) and tibial (B) periosteum, made with the OPS 

imaging technique. The bar denotes 200 µm. 

 
3.3.2. Fluorescence IVM 

In both studies, the periosteal microcirculation was visualized by IVM (penetration depth: 

approx. 250 m; Zeiss Axiotech Vario 100HD microscope; 100-W HBO mercury lamp; 

Acroplan 20 x / 0.5 N.A. W, Carl Zeiss GmbH, Jena, Germany). Images from 3 or 4 fields 

of the mandibular and the tibial periosteum (Figure 5) were recorded with a charge-coupled 

device video camera (Teli CS8320Bi, Toshiba Teli Corporation, Osaka, Japan) attached to 

an S-VHS video-recorder (Panasonic AG-MD 830; Matsushita Electric Industrial Co., 

Tokyo, Japan) and a personal computer (see the labeling techniques above). 
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Figure 5. Fluorescence IVM images of the mandibular (A, C, E) and the tibial (B, D, F) periosteum, 

involving FITC-labeled erythrocytes (A, B), rhodamine 6G-labeled neutrophil leukocytes (C, D) 

and FITC-dextran-labeled plasma (E, F). The bar denotes 200 µm. 

 
3.3.3. Fluorescence CLSM 

In Study 1, confocal imaging of the surface of the mandibular and tibial periosteum was 

performed with a Five1 Optiscan device (Optiscan Pty. Ltd., Melbourne, Victoria, 

Australia) (Figure 6). In vivo histology was employed by placing the Optiscan probe on the 

surface of the periosteal membranes and by changing the focus level through virtual 

sections of 7 m during the confocal imaging (penetration depth: 0-250 m). Cell nuclei 

were first stained with topically applied acriflavin (see above) on the left side, and this was 

followed by recordings on the contralateral side after i.v. injection of the intravascular 

tracer FITC-dextran (see above). Images were stored on a personal computer provided by 

the manufacturer.  
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Figure 6. CLSM images of the mandibular (A, C) and tibial (B, D) periosteum. Cell nuclei were 

labeled by the topical application of acriflavin (left side) (A, B).  Images were also taken at both 

structures on the right sides after the i.v. injection of FITC-dextran (C, D). The bar denotes 200 µm. 

 

3.3.4. Video analysis 

Quantitative evaluation of the microcirculatory parameters was performed off-line by 

frame-to-frame analysis of the videotaped images taken for IVM and OPS (IVM Software; 

Pictron Ltd, Budapest, Hungary). Leukocyteendothelial cell interactions were analyzed in 

at least in 4 postcapillary venules per rat. Rolling leukocytes were defined as cells moving 

with a velocity less than 40% of that of the erythrocytes in the centerline of the microvessel 

and passing through the observed vessel segment within 30 s, and are given as the number 

of cells per second per vessel circumference. Adherent leukocytes were defined as cells that 

did not move or detach from the endothelial lining within an observation period of 30 s and 

are given as the number of cells per mm2 of endothelial surface, calculated from the 

diameter and length of the vessel segment. Red blood cell velocity (RBCV, µm/s) was 

determined by frame-to-frame analysis of 5-6 consecutive video-captured images taken 

after labeling of the erythrocytes (see above). 
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3.4. Measurement of systemic inflammatory parameters 

3.4.1. Leukocyte count 

1.5 mL of blood was collected from the penile vein in a tube with EDTA and was held on 

ice. 100 µL was mixed with Turks solution (0.2 mg gentian violet in 1 mL of glacial acetic 

acid, 6.25% v/v) in 1:20 dilution. Leukocytes were determined as monomorphonuclear 

cells and PMNs in a hematocytometer. 

 

3.4.2. Flow cytometric analysis of CD11b expression changes 

The surface expression of CD11b on the peripheral blood granulocytes was determined by 

flow cytometric analysis as detailed elsewhere [Szabó A 2011]. One-hundred μL of whole 

blood was incubated with 20 μL of FITC-conjugated mouse anti-rat CD11b monoclonal 

antibody (BD Pharmingen, San Jose, CA, USA) for 20 min. Negative controls were 

obtained by omitting the antibody. The cells were then washed twice in Hanks buffer and 

centrifuged at 13,500 rpm for 5 min and the pellet was resuspended. The erythrocytes were 

lyzed with a Lysing kit (Biodesign, Saco, ME, USA), after which the cells were washed 

twice again (6,000 rpm, 5 min) and resuspended in 750 μL of Hanks buffer. Computer-

assisted FACStar Plus Becton-Dickinson equipment was used for cytometry; the 

granulocytes were gated on the basis of their characteristic forward and side-scatter 

features. Generally, 10,000 events per sample were collected and recorded; the percentage 

of labeled (activated) granulocytes (relative to the overall marker-bearing cells) and the 

mean fluorescence intensity (average marker density) were calculated [Szabó A 2011] 

 

3.4.3. Leukocyte NADPH-oxidase activity 

The NADPH-oxidase activity of isolated leukocytes was determined by a modified 

chemiluminometric procedure [Bencsik P 2010]. Blood was drawn from the femoral artery 

into EDTA-containing tubes, and the erythrocytes in 100 µL of whole blood were lyzed in 

a hypotonic solution and centrifuged at 2,000 g. The pellet was resuspended and washed 

twice in Dulbecco’s phosphate-buffered saline solution. Twenty µL of resuspended pellet 

was incubated for 3 min at 37 °C in a Dulbecco’s solution containing lucigenin (1 mM), 

EGTA (1 mM) and saccharose (140 mM). NADPH-oxidase activity was determined via the 

NADPH-dependent increase in luminescence elicited by adding 100 mM NADPH (in 20 

µL) with an FB12 Single Tube Luminometer (Berthold Detection Systems GmbH, Bad 

Wildbad, Germany). Samples incubated in the presence of nitroblue tetrazolium served as 
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controls. The measurements were performed in triplicates and were normalized for protein 

content. 

 

3.4.4. Free radical-producing capacity of the blood 

10 µL of blood dissolved in Hanks buffer was incubated for 20 min at 37 °C in lucigenin (5 

mM; dissolved in Hanks buffer) or luminol (15 mM; dissolved in Hanks buffer) solutions 

in the presence or absence of zymozan (190 µM, dissolved in Hanks buffer). Superoxide 

and hydrogen peroxide productions were estimated via the rate of zymozan-induced 

increase in chemiluminescence (measured with the above luminometer) and normalized for 

leukocyte counts in the peripheral blood. 

 

3.4.5. Plasma TNF-alpha levels 

Blood samples were centrifuged at 13,500 rpm for 5 min at 4 °C and then stored at -70 °C 

until assay. Plasma TNF-alpha concentration were determined in duplicate by means of a 

commercially available enzyme-linked immunosorbent assay kit (R&D Systems, 

Minneapolis, MN, USA). 

 

3.5. Assessment of morphological changes 

3.5.1. Detection of gingival healing processes 

Healing of the gingiva at the end of the study period (6 weeks after the tooth extraction) 

was determined on the basis of the osteonecrosis staging system provided by the American 

Association of Oral and Maxillofacial Surgeons [Ruggiero SL 2014]; this was adapted for 

rats (see Table 2). The examination was performed under an operating microscope (6x 

magnification; Carl Zeiss GmbH, Jena, Germany) by an independent maxillofacial surgeon. 

The incidence and the severity of the gingival healing disorder were evaluated 

simultaneously. 

 

Score Exposed bone Inflammation/infection Fistula formation 

Score 0 - - - 

Score 1 + - - 

Score 2 + + - 

Score 3 + + + 
 

Table 2. Scoring of macroscopic signs of the BIS-related healing processes after tooth extraction 

(adopted from the staging of MRONJ by Ruggiero et al. [Ruggiero SL 2014]) 
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3.5.2. Detection of osteonecrosis through the use of microCT 

Mandibles fixed with formaldehyde were used for micro-CT imaging (SCANCO vivaCT 

75, Scanco Medical, Brüttisellen, Switzerland); subsequent analysis was performed on 2D 

sections in the coronal view of the images, the section being chosen that showed the highest 

degree of tissue defect at the earlier extraction site. The mean density of the bone was 

estimated via the calculated percentage of the radiolucent area of the alveolar portion of the 

bone. 

 

3.5.3. Detection of osteonecrosis through the use of histological analysis 

The specimens were fixed in 6% neutral buffered formalin for 10 days, then rinsed in 

phosphate-buffered saline and decalcified in 5% EDTA for 7 days. The decalcified 

specimens were embedded in paraffin and cut into 20 semi-serial sections with a 

microtome (Shandon Finesse 325, Thermo Scientific, Waltham, MA, USA), and routine 

hematoxylin and eosin (H&E) staining was performed. The sections were examined under 

a light microscope at 4-40x magnification (Modell CHT, Olympos, Hamburg, Germany). 

The incidence of osteonecrosis of the jaw was determined on the basis of characteristic 

signs of necrosis, such as missing nuclear staining, the development of sequester formation 

and inflammatory infiltration. 

 

3.6. Statistical analyses 

The statistical analyses were performed with a statistical software package (SigmaStat for 

Windows, Jandel Scientific, Erkrath, Germany). For the analysis of microcirculatory 

parameters, changes in variables within and between groups (with respect to location and 

treatment, separately) were analyzed by the two-way analysis of varience (ANOVA) test, 

followed by the Holm–Sidak test. Differences between groups (other inflammatory 

parameters, and scores) were analyzed with Student’s t-test. Data are presented as mean 

values and SEM in all Figures and Tables. P values < 0.05 were considered significant. 
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4. RESULTS 

 

4.1. Morphological and functional characteristics of the mandibular and tibial 

periosteal microcirculation 

 With the reported preparation technique, the anterior surface of the tibial periosteum 

provides a larger observation field (ranging between 8.89 and 9.88 mm2) (Figure 3D) than 

that of the exposed mandibular region (ranging between 8.03 and 9.18 mm2) (Figure 3B). 

Furthermore, the entire exposed tibial periosteal surface can be examined by the different in 

vivo microscopic methods, whereas only approximately one third of the mandibular 

periosteum (i.e. its anterior part) can easily be reached by the relatively robust objectives. 

The vascular density reached 0.0182±0.0011/µm in the case of the tibia, and was 

0.0193±0.0008/µm in the mandibular periosteum. The arterioles, capillaries and venules 

can be distinguished on the basis of the vessel diameters and the direction of flow of the 

moving elements (plasma or red blood cells) within them. Within the mandibular 

periosteum, the vascular network consisted mainly of arterioles and venules, but a few 

capillaries and mostly venules were present in the tibial periosteum (as depicted in Figures 

4-6). 

IVM demonstrated that the RBCV values were similar in the two capillary beds 

(827.5±30.1 µm/s in the mandibular and 739.0±37.7 µm/s in the tibial periosteum) (Table 

3). The OPS technique revealed similar RBCV values (data not shown). The IVM data did 

not indicate any significant differences in the magnitude of the leukocyte-endothelial cell 

interactions between the two locations (Table 3). 

 

Periosteum RBCV Rolling Sticking 

Mandible 827.5 ± 30.1 46.6 ± 5.8 13.4 ± 4.4 

Tibia 739.0 ± 37.7 56.9 ± 11.5 18.5 ± 3.9 

 

Table 3. Microcirculatory parameters: RBCV (µm/s) in the capillaries, and PMN rolling (1/mm/s) 

and sticking (1/mm2) in the postcapillary venules of the mandibular and tibial periosteum in rats. 

Mean values ± SEM are presented. 

 

 The CLSM method was applied to stain the cell nuclei of the vascular compartment 

(Figure 6 A,B). The vascular organization was also visualized when intravascular dye 

(FITC-dextran) was employed (Figure 6 C,D). 
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4.2. Periosteal microcirculatory reactions in the mandible in rats treated 

chronically with ZOL 

 IVM recordings of the microcirculation were performed in a mandibular periosteal 

region just adjacent to the site of the earlier tooth extraction and also on the contralateral 

side 6 weeks after tooth extraction. The data were compared with those on the tibial 

periosteum. 

 In vivo microscopy revealed homogenous microvascular perfusion in all of the 

periosteal tissues examined; the RBCVs were similar in the mandibular and tibial capillary 

beds (827.5 ± 30.1 µm/s and 739.0 ± 37.7 µm/s, respectively). The data were similar on the 

two sides of the mandible and were not influenced by chronic ZOL treatment (data not 

shown). 

 However, the leukocyte rolling in the postcapillary venules of the mandible in the 

ZOL-treated group was significantly higher than in the saline-treated group both at the site 

of tooth extraction and on the contralateral side; the differences between the sites were not 

statistically significant (Figure 7). 

 

 

 

Figure 7. Periosteal primary leukocyteendothelial cell interactions (rolling) in saline- and ZOL-

treated animals in the postcapillary venules of the mandible on the tooth extraction (Ex) and the 

contralateral (C) sides and in the tibia. Data are presented as means ± SEM. * P < 0.01 vs the 

corresponding saline-treated group. # P < 0.05 vs the tibia. Two-way ANOVA was followed by the 

Holm–Sidak test. 
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Similar differences were observed in the leukocyte adhesion values after ZOL, which 

revealed a statistically significant enhancement in the mandibular periosteum as compared 

with the tibial periosteum (Figure 8). 

 

 

Figure 8. Periosteal secondary leukocyteendothelial cell interactions (sticking) in the postcapillary 

venules of the mandible on the tooth extraction (Ex) and the contralateral (C) sides and in the tibia 

in saline- and ZOL-treated animals. Data are presented as means±SEM. * P < 0.01 vs the 

corresponding saline-treated group. # P < 0.01 vs the tibia. Two-way ANOVA was followed by the 

Holm–Sidak test. 

 

 ZOL evoked similar rolling and adhesion values irrespectively of the presence of 

MRONJ (data not shown). The tibial microcirculation was characterized by higher 

leukocyte rolling, but similar adhesion in comparison with the data obtained for the 

mandible in the saline-treated animals; none of them were influenced by ZOL at this 

location. 

 

4.3. Gingival and mucosal healing of the mandible in rats treated chronically with 

ZOL  

 Six weeks after the tooth extraction, intact mucosa could be observed in 8/10 of the 

control animals (the average healing score was 0.25 ± 0.25), but different degrees of 

mucosal healing disorders were detected in all (10/10) of the ZOL-treated animals. The 

severity of the healing disorders reached a score of 1.83 ± 0.18 in this group (P < 0.01). 

 Normal bony regeneration with a radiolucent areas of 12.09 ± 1.91% of the alveolar 

bone could be detected at the site of the earlier tooth extraction in all (10/10) of the saline-
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treated animals. In contrast, a certain degree of discontinuity of the cortical and spongious 

bone regions was found in 7/10 of the ZOL-treated animals. This higher incidence of 

impaired bony regeneration was accompanied by a significantly lower average bone 

density in this group (39.51 ± 7.18% of the alveolar area) as compared with that in the 

saline-treated group (P < 0.01) (Figure 9). 

 

A      B            C 

 

Figure 9. Bone density differences expressed as a percentage of the radiolucent area of the alveolar 

bone (marked with a rectangle) in saline- and BIS-treated animals 6 weeks after tooth extraction 

(section A). Data are presented as means ± SEM. * P < 0.05 vs saline, Student’s t-test. Micro-CT 

scans show representative images of the mandibular cross-sections in saline- and ZOL-treated rats 

(sections B and C, respectively). 

 

The radiological diagnosis of mandibular osteonecrosis was confirmed by standard 

histological examinations (Figure 10). Findings of missing nuclear staining in the 

osteocytes, increased inflammatory infiltration and granulation tissue formation around the 

necrotic area, and occasional sequester formation were made in 6/10 of the ZOL-treated 

animals, whereas nearly normal bone regeneration was observed in the other rats. 
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Figure 10. Representative micrograph (H&E staining) showing regeneration processes in a ZOL-

treated animal 6 weeks after tooth extraction (magnification 4x) (section A). s: salivary gland, m: 

muscle b: bone, g: gingiva, ct: connective tissue. Sequester formation (se) and lack of nuclear 

staining of the necrotic bone (nb), and PMN granulocyte infiltration around the necrotic area (center 

of the section) can be seen at higher magnifications (magnifications 10x and 40x) (sections B and 

C, respectively). The bar denotes 200 µm. 
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4.4. Consequences of chronic ZOL treatment on systemic inflammatory parameters  

To exclude the possibility of increased leukocyte counts behind the increased PMN rolling 

and adhesion after ZOL treatment, the number of PMNs was determined with the 

conventional Türk solution staining method and using a hemocytometer 6 weeks after tooth 

extraction. As expected, the number of PMNs was not higher (but rather even lower) in the 

rats chronically treated with ZOL (Table 4). 

 

Parameter Saline ZOL P values 

PMN count in the blood (cells/µL) 4513 ± 250 3731 ± 215 < 0.05 

CD11b expression (mean fluorescence intensity) 1.57 ± 0.21 1.37 ± 0.09 n.s. 

TNF-alpha (pg/mL) 2.65 ± 0.49 2.33 ± 0.39 n.s. 

 

Table 4. The effects of chronic ZOL treatment on the leukocyte count, neutrophil-derived CD11b 

adhesion molecule expression and plasma TNF-alpha levels. Data are presented as mean ± SEM. P 

< 0.05 vs saline, Student’s t-test. 

 

As evidenced by the mean fluorescence values of the adhesion molecule CD11b 

within the leukocyte population (as measured by flow cytometry), no significant 

differences was detected between the saline- and ZOL-treated animals (Table 4). There 

were no differences between the saline- and ZOL-treated experimental groups with respect 

to the plasma TNF-alpha levels either (n=6 and n=5, respectively) (Table 4). 

The NADPH-oxidase activity of the neutrophil leukocytes harvested from the ZOL-

treated animals was significantly lower than that for the control animals (Figure 11A). The 

free radical-derived chemiluminescence of the whole blood (as determined by the 

superoxide and hydroxyl radical-dependent chemiluminescence measurements) indicated 

no differences between the two experimental groups (Figure 11B). 
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A                 B 

 
 

Figure 11. The effects of chronic ZOL treatment on leukocyte NADPH-oxidase activity (A) and 

whole blood free radical production (B) (the latter shown by chemiluminescence in the presence of 

lucigenin and luminol to detect superoxide anion and hydroxyl radical production, respectively). 

Data are presented as means ± SEM. * P < 0.05 vs saline, Student’s t-test. 
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5. DISCUSSION 

 

5.1. The importance of mandibular periosteal microcirculatory examinations in 

various maxillofacial diseases 

As a major source of osteoprogenitor cells, the periosteum of the jaw bones has a 

high impact in the pathogenesis of various orofacial diseases, but specific, real-time 

examination of its microcirculation can be performed only after surgical exposure of this 

structure. As a result, the periosteal microcirculation has been examined in only a relatively 

limited number of studies of the tibia [Rücker M 1998, Schaser KD 2003, Zhang L 2003, 

Varga R 2008] or the calvaria [Stuehmer C 2009], and we are aware of only one study in 

the maxilla-mandibular region, in rabbits [Rücker M 2005]. All of these latter studies 

involved the use of conventional fluorescence IVM which (as opposed to OPS) also makes 

possible the investigation of microcirculatory perfusion, permeability and leukocyte–

endothelial interactions. In Study 1, we developed a surgical approach to the mandibular 

periosteum. When a rodent model is to be established, similarities to the human anatomy 

should first be ascertained. The most accessible region, where the periosteum is situated 

most superficially, is the area medial to the parotideomasseteric region [Cox PG 2011]. 

This region, between the superficial masseter muscles and the mentum, just laterally to the 

ever-growing incisor tooth of the rat, can be approached by incising the skin and 

subcutaneous tissue. We gained access to the periosteum next to the anterior part of the 

superficial masseter muscle in the area where this muscle adheres to the ventral margin of 

the mandible. It was considered important to proceed laterally to the continuously growing 

incisor teeth so as to avoid any potential functional dissimilarities to the human 

characteristics.  

 The fluorescence IVM data revealed that the mandibular microcirculatory variables 

are similar to those seen in the tibia. It should be added that the preparation was stable for 

approximately 4 h in preliminary experiments, when only IVM was employed (data not 

shown). In the case of CLSM, the potential toxic effects of topically-applied nuclear dyes 

would probably influence the microcirculation in the long run, and examination may 

therefore preferably be restricted to one time point only. As regards the periosteal 

microcirculation, examination of the effects of surgical trauma of the tibia [Zhang L 2003] 

and the maxilla [Rücker M 2005] is a possible target for IVM methods. Such questions can 

also be answered by using the present exposure technique. Moreover, the consequences of 

tooth extraction (particularly of first molars) and the subsequent osteogenesis on the 
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periosteal microcirculatory reactions may also be examined. In previous studies, 

osteogenesis-related capillary density changes (by OPS) [Lindeboom JA 2008] and 

leukocyte–endothelial interactions in experimental peridontitis (by IVM) [Carvalho RR 

2009] were examined in the mucosa, but never in the periosteum. Furthermore, the present 

model appears suitable for CLSM; the penetration of intranuclear dyes for the examination 

of angiogenesis and apoptosis is also possible. CLSM has previously been employed in the 

oral mucosa to visualize intraoral mucosal lesions, tumors [Franz M 2007], borders of 

malignancies and resection margins [Capodiferro S 2008, Scivetti M 2009, Haxel BR 

2010]. 

 The IVM approach can be a particularly valuable tool for the examination of oral 

inflammatory processes. In consequence of the relatively high penetration depth of laser 

light, laser-Doppler flowmetry has been used for the detection of mucosal/gingival 

inflammatory processes. As examples, the consequences of periodontal access flap surgery 

and inflammation have been detected in the gingiva [Kerdvongbundit V 2003, Retzepi M 

2007] and in the pulpar blood flow [Verdickt GM 2001]. With use of the proposed method, 

such inflammatory complications could also be examined by using the mandibular 

periosteum. 

 Study 1 demonstrated certain differences in architecture in the mandibular and the 

tibial periosteum. Specifically, the venules proved to be the predominant structures in the 

examined anteromedial surface of the tibia, whereas arterioles were also detected in the 

mandible. Differences within the skeletal system were earlier reported, when it was found 

that the jaw microcirculation has a higher number of anastomoses and a greater impact of 

the centromedullar circulation as opposed to the long bones of the skeleton [Chanavaz M 

1995]. A corrosion cast study similarly revealed lower numbers of capillaries and arterioles 

in the periosteal compartment than in the gingival compartment, which is characterized by 

a rich capillary network [Nobuto T 1989]. At the present stage, the impact of our 

observations cannot be fully assessed and potential regional differences should also be 

taken into account: we earlier demonstrated [Greksa F 2012] that the anterolateral side of 

the tibia (which has been used in a myocutaneous flap model [Rücker M 1998]) has more 

capillaries than on the anteromedial side. We consider that the higher density of venules 

may predispose to microcirculatory inflammatory complications, e.g. the transmigration of 

neutrophil leukocytes through the postcapillary venules. 

 In summary, the new microsurgical approach presented provides access to the 

periosteal microcirculation in the rat mandible. We compared the mandibular 
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microcirculatory variables with those of a standard and stable tibial model by using 

fluorescence IVM to ascertain that this new technique does not cause microcirculatory 

disturbances or inflammatory complications. It was demonstrated that this exposure 

procedure makes the mandibular periosteum accessible for OPS and CLSM examinations. 

It is anticipated that this model and the investigation of mandibular microcirculatory 

alterations may contribute to a better understanding of maxillofacial or dentoalveolar 

diseases. 

 

5.2. Periosteal microcirculatory inflammatory processes playing a potential role in 

the pathogenesis of MRONJ 

 In Study 2, via the chronic administration of high i.v. doses of ZOL in combination 

with an invasive dental intervention, a high prevalence of mucosal healing disorders (~ 

100%) was achieved together with a relatively high osteonecrosis rate (70%; as revealed by 

micro-CT and histological analyses). This protocol was based on a modified literature 

method [Biasotto M 2010]. BIS doses in the range 20-2250 µg/kg with different 

frequencies and different administration routes have been administered by others (for a 

meta-analysis, see Barba-Recreo P 2013). The relatively high dose applied here (80 

µg/kg/week) is still well tolerated in rats and, although it was also administered in a higher 

frequency than on human use, it produced symptoms and radiological evidence similar to 

those observed in humans. Apart from the dose of ZOL, the relatively high incidence of 

MRONJ in this study can be explained by the triggering effect of the applied dental 

extraction (the importance of which has been demonstrated in MRONJ patients) [Ruggiero 

SL 2014]), and the use of the mandibular site (there is a higher prevalence of osteonecrosis 

at this localization in humans) [Marx RE 2007]. 

 It is reasonable to assume that impaired regeneration processes contribute to the 

pathophysiology of MRONJ. From a functional aspect, bony regeneration processes depend 

not only on the functional activity of the osteoblasts and osteoclasts, but also on the blood 

supply and angiogenesis. BISs have been shown to influence all of these processes. As 

such, the inhibition of osteoclast recruitment to the bone surface [Rodan GA 1996] and 

shortening of the osteoclast life span are the main effects of BISs that are brought about 

directly or indirectly (via the osteoprotegerin-RANKL pathway) [Maruotti N 2012]. 

Accordingly, delayed bone healing [Kobayashi Y 2010, Yamashita J 2011], together with 

decreased bone formation and vascularity in the extraction socket, have been detected in 

ZOL-treated rats [Aguirre JI 2012]. Numerous studies have elucidated the antiangiogenic 



37 

 

effects of BIS both in vitro [Wood J 2002] and in vivo [Kobayashi Y 2010, Pabst AM 

2014]. Furthermore, thicker and less connected/ordered blood vessels in the alveolar bone 

of the mandible were found in ZOL-treated rats after tooth extraction [Guevarra CS 2013].  

The periosteum contains a population of stem/osteoprogenitor cells playing key 

roles in bone repair [Brighton CT 1992, Allen MR 2004, Xie C 2008, Chappuis V 2012]. 

BISs bound to a bone surface can affect adjacent cells and inhibit their growth [Cornish J 

2011]. A critical concentration of BIS in the mandible [Kimmel DB 2007, Reid IR 2007, 

Wen D 2011], and the direct toxic and related inflammatory effects in the periosteum may 

also contribute to the development of MRONJ. BISs exert toxic effects on many different 

cell types (fibroblasts, osteoblasts, and endothelial and epithelial cells), manifested in 

diminished cell proliferation and decreased collagen production, ZOL being the most 

inhibitory in this respect [Reid IR 2007, Naidu A 2008, Scheper MA 2009, Agis H 2010, 

Açil Y 2012]. 

 Marked inflammatory reactions are attributed to BISs through the induction of 

peritonitis via the activation of immunological pathways after i.p. administration 

[Calligeros D 1993, Yamaguchi K 2000, Norton JT 2011]. Enhanced leukocyte–endothelial 

interactions have been demonstrated by means of IVM after BIS treatment in an arthritis 

model in mice [Zysk SP 2003]. BIS-associated inflammatory bony changes have also been 

detected in the mandible [Senel FC, 2010]. Interestingly, these inflammatory changes were 

limited to the mandible, and were not seen in the femur or the tibia [Senel FC 2010, Yu YY 

2012]. High-dose ZOL exacerbates the inflammatory response in a periodontitis model, 

where the bone lesions strikingly resemble MRONJ [Aguirre JI 2012]. In the present study, 

pro-inflammatory aspects of chronic BIS treatment could also be traced in the mandibular 

periosteum, and histological analysis supported the infiltration of the tissue by leukocytes 

in the neighboring necrotic zone. 

In this microsurgical model, the periosteal microcirculation of the mandible can be 

visualized relatively easily in the molar region, which is likewise a cardinal localization of 

MRONJ [Ruggiero SL 2014]. Apart from nutritive considerations, the periosteum is 

important for its osteoprogenitor cell content during bone regeneration.  Although BISs 

exert effects on osteoblast proliferation, differentiation and migration in the entire skeleton 

[Koch FP 2011], their action seems to depend on the anatomical location, with the jaw 

bones as highly frequent sites of osteonecrosis. After prolonged use, BISs are known to 

accumulate in the skeleton, reaching the highest concentration in the mandible [Reid IR 

2007, Wen D 2011], which may explain their potential toxic effects predominantly in the 
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jaw bones. Furthermore, osteoblasts have different proliferation properties at different 

locations (appendicular vs axial bones) under physiological circumstances, and this 

phenomenon is also critically influenced by BIS treatment [Marolt D 2012]. The functional 

activity of the osteocytes too differs between the mandible and the tibia [Çankaya M 2013], 

and the aggravating effects of BISs on bone healing are confined to the jaw [Kuroshima S 

2014]. Although the above findings reveal certain potential factors contributing to the 

higher incidence of osteonecrosis of the jaw bones, the exact pathomechanism is unknown. 

As opposed to the microcirculatory consequences of bone injury (i.e. fractures) 

[Zhang L 2003], the effects of tooth extraction on the microcirculatory derangement and 

local inflammation are less commonly described, due to methodological constraints. We 

focus here on the microcirculatory aspects of chronic ZOL treatment combined with an 

earlier local trauma of the jaw (tooth extraction). IVM data were obtained in the proximity 

of the injury and from a contralateral (intact) site on the mandibular periosteum and were 

compared with those relating to the intact tibia. After chronic ZOL treatment, increased 

degrees of leukocyte–endothelial interactions (rolling and adhesion) were observed in the 

mandibular periosteum, both at the site of the earlier tooth extraction and at the 

contralateral site, but the corresponding interactions in the tibia were less extensive. It is 

still an unanswered question why the examined cell-to-cell interactions are higher in the 

postcapillary venules of the mandible, irrespectively of the proximity of the tooth 

extraction site and the presence of MRONJ in the ZOL-treated group. In preliminary 

studies, we did not observe inflammatory complications in the mandibular periosteum 

without tooth extraction, which demonstrated the triggering effect of the trauma in this 

region. This observation was supported by further findings, when more intense 

inflammatory reactions of ZOL were evolved in the acute phase after tooth extraction (data 

not shown). The inflammatory processes were similarly shown in an IVM study to be 

aggravated by a BIS in an arthritis model in mice [Zysk SP 2003]. Elevated levels of the 

pro-inflammatory cytokine TNF-alpha have been reported in human patients in response to 

certain types of BISs [Katz J 2011, Anastasilakis AD 2012, Tzermpos F 2013], but were 

not detected after the chronic administration of ZOL in our study. Furthermore, the number 

and functional activity (free radical-producing capacity) of PMNs were moderately reduced 

here. Such effects on the free radical-producing potential of PMNs (including NADPH-

oxidase and myeloperoxidase activity) have also been demonstrated by others [Yamagishi 

S 2005, Salvolini E 2009, Kuiper JW 2012]. It has been suggested that the compromised 

neutrophil functions too may be used as potential biomarkers for MRONJ susceptibility 
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[Favot CL 2013]. Interestingly, others have found impaired neutrophil chemotaxis after 

BIS exposure in mice [Kuiper JW 2012] and humans [Favot CL 2013], and this parameter 

is influenced most extensively by ZOL among the different types of BISs [Hagelauer N 

2014]. For leukocyte-endothelial interactions (as seen in our study), an enhanced 

expression of adhesion molecules is required on the surface of the endothelial cells and/or 

neutrophil leukocytes [Eppihimer MJ 1997].  Interestingly, the expression of the 

neutrophil-derived adhesion molecule CD11b (responsible for leukocyte adherence) was 

not found to be influenced by chronic ZOL treatment here or in other studies. The extents 

of these inflammatory reactions, however, differed in the jaw and the tibial regions. 

Minodronate was reported to inhibit the VEGF-induced expression of intercellular adhesion 

molecule-1 in endothelial cells [Yamagishi S 2004] and a similar finding was revealed by 

local administration of clodronate-liposomes in the synovial lining of rheumatoid arthritis 

patients [Barrera P 2000]. Regional differences might therefore be explained by different 

degrees of endothelium-derived adhesion molecule expression at the different anatomical 

locations. 
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6. SUMMARY OF NEW FINDINGS 

 

1. We have developed a novel microsurgical approach which provides a simple and 

reproducible approach to the mandibular periosteum of the rat, where morphological 

and functional features of the microvasculature can be assessed by different in vivo 

visualization techniques (IVM, OPS and CLSM methods). This access to the 

mandibular periosteum offers an excellent opportunity for investigations of 

microcirculatory manifestations of dentoalveolar and maxillofacial diseases. 

2. Microvascular processes were explored after chronic ZOL treatment for the first time 

in the mandibular periosteum in rats. 

3. Chronic BIS treatment in combination with tooth extraction induced: 

- gingival healing disorders and radiologically determined osteonecrosis in the 

mandible, which resembles the clinical signs of MRONJ; 

- periosteal microcirculatory inflammatory reactions confined to the mandible (not 

present in the tibial periosteum). 

4. Regional differences between the mandibular and tibial periosteum might be explained 

by different degrees of endothelium-derived adhesion molecule expression at the 

different anatomical locations after chronic ZOL treatment. This observation may 

contribute to a better understanding of the pathomechanism and the development of 

strategies to counteract BIS-induced side-effects. 
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ABSTRACT

Objective: The periosteum plays an important role in bone

physiology, but observation of its microcirculation is greatly limited

by methodological constraints at certain anatomical locations. This

study was conducted to develop a microsurgical procedure which

provides access to the mandibular periosteum in rats.

Methods: Comparisons of the microcirculatory characteristics

with those of the tibial periosteum were performed to confirm the

functional integrity of the microvasculature. The mandibular

periosteum was reached between the facial muscles and the anterior

surface of the superficial masseter muscle at the external surface of

the mandibular corpus; the tibial periosteum was prepared by

dissecting the covering muscles at the anteromedial surface.

Intravital fluorescence microscopy was used to assess the leuko-

cyte–endothelial interactions and the RBCV in the tibial and

mandibular periosteum. Both structures were also visualized

through OPS and fluorescence CLSM.

Results: The microcirculatory variables in the mandibular perios-

teum proved similar to those in the tibia, indicating that no

microcirculatory failure resulted from the exposure technique.

Conclusion: This novel surgical approach provides simple access to

the mandibular periosteum of the rat, offering an excellent

opportunity for investigations of microcirculatory manifestations

of dentoalveolar and maxillofacial diseases.

KEY WORDS: mandibular periosteum, intravital microscopy, orthog-

onal polarization spectral imaging, confocal laser scanning micros-

copy, rat

Abbreviations used: CLSM, confocal laser scanning microscopy;

FITC, fluorescein isothiocyanate; i.v., intravenous; IVM, intravital

microscopy; OPS, orthogonal polarization spectral imaging; RBCV,

red blood cell velocity.

Please cite this paper as: Varga R, Janovszky �A, Szab�o A, Garab D , Bodn�ar D, Boros M, Neunzehn J, Wiesmann HP, Piffk�o J. A novel method for in vivo

visualization of the microcirculation of the mandibular periosteum in rats. Microcirculation 21: 524–531, 2014.

INTRODUCTION

The rich blood supply of the maxillofacial region ensures fast

healing of the tissues in the oral cavity. On the other hand,

these tissues, and the bones of the jaw in particular, are

strikingly prone to local inflammatory complications, rang-

ing from abscess formation to osteomyelitis and osteonecro-

sis [30]. It is reasonable to assume that functional and

morphological impairments of the periosteal microcircula-

tion are critically involved in these processes. This assump-

tion is supported by clinical observations where

osteonecrosis and defective angiogenesis of the mucoperio-

steal tissues were demonstrated in patients receiving chronic

bisphosphonate treatment [37]. In general, the role of the

periosteal integrity in bone physiology is well recognized, not

only as it concerns to the maintenance of the vascular supply

but also from the aspect of active regulation of the bone

metabolism and regeneration. It is similarly well known that

successful healing after fractures requires the regeneration of

the peri- and endosteal circulations [20]. It follows that

periosteal microvascular alterations can be of importance in

the pathomechanism of oral diseases associated with a

deterioration of tissue perfusion and with inflammatory

complications.

The vascular architecture of the intraoral region, including

the periosteum, can be examined by imaging methods such

as computer tomography, magnetic resonance imaging and

to some extent scintigraphy or histology [3,4,11,23]. Never-

theless, these tools are not relevant when dynamic changes or

functional aspects of the periosteal microcirculation are to be
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investigated. The methods utilized for examinations of the

functional characteristics of the microcirculation, such as

hemoglobin absorptiometry combined with laser-Doppler

flowmetry, may provide information on tissue oxygenation

and perfusion, but in this case the tissue mass is rather

robust, e.g., the gingiva [21]. If more accurate detection or

improved spatial resolution of the microcirculation is

needed, fluorescence IVM can provide an opportunity for

real-time examination of the microcirculation of superficial

layers of different organs. Conventional fluorescence IVM

has many advantages. It can visualize not only changes in the

efficacy of microvascular perfusion but also leukocyte–
endothelial interactions, metabolic variables, or signs of

apoptosis [1,17]. For observation of the microcirculation of

superficial tissue layers, nonfluorescence techniques such as

OPS [14] and sidestream dark-field imaging have also been

developed [22]. These methods have the advantage that the

use of fluorescence markers is not necessary and this allows a

possibility for human applications also in the oral cavity

[10,22]. Observation of the periosteal compartment would

still necessitate surgical exposure, but the imaging of

individual vessels and cells is possible without disturbing

their functional characteristics.

The calvarian periosteum can be visualized in experimen-

tal settings [32], but examination of the microcirculation of

the jaw bones runs into many technical difficulties. We

earlier developed methods suitable for visualization of the

tibial periosteum and the synovial membrane in the knee

joint in rats [15,34], but such approaches were not available

for the exposure and in vivo investigation of the mandibular

periosteum. We therefore considered it important to address

this issue, in part to solve the technical problems and in part

because the physiology or the pathophysiological reactions of

the jaw may differ from those in other bones of the skeleton.

Specifically, bisphosphonates have been demonstrated to

cause osteonecrosis in the jaw after invasive dental proce-

dures, but such reactions do not occur in the bones of the

appendicular skeleton [5,31]. This observation suggests that

potentially different microcirculatory reactions may evolve in

the periosteum at different anatomical locations. For this

reason, we set out to compare the microcirculatory charac-

teristics of the mandibular and the tibial periosteum through

the use of a microsurgical approach and microscopic

methods that are suitable for in vivo visualization of

individual microvessels. Firstly, the functional integrity of

the mandibular microcirculation was ascertained by using

the OPS method, where the use of fluorescent markers is not

required (and sampling for biochemical and molecular

biological analyses is therefore possible). We used the “gold

standard” fluorescence IVM for the determination of perfu-

sion and leukocyte–endothelial interactions. Finally, CLSM
was chosen as it offers an opportunity for determination of

the in vivo histology of tissues (including microvessels)

without sectioning, fixation, and embedding artifacts. The

final aim of the study was to provide a comprehensive

methodological basis for future investigations targeting the

potential microcirculatory manifestations of oral diseases.

MATERIALS AND METHODS

The experiments were performed in full accordance with the

NIH Guidelines (Guide for the Care and Use of Laboratory

Animals) and approved by the Animal Welfare Committee of

the University of Szeged (V/1639/2013).

Animals
Ten male Sprague–Dawley rats were used (the average weight

at the time of the experiment was 320 � 10 g). The animals

were anaesthetized intraperitoneally with an initial dose of

sodium pentobarbital (45 mg/kg). After cannulation of the

trachea, the penile vein was cannulated to administer fluids

and drugs (supplementary dose of sodium pentobarbital;

5 mg/kg). During preparation and microcirculatory investi-

gations, the rats were placed in a supine position on a heating

pad to maintain the body temperature at 36–37°C.

Surgical Procedures
The fur of the animals in the mandibular region was shaved,

and a lateral incision parallel to the incisor tooth was made in

the facial skin and the underlying subcutaneous tissue using a

careful microsurgical approach under an operating micro-

scope (69 magnification; Carl Zeiss GmbH, Jena, Germany).

The masseter muscle consists of superficial and deep parts, the

latter being further divided into anterior and posterior

sections in rats [9]. The fascia between the anterior part of

the deepmasseter and the anterior superficial masseter was cut

with microscissors (Figure 1A). By this means, the periosteal

membrane covering the corpus of the mandible laterally to the

incisor tooth was reached and it was gently separated from the

covering thin connective tissue (Figure 1B). Stitches with 7.0

monofilament polypropylene microsurgical thread were

placed into the surrounding masseter muscles for retraction

and better exposure of the region of interest. We applied this

surgical approach on both sides of the lower jaw. With this

preparation technique, the periosteal microcirculation of the

mandible could be examined by in vivo microscopic methods

at the anterior margin of the molar region.

For comparison of the characteristics of the mandibular

microcirculation with those of the tibial periosteum, the

medial/anterior surface of the tibia was exposed by complete

transection of the anterior gracilis muscle with microscissors,

and careful atraumatic microsurgical removal of the con-

nective tissue covering the tibial periosteum (Figure 1C,D)

[34]. These dissections were performed on both sides to

permit parallel observations of intravascular and topically

applied fluorescence tracers (see later).
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Experimental Protocol
After surgical exposure of the mandibular and tibial perios-

teum on both sides, recordings were performed on the right

side with OPS, which does not require any fluorescence

labeling (see later) (Figure 2A,B). After this, the animals

received i.v. injections of FITC-labeled erythrocytes (0.2 mL;

Sigma Aldrich, St. Louis, MO, USA) (Figure 3A,B) [27] and

rhodamine-6G (0.2%, 0.1 mL; Sigma Aldrich) for the

staining of leukocytes (Figure 3C,D), and IVM recording

was performed at the previous locations. Subsequently,

50 lL of the nuclear dye acriflavin (1 mM) was applied

topically to the tibial periosteal surface on the left side and

was rinsed off with warm physiological saline solution after

an exposure time of one minute, and then CLSM recording

was performed (Figure 4B). The same staining procedure

was carried out for the mandible on the left side (Figure 4A).

This was followed by an i.v. injection of the plasma dye

FITC-dextran 150 kDa (i.v. 0.3 mL, 20 mg/mL solution

dissolved in saline; Sigma Aldrich), and CLSM (Figure 4C,D)

and IVM recordings (Figure 3E,F) were made on the tibia

and the mandible on the right side five minutes after

injection of the tracer.

OPS Technique
The exposed periosteum of the corpus of the mandible or the

tibial periosteum on the right side was horizontally posi-

tioned on an adjustable stage and superfused with 37°C
saline. The periosteal membranes were first visualized with

A B

DC

Figure 1. Exposure of the mandibular and

tibial periosteum for in vivo microscopic exam-

inations. Access to the mandibular periosteum

was achieved by making a lateral incision

parallel to the incisor tooth in the facial skin

and the underlying subcutaneous tissue, which

was followed by gentle separation of the fascia

between the anterior part of the deep masse-

ter (dm) and the anterior superficial masseter

(asm) muscles (A, B). Finally, the thin connec-

tive tissue covering the periosteum was gently

incised with microscissors. By this means, the

periosteal membrane covering the corpus of

the mandible laterally to the incisor tooth was

reached. The tibial periosteum was reached by

transecting the anterior gracilis (ag) muscle

completely in the middle (and a part of the

posterior gracilis muscle [pg] too) and gently

removing the thin connective tissue covering

the periosteum (C, D). The bar denotes

2500 lm.

A B

Figure 2. Micrographs showing the mandib-

ular (A) and tibial periosteum (B) made with

the OPS technique. The bar denotes 200 lm.
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an OPS device (CytoscanTM; Cytometrics, Philadelphia, PA,

USA), which provides optimal imaging of the microvascular

structures at a chosen focus level [penetration depth: approx.

200 lm; 11] (Figure 2A,B). This technique utilizes epi-

illumination with linearly polarized light at 548 nm (which is

the isobestic point of oxy- and deoxyhemoglobin) to

visualize hemoglobin-containing structures without the

additional use of a fluorochrome. Images were recorded on

a SVHS video recorder (Panasonic AG-MD 830; Matsushita

Electric Industrial Co., Tokyo, Japan) and a personal

computer.

Fluorescence IVM
The periosteal microcirculation was visualized by IVM

(penetration depth: approx. 250 lm; Zeiss Axiotech Vario

100HD microscope; 100-W HBO mercury lamp; Acroplan

209 /0.5 N.A. W; Carl Zeiss GmbH, Jena, Germany). Images

from three–four fields of the mandibular and the tibial

periosteum (Figure 3) were recorded with a charge-coupled

device video camera (Teli CS8320Bi; Toshiba Teli Corpora-

tion, Osaka, Japan) attached to an S-VHS video recorder

(Panasonic AG-MD 830; Matsushita Electric Industrial Co.)

and a personal computer (see labeling techniques above).

Fluorescence CLSM
Confocal imaging of the surface of the mandibular and tibial

periosteum was performed with a Five1 Optiscan device

(Optiscan Pty. Ltd., Melbourne, Vic., Australia) (Figure 4).

In vivo histology was employed by placing the Optiscan

probe on the surface of the periosteal membranes and by

changing the focus level through virtual sections of 7 lm
during the confocal imaging (penetration depth: 0–250 lm).

Cell nuclei were first stained with topically applied acriflavin

(see above) on the left side, and this was followed by

recordings on the contralateral side after i.v. injection of the

intravascular tracer FITC-dextran (see above). Images were

stored on a personal computer provided by the manufac-

turer.

Video Analysis
Quantitative evaluation of the microcirculatory parameters

was performed off-line by the frame-to-frame analysis of the

A B

C D

E F

Figure 3. Fluorescence intravital microscopic

images of the mandibular (A, C, E) and the

tibial periosteum (B, D, F), involving

FITC-labeled erythrocytes (A, B), rhodamine

6G-labeled neutrophil leukocytes (C, D), and

FITC-dextran-labeled plasma (E, F). The bar

denotes 200 lm.

Mandibular Periosteal Microcirculation in Rats
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videotaped images taken for IVM and OPS (IVM Software;

Pictron Ltd, Budapest, Hungary). Leukocyte–endothelial cell
interactions were analyzed at least in four postcapillary

venules per rat. Rolling leukocytes were defined as cells

moving with a velocity less than 40% of that of the

erythrocytes in the centerline of the microvessel and passing

through the observed vessel segment within 30 seconds, and

are given as the number of cells per second per vessel

circumference. Adherent leukocytes were defined as cells that

did not move or detach from the endothelial lining within an

observation period of 30 seconds and are given as the

number of cells per mm2 of endothelial surface, calculated

from the diameter and length of the vessel segment. RBCV

(lm/s) was determined by frame-to-frame analysis of 5–6
consecutive video-captured images taken after labeling of the

erythrocytes (see above).

Statistical Analysis
The statistical analysis was performed with a statistical

software package (SigmaStat for Windows, Jandel Scientific,

Erkrath, Germany). Within the IVM data, RBCV values in

the capillaries and the extents of rolling and adherence of

leukocytes in the postcapillary venules of the mandibular and

tibial periosteum were compared by using the Student’s

t-test. Comparisons within the RBCV values measured with

IVM and OPS were also made with the Student’s t-test. p

values <0.05 were considered significant.

RESULTS

With the reported preparation technique, the anterior

surface of the tibial periosteum provides a larger observation

field (ranging between 8.89 and 9.88 mm2) (Figure 1D) than

that of the exposed mandibular region (ranging between 8.03

and 9.18 mm2) (Figure 1B). Furthermore, the entire exposed

tibial periosteal surface can be examined by different in vivo

microscopic methods, whereas only approximately one third

of the mandibular periosteum (i.e., its anterior part) can

easily be reached by the relatively robust objectives. The

vascular density reached 0.0182 � 0.0011/lm in case of the

tibia and was 0.0193 � 0.0008/lm in the mandibular

periosteum. The arterioles, capillaries, and venules can be

distinguished on the basis of vessel diameters and the

direction of flow of moving elements (plasma or red blood

cells) within them. Within the mandibular periosteum, the

vascular network consisted mainly of arterioles and venules,

but a few capillaries and mostly venules were present in the

tibial periosteum (as depicted in Figures 2–4).
IVM demonstrated that the RBCV values were similar in

the two capillary beds (827.5 � 30.1 lm/s in the mandibular

A B

C D

Figure 4. Confocal laser scanning microscopic

images of the mandibular (A, C) and tibial

periosteum (B, D). Cell nuclei were labeled by

the topical application of acriflavin (left side)

(A, B). Images were also taken at both struc-

tures on the right sides after the i.v. injection of

FITC-dextran (C, D). The bar denotes 200 lm.
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and 739.0 � 37.7 lm/s in the tibial periosteum) (Table 1).

The OPS technique revealed similar RBCV values (data not

shown). The IVM data did not indicate any significant

differences in the magnitude of the leukocyte–endothelial cell
interactions between the two locations (Table 1).

The CLSM method was applied to stain the cell nuclei of

the vascular compartment (Figure 4A,B). The vascular

organization was also visualized when intravascular dye

(FITC-dextran) was employed (Figure 4C,D).

At the end of the experiments, tissue specimens were

harvested for histology. The tibial periosteum appeared to be

more strongly attached to the underlying bone than that in

the mandible.

DISCUSSION

Studies of the microcirculation in the oral region gained

considerable attention when the predictive value of mucosal

perfusion deficits was demonstrated in septic shock patients

[33,35]. Another intraoral manifestation of a systemic

menace was revealed during cardiac surgery [2] and the

intraoral microcirculation was demonstrated to correlate well

with the gastrointestinal perfusion changes [35]. The perio-

steal microcirculatory aspects of systemic and intraoral

diseases, however, have been far less well clarified. These

above human observations became possible by the develop-

ment of methods which provide quantitative information on

individual vessels without the need for the use of fluorescent

tracers (i.e., OPS or sidestream dark-field methods). High

spatial resolution is an advantage of intravital microscopic

methods in general, but the relatively low penetration depth

restricts the examination to the superficial layers such as the

mucosal or gingival/mucosal surfaces in the oral cavity.

As a major source of osteoprogenitor cells, the periosteum

of the jaw bones has a high impact in the pathogenesis of

various orofacial diseases, but specific, real-time examination

of its microcirculation can be performed only after surgical

exposure of this structure. As a result, the periosteal

microcirculation has been examined in only a relatively

limited number of studies of the tibia [26,28,34,38] or the

calvaria [32], and we are aware of only one study in the

maxilla–mandibular region, in rabbits [25]. All these latter

studies involved the use of conventional fluorescence IVM

which (as opposed to OPS) also makes possible the

investigation of microcirculatory perfusion, permeability,

and leukocyte–endothelial interactions. In this study, we

developed a surgical approach to the mandibular periosteum.

When a rodent model is to be established, similarities to the

human anatomy should first be ascertained. The most

accessible region, where the periosteum is situated most

superficially, is the area medial to the parotideomasseteric

region [9]. This region, between the superficial masseter

muscles and the mentum, just laterally to the ever-growing

incisor tooth of the rat, can be approached by incising the

skin and subcutaneous tissue. We gained access to the

periosteum next to the anterior part of the superficial

masseter muscle in the area where this muscle adheres to the

ventral margin of the mandible. It was considered important

to proceed laterally to the continuously growing incisor teeth

so as to avoid any potential functional dissimilarities to the

human characteristics.

The fluorescence IVM data revealed that the mandibular

microcirculatory variables are similar to those seen in the

tibia. It should be added that the preparation was stable for

approximately four hours in preliminary experiments, when

only IVM was employed (data not shown). In the case of

CLSM, the potential toxic effects of topically applied nuclear

dyes would probably influence the microcirculation in the

long run, and examination may be therefore preferably be

restricted to one time point only. As regards the periosteal

microcirculation, examination of the effects of surgical

trauma of the tibia [38] and the maxilla [25] is a possible

target for IVM methods. Such questions can also be answered

by using the present exposure technique. Moreover, the

consequences of tooth extraction (particularly of first

molars) and the subsequent osteogenesis on the periosteal

microcirculatory reactions may also be examined. In previ-

ous studies, osteogenesis-related capillary density changes (by

OPS) [19] and leukocyte–endothelial interactions in exper-

imental peridontitis (by IVM) [7] were examined in the

Table 1. Microcirculatory parameters: RBCV in the capillaries, and leukocyte rolling, and sticking in the postcapillary venules of the mandibular and

tibial periosteum in rats as determined by the OPS technique and fluorescence IVM

Method OPS
IVM

Parameter RBCV (lm/s) RBCV (lm/s) Rolling (/mm/s) Sticking (/mm2)

Mandible 736.6 � 26.7 827.5 � 30.1 46.6 � 5.8 13.4 � 4.4

Tibia 723.7 � 39.2 739.0 � 37.7 56.9 � 11.5 18.5 � 3.9

Mean values � SEM are presented.
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mucosa, but never in the periosteum. Furthermore, the

present model appears suitable for CLSM; the penetration of

intranuclear dyes for the examination of angiogenesis and

apoptosis is also possible. CLSM has previously been

employed in the oral mucosa to visualize intraoral mucosal

lesions, tumors [12], borders of malignancies, and resection

margins [6,16,29].

The jaws are particularly prone to inflammatory complica-

tions (e.g., periodontitis or abscess), as they can be sensitively

exposed to the external environment in the immediate vicinity

of the teeth. The IVM approach can be a particularly valuable

tool for the examination of oral inflammatory processes. In

consequence of the relatively high penetration depth of laser

light, laser-Doppler flowmetry has been used for the detection

of mucosal/gingival inflammatory processes. As examples, the

consequences of periodontal access flap surgery and inflam-

mation have been detected in the gingiva [18,24] and in the

pulpar blood flow [36]. With use of the proposed method,

such inflammatory complications could also be examined

using the mandibular periosteum.

This study demonstrated certain differences in architec-

ture in the mandibular and the tibial periosteum. Speci-

fically, the venules are proved to be the predominant

structures in the examined anteromedial surface of the tibia,

whereas arterioles were also detected in the mandible.

Differences within the skeletal system were reported by

Chanavaz, who found that the jaw microcirculation has a

higher number of anastomoses and a greater impact on the

centromedullar circulation as opposed to the long bones of

the skeleton [8]. A corrosion cast study similarly revealed

lower numbers of capillaries and arterioles in the periosteal

compartment than in the gingival compartment, which is

characterized by a rich capillary network [23]. At the

present stage, the impact of our observations cannot be

fully assessed and the potential regional differences should

also be taken into account: We earlier demonstrated [13]

that the anterolateral side of the tibia (which was used for a

myocutaneous flap model by R€ucker et al. [26]) has more

capillaries than on the anteromedial side. We consider that

the higher density of venules may predispose to microcir-

culatory inflammatory complications, e.g., the transmigra-

tion of neutrophil leukocytes through the postcapillary

venules.

In summary, the new microsurgical approach presented

provides access to the periosteal microcirculation in the rat

mandible. We compared the mandibular microcirculatory

variables with those of a standard and stable tibial model by

using fluorescence IVM to ascertain that this new technique

does not cause microcirculatory disturbances or inflamma-

tory complications. It was demonstrated that this exposure

procedure makes the mandibular periosteum accessible for

OPS and CLSM examinations. It is anticipated that this

model and the investigation of mandibular microcirculatory

alterations may contribute to a better understanding of

maxillofacial or dentoalveolar diseases.

PERSPECTIVE

The maxillofacial region is particularly prone to inflamma-

tory reactions. The present rat model using IVM techniques

should be useful in further studies exploring the periosteal

microcirculation, pathophysiological mechanisms of bone

regeneration, dentoalveolar diseases, and drug-related com-

plications such as mandibular osteonecrosis.
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A várható élettartam hosszabbodásával egyre gyakoribbak a különféle reumatológiai és onkológiai megbetegedések, 
amelyek csontszövődményeinek csökkentésére széles körben alkalmaznak különböző per os és intravénás antire-
szorptív hatású készítményeket (például biszfoszfonátok). Ezek a szerek jótékony hatásuk mellett súlyos szövődmé-
nyeket is okozhatnak, ilyen például a ma még nem teljesen tisztázott patomechanizmusú állcsontnecrosis. A szerzők 
célja egy átfogó szakmai tájékoztatás nyújtása a gyógyszer indukálta állcsontnecrosis lehetséges megelőzéséről és terá-
piájáról. A szakirodalmi áttekintés alapján készült dolgozat azokat a szűrőmódszereket ismerteti (előnyeikkel és limi-
tációikkal együtt), amelyek segítségünkre lehetnek a gyógyszer indukálta állcsontnecrosis korai detektálásában. A 
szerzők a legújabb sebészi és adjuváns terápiás irányvonalakat is ismertetik. Megállapítják, hogy a patomechanizmus 
ismeretének hiányában jelenleg még hatékony terápiás modalitás nem áll rendelkezésre, és hangsúlyozzák mind a 
prevenció, mind a terápia során az interdiszciplináris együttműködés szükségességét és annak fontosságát. Jelenleg ez 
tűnik a gyógyszer indukálta állcsontnecrosis elleni leghatékonyabb eszköznek. Or. Hetil., 2014, 155(49), 1960–1966.

Kulcsszavak: antiangiogén terápia, antireszorptív kezelés, biszfoszfonát, osteonecrosis

Current approaches for early detection and treatment of medication-related 
osteonecrosis of jaw
Owing to the increased life expectancy, the incidence of rheumatoid disorders and oncologic cases with bone metas-
tasis has dramatically increased. Despite the beneficial effects of the applied antiresorptive and antiangiogenic drugs 
(e.g. bisphosphonates), serious side effects such as jaw osteonecrosis may also develop. The aim of the authors was to 
summarize present knowledge about the possibilities of prevention and treatment in medication-related osteonecro-
sis of the jaw. Based on literature data, currently used detection methods for medication-related osteonecrosis of the 
jaw (including their advantages and limitations) are summarized. In addition, novel trends of surgical and adjuvant 
therapeutic approaches are also reviewed. The authors conclude that possibilities of prevention and efficacy of thera-
peutic interventions in this disorder are still limited possibly due to an incomplete knowledge of the underlying 
pathomechanism. An interdisciplinary cooperation for prevention and attentive monitoring in order to decrease the 
incidence of iatrogenic oral and maxillofacial complications seems to be particularly important.

 
Keywords: antiangiogenic therapy, antiresorptiv treatment, bisphosphonate, osteonecrosis

Janovszky, Á., Vereb, T., Szabó, A., Piffkó, J. [Current approaches for early detection and treatment of medication-
related osteonecrosis of jaw]. Orv. Hetil., 2014, 155(49), 1960–1966.
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Rövidítések 
BIS = biszfoszfonát; BRONJ = (bisphosphonate-related oste-
onecrosis of the jaw) biszfoszfonát indukálta állcsontnecrosis; 
CTX = C-terminális telopeptid; LLLT = (low-level laser thera-

py) alacsony energiájú lézerkezelés; MRONJ = (medication-
related osteonecrosis of the jaw) gyógyszer indukálta állcsont-
necrosis; VEGF = (vascular endothelial growth factor) 
endotheliumeredetű növekedési faktor
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Antireszorptív és antiangiogén gyógyszerek 
hatásai és mellékhatásai. A gyógyszer 
indukálta állcsontnecrosis kockázati 
tényezői

A különböző hatásmechanizmusú antireszorptív hatású 
gyógyszerek, legfőképp a biszfoszfonátok (BIS) megjele-
nése, az osteoporosis és csontmetasztázis kezelésében 
jelentős mértékben javították mind a terápia sikeressé-
gét, mind pedig a betegek életminőségét [1, 2]. Az oste-
oclast-aktivitást gátló hatásukat kihasználva a csontépítő 
folyamatok – az osteoblast-osteoclast egyensúly eltoló-
dásával – kerülnek előtérbe, így mára mindezekben a pa-
tológiás csontelváltozásokkal járó kórképekben a stan-
dard terápia részét képezik [3, 4]. Szemben a 
BIS-kezelésnek a vázrendszer csontjaiban kifejtett jóté-
kony hatásaival, az állcsontokban ellentétes hatású folya-
mat léphet fel, amely osteonecrosis kialakulásához vezet-
het. Egyre több publikáció jelenik meg, hogy nemcsak a 
BIS, hanem más antireszorptív [5] vagy antiangiogén 
[6] hatású készítmények mellett is kialakulhat ez a súlyos 
szövődmény. Ennek megfelelően módosult is az ameri-
kai szakmai ajánlás, amelyben ma már gyógyszer indukál-
ta állcsontnecrosisként (medication-related osteonecro-
sis of the jaw – MRONJ) definiálja ezt a kórállapotot, a 
korábbi biszfoszfonát indukálta állcsontnecrosissal szem-
ben (bisphosphonate-related osteonecrosis of the jaw – 
BRONJ) [4].

Incidenciája kapcsán meglehetősen eltérő adatok ér-
hetők el a nemzetközi szakirodalomban, gyakorisága 
0,019–10% között mozog [4]. Az osteonecrosis gyak-
rabban alakul ki a mandibulában, mint a maxillában (2:1) 
[3], a molaris régió gyakrabban érintett, mint a praemo-
laris, illetve frontalis területek [7], valamint fokozódik a 
kockázat invazív fogászati beavatkozást (fogeltávolítást) 
követően [3, 4]. Befolyással bír a betegség kialakulására 
a kezelés indikációja (alapbetegség: osteoporosis, malig-
nus daganat), a BIS beviteli módja (per os vagy intravé-
nás) és időtartama, fennálló szájüregi betegség (perio-
dontalis vagy periapicalis, gyulladásos folyamat), 
társbetegségek, rossz szájhigiéné, dohányzás [4]. A fő 
problémát az jelenti, hogy ennek a progrediáló, súlyos 
elváltozásnak jelenleg nem ismert ténylegesen effektív 
terápiás megoldása és a nemzetközi ajánlásokban írt ke-
zelési modalitások sem hoznak minden esetben sikert [8, 
9].

Mivel a MRONJ pontos patomechanizmusa egyelőre 
nem ismert, számos kockázati tényező, jelátviteli útvonal 
és mechanizmus etiológiai szerepe felmerült. Az alap- és 
klinikai kutatások többsége főként a BIS indukálta gyul-
ladásos és fertőzéses eredet [10], a lokális toxicitás [11], 
valamint az angiogenesist gátló hatások [12] vizsgálatára 
fokuszál. A patomechanizmus megértését nehezíti, hogy 
osteonecrosis néhány évvel a foghúzást követően is kifej-
lődhet BIS-kezelt páciensekben, ami farmakokinetikai 
tulajdonságaikra vezethető vissza (hosszú felezési idő) 
[3].

Ma több mint 200 millióan szenvednek osteoporosis-
ban, illetve annak különböző szövődményeitől világszer-
te [13]. Németországban nagyjából 8 millió alkalommal 
írtak fel BIS-származékot az elmúlt évben. Magyarorszá-
gon megközelítőleg 1 millió regisztrált, osteoporosisban 
szenvedő betegről tudunk (Magyar Osteoporosis és Oste-
oarthrologiai Társaság). Szintén fokozódik a daganatok 
előfordulási gyakorisága, amelyek csontáttétei kapcsán 
gyakran alkalmaznak BIS-készítményeket [14], illetve az 
angiogenesisgátló biológiai, úgynevezett „target terápi-
ák” is egyre inkább előtérbe kerülnek, ahogy azt a meg-
jelenő publikációk száma is jól mutatja. Amellett, hogy 
egyre bővül az említett gyógyszercsoportok indikációs 
köre, valószínű, hogy a MRONJ prevalenciájában is ha-
sonló tendencia lesz megfigyelhető. A fenti adatok jól 
mutatják, hogy súlyos népegészségügyi problémával áll-
hatunk szemben a későbbiek folyamán, de a komplikáci-
ók direkt és indirekt költségei révén a gazdasági vonatko-
zások sem elhanyagolhatóak. 

Az állcsontnecrosis klinikai tünetei  
és stádiumai

Az „American Association of Oral and Maxillofacial Sur-
geons” 2014-ben publikált, szakmai ajánlása alapján 
MRONJ esete állhat fenn, ha az alábbi kritériumok 
mindegyike igazolható [4]:
– � jelenleg is fennálló, vagy az anamnézisben szereplő an-

tireszorptív vagy antiangiogén kezelés;
– � legalább 8 hete nem gyógyuló, denudált csontfelszín 

vagy intra/extra oralis fistula a maxillofacialis régió-
ban;

– � kizárható a korábbi irradiáció vagy egyértelmű me-
tasztázis az állcsontok területén.
A MRONJ alábbi 5 stádiuma állapítható meg [4]:
1. Rizikócsoport: antireszorptív vagy antiangiogén te-

rápiában (per os vagy intravénás) részesült, tünetmentes 
betegek.

2. Stádium 0: atípusos tünetek (odontológiai ok nél-
kül; corpus mandibulae tompa, a temporomandibularis 
ízületbe sugárzó fájdalma; arcüregfájdalom akár gyulla-
dással és a sinus maxillaris falának elvékonyodásával; 
megváltozott neuroszenzoros funkciók) vagy klinikai 
(fogvesztés krónikus periodontalis betegség nélkül; pe-
riapicalis/periodontalis fistula caries eredetű pulpanecro-
sis nélkül) és radiológiai (alveolaris csonthiány krónikus 
periodontalis betegség nélkül; trabecularis szerkezet 
megváltozása az extractio helyén; osteosclerosis az alve-
olaris régióban; periodontalis ligamentum elvékonyodá-
sa) eltérések klinikailag igazolható osteonecrosis nélkül.

3. Stádium 1: denudált, necroticus csontfelszín vagy 
fistula, lokális gyulladás nélkül, alveolaris régióra lokali-
zált radiológiai eltérésekkel. 

4. Stádium 2: denudált, necroticus csontfelszín vagy 
fistula, bakteriális szuperinfekció és kísérő tünetei (fájda-
lom, erythema, pus), alveolaris régióra lokalizált radioló-
giai eltérésekkel (1. ábra).
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5. Stádium 3: denudált, necroticus csontfelszín vagy 
fistula, fertőzés és a következő tünetek legalább egyike: 
alveolaris régión túlterjedő osteonecrosis (mandibula ba-
sisa, ramus mandibulae, sinus maxillaris, os zygomati-
cus), patológiás törés, oro-cutan/oro-nasalis/oro-antra-
lis fistula, osteolysis (mandibula basisa, sinus alap) (2. 
ábra).

A MRONJ kezelése és progressziójának 
megelőzési lehetőségei

A legújabb nemzetközi szakmai ajánlás alapján, akár csak 
a korábbiban, a MRONJ kezelése stádiumspecifikusan 
történik [4].
– � Stádium 0: nem specifikus tünetek csökkentése (fájda-

lomcsillapítás) és konzervatív fogászati kezelés, a bete-
gek szoros utánkövetése a potenciális progresszió vé-
gett.

– � Stádium 1: fájdalomcsillapítás és antimikrobiális szá-
jöblögető használata (chlorhexidin 0,12%-os oldata).

– � Stádium 2: fájdalomcsillapítás, szisztémás antibioti-
kumkezelés, antimikrobiális szájöblögető (chlorhexidin 
0,12%-os oldata) használata.

– � Stádium 3: sebészi debridement vagy a necroticus áll-
csontrészlet-reszekció antibiotikumkezeléssel egybe-
kötve, illetve a maxillofacialis régió integritásának 
helyreállítása különböző rekonstrukciós módszerekkel 
jöhet szóba. Ezeknek a technikáknak az eredményes-
ségéről még nagyon kevés adat áll rendelkezésünkre 
(3. ábra) [4].

Kiegészítő terápiás lehetőségek

Teriparatid

A teriparatid egy humán rekombináns parathyroid hor-
mon, amelyet Lee írt le először a MRONJ kezelése kap-
csán [15]. Ugyan a vegyület fokozta a csontdenzitást a 
csontképződés révén [16], alkalmazása azonban nem 
haladhatja meg a 2 évet, mivel egyes vizsgálatok szerint 
fokozza az osteosarcoma kialakulásának esélyét. Így 

csontmetasztázisok esetén nem is ajánlott [17]. Más 
szerzők ugyanakkor nem igazolták ezt az összefüggést 
15 éves retrospektív klinikai vizsgálatuk során [18].

Pentoxifillin és α-tokoferol 

Epstein és mtsai 2010-ben publikálták, hogy az antimik-
robiális terápiát pentoxifillinnel és α-tokoferollal kiegé-
szítve 74%-ban csökkenthető a progresszió MRONJ ko-
rai stádiumában [19]. Ennek hátterében valószínűleg a 
pentoxifillin mikrokeringésre kifejtett pozitív és gyulla-
dásos citokinekre gyakorolt gátlóhatása állhat [20], míg 
az α-tokoferol esetében annak antioxidáns hatása eme-
lendő ki [21]. 

Alacsony energiájú lézerkezelés (low-level laser 
therapy – LLLT)

A fentebb említett antibiotikumprofilaxis mellett felme-
rült az LLLT alkalmazásának lehetősége is a MRONJ 
kezelése és megelőzése során egyaránt. Hatásai közül ki-
emelendő sebgyógyulást, angiogenesist, csontregenerá-
ciót, kollagén- és fibroblast-proliferációt elősegítő, tehát 
biostimulatív, valamint fájdalomcsillapító effektusa [22, 
23, 24, 25]. Ezek önmagában is igazolhatják az LLLT 
létjogosultságát a kórkép terápiájában. Scoletta és mtsai a 
MRONJ klinikai lefolyását vizsgálták kiegészítő LLLT-
terápia mellett. Vizsgálatuk alapján az LLLT-kezelés ha-
tására az érintett területen csökkent a seb mérete, vala-
mint az oedema és a fájdalom, illetve a genny és fistulák 
kialakulásának gyakorisága is mérséklődött. Emellett az 
sem elhanyagolható tény, hogy a betegek az LLLT-keze-
léseket jól tolerálták [26].

Ózonterápia és hyperbaricus oxigénterápia

Agrillo és mtsai retrospektív klinikai tanulmányukban be-
számoltak az ózonterápia klinikai létjogosultságáról, 
mint kiegészítő kezelésről a MRONJ standard terápiája 
mellett [27]. Szintén pozitív hatással volt a MRONJ le-
folyására a kiegészítő hyperbaricus oxigénkezelés [28]. 
Akárcsak az LLLT-nél, itt is a kezelési módszer által in-
dukált biostimulatív hatásokat igyekeznek kihasználni 
(proliferáció, sebgyógyulás, fájdalomcsillapítás) a terápia 
során. Az amerikai társaság által kiadott szakmai ajánlás 
azonban nem támogatja ezt a kiegészítő kezelést, mivel a 
Freiberger és mtsai által közölt tanulmányban kevés esetet 
vizsgáltak, így azokból nem vonható le statisztikai kü-
lönbség.

Növekedési faktorok alkalmazása

Felmerült növekedési faktorok terápiás alkalmazhatósága 
is. Mozzati és mtsai kutatásuk során 32 MRONJ-beteg 
esetében a sebészileg kezelt területre növekedési fakto-
rokban gazdag plazmát juttattak, majd ez után zárták a 

1. ábra A jobb oldali mandibula necrosisának radiológiai képe
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nyálkahártyát. Mind a 32 esetben sikeres volt a beavatko-
zás, 48–50 hónapos utánkövetés során recidíva nem iga-
zolódott [29].

Sebészi lézerek alkalmazása

A nagy energiájú sebészi lézerek szövetek vágására, így 
például a necroticus csont vaporisatiójára is alkalmasak. 
A minimálisan invazív technika alkalmazásával nemcsak a 
műtéti precizitás fokozható, hanem a csontban kialakult 
mikroperforációk stimulusként hatnak az angiogenesis-
re, emellett a technika baktericid hatású, javítva ezzel is a 
posztoperatív felépülést. Összehasonlítva a hagyomá-
nyos sebészi kezeléssel, sokkal jobb eredmények érhetők 
el ezt a technikát alkalmazva [17].

Számos alap- és klinikai kutatás irányul újabb kezelési 
modalitások kidolgozására, azonban magas evidenciájú 
tudás jelenleg nem áll rendelkezésre, további vizsgálatok 
szükségesek, amelyet az amerikai ajánlás is hangsúlyoz 

[4]. Mindezek alapján kiemelkedő jelentőséget kapnak 
azok az eljárások, amelyek az állcsontnecrosis megelőzé-
sét és korai diagnózisát célozzák meg.

Hagyományos eljárások az állcsontnecrosis 
megelőzése és korai diagnózisa céljából

Kockázatbecslés a terápia megkezdése előtt

Közismert tény, hogy a spontán kialakuló osteonecrosis 
gyakorisága csekély, az invazív fogászati beavatkozások 
azonban jelentősen fokozzák a kialakulás rizikóját [30]. A 
korábban ismertetett egyéb rizikófaktorok (terápia mód-
ja, társbetegségek, életkor stb.) mindezt befolyásolhatják, 
éppen ezért kiemelkedően fontos a terápia megkezdése 
előtt a fogászati státus ellenőrzése és optimalizálása, a be-
tegek szoros utánkövetése [4], amellyel nagymértékben 
csökkenthető az osteonecrosis kialakulási esélye. Ugyan-
akkor a kezelést elrendelő orvosnak is fel kellene hívnia 
betege figyelmét az esetleges komplikációkra és az esetle-
ges korai tünetek felismerésének fontosságára. 

Kockázatbecslés fogászati beavatkozások 
megkezdése előtt

A kellően átfogó anamnézis segíthet az osteonecrosis 
megelőzésében. Invazív fogászati beavatkozások előtt 
tanácsos magára a gyógyszerhasználatra, akár a csontrit-
kulásra is rákérdezni, nemcsak az egyéb, fogászati be-
avatkozás kapcsán komplikációkat okozó gyógyszerekre. 
A tervezett fogászati beavatkozás ugyanis módosítható, 
biztonságosabbá tehető. A BIS-kezelés felfüggesztése – 
„drug holiday” – kapcsán ellentmondásosak a vélemé-
nyek, de általánosan elfogadott nézet, hogy egy 2 hóna-
pos gyógyszermentes időszak az invazív fogászati 
beavatkozás előtt csökkentheti a szövődmények kialaku-
lását BIS-kezelt betegekben [31]. Természetesen ez csak 
tervezett fogászati beavatkozások esetén az alapbeteg-
ség, az onkológiai és/vagy reumatológiai terápia indivi-
duális mérlegelése alapján jön szóba.

Az amerikai, a német és a hazai maxillofacialis társasá-
gok szakmai ajánlása alapján a BIS-kezelt betegeknél 
dentoalveolaris és invazív fogászati beavatkozások során 
javasolt a profilaktikus antibiotikumkezelés. Elsőként pe-
nicillinszármazékok választandók (amoxicillin 3×750 
mg/nap vagy amoxicillin+klavulánsav 3×625 mg/nap 
vagy 2×1 g/nap), allergia esetén quinolonszármazékok, 
macrolidok és lincosamidok (clarithromycin 2×250 mg/
nap, erythromycin, clindamycin 4×300-600 mg/nap), 
metronidazol és doxycyclin jöhetnek még számításba. Az 
antibiotikum adása a beavatkozást megelőzően 1-2 nap-
pal, illetve a primer sebgyógyulásig ajánlott (nagyjából 
10 napig), de egyéb indikáció esetén hosszabb ideig is 
szükséges lehet. A betegség korai stádiumában szintén 
javulást eredményezhet az antibiotikumkezelés [4, 32, 
33].

2. ábra Kiterjedt, kétoldali maxillanecrosis klinikai képe

3. ábra Jobb oldali mandibulanecrosis reszekcióját követő lemezes re-
konstrukció intraoperatív képe
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Laboratóriumi vizsgálómódszerek  
az állcsontnecrosis korai diagnózisa céljából

A MRONJ esetében egy lokalizált elváltozásról van szó, 
így a szisztémás paraméterekben nem vagy alig mutatha-
tó ki markáns eltérés [4]. Ezért nélkülözhetetlen lenne 
olyan diagnosztikai eljárások kidolgozása, amelyek révén 
a prediszponált populáció kiszűrhető még a kezelés meg-
kezdése előtt, vagy az elváltozás hatékonyan kimutatható 
a korai stádiumban a veszélyeztetett populációban.

Plazma- és szérumminták vizsgálata

A csontokban is megtalálható, főként kollagén I lebom-
lása során (csontreszorpció) terminális telopeptidek sza-
badulnak fel, majd a keringésbe kerülnek és további deg-
radáción már nem esnek át. Ezek aminosav-szekvenciái 
az I. típusú kollagénre erősen specifikusak. Így exkréció-
ja egyenesen arányos a csontreszorpció mértékével [34], 
valamint vizeletből és vérből (szérum) egyaránt megha-
tározhatók. A C-terminális (karboxiterminális) telopep-
tid (CTX), valamint az N-terminális (aminoterminális) 
telopeptid meghatározása a csontreszorpciót leginkább 
reprezentáló biokémiai markerek, amelyek az osteoporo-
siskezelés hatékonyságának követésére is alkalmasak [34, 
35]. Számos kutatás vizsgálta a CTX-értékek és MRONJ 
közötti korrelációt. Egyes kutatási eredmények alapján a 
CTX szintje, akár szérumból, akár vizeletből mérve, szo-
ros összefüggést mutatott az ostenecrosis kialakulási esé-
lyével, illetve a patológiás elváltozás fennállásával [36, 
37]. Az eljárás hátránya, hogy számos tényező befolyá-
solhatja a mérési eredményeket, ilyen a nem, az étkezési 
szokások és a gyomor teltségi állapota, az életkor, az év-
szak, a hormonszintek vagy akár a vesefunkció [34, 38]. 
Vescovi és mtsai szerint nem ad megbízható eredményt a 
vizsgálat daganatos megbetegedés vagy rheumatoid ar-
thritis kezelését (methotrexat, prednison, raloxafen) kö-
vetően [17], illetve teljesen normálértékek is detektálha-
tók MRONJ fennállása esetén, ami megkérdőjelezi a 
betegség és a szérum-CTX-szint közötti összefüggést 
[39]. 

In vitro és in vivo tanulmányok alátámasztották egyes 
intravénásan adagolt BIS-készítmények angiogenesist 
gátló hatását [40, 41], és ennek a jelenségnek szintén 
szerepe lehet a kórkép patogenezisében. Ezt támasztják 
alá azok a közlemények is, amelyekben leírják, hogy bár 
a malignus tumorok kezelésénél kifejezetten előnyösnek 
bizonyult az angiogenesist gátló terápia, mégis a BIS és 
angiogenesist gátló együttes adása mellett a MRONJ in-
cidenciája jelentősen emelkedhet. Egyes retrospektív ta-
nulmányok az osteonecrosisráta megduplázódását írják 
le [42, 43]. Mivel a MRONJ kialakulása során szignifi-
káns érendothelium-eredetű növekedési faktor (vascular 
endothelial growth factor – VEGF) szint csökkenést 
mértek a szérumban, felmerül a VEGF-szint mérésének 
szűrésben való felhasználhatósága. Habár felmerült, 
hogy a VEGF, mint angiogén marker, jó kórjelzője lehet 

a MRONJ kialakulásának [40], irodalmi adatok – hason-
lóan a CTX-méréshez – jelentős eltéréseket mutatnak a 
mérés szenzitivitásával kapcsolatban [44].

Biomarkerek meghatározása nyálból 

Az egyre fejlődő biokémiai módszereknek és technikai 
megoldásoknak köszönhetően ma már lehetőség van 
sokfajta biomarker mérésére nyálból, amelyek alkalmasak 
a csontfolyamatok megítélésére. A BIS-ok ismert osteoc-
last-aktivitást gátló hatásuknak [3] köszönhetően az os-
teoblast-tevékenység kerülhet túlsúlyba. A csontspecifi-
kus alkalikus foszfatáz, az osteonectin és osteocalcin az 
osteoblast-aktivitás jellemző paraméterei, amelyek a szé-
rumban mért értékkel jól korrelálnak [45]. Ez a paramé-
ter MRONJ-ban szenvedő betegek esetében szignifikán-
san alacsonyabb értéket mutatott a BIS-sel kezelt, de 
necrosissal nem rendelkező betegek értékeihez képest 
[39]. A foghúzáson átesett, BIS-terápiában részesülő be-
tegek szűrése az említett biomarkerek szintjének megha-
tározásával nem számítanak rutinvizsgálatoknak, kizáró-
lag kutatások tárgyát képezik. 

A BIS-ek gyulladást keltő hatásai [46, 47] és a folya-
mat krónikus volta miatt a gyulladásos mediátorok vizs-
gálata is szóba jöhet. Ng és mtsai az IL-1b, TNF-α, IL-6 
szintjét ellenőrizték nyálból, következtetésük alapján 
ezek szintje jól monitorozza, sőt előre jelzi a periodonta-
lis betegségekre való érzékenységet. A módszer limitáci-
ója, hogy a nyálban ezek a mediátorok gyorsan lebomla-
nak, megnehezítve ezzel az abszolút koncentráció 
pontos meghatározását [45]. Más tanulmányokban IL-
1α-, IL-4-, IL-6-, IL-8-, EGF-, MCP-1-, TNF-α-szintek 
kerültek detektálásra, amelyekből azt a következtetést 
vonták le, hogy a gyulladásos paraméterek szintje és ezek 
változásai eleve eltérhetnek daganatos betegekben a száj-
üregi folyamatok során [48, 49]. Az egyes citokinszin-
tekben történő változások a MRONJ patogenezise kap-
csán még nem teljesen tisztázottak, mivel prospektív 
vizsgálatok még hiányoznak ebben a tekintetben.

Az oxidoreduktív stresszt jellemző anyagcseretermé-
kek (redukált glutation, malondialdehid, oxidált glutati-
on és 8-oxo-7,8-dihidro-2-deoxiguanozin) mérése szin-
tén jó megközelítése lehet a szájüregi gyulladásos 
folyamatok detektálásának. Bagan és mtsai a fent említett 
paraméterek vonatkozásában szignifikáns emelkedést 
mértek BIS-kezelt és osteonecrosisos betegek nyálmintá-
iban az egészséges páciensek értékeihez képest [50], 
ezek specificitása/szenzitivitása azonban szintén kérdé-
ses.

Következtetés

A gyógyszer indukálta állcsontnecrosisok prevenciójának 
és terápiájának egyik legnagyobb hátránya, hogy mind a 
mai napig nem rendelkezünk magas szintű evidenciaala-
pú tudással. Éppen ezért kiemelkedő jelentősége van az 
adatgyűjtés mellett a magas evidenciájú klinikai kutatá-
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sok folytatásának. Ehhez elengedhetetlen az interdisz-
ciplináris együttműködés, amely egyben az eredményes 
kezeléseknek is az alapja. A jelenleg érvényben lévő nem-
zetközi szakmai ajánlás maximálisan a konzervatív terá-
pia mellett foglal állást, késleltetve a sebészeti intervenci-
ót, amely nem minden esetben hozza meg az elvárt 
sikert. A kezelés terén beigazolódni látszik a minimálisan 
invazív sebészi technika szükségessége, amely sok eset-
ben – a betegek előrehaladott alapbetegségét is figyelem-
be véve – helyi érzéstelenítésben is elvégezhető, ezáltal 
idősebb és immunszuppresszív terápiában részesült bete-
geknél is alkalmazható, illetve a sebészi defektus méreté-
nek minimalizálásával csökken a sebgyógyulási zavar ve-
szélye is.

Anyagi támogatás: TÁMOP-4.2.2.A-11/1/KONV-
2012-0035, TÁMOP 4.2.4.A/2-11-1-2012-0001, 
OTKA-109388.
Szerzői munkamegosztás: J. Á., V. T.: A kézirat megírása, 
szakirodalmi adatgyűjtés. Sz. A., P. J.: Szakmai lektorá-
lás. A cikk végleges változatát valamennyi szerző elolvas-
ta és jóváhagyta.

Érdekeltségek: A szerzőknek nincsenek érdekeltségeik.
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Abstract
Objectives Nitrogen-containing bisphosphonates induce
osteonecrosis mostly in the jaw and less frequently in other
bones. Because of the crucial role of periosteal perfusion in
bone repair, we investigated zoledronate-induced microcircu-
latory reactions in the mandibular periosteum in comparison
with those in the tibia in a clinically relevant model of
bisphosphonate-induced medication-related osteonecrosis of
the jaw (MRONJ).
Materials and methods Sprague–Dawley rats were treated
with zoledronate (ZOL; 80 i.v. μg/kg/week over 8 weeks) or
saline vehicle. The first two right mandibular molar teeth were
extracted after 3 weeks. Various systemic and local
(periosteal) microcirculatory inflammatory parameters were
examined by intravital videomicroscopy after 9 weeks.

Results Gingival healing disorders (∼100 %) and MRONJ
developed in 70 % of ZOL-treated cases but not after saline
(shown by micro-CT). ZOL induced significantly higher de-
grees of periosteal leukocyte rolling and adhesion in the
mandibular postcapillary venules (at both extraction and intact
sites) than at the tibia. Leukocyte NADPH-oxidase activity
was reduced; leukocyte CD11b and plasma TNF-alpha levels
were unchanged.
Conclusion Chronic ZOL treatment causes a distinct micro-
circulatory inflammatory reaction in the mandibular perioste-
um but not in the tibia. The local reaction in the absence of
augmented systemic leukocyte inflammatory activity suggests
that topically different, endothelium-specific changes may
play a critical role in the pathogenesis of MRONJ.
Clinical relevance This model permits for the first time to
explore the microvascular processes in the mandibular peri-
osteum after chronic ZOL treatment. This approach may
contribute to a better understanding of the pathomechanism
and the development of strategies to counteract
bisphosphonate-induced side effects.

Keywords Mandibular periosteum . Intravital fluorescence
videomicroscopy . Leukocytes . Inflammation .

Bisphosphonate . Osteonecrosis

Introduction

Bisphosphonates (BISs) are widely used for the treatment of
osteoporosis and tumors with bone metastasis. The therapeu-
tic effect is linked to the inhibition of osteoclast activity, which
alters the bone metabolism by inhibiting bone resorption and
reducing the bone turnover [1]. Although BIS treatment un-
doubtedly improves the quality of life of the patients,
osteonecrosis is a serious adverse effect in a number of cases
[2]. BIS-related osteonecrosis of the jaw (recently termed as
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medication-related osteonecrosis of the jaw; MRONJ) occurs
mainly after invasive dental procedures, e.g., tooth extraction
[3], with an increased incidence particularly after the use of
third-generation BISs (e.g., zoledronate, ZOL) [1]. MRONJ
most probably has a multifactorial etiology and is influenced
by numerous factors, including the administration route and
dose, the duration of the therapy, the indication of BIS admin-
istration (osteoporosis or oncological reason), co-morbidities,
the concomitant use of other drugs (corticosteroids or chemo-
therapeutics), genetic factors, age, and poor oral hygiene [1,
3]. Local contamination and infection evoked by invasive
dental procedures in the presence of BIS treatment have also
been emphasized in the development of MRONJ [4].
Osteonecrosis, however, can develop several years later,
which may be explained by the long half-lives of these med-
ications [1] and not by the acute infectious induction. More-
over, BIS treatment has been shown to cause sterile inflam-
matory reactions such as aseptic peritonitis [5, 6] and an
enhancement of leukocyte–endothelial cell interactions in
the knee joint [7]. These effects may be linked to an upregu-
lation of pro-inflammatory cytokines such as IL-1 and TNF-
alpha [6–8] in response to BIS administration. The effects of
BISs also exhibit spatial differences, because certain inflam-
matory reactions are confined to the mandible and not present
in the femur [9]. Nevertheless, the exact pathomechanism of
MRONJ has not yet been clarified, and the possibilities of its
prevention or the use of curative modalities are also limited.

The periosteal perfusion significantly influences bone
healing and determines the prognosis of adjacent soft tissue
traumas as well [10]. Little, however, is known about the
microcirculatory effects of BIS and especially the microcircu-
lation of the mandible. Likewise, to date, no data are available
on the periosteal changes after invasive dental procedures
involving BIS treatment. In this study, we hypothesized that
a disturbed mandibular microcirculation may play a role in the
pathogenesis of MRONJ. With this background, we designed
an animal model ofMRONJ with the possibility of visualizing
the mandibular microcirculation by means of an intravital
videomicroscopy (IVM) technique. Our aims were to observe
and compare the mandibular and tibial periosteal microcircu-
latory reactions in rats subjected to chronic ZOL treatment
with or without tooth extraction.

Materials and methods

All chemicals were purchased from Sigma-Aldrich (St. Louis,
MO, USA) unless indicated otherwise. The study was per-
formed in accordance with the Guidelines laid down by the
National Institute of Health (NIH) in the USA regarding the
care and use of animals for experimental procedures and with
the 2010/63/EU Directive and was approved by the Animal

Welfare Committee of the University of Szeged (V/1639/
2013).

Experimental protocol

Twenty male Sprague–Dawley rats (average initial body
weight of 200±10 g) were randomly allocated to saline
vehicle-treated control (n=10) or intravenously (i.v.) ZOL-
treated (n=10, ZOL) groups. ZOL (zoledronic acid, Zometa,
Novartis Europharm, Budapest, Hungary) was administered
through the tail vein in a dose of 80 μg/kg once a week for
8 weeks. At the end of the 3rd week of the protocol, the first
and second molar teeth on the right side were extracted from
the mandible under ketamine and xylazine (i.p. 25 and
75 mg/kg, respectively) anesthesia. The teeth were luxated
with an 18G needle, and the extraction was performed with
extraction forceps. The roots were also removed with a dental
drill under a Zeiss operating microscope (×6 magnification;
Carl Zeiss GmbH, Jena, Germany). By thesemeans, the defect
was equal in size and severity in all rats. For pain relief,
intramuscular ketoprofen (Ketodex Forte; Berlin-Chemie
AG, Berlin, Germany; 5 mg/kg) and oral metamizole sodium
(Algopyrin; Sanofi-Aventis, Budapest, Hungary; 75 mg/kg)
were administered for 3 days. Mucosal healing processes were
monitored continuously throughout the experimental period.

Microcirculatory variables were examined on the 9th week
of the protocol. The animals were anesthetized intraperitone-
ally with an initial dose of sodium pentobarbital (45 mg/kg)
and placed in a supine position on a heating pad to maintain
the body temperature at 36–37 °C. Following cannulation of
the trachea, the penile vein was cannulated for the adminis-
tration of fluid and drugs (supplementary dose of sodium
pentobarbital; 5 mg/kg). This was followed by cannulation
of the femoral artery on the right side, and blood was drawn
for the white blood cell count and determination of the differ-
ent markers of leukocyte function/activation and inflamma-
tion (see later).

The mandibular periosteum was exposed for fluorescence
IVM on both sides, in the vicinity of the earlier extraction area
and on the contralateral side, between the anterior part of the
deep masseter and the anterior superficial masseter muscles,
as described elsewhere [11]. Briefly, an incision was made
parallel to the incisor tooth in the facial skin and the underly-
ing subcutaneous tissue, and the loose connective tissue be-
tween the fascia of the deep masseter and the anterior super-
ficial masseter muscles was carefully cut, using a microsurgi-
cal approach under an operating microscope (×6 magnifica-
tion; Carl Zeiss GmbH, Jena, Germany). By this means, the
periosteal membrane covering the corpus of the mandible at
the anterior margin of the molar region was reached, laterally/
distally to the incisor tooth. To aid better exposure for the
microscope objective, retraction was achieved by placing
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stitches with 7.0 monofilament polypropylene microsurgical
thread into the surrounding masseter muscles. For comparison
of the characteristics of the mandibular microcirculation with
those of the tibial periosteum, the medial/anterior surface of
the left tibia was exposed by complete transection of the
anterior gracilis muscle with microscissors and careful
atraumatic microsurgical removal of the connective tissue
covering the tibial periosteum [12]. After the IVM recordings
of the microcirculation, the animals were over-anesthetized
with a single overdose of pentobarbital, and the mandibles
were removed and placed into 10 % buffered formalin
solution for subsequent detection of osteonecrosis of the
mandible through micro-CT and histological analyses.

Fluorescence IVM

The exposed periosteal surfaces of the mandible (on
both the extracted and intact sides) and of the tibia
were consecutively examined by IVM. The exposed
surfaces were positioned horizontally on an adjustable
stage and superfused with 37 °C saline. The periosteal
microcirculation was visualized by IVM (penetration
depth: approx. 250 μm; Zeiss Axiotech Vario 100HD
microscope; 100-W HBO mercury lamp; Acroplan 20×/
0.5 N.A. W, Carl Zeiss GmbH, Jena, Germany). Fluo-
rescein isothiocyanate-labeled erythrocytes (0.2 ml i.v.)
were used to stain red blood cells and rhodamine-6G
(0.2 %, 0.1 ml i.v.) to stain leukocytes. Images from
four to five fields of the mandibular and the tibial
periosteum from each rat were recorded with a charge-
coupled device video camera (Teli CS8320Bi, Toshiba
Teli Corporation, Osaka, Japan) attached to an S-VHS
video recorder (Panasonic AG-MD 830; Matsushita
Electric Industrial Co., Tokyo, Japan) and a personal
computer.

Video analysis

Quantitative evaluation of the microcirculatory parameters
was performed off-line by the frame-to-frame analysis of the
videotaped images taken for IVM (IVM Software; Pictron
Ltd, Budapest, Hungary). Leukocyte–endothelial cell interac-
tions were analyzed in at least four postcapillary venules per
rat. Rolling leukocytes were defined as cells moving with a
velocity less than 40 % of that of the erythrocytes in the
centerline of the microvessel and passing through the ob-
served vessel segment within 30 s and are given as the number
of cells per second per vessel circumference. Adherent leuko-
cytes were defined as cells that did not move or detach from
the endothelial lining within an observation period of 30 s and
are given as the number of cells per square millimeter of

endothelial surface, calculated from the diameter and length
of the vessel segment. Red blood cell velocity (RBCV, μm/s)
was determined by frame-to-frame analysis of five to six
consecutive video-captured images taken after labeling of
the erythrocytes.

NADPH-oxidase activity of neutrophil leukocytes

The NADPH-oxidase activity of the isolated leukocytes
was determined by a modified chemiluminometric method
described by Bencsik et al. [13]. Blood was drawn from
the femoral artery into EDTA-containing tubes, and the
erythrocytes in 100 μl of whole blood were lyzed in a
hypotonic solution and centrifuged at 2000 g. The pellet
was resuspended and washed twice in a Dulbecco’s
phosphate-buffered saline solution. Twenty microliters of
resuspended pellet was incubated for 3 min at 37 °C in
Dulbecco’s solution containing lucigenin (1 mM), EGTA
(1 mM) and saccharose (140 mM). NADPH-oxidase ac-
tivity was determined via the NADPH-dependent increase
in luminescence elicited by adding 100 mM NADPH (in
20 μl), measured with an FB12 Single Tube Luminometer
(Berthold Detection Systems GmbH, Bad Wildbad, Ger-
many). Samples incubated in the presence of nitroblue
tetrazolium served as controls. The measurements were
performed in triplicates and were normalized for protein
content.

Whole blood free radical production

Ten microliters of blood dissolved in Hanks buffer was incu-
bated for 20 min at 37 °C in lucigenin (5 mM; dissolved in
Hanks buffer) or luminol (15 mM; dissolved in Hanks buffer)
solution in the presence or absence of zymozan (190 μM,
dissolved in Hanks buffer). Superoxide and hydrogen perox-
ide production were estimated via the zymozan-induced in-
crease in chemiluminescence (measured with the above
luminometer) and normalized for leukocyte counts in the
peripheral blood.

Expression of CD11b adhesion molecule on neutrophil
leukocytes

The surface expression of CD11b on the peripheral blood
granulocytes was determined by flow cytometric analysis as
detailed elsewhere [12], with a CyFlow ML (Partec GmbH,
Münster, Germany).
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Plasma TNF-alpha content

Blood samples were centrifuged at 13.500 rpm for 5 min at
4 °C and then stored at 70 °C until assayed. Plasma TNF-alpha
concentrations were determined in duplicate by means of a
commercially available ELISA kit (R&D Systems, Minneap-
olis, MN, USA).

Evaluation of the gingival lesions

Healing of the gingiva at the end of the study period (6 weeks
after the tooth extraction) was determined on the basis of an
osteonecrosis staging system provided by the American As-
sociation of Oral and Maxillofacial Surgeons [3]; this was
adapted for rats (see Table 1). The examination was performed
under an operating microscope (×6 magnification; Carl Zeiss
GmbH, Jena, Germany) by an independent maxillofacial sur-
geon. The incidence and the severity of the gingival healing
disorder were evaluated simultaneously.

Mandibular osteonecrosis as determined by micro-CT

Mandibles fixed with formaldehyde were used for micro-CT
imaging (SCANCO vivaCT 75; Scanco Medical, Brüttisellen,
Switzerland); subsequent analysis was performed on 2D sec-
tions in the coronal view of the images, the section being
chosen that showed the highest degree of tissue defect at the
earlier extraction site. The mean density of the bone was
estimated via the calculated percentage of the radiolucent area
of the alveolar portion of the bone.

Mandibular osteonecrosis as determined by histology

The specimens were fixed in 6 % neutral buffered formalin for
10 days, then rinsed in phosphate-buffered saline and
decalcified in 5 % EDTA for 7 days. The decalcified speci-
mens were embedded in paraffin and cut into 20 semi-serial
sections with a microtome (Shandon Finesse 325; Thermo
Scientific, Waltham, MA, USA), and routine hematoxylin

and eosin (H&E) staining was performed. The sections were
examined under a light microscope at ×4–40 magnification
(Model CHT; Olympus, Hamburg, Germany). The incidence
of osteonecrosis of the jaw was determined on the basis of
characteristic signs of necrosis, such as missing nuclear stain-
ing, the development of sequester formation and inflammato-
ry infiltration.

Statistical analysis

The statistical analysis was performed with a statistical
software package (SigmaStat for Windows; Jandel Sci-
entific, Erkrath, Germany). For the analysis of microcir-
culatory parameters, changes in variables within and
between groups (with respect to location and treatment,
separately) were analyzed by the two-way ANOVA test,
followed by the Holm–Sidak test. Differences between
groups (other inflammatory parameters and scores) were
analyzed with the Student t test. Data are presented as
mean values and SEM in all Figures and Tables. P
values <0.05 were considered significant.

Results

Microcirculatory inflammatory reactions

IVM recordings of the microcirculation were performed in a
mandibular periosteal region just adjacent to the site of the

Table 1 Scoring of macroscopic signs of the bisphosphonate-related
healing processes after tooth extraction (adopted from the staging of
MRONJ by Ruggiero et al. [3])

Score Exposed bone Inflammation/infection Fistula formation

Score 0 − − −
Score 1 + − −
Score 2 + + −
Score 3 + + +

Fig. 1 Periosteal primary leukocyte–endothelial cell interactions
(rolling) in saline- and ZOL-treated animals in the postcapillary venules
of the mandible on the tooth extraction (Ex) and the contralateral (C) sides
and in the tibia. Data are presented as means±SEM. Asterisk indicates
P<0.01 vs. the corresponding saline-treated group. The pound sign
indicates P<0.05 vs. the tibia. Two-way ANOVA was followed by the
Holm–Sidak test
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earlier tooth extraction and also on the contralateral side. Data
were compared with those on the tibial periosteum.

In vivo microscopy revealed homogenous microvas-
cular perfusion in all of the periosteal tissues examined;
the RBCVs were similar in the mandibular and tibial
capillary beds (827.5±30.1 μm/s and 739.0±37.7 μm/s,
respectively). The data were similar on the two sides of
the mandible and were not influenced by chronic ZOL
treatment (data not shown).

However, the leukocyte rolling in the postcapillary
venules of the mandible in the ZOL-treated group was
significantly higher than in the saline-treated group both
at the site of tooth extraction and on the contralateral
side; the differences between the sites were not statisti-
cally significant (Fig. 1). Similar differences were ob-
served in the leukocyte adhesion values after ZOL,
which revealed a statistically significant enhancement

in the mandibular periosteum as compared with the
tibial periosteum (Fig. 2). ZOL evoked similar rolling
and adhesion values irrespectively of the presence of
MRONJ (data not shown). The tibial microcirculation
was characterized by higher leukocyte rolling but simi-
lar adhesion in comparison with the data obtained for
the mandible in the saline-treated animals; none of them
were influenced by ZOL at this location.

Free radical production of leukocytes

The NADPH-oxidase activity of the neutrophil leuko-
cytes harvested from ZOL-treated animals was signifi-
cantly lower than that from the control animals
(Fig. 3a). The free radical-derived chemiluminescence
of the whole blood (as determined by the superoxide
and hydroxyl radical-dependent chemiluminescence mea-
surements) indicated no differences between the two
experimental groups (Fig. 3b).

Other inflammatory parameters

To exclude the possibility of increased leukocyte counts be-
hind the increased PMN rolling and adhesion after ZOL
treatment, the number of PMNs was determined with the
conventional Türk solution staining method and using a he-
mocytometer. As expected, the number of PMN leukocytes
was not higher (but rather even lower) in the rats chronically
treated with ZOL (Table 2).

As evidenced by the mean fluorescence values of the
adhesion molecule CD11b within the leukocyte population
(as measured by flow cytometry), no significant differences
were detected between the saline- and ZOL-treated animals
(Table 2).

There were no differences between the saline- and ZOL-
treated experimental groups with respect to the plasma TNF-
alpha levels either (n=6 and n=5, respectively) (Table 2).

Fig. 2 Periosteal secondary leukocyte–endothelial cell interactions
(sticking) in the postcapillary venules of the mandible on the tooth
extraction (Ex) and the contralateral (C) sides and in the tibia in saline-
and ZOL-treated animals. Data are presented as means±SEM. Asterisk
indicates P<0.01 vs. the corresponding saline-treated group. The pound
sign indicates P<0.01 vs. the tibia. Two-way ANOVAwas followed by
the Holm–Sidak test

Fig. 3 The effects of chronic
ZOL treatment on leukocyte
NADPH-oxidase activity (a) and
whole blood free radical
production (b) (the latter shown
by chemiluminescence in the
presence of lucigenin and luminol
to detect superoxide anion and
hydroxyl radical production,
respectively). Data are presented
as means±SEM. Asterisk
indicates P<0.05 vs. saline,
Student t- test
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Gingival healing after tooth extraction

Six weeks after the tooth extraction, intact mucosa could be
observed in 8/10 of the control animals (the average healing
score was 0.25±0.25), but different degrees of mucosal
healing disorders were detected in all (10/10) of the ZOL-
treated animals. The severity of the healing disorders reached
a score of 1.83±0.18 in this group (p<0.01).

Incidence and severity of mandibular osteonecrosis

Normal bony regeneration with a radiolucent areas of 12.09±
1.91 % of the alveolar bone could be detected at the site of the
earlier tooth extraction in all (10/10) of the saline-treated
animals. In contrast, a certain degree of discontinuity of the
cortical and spongious bone regions was found in 7/10 of the
ZOL-treated animals (Fig. 4). This higher incidence of im-
paired bony regeneration was accompanied by a significantly
lower average bone density in this group (39.51±7.18 % of

the alveolar area) as compared with that in the saline-treated
group (p<0.01).

The radiological diagnosis of mandibular osteonecrosis
was confirmed by standard histological examinations
(Fig. 5). Findings of missing nuclear staining in the osteocytes
increased inflammatory infiltration and granulation tissue for-
mation around the necrotic area, and occasional sequester
formation were made in 6/10 of the ZOL-treated animals,
whereas nearly normal bone regeneration was observed in
the other rats.

Discussion

The major aim of the present study was to examine the
mandibular periosteal microcirculatory reactions in a ro-
dent model of MRONJ. Through the chronic administra-
tion of high i.v. doses of ZOL in combination with an
invasive dental intervention, a high prevalence of mucosal
healing disorders (∼100 %) was achieved together with a
relatively high osteonecrosis rate (70 %; as revealed by
micro-CT and histological analyses). This protocol was
based on a modified literature method [14]. BIS doses in
the range 20–2250 μg/kg with different frequencies and
different administration routes have been administered by
others (for a meta-analysis [15]). The relatively high dose
applied here (80 μg/kg/week) is still well tolerated in rats,
and although it was also administered in a higher frequen-
cy than on human use, it produced symptoms and radio-
logical evidence similar to those observed in humans.
Apart from the dose of ZOL, the relatively high incidence
of MRONJ in this study can be explained by (1) the
triggering effect of the applied dental extraction (the

Table 2 The effects of chronic ZOL treatment on the leukocyte count,
neutrophil-derived CD11b adhesion molecule expression and plasma
TNF-alpha levels

Parameter Saline ZOL P values

PMN leukocyte count in
the blood (cells/μl)

4513±250 3731±215 <0.05

CD11b expression (mean
fluorescence intensity)

1.57±0.21 1.37±0.09 n. s.

TNF-alpha (pg/ml) 2.65±0.49 2.33±0.39 n. s.

Data are presented as mean±SEM. P<0.05 vs. saline, Student t test

n. s. not significant

Fig. 4 Bone density differences expressed as a percentage of the radio-
lucent area of the alveolar bone (marked with a rectangle) in saline- and
BIS-treated animals 6 weeks after tooth extraction (a). Data are presented

as means±SEM. Asterisk indicates P<0.05 vs. saline, Student t test.
Micro-CT scans show representative images of the mandibular cross-
sections in saline- and ZOL-treated rats (b and c, respectively)

Clin Oral Invest



importance of which has been demonstrated in MRONJ
patients) [3]) and (2) the use of the mandibular site (there
is a higher prevalence of osteonecrosis at this localization
in humans) [16].

It is reasonable to assume that impaired regeneration pro-
cesses contribute to the pathophysiology of MRONJ. From a
functional aspect, bony regeneration processes depend not
only on the functional activity of the osteoblasts and

osteoclasts but also on the blood supply and angiogenesis.
BISs have been shown to influence all of these processes. As
such, the inhibition of osteoclast recruitment to the bone
surface [17] and shortening of the osteoclast life span are the
main effects of BISs that are brought about directly or indi-
rectly (via the OPG-RANKL pathway) [18]. Accordingly,
delayed bone healing [19, 20], together with decreased bone
formation and vascularity in the extraction socket, have been
detected in ZOL-treated rats [21]. Numerous studies have
elucidated the antiangiogenic effects of BIS both in vitro
[22] and in vivo [20, 23]. Furthermore, thicker and less
connected/ordered blood vessels in the alveolar bone of the
mandible were found in ZOL-treated rats after tooth extraction
[24]. The aim of the present study was to assess not the
structural but the functional aspects of chronic BIS treatment
on the microvasculature.

Direct toxic and inflammatory effects of BISs may also
contribute to the development of MRONJ. BISs exert toxic
effects on many different cell types (fibroblasts, osteoblasts,
and endothelial and epithelial cells), manifested in diminished
cell proliferation and decreased collagen production, ZOL
being the most inhibitory in this respect [25–27]. Furthermore,
marked inflammatory reactions are attributed to BISs through
the induction of peritonitis via the activation of immunologi-
cal pathways after intraperitoneal administration [5, 6, 28].
Enhanced leukocyte–endothelial interactions have been dem-
onstrated by means of IVM after BIS treatment in an arthritis
model in mice [7]. BIS-associated inflammatory bony chang-
es have also been detected in the mandible [9, 29]. Interest-
ingly, these inflammatory changes were limited to the mandi-
ble and were not seen in the femur or the tibia [9, 29]. High-
dose ZOL exacerbates the inflammatory response in a peri-
odontitis model, where the bone lesions strikingly resemble
MRONJ [21]. In the present study, pro-inflammatory aspects
of chronic BIS treatment could also be traced in the mandib-
ular periosteum, and histological analysis supported the infil-
tration of the tissue by leukocytes in the neighboring necrotic
zone.

In this microsurgical model, the periosteal microcirculation
of the mandible can be visualized relatively easily in the molar
region, which is likewise a cardinal localization of MRONJ
[3]. Apart from nutritive considerations, the periosteum is
important for its osteoprogenitor cell content during bone
regeneration. Although BISs exert effects on osteoblast pro-
liferation, differentiation and migration in the entire skeleton
[30], their action seems to depend on the anatomical location,
with the jawbones as highly frequent sites of osteonecrosis.
After prolonged use, BISs are known to accumulate in the
skeleton, reaching the highest concentration in the mandible
[25, 31], which may explain their potential toxic effects pre-
dominantly in the jawbones. Furthermore, osteoblasts have
different proliferation properties at different locations (appen-
dicular vs. axial bones) under physiological circumstances,

Fig. 5 Representative micrograph (H&E staining) showing regeneration
processes in a ZOL-treated animal 6 weeks after tooth extraction (mag-
nification ×4) (a). s salivary gland, m muscle, b bone, g gingiva, ct
connective tissue. Sequester formation (se) and lack of nuclear staining
of the necrotic bone (nb) and PMN granulocyte infiltration around the
necrotic area (center of the section) can be seen at higher magnifications
(magnifications ×10 and 40) (b, and c, respectively). The bar denotes
200 μm
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and this phenomenon is also critically influenced by BIS
treatment [32]. The functional activity of the osteocytes too
differs between the mandible and the tibia [33], and the
aggravating effects of BISs on bone healing are confined to
the jaw [34]. Although the above findings reveal certain
potential factors contributing to the higher incidence of
osteonecrosis of the jawbones, the exact pathomechanism is
unknown.

As opposed to the microcirculatory consequences of bone
injury (i.e. fractures) [35], the effects of tooth extraction on the
microcirculatory derangement and local inflammation are less
commonly described, due to methodological constraints. We
focus here on the microcirculatory aspects of chronic ZOL
treatment combined with an earlier local trauma of the jaw
(tooth extraction). IVM data were obtained in the proximity of
the injury and from a contralateral (intact) site on the mandib-
ular periosteum and were compared with those relating to the
intact tibia. After chronic ZOL treatment, increased degrees of
leukocyte–endothelial interactions (rolling and adhesion)
were observed in the mandibular periosteum, both at the site
of the earlier tooth extraction and at the contralateral site, but
the corresponding interactions in the tibia were less extensive.
It is still an unanswered question why the examined cell-to-
cell interactions are higher in the postcapillary venules of the
mandible, irrespectively of the proximity of the tooth extrac-
tion site and the presence of MRONJ in the ZOL-treated
group. In preliminary studies, we did not observe inflamma-
tory complications in the mandibular periosteum without
tooth extraction, which demonstrated the triggering effect of
the trauma in this region. This observation was supported by
further findings, when more intense inflammatory reactions of
ZOL were evolved in the acute phase after tooth extraction
(data not shown). The inflammatory processes were similarly
shown in an IVM study to be aggravated by a BIS in an
arthritis model in mice [7]. Elevated levels of the pro-
inflammatory cytokine TNF-alpha have been reported in hu-
man patients in response to certain types of BISs [8] but were
not detected after the chronic administration of a BIS in our
study. Furthermore, the number and functional activity (free
radical-producing capacity) of PMNs were moderately re-
duced here. Such effects on the free radical-producing poten-
tial of PMNs (including NADPH-oxidase activity) have also
been demonstrated by others [36, 37]. Favot et al. suggested
that the compromised neutrophil functions, too, may be used
as potential biomarkers for MRONJ susceptibility [38]. Inter-
estingly, others have found impaired neutrophil chemotaxis
after BIS exposure in mice [36] and humans [38], and this
parameter is influenced most extensively by ZOL among the
different types of BISs [39]. For leukocyte–endothelial inter-
actions (as seen in our study), an enhanced expression of
adhesion molecules is required on the surface of the endothe-
lial cells and/or neutrophil leukocytes [40]. Interestingly, ex-
pression of the neutrophil-derived adhesion molecule CD11b

(responsible for leukocyte adherence) was not found to be
influenced by chronic ZOL treatment here or in other studies.
The extents of these inflammatory reactions, however, dif-
fered in the jaw and the tibial regions. These regional differ-
ences might be explained by different degrees of endothelium-
derived adhesion molecule expression at the different anatom-
ical locations.

Conclusions

A causative relationship between the microcirculatory inflam-
matory reactions and the pathogenesis of MRONJ could not
be provided in the present study; regional differences in en-
dothelial function/dysfunction, however, may contribute to
the explanation of differences in the occurrence of
osteonecrosis seen at different anatomical locations.

Acknowledgments This publication is supported by the European
Union and co-funded by the European Social Fund. Research grants:
TÁMOP 4.2.4. A/2-11-1-2012-0001 “National Excellence Program—
Elaborating and operating an inland student and researcher personal
support system convergence program;” TÁMOP 4.2.1/B-09/1/KONV-
2010-0005; TÁMOP 4.2.2A-11/1/KONV-2012-0035; TÁMOP 4.2.2A-
11/1/KONV-2012-0073 “Telemedicine-focused research activities on the
field of Mathematics, Informatics and Medical sciences,” and OTKA
109388.

Conflict of interest The authors declare that they have no conflict of
interest.

References

1. Brozoski MA, Traina AA, Deboni MC, Marques MM, Naclério-
Homem Mda G (2012) Bisphosphonate-related osteonecrosis of the
jaw. Rev Bras Reumatol 52(2):265–270. doi:10.1590/S0482-
50042012000200010

2. Marx RE (2003) Pamidronate (Aredia) and zoledronate (Zometa)
induced avascular necrosis of the jaws: a growing epidemic. J Oral
Maxillofac Surg 61(9):1115–1117. doi:10.1016/S0278-2391(03)
00720-1

3. Ruggiero SL, Dodson TB, Assael LA, Landesberg R, Marx RE,
Mehrotra B (2009) Task force on bisphosphonate-related
osteonecrosis of the jaws, American Association of Oral and
Maxillofacial Surgeons (2009) American Association of Oral and
Maxillofacial Surgeons position paper on bisphosphonate-related
osteonecrosis of the jaw—2009 update. Aust Endod J 35(3):119–
130. doi:10.1111/j.1747-4477.2009.00213.x

4. Wei X, Pushalkar S, Estilo C, Wong C, Farooki A, Fornier M, Bohle
G, Huryn J, Li Y, Doty S, Saxena D (2012) Molecular profiling of
oral microbiota in jawbone samples of bisphosphonate-related
osteonecrosis of the jaw. Oral Dis 18(6):602–612. doi:10.1111/j.
1601-0825.2012.01916.x

5. Calligeros D, Douglas P, Abeygunasekera S, Smith G (1993) Aseptic
peritonitis in association with the use of pamidronate. Med J Aust
159(2):144

6. Norton JT, Hayashi T, Crain B, Corr M, Carson DA (2011) Role of
IL-1 receptor-associated kinase-M (IRAK-M) in priming of immune

Clin Oral Invest

http://dx.doi.org/10.1590/S0482-50042012000200010
http://dx.doi.org/10.1590/S0482-50042012000200010
http://dx.doi.org/10.1016/S0278-2391(03)00720-1
http://dx.doi.org/10.1016/S0278-2391(03)00720-1
http://dx.doi.org/10.1111/j.1747-4477.2009.00213.x
http://dx.doi.org/10.1111/j.1601-0825.2012.01916.x
http://dx.doi.org/10.1111/j.1601-0825.2012.01916.x


and inflammatory responses by nitrogen bisphosphonates. Proc Natl
Acad Sci U S A 108(27):11163–11168. doi:10.1073/pnas.
1107899108

7. Zysk SP, Dürr HR, Gebhard HH, Schmitt-Sody M, Refior HJ,
Messmer K, Veihelmann A (2003) Effects of ibandronate on inflam-
mation in mouse antigen-induced arthritis. Inflamm Res 52(5):221–
226. doi:10.1007/s000110300075

8. Anastasilakis AD, Polyzos SA,Makras P, Sakellariou GT, Bisbinas I,
Gkiomisi A, Delaroudis S, Gerou S, Ballaouri I, Oikonomou D,
Papapoulos SE (2012) Acute phase response following intravenous
zoledronate in postmenopausal women with low bone mass. Bone
50(5):1130–1134. doi:10.1016/j.bone.2012.02.006

9. Senel FC, Kadioglu Duman M, Muci E, Cankaya M, Pampu AA,
Ersoz S, Gunhan O (2010) Jaw bone changes in rats after treatment
with zoledronate and pamidronate. Oral Surg Oral Med Oral Pathol
Oral Radiol Endod 109(3):385–391. doi:10.1016/j.tripleo.2009.10.
011

10. Schaser KD, Zhang L, Haas NP, Mittlmeier T, Duda G, Bail HJ
(2003) Temporal profile of microvascular disturbances in rat tibial
periosteum following closed soft tissue trauma. Langenbecks Arch
Surg 388(5):323–330. doi:10.1007/s00423-003-0411-5

11. Varga R, Janovszky A, Szabó A, Garab D, Bodnár D, Boros M,
Neunzehn J, Wiesmann HP, Piffkó J (2014) A novel method for
in vivo visualization of the microcirculation of the mandibular peri-
osteum in rats. Microcirculation (in press) doi: 10.1111/micc.12128

12. Varga R, Török L, Szabó A, Kovács F, Keresztes M, Varga G,
Kaszaki J, Boros M (2008) Effects of colloid solutions on
ischemia-reperfusion-induced periosteal microcirculatory and in-
flammatory reactions: comparison of dextran, gelatin, and
hydroxyethyl starch. Crit Care Med 36(10):2828–2837. doi:10.
1097/CCM.0b013e318186ff48

13. Bencsik P, Kupai K, Giricz Z, Görbe A, Pipis J, Murlasits Z, Kocsis
GF, Varga-Orvos Z, Puskás LG, Csonka C, Csont T, Ferdinandy P
(2010) Role of iNOS and peroxynitrite-matrix metalloproteinase-2
signaling in myocardial late preconditioning in rats. Am J Physiol
299(2):H512–518. doi:10.1152/ajpheart.00052.2010

14. Biasotto M, Chiandussi S, Zacchigna S, Moimas S, Dore F, Pozzato
G, Cavalli F, Zanconati F, Contardo L, Giacca M, Di Lenarda R
(2010) A novel animal model to study non-spontaneous
bisphosphonates osteonecrosis of jaw. J Oral Pathol Med 39(5):
390–396. doi:10.1111/j.1600-0714.2009.00878.x

15. Barba-Recreo P, Del Castillo Pardo de Vera JL, García-Arranz M,
Yébenes L, Burgueño M (2013) Zoledronic acid - Related
osteonecrosis of the jaws. Experimental model with dental extrac-
tions in rats. J Craniomaxillofac Surg pii: S1010-5182(13)00304-1.
doi: 10.1016/j.jcms.2013.11.005

16. Marx RE, Cillo JE Jr, Ulloa JJ (2007) Oral bisphosphonate-induced
osteonecrosis: risk factors, prediction of risk using serum CTX test-
ing, prevention, and treatment. J Oral Maxillofac Surg 65(12):2397–
2410. doi:10.1016/j.joms.2007.08.003

17. Rodan GA, Fleisch HA (1996) Bisphosphonates: mechanisms of
action. J Clin Invest 97(12):2692–2696. doi:10.1172/JCI118722

18. Maruotti N, Corrado A, Neve A, Cantatore FP (2012)
Bisphosphonates: effects on osteoblast. Eur J Clin Pharmacol
68(7):1013–1018. doi:10.1007/s00228-012-1216-7

19. Yamashita J, Koi K, Yang DY, McCauley LK (2011) Effect of
zoledronate on oral wound healing in rats. Clin Cancer Res 17(6):
1405–1414

20. Kobayashi Y, Hiraga T, Ueda A, Wang L, Matsumoto-Nakano M,
Hata K, Yatani H, Yoneda T (2010) Zoledronic acid delays wound
healing of the tooth extraction socket, inhibits oral epithelial cell
migration, and promotes proliferation and adhesion to hydroxyapatite
of oral bacteria, without causing osteonecrosis of the jaw, in mice. J
Bone Miner Metab 28(2):165–175. doi:10.1007/s00774-009-0128-9

21. Aguirre JI, Akhter MP, Kimmel DB, Pingel JE, Williams A,
Jorgensen M, Kesavalu L, Wronski TJ (2012) Oncologic doses of

zoledronic acid induce osteonecrosis of the jaw-like lesions in rice
rats (Oryzomys palustris) with periodontitis. J Bone Miner Res
27(10):2130–2143. doi:10.1002/jbmr.1669

22. Wood J, Bonjean K, Ruetz S, Bellahcène A, Devy L, Foidart JM,
Castronovo V, Green JR (2002) Novel antiangiogenic effects of the
bisphosphonate compound zoledronic acid. J Pharmacol Exp Ther
302(3):1055–1061. doi:10.1124/jpet.102.035295

23. Pabst AM, Ziebart T, Ackermann M, Konerding MA, Walter C
(2014) Bisphosphonates’ antiangiogenic potency in the development
of bisphosphonate-associated osteonecrosis of the jaws: influence on
microvessel sprouting in an in vivo 3D Matrigel assay. Clin Oral
Investig 18(3):1015–1022. doi:10.1007/s00784-013-1060-x

24. Guevarra CS, Borke JL, Stevens MR, Bisch FC, Zakhary I, Messer
R, Gerlach RC, Elsalanty ME (2013) Vascular alterations in the
Sprague-Dawley rat mandible during intravenous bisphosphonate
therapy. J Oral Implantol (in press) doi: 10.1563/AAID-JOI-D-13-
00074

25. Reid IR, Bolland MJ, Grey AB (2007) Is bisphosphonate-associated
osteonecrosis of the jaw caused by soft tissue toxicity? Bone 41(3):
318–320. doi:10.1016/j.bone.2007.04.196

26. ScheperMA, Badros A, Chaisuparat R, Cullen KJ,Meiller TF (2009)
Effect of zoledronic acid on oral fibroblasts and epithelial cells: a
potential mechanism of bisphosphonate-associated osteonecrosis. Br
J Haematol 144(5):667–676. doi:10.1111/j.1365-2141.2008.07504.x

27. Açil Y, Möller B, Niehoff P, Rachko K, Gassling V, Wiltfang J,
Simon MJ (2012) The cytotoxic effects of three different
bisphosphonates in-vitro on human gingival fibroblasts, osteoblasts
and osteogenic sarcoma cells. J Craniomaxillofac Surg 40(8):e229–
235. doi:10.1016/j.jcms.2011.10.024

28. Yamaguchi K, Motegi K, Iwakura Y, Endo Y (2000) Involvement of
interleukin-1 in the inflammatory actions of aminobisphosphonates
in mice. Br J Pharmacol 130(7):1646–1654. doi:10.1038/sj.bjp.
0703460

29. Yu YY, Lieu S, Hu D,Miclau T, Colnot C (2012) Site specific effects
of zoledronic acid during tibial and mandibular fracture repair. PLoS
One 7(2):e31771. doi:10.1158/1078-0432.CCR-10-1614

30. Koch FP, Wunsch A, Merkel C, Ziebart T, Pabst A, Yekta SS,
Blessmann M, Smeets R (2011) The influence of bisphosphonates
on human osteoblast migration and integrin aVb3/tenascin C gene
expression in vitro. Head Face Med 7(1):4. doi:10.1186/1746-160X-
7-4

31. Wen D, Qing L, Harrison G, Golub E, Akintoye SO (2011) Anatomic
site variability in rat skeletal uptake and desorption of fluorescently
labeled bisphosphonate. Oral Dis 17(4):427–432. doi:10.1111/j.
1601-0825.2010.01772.x

32. Marolt D, Cozin M, Vunjak-Novakovic G, Cremers S, Landesberg R
(2012) Effects of pamidronate on human alveolar osteoblasts in vitro.
J Oral Maxillofac Surg 70(5):1081–1092. doi:10.1016/j.joms.2011.
05.002

33. Çankaya M, Cizmeci Şenel F, Kadioglu Duman M, Muci E,
Dayisoylu EH, Balaban F (2013) The effects of chronic zoledronate
usage on the jaw and long bones evaluated using RANKL and
osteoprotegerin levels in an animal model. Int J Oral Maxillofac
Surg 42(9):1134–1139. doi:10.1016/j.ijom.2013.02.008

34. Kuroshima S, Entezami P, McCauley LK, Yamashita J (2014) Early
effects of parathyroid hormone on bisphosphonate/steroid-associated
compromised osseous wound healing. Osteoporos Int 25(3):1141–
1150. doi:10.1007/s00198-013-2570-8

35. Zhang L, Bail H, Mittlmeier T, Haas NP, Schaser KD (2003)
Immediate microcirculatory derangements in skeletal muscle and
periosteum after closed tibial fracture. J Trauma 54(5):979–985.
doi:10.1097/00005373-200305000-00022

36. Kuiper JW, Forster C, Sun C, Peel S, Glogauer M (2012) Zoledronate
and pamidronate depress neutrophil functions and survival in mice.
Br J Pharmacol 165(2):532–539. doi:10.1111/j.1476-5381.2011.
01592.x

Clin Oral Invest

http://dx.doi.org/10.1073/pnas.1107899108
http://dx.doi.org/10.1073/pnas.1107899108
http://dx.doi.org/10.1007/s000110300075
http://dx.doi.org/10.1016/j.bone.2012.02.006
http://dx.doi.org/10.1016/j.tripleo.2009.10.011
http://dx.doi.org/10.1016/j.tripleo.2009.10.011
http://dx.doi.org/10.1007/s00423-003-0411-5
http://dx.doi.org/10.1111/micc.12128
http://dx.doi.org/10.1097/CCM.0b013e318186ff48
http://dx.doi.org/10.1097/CCM.0b013e318186ff48
http://dx.doi.org/10.1152/ajpheart.00052.2010
http://dx.doi.org/10.1111/j.1600-0714.2009.00878.x
http://dx.doi.org/10.1016/j.jcms.2013.11.005
http://dx.doi.org/10.1016/j.joms.2007.08.003
http://dx.doi.org/10.1172/JCI118722
http://dx.doi.org/10.1007/s00228-012-1216-7
http://dx.doi.org/10.1007/s00774-009-0128-9
http://dx.doi.org/10.1002/jbmr.1669
http://dx.doi.org/10.1124/jpet.102.035295
http://dx.doi.org/10.1007/s00784-013-1060-x
http://dx.doi.org/10.1563/AAID-JOI-D-13-00074
http://dx.doi.org/10.1563/AAID-JOI-D-13-00074
http://dx.doi.org/10.1016/j.bone.2007.04.196
http://dx.doi.org/10.1111/j.1365-2141.2008.07504.x
http://dx.doi.org/10.1016/j.jcms.2011.10.024
http://dx.doi.org/10.1038/sj.bjp.0703460
http://dx.doi.org/10.1038/sj.bjp.0703460
http://dx.doi.org/10.1158/1078-0432.CCR-10-1614
http://dx.doi.org/10.1186/1746-160X-7-4
http://dx.doi.org/10.1186/1746-160X-7-4
http://dx.doi.org/10.1111/j.1601-0825.2010.01772.x
http://dx.doi.org/10.1111/j.1601-0825.2010.01772.x
http://dx.doi.org/10.1016/j.joms.2011.05.002
http://dx.doi.org/10.1016/j.joms.2011.05.002
http://dx.doi.org/10.1016/j.ijom.2013.02.008
http://dx.doi.org/10.1007/s00198-013-2570-8
http://dx.doi.org/10.1097/00005373-200305000-00022
http://dx.doi.org/10.1111/j.1476-5381.2011.01592.x
http://dx.doi.org/10.1111/j.1476-5381.2011.01592.x


37. Yamagishi S, Matsui T, Nakamura K, Takeuchi M (2005)
Minodronate, a nitrogen-containing bisphosphonate, inhibits ad-
vanced glycation end product-induced vascular cell adhesion
molecule-1 expression in endothelial cells by suppressing reactive
oxygen species generation. Int J Tissue React 27(4):189–195

38. Favot CL, Forster C, Glogauer M (2013) The effect of bisphospho-
nate therapy on neutrophil function: a potential biomarker. Int J Oral
Maxillofac Surg 42(5):619–626. doi:10.1016/j.ijom.2012.12.011

39. Hagelauer N, Pabst AM, Ziebart T, Ulbrich H, Walter C (2014) In
vitro effects of bisphosphonates on chemotaxis, phagocytosis, and
oxidative burst of neutrophil granulocytes. Clin Oral Investig (in
press) doi: 10.1007/s00784-014-1219-0

40. Eppihimer MJ, Granger DN (1997) Ischemia/reperfusion-
induced leukocyte-endothelial interactions in postcapillary ve-
nules. Shock 8(1):16–25. doi:10.1097/00024382-199707000-
00004

Clin Oral Invest

http://dx.doi.org/10.1016/j.ijom.2012.12.011
http://dx.doi.org/10.1007/s00784-014-1219-0
http://dx.doi.org/10.1097/00024382-199707000-00004
http://dx.doi.org/10.1097/00024382-199707000-00004


 

 

 

 

 

 

 

 

 

 

 

 

 

 

IV. 

 

 



Offi cial Publication of the International Association of Oral and Maxillofacial Surgeons

Editor-in-Chief: 
Nabil Samman, Hong Kong, China

Associate Editor-in-Chief
Joseph Piecuch, Farmington, CT, USA

Editors-in-Chief Emeritus
Paul J.W. Stoelinga, Nijmegen, The Netherlands

Piet E. Haers, Guildford, UK

Managing Editor
Jacqui Merrison, Oxford, UK

Section Editors

Cleft lip & palate and craniofacial anomalies
David Precious, Halifax, NS, Canada

Orthognathic surgery
R. Bryan Bell, Portland, OR, USA

Cosmetic facial surgery
David Perrott, Salinas, CA, USA

Trauma
Luke Cascarini, London, UK

TMJ disorders
George Dimitroulis, Melbourne, Australia

Pre-implant surgery/dental implants
Hendrik Terheyden, Kassel, Germany

Oral surgery
Ashraf Ayoub, Glasgow, UK

Head and neck oncology
Robert Ord, Baltimore, MD, USA

Reconstructive surgery
Henning Schliephake, Göttingen, Germany

Clinical pathology
Siegfried Jank, Innsbruck, Austria

Oral medicine/therapeutics
Takashi Fujibayashi, Tokyo, Japan

Imaging
Gwen Swennen, Bruges, Belgium

Research and emerging technologies
Frank Kloss, Innsbruck, Austria

Molecular oncology
Li Mao, Baltimore, MD, USA

Calendar of Events
Alexis Olsson, Chicago, IL, USA

IJOMS Editorial Offi ce
Health Sciences, Elsevier Ltd, The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, UK

Tel: +44 (0) 1865 843270; Fax: +44 (0) 1865 843992; Email: IJOMS@elsevier.com.
Online manuscript submission: http://ees.elsevier.com/ijoms

Journal homepage: www.ijoms.com

International Association of Oral and Maxillofacial Surgeons
5550 Meadowbrook Drive, Suite 210,
Rolling Meadows, IL  60008, USA. 

Tel: 224-232-8737; Fax: 224-735-2965
Email: info@iaoms.org

IAOMS homepage: www.iaoms.org 



21st ICOMS 2013—Abstracts: Oral Papers 1187

T3.OR007

Use of antibiotic beads in the management of bisphosphonate-
related osteonecrosis of the jaw

M. Esquillo 1,2,3

1 Philippine College Of Oral And Maxillofacial Surgeons,
Philippines
2 DLS-STI Medical Center, Philippines
3 Manila Central University, Philippines

Bisphosphonate Related Osteonecrosis of the Jaw (BRONJ)
is a severe complication described as an area of bone in the jaw
that has necrosed and been exposed in the mouth for more than
eight weeks in a person taking bisphosphonate. Surgical debride-
ment or resection in combination with antibiotic therapy is advised
to resolve the acute infection and pain as well as for long-term
palliation, particularly for stage 3 cases. The use of antibiotic
beads in the management of osteomyelitis, which has similar clin-
ical features with BRONJ, has been described previously. It is
hypothesized that the use of antibiotic beads may be beneficial
in the management of BRONJ. Two cases diagnosed with stage 3
BRONJ were managed with the use of antibiotic beads. Treatment
protocol consists of thorough debridement and curettage to remove
infected and necrotic tissue, placement of antibiotic beads, and
primary closure of the wound. Removal of the antibiotic beads is
then performed after six weeks. Both cases resolved uneventfully.
Results suggest that the use of antibiotic beads can be a viable treat-
ment option in the surgical management of stage 3 BRONJ cases.
Further clinical and experimental studies are needed to elucidate
the exact relationship and mechanisms involved.

Key words antibiotic beads; bisphosphonate; Bronj;
osteonecrosis
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Microcirculatory consequences of chronic bisphosphonate
treatment after tooth extraction in a rat model

A. Janovszky 1,∗, R. Varga 1, A. Szabó 2, D. Garab 2, M. Boros 2,
J. Piffkó 1

1 Department of Oral and Maxillofacial Surgery, Hungary, Europe
2 Institute of Surgical Research, University of Szeged, Szeged,
Hungary, Europe

Background and objectives: Bisphosphonates (BIS) has a
beneficial effect in patients whosuffer from osteoporosis and bone
metastasis, however, adverse consequences such as osteonecrosis
of the jawmayoccur. Our aim was to assess whether inflammatory
processes mediated by microcirculatory dysfunction are associ-
ated with the development of BIS-related osteonecrosis. This study
evaluated themicrocirculatory effects of BIS in the mandibular
periosteum after standardizeddental procedures, and in the tib-
ialperiosteum in order to compare the effects of BIS in different
osseous locations.

Methods: Sprague-Dawley rats were randomly allotted into
vehicle-treated control (n = 15) or chronic BIS-treated (ivzole-
dronate, 80 g/kg once a week, over eight weeks, n = 20)
groups, respectively. At the end of the chronic treatment, first
molarextraction was performed at one side of the mandible.
Leukocyte–endothelial interactions were measured at both sides
of mandibular periosteum by intravital fluorescence video
microscopy as well as in the tibial periosteum. Systemic, inflam-

matory parameters were measured such as NADPH-oxidase
activity of neutrophil leukocytes by luminometry, expression of
neutrophil-derived adhesion molecule CD11b by flow cytometry,
and plasma levels of TNF-? by ELISA.

Results: Spontaneous osteonecrosis of the jaw could not be
revealed by microCT due to BIS. BIS administration increased the
leukocyte–endothelial interactionsin the mandibular postcapillary
venules compared to the control and tibial periosteum. Accord-
ing to the acute dental procedure, these inflammatory reactions
showed a remarkable elevation. NADPH oxidase activity was sig-
nificantly lower compared to the control. Other parameters were
not affected by BIS treatment.

Conclusion: These data provide evidence that chronic BIS
treatment is accompanied by characteristic mandibular periosteal
microcirculatory inflammatory reactions which are enhanced after
an acute dental procedure. This suggests a potential role for leuko-
cytes in the pathogenesis of BIS-induced osteonecrosis.

Grant support: TÁMOP 4.2.4.A/2-11-1-2012-0001, TÁMOP
4.2.2A-11/1/KONV-2012-0035, TÁMOP 4.2.2A-11/1/KONV-
2012-0073

Key words: bisphosphonate-related osteonecrosis of the jaw,
rat, microcirculatory inflammation, tooth extraction
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Epidemiological, clinical, histological, radiological and treat-
ment overview of bronj cases from territory of central serbia
and montenegro

D. Jelovac 1,∗, S. Antic 1, M. Petrovic 1, M. Antunovic 2, M.
Gavric 1

1 Faculty of Dental Medicine
2 Faculty of Medicine, Montenegro

Bisphosphonates are drugs used in treatment of different
pathological conditions that affect bones, such as osteoporo-
sis, metastatic bone disease, Paget disease and osteogenesis
imperfecta, etc. The aim of the study is to present epidemiolog-
ical, radiological, clinical, histopathological data and treatment
overview of patients with BRONJ in Serbia and Montenegro.
From year 2009 to 2012 at the Clinic for Maxillofacial surgery
– Faculty of Dentistry, University of Belgrade and Podgorica 9
patients were referred to Clinics due to BRONJ, as non-healing
wound in the jaw after tooth extraction. Among them, 8 were
oncological (two patients with breast carcinoma (22.2%), three
patients with prostate carcinoma (33.3%), two multiple myeloma
patients (22.2%) and one patient with MTC (11.1%)) and one
suffering from osteoporosis (11.1%), which underwent BPs ther-
apy. Sex, age, underlying diagnosis, type of BPs therapy, dosage,
duration and way of administration, additional therapy, location of
osteonecrosis, clinical symptoms and dental extraction were ana-
lyzed parameters (age range (from 37 to 84 years); male to female
ratio was (6:3). Obtained data showed that 8 of 9 our patients
received Zometa (88.9%) (Zoledronic acid), except one woman
(11.1%) who received Bonviva (Ibandronic acid). Female patient
who received Bonviva was the only patient that had no malignancy,
and received bisphosphonates orally because of osteoporosis. The
time passed between periods of extraction to the period when signs
of bone necrosis were observed ranged from 0 to 5 months. Radio-
graphic findings displayed either radiolucent osteolytic zones, or
superficial bone defects, that were consonant with bone necro-
sis. Histological examination excluded malignancy. We performed

dx.doi.org/10.1016/j.ijom.2013.07.067
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