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1 INTRODUCTION AND GOALS OF THE STUDY

1.1 PREAMBLE

This dissertation is a methodological work, but addresses the definition of sedimentary
facies and their characterisation in a specific sedimentary environment. The dissertation uses
the term ‘depositional facies’ as given by Moore (1949): “Sedimentary facies is defined as
any areally restricted part of a designated stratigraphic unit which exhibits characters
significantly different from those of others parts of the unit”. In this wording the main criteria
of this facies definition are: lithology, sedimentary structure, sedimentary body geometry,
palaeontology, and palaeocurrent pattern (Selley, 1970, p.1).

Clastic sedimentology, and within that facies analysis, has used applied mathematics
for a long time. Several mathematical and statistical applications help in facies analysis. At
first attention was on analysis based on grain size distribution rather than the separation of
particular sedimentary facies and their characterisation. The identification of clastic deposits
focused on mathematical and statistical analysis at the beginning of the 1900s. It was Udden
(1914) who first wrote about the characterisation of accumulations of clastic sediments using
grain size distribution. Many sedimentologists followed this path until the 1950s,
supplemented with several different statistical parameters and their correlations (e.g. Folk,
1954; Folk and Ward, 1957; Friedman, 1961, 1962; Passega, 1964, 1972). During this period
sedimentologists concentrated on the separation of the different depositional facies using
statistical analysis. After the 1960s, and for several decades, the main goal was to demonstrate
that in sandy sediments, in the lithification stage of sandstone diagenesis, the lateral
distribution of grain size characters could be interpreted in terms of depositional facies.
Spencer (1963) and Visher (1967, 1969) presented a method to separate the depositional

facies.

The new method was not accepted by everyone. According to Klovan (1966) such a
simple statistical analysis for the interpretation of log-normal distribution was not good
enough. He claimed that these methods could be used in the identification of depositional
facies only if the depositional environment was well-known at the time of analysis. He also
noted that diagenesis, which plays an important role in lithification, was not taken into

account in this method.
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This issue of diagenesis returned again and again to the fore, even in the 1970s and
1980s. For example, in the national scientific community Bérczi (1971) and Geiger (1982)
created a comprehensive and very useful method for deposition facies analysis. Geiger (1982)
also drew attention to the grain size distribution of clastic sediments modified by diagenesis.
He also noted that the lithology parameters are also basically defined by sedimentary
environments after the lithification state and maybe also the lithomechanical properties
(Geiger, 1982).

After the 1960-1970s the multivariate statistical approaches became widespread in the
field of sedimentology. Factor-, principal component-, discriminant- and cluster analysis were
the most popular methods at this time. But we can find some multivariate approaches from the
1930s too.

Klovan (1966) demonstrated the application of factor analysis of the weight per cent
of grain size classes in the identification of depositional environments. In this methodological
work, Klovan used genetically well-known samples published by Krumbein and Aberdeen
(1937). The aim was to demonstrate that the applied method was supported or justified by
previous knowledge, so he only presented a comparison between arbitrary statistical
measurements and the results of the applied factor analysis. Feldhausen and Ali (1974)
analysed the same dataset (Krumbein and Aberdeen, 1937) but they used a kind of cluster
method completed by Wilk’s lambda test and discriminant analysis. The test showed the
significance of the defined facies, and discriminant analysis was used to extend the
classification to other samples of unknown genetics. Sahu (1964) used discriminant analysis

in order to distinguish adjacent mechanisms and environments with similar energy.

The multivariate statistical method, especially the application of cluster analysis,
provided a new, appropriate means for the analysis of clastic deposits. Multivariate analysis is
able to handle simultaneous observations, several data points, and to analyse more than one
outcome variable. Since the aim was a kind of pattern recognition (facies) using high-
dimensional properties, the most suitable methods were the classification processes. In these
approaches, the basic principle is the following: the more similar the way in which the
samples are deposited, the closer their positions are in the property space, and thus they
belong to the same group using the clustering method. The goal is to form units which are

able to describe sedimentary facies through common characteristics.
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One may say that clustering has been the generalised procedure for a wide variety of
geological problems since the 1960s. In 1982 and 1984 Geiger applied clustering to textural
and morphogenetic analysis of depositional sandstone bodies; Gedeon et al. (2003) used
clustering to identify lithofacies from well log data for reservoir characterisation. The
recognition of lithofacies or depositional facies is not an easy task in a heterogeneous rock
body or reservoir, however. Facies from e-log measurements and the lithofacies of core data
are not identical. Sedimentary features are a combination of petrophysical, depositional, and
diagenetic properties (Bhatt and Helle, 2002; Gedeon et al., 2003).

Nowadays, principal component analysis, discriminant analysis, K-means analysis and
several types of artificial neural network are frequently applied techniques for facies
identification based on core data, e-log data or a combination.

As these examples show, many papers relied on clustering the objects (samples) in the
sample (or parameter) space to identify lithofacies from well log data. Few (if any), however,
have tried to use these classification methods under the surface combined its results with
lateral extension of the cluster members. In fact, can be expected that this approach will have
significant uncertainty due to the scattered lateral distribution of sample points (wells). This
study aims to contribute to solving this issue by addressing a detailed workflow based on
neural network clustering to separate the input data set, a lateral estimation of point-like
qualitative information of cluster members by indicator kriging (IK); a way of interpreting the

geometry presented by IK, and a statistical description and comparison of cluster facies.

1.2 OBJECTIVES OF THE STUDY

Different clustering methods and various neural network techniques are often used to
perform the analysis of geological data; this dissertation also incorporates prior knowledge of
a problem with the application of a neural network, the interpretation of depositional
environments and mechanisms. This work is based on an unsupervised type of artificial neural
network because as a segmentation methodology clustering is also an unsupervised process.
This distinguishes clustering from classification. Generally the unsupervised neural network
and the clustering technique are similar according to the mechanism: the data structure is
explored in only one dataset without a control set. This determines which type of neural

network is applicable for the clustering in the study. An unsupervised neural network, in this

3
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case the Kohonen network, was therefore used. Despite the fact that a supervised network is
more commonly applied in several fields of geology, there are also many examples of the

application of unsupervised networks.

An unsupervised network can solve specific problems of indirect data mining, such as,
clustering, pattern recognition and visualisation. As a tool for identification, the Kohonen
network has been demonstrated in several publications. In those cases the goals were
lithofacies identification (Chang et al., 2002), well-log interpretation for the determination of
reservoir facies and fluid contents (Akinyokun et al., 2009) and classification of biogenic
sedimentation (Ultsch et al., 1995). The present study also demonstrates an application of the
Kohonen network, with the aim of identifying depositional facies supplemented by statistical

interpretation and lateral extension basis of probability.

The study is based on the term depositional facies as stated by Moore (1949) which
includes criteria such as lithology, sedimentary body geometry and palaeocurrent patterns, but
ignores sedimentary structure and palaeontology. In case of the selected study area there are
core samples available but these aspects of the facies were not analysed. Based on the

available data, however, all other criteria were involved in the identification.

According to Moore’s definition, depositional facies have characteristics which are
significantly different from features of other parts of the unit. Various facies interfinger with
one other, however, which implies that they are not laterally disjunctive groups. In contrast,
clustering methods separate disjunctive groups. This results in the following questions. How
or why is it possible to define the separated clusters as laterally interfinger facies? The goal is
not to define the clusters directly as facies. Using the second criteria of facies terminology, the
visualised geometry is analysed, which was displayed by probabilistic method. This step can
remove the contradiction between the disjunctive clusters and the interfinger depositional
facies. The mathematically separated clusters are only point-like results, which are extended

laterally using probability distribution.

The spatial appearance of the particular clusters may be different depending on the
probability which was used to delineate the geometry. They can also interfinger with each
other, so the spatial border of clusters can be not defined directly. The lateral extension is the
bridge between the spatial features of depositional facies and the mathematically strict sense
of the cluster (disjunction). In this lateral extension indicator Kriging was used because it can

estimate the probability of the appearance of clusters at each grid node on the map.



Introduction and goals of the study

Probability based visualisation can assist not only in the visualisation of lateral distribution of
clusters, but the probability contours of clusters can also be useful as blank polygons. Within
these polygons the spatial variance and lateral continuity can be analysed. In this manner the
palaeocurrent pattern (as the last criteria in terms of depositional facies) also can be

characterised by lateral continuity and spatial variance based on the variogram analysis.

The whole workflow contains several applied techniques, from the pre-processing to

the interpretation. Figure 1-1 shows the main steps of this procedure as a flow chart.

WORKFLOW
DATA PRE-PROCESSING

Data are interpreted quantitative petrophisical data

COMPUTATION PROCEDURE
Clustering proceedings using UNN

b

v
STATISTICAL DESCRIPITON

Statistical comparison of clusters
(Monte Carlo simulation, non-parametric statistics,
correlation of parameters, group variance analysis)

&
EXTENDING OF THE POINT-LIKE

RESULTS INTO THE PLAN

Variogram surface analysis, indicator kriging,
display of clusters based on the probability

}

INTERPRETATION

Figure 1-1: Workflow of the applied methods in identification of depositional facies
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1.3 THE INTERPRETED DEPOSITIONAL ENVIRONMENTS

This dissertation presents two case studies, from different clastic sedimentary
environments. The first involves the Széreg-1 reservoir of the Algy6é field, south east
Hungary, which is a delta plain environment. This study area was selected because it was the
subject of a research and development (R&D) project several years ago. This R&D project
was run by the University of Szeged, Department of Geology and Palaeontology, and the
Hungarian Oil and Gas Plc (MOL). This area could be described as one of the most
investigated areas in the world, considering the number of boreholes. In this field a huge
number of wells have penetrated the selected rock body, and several papers and reports deal
with the Szdreg-1 reservoir. This is why it seems an appropriate study area in which to test the

framework of the applied method.

The second case study involves a deep water turbidity system in the Sava Depression,
north Croatia. This study focuses on two reservoirs located in an oil and gas field in the Sava
Depression. On one hand, this study area was the subject of internship during my Ph.D.
studies, but on the other hand, using the developed workflow for depositional facies
identification had great potential. These fields represent completely different sedimentary
environments, and there were also other types of data available. The previously small scale
analyses of these selected reservoirs have not yet been published. Several papers have

described the reservoirs in these areas, but without vertical decomposition.

The present dissertation analyses the depositional facies using high resolution

stratigraphy and palinspastic and vertical decomposition in both case studies.

The components of the input vectors are from basic petrophysical data (corrected and
interpreted well-logging data). In the first study, porosity, hydraulic conductivity (as a
multiplication of the thickness of the flow unit and the corresponding permeability), and sand
content were available for the clustering method. In the other case study, in addition to the
measured e-logs, water saturation, shale content and a categorical variable which described

the lithology were applied.

The dissertation is organised as follows. Chapter 2 outlines the classification methods
which have been successfully applied to facies analysis since the 1970s. It highlights several

disadvantages of the commonly used clustering processes.
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Chapter 3 introduces neural network application and focuses on the Kohonen neural
network, the so-called Self-Organised-Maps (SOM).

Chapter 4 presents an overview of the workflow of the applied methods.

Chapter 5 presents two case studies based on the workflow. This section contains a
description of the study areas, the basic datasets, and the interpretation of results using lateral
extension, and variography analyses. At the end of each case study several statements are
made about the particular area.

Chapter 6 deals with differences between the applied neural network method and the

widely applied K-means clustering, in light of the results of the case studies.

The chapters in the final section of the dissertation discuss and draw conclusions based

on both study areas.
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2 OVERVIEW OF CLASSIFICATION PROCESSES AND THEIR
APPLICATION IN FACIES IDENTIFICATION

Tryon (1939) was the first to use the term ‘clustering’. He defined a method to
segregate data into groups (clusters). Cluster analysis developed very quickly over the last 70

years and many diverse techniques developed.

In multivariate data analysis clustering is a segmentation process in the basic dataset;
unsupervised and supervised methods are distinguished within that. Data clustering is often
confused with the comprehensively applied classification methods. In fact, both are
segmentation processes, but the first is an unsupervised, and the second a supervised process.
In the supervised method the objects are assigned to predefined classes, but in clustering there

are no predefined clusters or prototypes.

In view of the purpose of the analysis, the definition of clustering is as follows: cluster
analysis divides data into groups when the main information in the groups is not the
description of the linked objects, but rather their relationship. In other words, cluster analysis
is an exploratory data analysis tool which aims to arrange the different objects into groups in a
way that the degree of association between two objects is maximal if they belong to the same

group and minimal otherwise (Gun et al., 2007).

Mathematically, the definition is the following: suppose that there are n objects
(records, data points) in the basic dataset, and each object is d-dimensional (they are described
by d-different variables), D={X1, X2, X3, ...., xn}, Where the x; is the i" record and D is the
symbol of basic dataset. Each x; data point can be written in the following form: x; = {Xi1, X,
Xia,.....Xid} |, where Xij is the scalar denoting the j™ component of x;. Two records (e.g. x; and X;)
belong to the same cluster if d(x;, x;) < C, where d(.) is the distance function, in other words it

is the measure of similarity, and C is a constant distance value.

The literature of cluster analysis uses a number of different terms for “cluster” such as
‘group’ and ‘sub-set’. Hartigan (1975) described this approach as ‘cases-by-variables data
structure’. In this paper ‘group’, ‘class’ and ‘subset’ are used as synonyms for ‘cluster’ to

avoid repetition of the word.

As the literature uses different terms for ‘cluster’, in cluster analysis these terms are

used without a unified definition (Everitt, 1993). Bock (1989) summarised some criteria and
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requirements that should be fulfilled for all objects in a particular cluster, however. Data

points in a cluster have to:
Q) have the same or closely related properties;
(i) represent small distances or dissimilarities;
(iii)  have a connection with at least one other object in the particular cluster;
(iv)  be clearly distinguishable from other clusters (the complement).

If criteria (iv) is expected, then it is so-called ‘crisp’ or ‘hard’ clustering. If disjunctive
subsets (i.e. criteria (iv)) are not required, then it is ‘fuzzy’ clustering. In this case a record

may belong to more than one cluster with different probabilities.

Hard clustering is also divided into several types as non-hierarchical or hierarchical
clustering. The latter has two main segmentation categories according to the algorithm:

agglomerative and divisive algorithms. Figure 2-1 indicates the system of cluster analysis

types.

This study will focus on crisp clustering.

CLASSICAL : UNSUPERVISED
E— NEURAL NETWORK
(SOM)

‘ HIERARCHICAL ’ [NON-HIEARCHICAL!

| ]
(AGGLOMERATIVE ’ [D[VISIVEJ

CRISP (HARD) CLUSTERING

Figure 2-1: System of cluster analysis methods

The goal of hard clustering is to separate groups where the within group variance is
less than the variance between the partitioned clusters. These clusters contain similar records,

which means that they are close to each other in the d-dimensional features-space. Of course

9
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this similarity, or distance between two data points, is based on the dissimilarity measure or
similarity coefficient which is an important parameter in cluster analysis (Anderberg, 1973;
Jain and Dubes, 1988).

It should be emphasised, that unlike classical statistical procedures, cluster analysis is
generally used when there is no prior hypothesis about groups. This is a typical problem in the

exploratory phase of research.

Multivariate statistical approaches, such as classification techniques (cluster analysis,
discriminant analysis, principal component analysis, etc.), can provide good opportunities to
explore sedimentological characteristics, and the morphological features of depositional rock
bodies. There are several clustering techniques that use either multidimensional statistics or
one of the artificial neural network methods.

As a particular method of data analyses, cluster analysis is able to handle
multidimensional data and to produce primary knowledge through partitioning datasets (Duda
et al., 2000; Hastie et al., 2001; Ding and He, 2004). In this way the data space is transformed
into a feature space when the abstract space is defined by a feature extraction procedure. It
transforms the raw data into sample vectors and represents a reduced number of effective
features (Haykin, 1999). Clustering is a common procedure, and the first scientists, Wolff and
Pelissier-Combescure (1982), and Serra (1986) applied principal component analysis (PCA)
to clusters. Their goals were to separate facies using well readings. Delfiner et al. (1987) and
Bush et al. (1987) also tried to identify lithological units with discretion of log values based
on discriminant factor analysis (DFA). As Haykin (1999) highlighted, in both approaches
(PCA, DFA) the projection inflicts a kind of distortion on the original data dimension. These
projections are simple linear maps of the multidimensional dataset or singular value
decompositions (Jolliffe, 2002). What is the problem with these multivariate approaches?
Duda and Hart (1973) and later Grimm (1987) emphasised that in these approaches the main
problem is the “discrete optimization that projects the cluster centres as far apart as possible,

while the points of the same cluster are close to each other” (in Bhatt and Helle, 2002).

K-means clustering method is a classical and widely used clustering process which
was first introduced by Macqueen (1967) Later this method was also described by Hartigan
(1975) and Hartigan and Wong (1979). This method is a centre-based algorithm, and it is
considered very efficient for clustering large and high-dimensional datasets. The K-means

method applies centroids as prototypes to represent a subset or group in the overall dataset.

10
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Ultsch (1995), however, has suggested that this method was not able to recognise clusters in

any situation and sometimes failed to find any reasonable groups.

Unsupervised Neural Network (UNN) clustering is generally compared to K-means
because the process is most similar to centroid methods. This is why it is important to deal
with this similarity in more detail theoretically in the dissertation, and with respect to the case

studies.

There are numerous types of neural networks. Two main types of artificial neural
networks are supervised and unsupervised networks. These terms are equivalent to supervised
and unsupervised types in segregation processes, in determining when there is a predefined
control group or not. Clustering is one kind of unsupervised segmentation process. This
implies that if we do not have control sample the unsupervised network alone might be a

solution.

Recently, artificial neural network has been a commonly used procedure in log-
correlation, facies identification and lithological units separation. Originally this computer-
aided approach was introduced in log correlation by Fang et al. (1992) and Gill et al. (1993).
Rogers et al. (1992) used a kind of supervised neural network technique to identify lithology
types from e-logs, but their solution is the equivalent of a classification and not a clustering

separation because supervised neural network is based on control samples.

Without a control sample the Self Organising Map (SOM) is able to group the objects
and segregate the database into subsets. SOM belongs to the family of unsupervised artificial
neural network methods. These procedures can subdivide datasets without requiring a
reference set. SOM was originally introduced by Kohonen (1982, 2001). It is widely used for
clustering and can be considered a discrete version of non-linear principal component analysis
(NLPCA) (Cherkassky and Mulier, 1998). The unsupervised network can solve specific
problems such as indirect data mining, including clustering, pattern recognition and
visualisation. The Kohonen network was demonstrated in several publications as a tool for
identification including in lithofacies identification (Chang at al., 2000), well log
interpretation for the determination of reservoir facies and fluid contents (Akinyokun at al.,

2009) and the classification of biogene sedimentation (Ultsch at al., 1995).

Kohonen neural network method (SOM process) will be introduced in detail in the

following section of the paper.

11
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As mentioned above, the K-means method is very similar to the unsupervised neural
network algorithm. According to Ultsch (1995), Varfis and Versino (1992) or Murtagh and
Hernandez (1995) this unsupervised network is the Kohonen neural network. Despite the
similarity they also claim that sometimes K-means fails to find any reasonable groups when
SOM is able to recognise clusters. Warren (1994) and Ultsch (1995) dealt with this issue and
performed tests for comparison. They noted only that these two methods do not have a
statistical analogy in spite of the fact that SOM and K-means have similar algorithms in
cluster separation. Ultsch (1995) demonstrated that if the dataset contains chainlink clusters,
the results of UNN and K-means will be different. He shows a test, however, and not a
theoretical proof. Nonetheless, it is also an acceptable proof, since the outcomes of the linear
(K-means) and non-linear (SOM) algorithms were compared. The test by Ultsch (1995) was a
geometrical experiment. The input dataset contained two so-called chained clusters or non-
globular datasets. Figure 2-2 shows the two linked data groups. It is clear that there is no
linear projection which can completely divide these into two or more sub-clusters (Fig. 2-2).
This is important, as Lorr (1983) suggested distinguishing between at least two different

cluster types: the compact cluster and the chained cluster.

s .4
= X
- :.;: +

Chainlink data set K-means parameterized for two cluster K-means parameterized to four cluster

Figure 2-2: A chainlink dataset and its separation using the K-means method

According to the definition of Gan et al. (2007) “The chained cluster is a set of data
points in which every member is more like other members in the cluster than other data points
not in the cluster. More intuitively, any two data points in a chained cluster are reachable
through a path i.e. there is a path that connects the two data points in the cluster.” This means

that there are cases when this path cannot be given by linear projection, so the clusters cannot
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be separated by any hyperplane. Conversely, compact clusters can be represented by centres
(Gan et al. 2007). Consequently, it can be accepted that in some cases the NN method can
better separate datasets than the similar K-means algorithm.

13
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3 KOHONEN NEURAL NETWORK AS ONE TYPE OF CLUSTER
ALGORITHM

3.1 INTRODUCTION TO THE WORLD OF ARTIFICIAL NEURAL
NETWORKS

3.1.1 BASIC THEORY

Altrichter et al. (2006), Haykin (1999) and Rojas (1996) summarised the history and
development of artificial neural network. The neural network approach has been a well-
known development tool over the last couple of decades. Generally, neural networks are
considered modern interpretation tools with several purposes. The wide application of neural
network has been prompted by the development of computer technology in recent decades
(e.g. an increasing number of different software applications contain additional neural

network options as built-in modules).

The neural network method is derived from biological systems. The study of the
nervous system and neuronal structure launched the development of this area of science. In
natural neural systems, a large number of connected neurons are able to solve very different
complex tasks. This principle led to the invention of an adaptive device which is able to
perform computational tasks through a system of artificial neurons (processing elements).
What is the difference between the traditional computation tools and the neural networks? The
artificial neural network has a parallel structure, as in the natural neural systems, and ANN is
able to learn during application. This ability ensures that the complex problem solving
capabilities of these systems are more effective. This property has ensured the rapid

development of neural networks over the last 60-70 years.

In the early days of artificial intelligence, Rosenblatt (1957, 1958) developed a
machine called the perceptron, based on memorizing the pattern of the human mind. In 1958,
he proposed the perceptron as a more general computational model than McCulloch-Pitts
units (McCulloch and Pitts developed the first artificial neuron, the Threshold Logic Unit
(TLU) in 1943, which was later improved by Rosenblatt). The essential innovation was the
introduction of numerical weights and a special interconnection pattern. In the original
Rosenblatt model the computing units were threshold elements and connectivity was

determined stochastically.

14
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In their study of the perceptron Minsky and Papert (1969) retarded the development of
neural networks for a short time, and their work showed that the perceptron was only able to
resolve linearly separable classification tasks. Some twenty years later the development of
neural networks was in the spotlight again when Hopfield (1982) denied Minsky's statement
about the perceptron. Rumelhart et al. (1986) published the Hopfield-algorithm and

demonstrated its efficiency.

In the 1980-1990s research into artificial neural networks and their application grew

quickly.

3.1.2 IMPORTANT DEFINITIONS AND FUNCTIONS
This chapter summarises the most important definitions and properties characterising
an artificial neural network model. The theoretical introduction is based on Altrichter (2005),

Haykin (1999) and Rojas (1996). The following chapters will use these terms and definitions.

An artificial neural network is a parallel distributed process which constitutes simple
processing units. These are able to order information and knowledge. The ANN is able to
learn and use the acquired information. This process is directed by a learning and recall
algorithm. The simple processing units that build up the UNN are the neurons. A neuron is a
processing element with multiple inputs and only one output. The connections between the
input and output are usually described by a non-linear function (transfer function). These
connections are illustrated in Figure 3-1, where x; is the input (i=1 n), w; shows the weights
(i=1m), s is the symbol of the linear combination of weighted inputs, f(-) is the non-linear

projection, and y is the output value (in other word: activation).

X1
non-linear
X @\ activation function
: ) . f() (output / activation)
Xn

Figure 3-1: Model of non-linear neuron
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Figure 3-2 represents only general cases, when the processing element is a non-linear
unit, but there are artificial neural networks (e.g. unsupervised neural networks) which make

up linear processing units. Figure 3-2 demonstrates the construction of one neuron.

Figure 3-2: Model of a linear neuron

If ANN is based on linear neurons the sum of weights is s = Y w; x; = wTx and the
output y is based on this sum (y = s = wTx), but a special learning process such as Kohonen
learning can support the development of weights, and may also be a non-linear method (it is
the £ () non-linear function in Figure 3-1). The Kohonen neural network is also a special

case.

In a structural approach, the framework of ANN is a weighted spanning tree. ANN
consists of points and edges (neurons and connections) and these connections are oriented.

This process, as a signal-flow, is a well-defined set of rules.

There are two types of algorithms based on the structure of ANN: feedback and feed
forward systems. The unsupervised neural network belongs to the feed forward systems,
whose topology is a directed acyclic graph (with no directed cycles). In the other words, there
are no nodes (vertices in the graph) which could be connected in a closed chain. The other
system is the feedback (recurrent) neural network which comprises a structure cycle. Contrary
to feed forward NN, recurrent NN applies its internal memory to processing arbitrary

sequences of inputs.

The unsupervised network has a feed forward structure. This means that ANN
represents the input functions. There are no other internal conditions, only the weights.
Conversely, in the feedback structure, ANN back propagates the output values for input. In

this way, ANN represents a dynamic system with short-memory.
16



Kohonen neural network. ..

The feed forward ANN is ordered in layers and each layer receives signals only from
the previous layer, but if ANN is constructed with only one layer, it is so-called single layer
system. The single layer neural network is the perceptron (developed by Rosenblatt (1957,

1958)). The perceptron is based on a kind of threshold function during the learning process.

A more complex network system, which has more layers, is the so-called ADALINE
network (Adaptive Linear Element), developed by Widrow and Hoff in 1960. ADALINE is

based on the McCulloch—Pitts neuron.

The most interesting property in ANN is the adaptation, which is the learning ability.
This implies that a neuron is able to change the input-output behaviour as a response to
environment change. Why does the input-output behaviour change? Since the activation rules
are fixed, the input and output vectors are not modifiable, therefore the weights are
changeable. Several such learning rules are available for neural network models, but the
learning method must adapt to the fixed network parameters. This adaptation is based on

previous experience until a solution is found, if it exists (Rojas, 1996).

Let’s look at the classes of the most important learning algorithm comprehensively.
There are three main learning methods: supervised, unsupervised and the analytic learning
methods (note, the last one is not a real learning process).

In supervised learning there is also training data. This consists of a set of training pairs
made up of an input object and a supervisory signal. The training is based on the expected
responses for some input and the actual response according to the training pair. The
differences between the actual and expected responses indicate the modification required to
reduce this variance through optimising the weights of the input. This difference needs to be

lower in the next learning cycle until it equal to the minimum learning rate.

Contrary to supervised learning, in the unsupervised method there is no reaction that
can control the learning. ANN needs to develop an ‘attitude’ to find hidden structure in the
input data which is based on the similarity of input signals without labelled responses. In the
Kohonen neural network the unsupervised learning technique means that the system learns the
topology and distribution of the input data. The algorithm tries to explore every correlation
among the input, and segregates the input into categories or clusters. During this method the
system has the ability to modify itself, which makes the categorisation improve. This may

also be referred to as a self-organising network.
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For this dissertation, the most important way of learning is the unsupervised method,
and therefore the next part deals only with those briefly. The most important learning methods
are (i) Hebbian learning, which is sometimes supplemented by (ii) a competitive learning

mechanism.
In general these two learning types are as follows:

(i) Hebbian learning mechanism: This learning process has biological roots
(Hebb, 1949). His assumption was as follows: if two "areas" in the brain are often
activated simultaneously, direct contact develops between these "areas™ and they are able
to activate each other later. During learning process the connection between neurons, the
synaptic weights, changes. This procedure is the so-called long-term potentiation. The
changing of weights is based on Hebb’s rule. According to the rule, the strength of
connection between two neurons (weight coefficient) changes in proportion to the
multiplication of activation of these neurons. Several alternatives to Hebb’s learning rule
have been developed, however. These modified Hebb’s rules have a very important
property: a normalisation process is incorporated in the rule. The reason for this
modification is that when using the original Hebb’s rule the weights may increase beyond
all thresholds. There are several methods for the normalisation procedure. The one

actually applied will be discussed in the next subsection.

(i) Competitive learning mechanism: this learning process is one of the most
important algorithms. Often, it completes the Hebbian learning in the unsupervised ANN.
The neurons in the same layer compete with each other, or increase the activation level

3

through the lateral connections (only one is the “winner” with the highest activation
value). The output of the winning neuron, and only this one, will be active (the “winner
takes all”). In contrast, the neurons in a cooperative learning mechanism support the
activation level of the others (common winning).

During the competitive learning, ANN separates the sample space into regions. The
response for input from a particular region can activate only one processing element, so,
the procedure results are a kind of clustering, or partitioning.

Generally, competitive learning involves two tasks. In the first step, the activation
value of each neuron is determined by the actual weight, and after this the winner will be

selected. The change of weights is the second step. It is also based on Hebb’s rule. It can
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signify the modification of only the weight of the winning neuron or it also can mean
changing the weight of the winner and also the neighbouring neurons (according to the
previous setting of the particular ANN). So the competitive process supports learning, but
during the competition there is no learning procedure. In this step only the selection of
the “engine” of learning (the winning neuron) is selected. After that, it can influence the
neighbouring neurons in the weight-modification procedure. This implies the real
learning mechanism. The choice of the active neuron can be made in numerous ways. In
Kohonen NN, for example, it is directed by the non-linear activation function and the
lateral connection between the processing elements. This non-linear function ensures that
the output of the active element will be one, and that the other case is zero. This will be

described in more detail in the next subchapter.

3.2 KOHONEN NEURAL NETWORK IN THE GLOBAL SYSTEM OF
ARTIFICIAL NEURAL NETWORKS

The applied clustering process used the ‘Self-Organised Map’ (SOM), which is a type
of artificial neural network. This process was introduced by Kohonen (1982, 1984, 1990,
2001). Like each artificial neural network, this is also an analogy of the manner by which the
human brain can logically arrange data, and new information. This is a kind of associative
memory, which supports the systematic organisation process without any external help. This
implies an unsupervised neural network (UNN) method belongs to the feed forward, non-
linear methods such as ANN (Fig. 3-3).

In the unsupervised learning method, the network tries to learn the data structure in
order to separate the data into clusters without any help (like a reference set). In other words,
the network has to assume that cluster membership is broadly defined by the input patterns
sharing common features, and that the network will be able to identify those features across
the range of input patterns (*Bullinari). This is a really simple means of cluster organisation
because during the self-organising process the relationship of the arranged input in the
feature-space is maintained and refined in the iteration. The name Self-Organised Map

originates from the position of the neurons that are arranged in a grid like (metaphorically) a

! Bullinari, J. A.: http://www.cs.bham.ac.uk/~jxb/inn.html, 09.10.2013.
2 Unpublished report about the study field in Sava Depression - Tertiary CO2 Injection (2003): INA, Zagreb 19
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‘map’, which is the Kohonen layer. This is a computation layer where complex data structures

are mapped using inner spatial non-linear projection.

ANN
feed forward feedback
s ///
linear non-linear constructed learning
A

A

supervised  non-supervised

Koho*nen NN

Figure 3-3: Position of Kohonen neural network in ANN system

SOM can be characterised by three essential properties. The algorithm proceeds are (i)

competitive, (ii) cooperative, and (iii) adaptive processes (Haykin, 1999).

Let’s briefly consider these features; later it will be important in the description of the

process.

Q) The competitive learning method implies that the network has to have
the ability to recognise the structure of the multidimensional basic dataset using the
method of dimension reduction (Kohonen, 1982; Haykin, 1994; Fausett, 1994;
Patterson, 1996). This reduction is only a “queasy” one, however, since each neuron is
an n-dimensional weight-vector, where n is equal to the dimension of the input
vectors.

In the learning processes, the competitive learning feature helps select the
“winning neuron”. This neuron is active only at a time of iterative learning. It is also
called the ‘winner-takes-all’ neuron. The method of inducing winning neuron
competition among the output elements is to apply lateral connections between them.
This lateral network is called a negative feedback path. Application of the lateral
connection was established first by Rosenblatt in 1958 (Haykin, 1994, 1999).
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(i)  The cooperative process means that the winner neuron determines the
spatial location within the topological connection of neighbourhood neurons, so the
winner neuron is able to cooperate with the neighbouring neurons. The weights of the
winner and its closest neighbours will also change in the next iterative step. The rate of
this weight modification relies on the applied neighbourhood function and on the

initialised radius of neighbourhood relationships.

(iti)  Based on the adaptive property, ANN is able to adequately respond to
the changing environment: the learning, training, self-organisation and generalisation
and all parts of this property. During the learning process, NN receives positive
feedback as reinforcement or discrepancies. ANN can thus respond to the recurring
problem or even to new but "familiar" questions. It is ‘self-organisation” when ANN
modifies the weights of neurons according to a kind of learning-rule and this way

adapts to the changing environment.

The structure of the applied neural network and the Kohonen layer are presented in
Figure 3-4. This figure shows that the processing elements organise in only one layer
(Kohonen-layer). Usually it is a plane in 2D, or line in 1D, but 3D or more-dimensional
Kohonen layers are also applied. In any case, it is a discrete low-dimensional output space. If
the Kohonen layer is a two-dimensional map, the neurons compose a lattice or if it is one-
dimensional, the neurons organise nodes in a line. These neurons represent linear projection
and each neuron is connected to all input. The neurons compute the weighted input values. In
SOM there are feed forward connections, but there is “feedback”. This means only lateral
contact among neurons. In Figure 3-4 the structure shows that SOM does not contain any

specific output layer. At the same time, each neuron also acts as an output node.

According to the computation of weighted input, the neuron with the largest output
will be the ‘winner’. So the neurons compete with each other. The goal of the competition is
that in the subsequent step of learning, only the weight of the winning neuron and its
neighbours will change. The weights of neighbouring neurons are controlled by the lateral
non-linear connection. The winner - the most active neuron - may give positive reinforcement
to its neighbours and block the others. The output values of these blocked neurons will be
zero.
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Figure 3-4: Structure of Kohonen neural network with three competing units

This competition-feature supports the rule of the learning. The learning is based on the

commonly used Hebb’s rule, or more accurately its modified rule.

Learning the data structure takes place iteratively using the modified Hebb’s rule

presented below as the “winning neuron algorithm” (Lampinen et al., 2005).

The modified Hebb’s rule in the case of SOM is normalised: it keeps weights within a
specified range. The application of the modified Hebb’s rule represents this adaptation.

Mathematically, the (i) competition, (ii) cooperation, and (iii) adaptation processes

which built up the whole Kohonen methodology are the following:

(i)  Inthe competitive process the neurons compute the weighted input (Eg. 3.1):

yi=Xwix =wix (Eq. 3.1)

X; = {X{1, Xj2, Xj3, .....Xjn} " input vector which is selected randomly from the data space.

yi is the computation, value of output for i neuron.

th

w; = {wj1, W, Wj3,....,an}T IS J synaptic weight vector of each neuron with the same

dimension as the input data space; (j=1 m) where m is the total number of neurons. In other

22



Kohonen neural network. ..

words, they are the connection weights between the input units i and the neurons j in the

computation.

If in a case, | wi='x > w; 'x then the learning rule modifies only the wi=. So UNN selects
the neuron with the largest inner product (w;='x) through with the winner is determined. The
maximisation of the inner products (w7 x) is equivalent to minimising the Euclidean distance
(Eq. 3.2):

i*(x) = argmin|x —w;||,j =Tm), (Eq. 3.2)
J

arg min; is a distance function; i* is the index of the neuron “that we want to identify”, which
Is the so-called best-matching or winning neuron for the input vectors x. The weight vector of

this winning neuron comes closest to the input vector.

(i)  The update of weights during the learning process depends on the
cooperative process. So, in the learning process not only the weight of winner may
change. Using the application of neighbouring relationships with neurons the
modification of the winner’s environment is also possible. This modification is made
through the lateral connection of processing elements. This is based on the
neighbourhood function and the degree of neighbourhood. During learning, all
neurons that are located close to the winner will be activated. This closeness means a
pre-defined distance in the Kohonen map.

The development of a lateral connection as inhibition (as used by Kohonen in
1982, and 1984 for UNN) is of biological origin. It has been demonstrated that there
are also excitatory and inhibitory lateral connections among the neighbouring neurons
in the mammalian brain. In this way, the “parts” of the brain can cooperate with each
other to support learning (Kohonen, 1984).

The excitatory and inhibitory lateral connections show that the value of the
neuron (which has the largest output value the very first time) increases while the
others decrease. This is acceptable if the winner’s output is not divergent. It is

therefore required that the winner should continuously converge to one, while the
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other tends to zeros the binary output is guaranteed using a non-linear projection after
the linear combination (Eg. 3.1).

The weights of lateral connections are defined by the distances among the
processing elements in a kind of topology. It is first necessary to define this distance
and the topological neighbourhood among the activated neurons.

Let h;i~ denote the topological neighbourhood (at the centre of the winner) and
dis mark the lateral distance between the winning element and the neuron being
activated by the winner. In this case, the activation is made by Gaussian
neighbourhood function (GNF) (Eq. 3.3; Fig. 3-5).

(+) excitatory connection
(-) inhibitory connection

Figure 3-5: Gaussian neighbourhood function

Bt () = exp(— 2L (Eq. 33)

o parameter is the effective width of the topological neighbourhood (Fig. 3-5).

The role of o is to define the degree the neighbourhood around the winner. The
participation of the excited neuron depends on it in the learning process; this
parameter is a continuously decreasing value during the progress of learning.

This GNF must satisfy two conditions:

(1) hji must be symmetric about the maximum point, where di« = 0

(2) a necessary requirement for the convergence is that the amplitude of the
GNF decreases monotonically with increasing lateral distance di« decaying to zero for

di*j —00
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If the neurons are organised on a one-dimensional lattice, dix equals |j-i|, and in

the case of a two-dimensional lattice it is defined by Equation 3.4,

disi® = [Iryrill, (Eq. 3.4)

where r is a discrete vector. It denotes the position of the excited neuron in case of
index j and the position of winner in the case of index i. It is measured in the output
space.

The modification of weights is not applicable when simply using Hebb’s rule
(Eqg. 3.5), because in this way the weights may grow beyond all limits. For the
“correct” competition of neurons, UNN must determine the winner using the direction
of the weights and not their absolute value. This requires the normalisation of weight
and application of the modified Hebb’s rule (Kohonen, 1982) (Eqg. 3.6).

wi(t+1) = n(t) - (x = wi (1)), (Eq. 3.5)
wi (t + 1) = wi. (8) + 7(t) - (x = w; (6)), (Eq. 3.6)

(iii) The updating of weights which supports the learning of UNN is
represented by the updated Hebb’s rule and using GNF. Equation 3.7 shows the
weight-updating of close enough neurons (Kohonen, 1982; Ritter et al., 1992;
Kohonen, 2001).

w(t) - is the weighting and i* index is the mark of the winner processing element;
n(t) - is the Kohonen-learning rate.

This learning rate is pre-defined by the start value and the (minimum) end value
in the initialisation process. The rate during the training cycle converges from the start

value to the end value in a monotonically decreasing way.
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4 WORKFLOW OF APPLIED METHODS

4.1 DATA PRE-PROCESSING

A network depends on the quality and quantity of training data. Consequently, pre-
processing of data is very important after the definition of the data type (categorical and
continuous). This is as follows: (i) selection of outlier data (which can reduce the efficiency of
the network); and (ii) attribute normalisation (data pre-processing: data preparation for cluster

analysis requires some sort of transformation, such as standardisation or normalisation).

4.2 COMPUTATION PROCEDURE

The applied UNN process was performed using SANN (STATISTICA Automated
Neural Networks). SANN includes an inter alia Kohonen-training network, called SOFM
(Self Organising Feature Map) networks. SANN is a comprehensive, powerful, and extremely
fast neural network data analysis package which is known as a state-of-the-art NN package.
The package is "user-friendly" since it is capable of both integrated pre- and post-processing.
These processes include data selection, nominal-value encoding, scaling, normalisation and
missing value substitution with interpretation for classification problems. The computation

procedure is presented in Figure 4-1.

4.2.1 SELECTION OF INPUT DATA (TRAINING, VALIDATION, TEST SETS)
When applied UNN randomly creates three sets: training, validation and test sets. The
sizes of the sets are pre-defined. They can be set by percentages of the whole dataset. UNN
fits the network model into the training set and selects the model using a validation set, after it
determines the stopping point of the learning process. Finally, UNN assesses prediction error
using the test set. This test set lends itself to assessing the performance of the trained clusters.

UNN can run without a validation set, but sometimes the test data alone may not be a
sufficient condition for a good generalisation. The test error is not applied in the training, but
could be used to compare different UNN models. Since this is entirely possible, an extra
check of performance is necessary at the end of the training. The model thus applied the
validation set to calculate the error. If each error (training, test, and validation error)
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converges to minimum and they are similar values, it is reasonable to assume that the network

effectively generalises according to unseen information.
Commonly used percentages (size of sets):

% training set: 60-70 per cent of the whole dataset

% testand validation set: 20-20 or 15-15 per cent of the whole dataset

UNN can randomly select samples for the three sets. Another option is that users can

randomly prepare pre-processing subsets for UNN, in order to avoid bias.

WORKFLOW OF COMPUTATION PROCEDURE

SELECT VARIABLES FOR ANALYSIS

continuous & categorical inputs | + | sampling (train, test, validation sets)

SANN - CUSTOM NEURAL NETWORK

dimensions Kohonen training
(topological height and width) | + |- training cycles
- learning rates: start & end
- neighbourhoods: start & end
- (stopping condition)
-network randomization

TRAIN

SANN - RESULTS

- data statistics 'KOHONEN GRAF H@

- activation +

- weights

- winning neuron positions - neuron locations

- summary (errors) - neuron ID } for each case
- activation GFsampios

SAVE THE COMPUTED RESULTS
WEIGHTS AS CLASSIFIERS

Figure 4-1: The workflow of UNN process
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4.2.2 INITIALISINITIALISATION OF NETWOR WEIGHTS, LEARNING RATE
AND NEIGHBOURHOOD RADIUS
It is imperative to set initial values for the training rate and the neighbourhood radius.
Over the course of the algorithm, the learning rate and the size of the neighbourhood are
altered linearly from the first to the last training cycle and gradually reduced. In this way, the

Kohonen-learning rate controls the degree of adaptation of the centres to the training cases.

The learning process terminates when there are only small corrections to the weights.
This means that the neighbourhood radius reduces to zero and the learning rate reaches a very

small value.

The training length is defined by training cycle because the learning is an iterative
process. This training stops at the end of the last cycle or it can also be stopped by validation
error. Errors in the validation set are monitored during the iterations. An error in the first
iteration decreases rapidly. When the reduction in training rate becomes slower a decrease in
validation error follows, until the singular extremum. This is called ‘early stopping’ (Fig.4-2),
and helps to avoid an overfit of training. When the validation begins to increase, the network

has overfit the data.

~
Cd

— Training error
— Validation error

Error

N
Early Nurhber of
stopping training
point iterations

Figure 4-2: Early stopping of UNN learning based on singular extremum of validation error

In addition to problems of overfit, there can be difficulty in predicting new data.
Perfect fit results in a zero training error, if indeed possible, but when new data is presented to

the network the error is large. The goal of the system is to memorize the structure of the input
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data but to avoid generalisation. Generalisation results in errors in new situations, and as a
result a more important issue is how to construct UNN which is able to predict new
information most effectively. There is a relationship between the overfit of training data and
flimsy generalisation. It must therefore be decided which is more important: performance or

generalisation.

The SOFM network typically organises the radial layer in two dimensions, but a one
dimensional network can also be defined. In this case, the neurons are arranged into only a
row. The neighbourhood radius in the radial layer determines the adjacent area centred on the
winning unit, and if the Kohonen layer applied is one-dimensional the neighbourhood radius
size is one. This way, only the weight of the winner and the weight of the units in the
immediate vicinity of the winner change in the next learning cycle. Note that if the
neighbourhood radius is initialised to zero, the process will become a simple cluster
assignment technique which is can use a Kohonen layer but without neighbourhood

definition.

Finally, normal randomisation of weights was used for the training; the mean and

variance were specified, and were applied in order to determine the initial weight values.

42.3 SAVING COMPUTED WEIGHTS AS CLASSIFIERS OR AS REFERENCE

ATTRIBUTES

After the termination of the process, it is possible to save the trained neural network
(weights, etc.) for further use. This is advisable because initialisation, finding appropriate
parameters, is the most time consuming process of UNN. During initialisation, UNN chooses
random values for the initial weight vectors, but the user can also set previous weights
according to a saved UNN. This is especially useful if the new dataset is supposed to have
similar connections between data points, and in this case it makes it possible to use a
supervised network for classification solutions. In this way, the results can be adapted as

analogies for similar problems.

Saved computed weights can support the training speed of a neural network and
influence the final results through weight initialisation (e.g. Kim and Ra, 1991, in Talaska and
Dtugosz, 2008).
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4.3 STATISTICAL DESCRIPTION AND INTERPRETATION

The clusters formed contain different numbers of elements, and these elements are
calculated from the interpreted well log values. In this case the first question is whether the
statistics (average, median, etc.) that describe the certain clusters are satisfactory. The
different amounts of elements in clusters made it difficult to compare the clusters, and the

comparison is not suitable for nonparametric statistics.

In order to resolve the problem of statistical comparison of the clusters, the Monte
Carlo simulation was used. Through repetitive sampling the Monte Carlo simulation increased
the amount of data and the resolution of the corresponding probability distribution. The
simulations retained the characteristic group distributions and properties. In each cluster, the
increased dataset reached the number of elements in the measured or interpreted sets of well-
log values. These (improved sets and well log values sets) were compared using non-

parametric tests.

The Goodman and Kruskal gamma coefficient was used in the comparison to reveal
the relationship between two rank-ordered variables. According to the output probability
values it is possible to determine the significance level of difference or similarity (Hill and
Lewicki, 2005). This is a non-parametric test and the null hypothesis is that the compared
samples (samples of created clusters and samples of well log variables) are different. If the
test shows similarities the subsequent data analyses and comparison of clusters are based on
the extended dataset.

In the characterisation and comparison of clusters several general statistical methods
were used. The non-parametric Mann-Whitney test verified that the cluster means were
significantly different. These statistical tests were completed by analysis of histograms and

box-plots and also through the calculation of within-group and between-group variances.

According to the definition of cluster analysis, the aim is to identify and classify
objects based on the similarity of characteristics; another purpose is to create groups which
have low variance. Clustering seeks to minimise within-group variance (WGV) and maximise
between-group variance (BGV) or at least to create a substantial difference between them.
The within cluster variance refers to the spread of objects around the mean and the between

cluster variance is a measure of how cluster centroids spread out from one another.
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Miller and Khan (1962) showed that, in the case of normal distribution, the total
variance was the sum of the within group and between group variances. “If a sample contains
m groups with the cardinality of ny, n,,..., nm; the members of the j™ groups are x4, x&,...,x™,
then the total variance (TV) of these samples is the sum of the within groups and between

groups variances” (Miller and Khan, 1962).

2 _ 1 & .o
o % _ X Eq. 4.3
MSTIVE = o SUM- (R -X) (Ea. 43)

The difference in the between group and within group variances expresses the
suitability of cluster results. A relatively low WGV and larger BGV means that there are a
number of heterogeneous groups with homogeneous contents. A high ratio of BGV and WGV
suggests that the clusters are well separated from each other, and there is a high degree of

homogeneity within clusters.

Chapter 6 focuses on a comparison of neural network clustering and the widely used
K-means technique. In this chapter the comparison of these two methods is based on the
results of variance analysis, too. The relatively low WGV demonstrates the efficiency of the

two methodologies according to the type of clustering.

44 EXTENDING CLUSTERS FOR POINT-LIKE RESULTS USING
INDICATOR KRIGING

A classed post map is a ‘traditional” form of visualisation of the lateral distribution of
cluster memberships, where the memberships are represented by points in a map. This
solution ignores unsampled locations. The visualisation is also feasible using the Thiessen
polygon or Dirichlet tile but an unsampled location is simply allocated to the same category
as the nearest observation. Such an inexact interpolation has two weaknesses. It ignores the
spatial correlation and probabilities of transition between categories and this does not provide

a measure of the reliability of the prediction.

Since membership is a categorical variable its direct mapping (as for a continuous

variable) is not possible. The indicator kriging (IK) can offer a reasonable solution for this
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task. 1K has been designed to estimate uncertainty at unknown points (e.g. at grid points,
(Journel 1983, 1986)). To reach this goal it uses a discretized form of the global probability
distribution derived from the sample points. The procedure uses several cut-offs for this
discretization if the variable is continuous data in the sampled locations. In our case the
categories are the discretized form. According to the spatial correlation structure measured
between (cut-off) categories, this method estimates the probability distribution function (pdf)
at any unsampled locations. These estimates (i.e. probability distributions) change when the
number of input samples change, and so it is called conditional (i.e. conditioned to the actual
amount of data) probability distribution (e.g. Deutsch and Journel, 1992, 1998, Goovaerts
1997, Olea 1999).

In the framework of GSLIB this technique can be used for both continuous and
discrete variables (Deutsch & Journel, 1992, 1998). The latter exactly fits the task of
extending the clustering results into geographical space since the clustering of any objects in
the geographical space (whether it be UNN or K-means clustering) results in disjunctive sets
of spatial points. Their “gridding” process means a lateral estimation of cluster memberships
as qualitative objects at each grid node over a domain. This estimation can be than after the
definition of as many indicator variables as the number of clusters. The implementation of 1K
in GSLIB calculates probability for each input category (i.e. for each cluster membership) at
every grid node. Note that at any particular grid node, the sum of these probabilities must be

one. (The details of the IK process are presented in a flow chart in Appendix 1).

It is clear that a particular grid node should be assigned to those cluster memberships
which have the largest estimated probability (e.g. Bierkens and Burrough 1993). Using a
simple logical function (Eqg. 4.1) we can select every grid node in a cluster that has the
greatest probability and these selected clusters can be visualized through, for example, a post
map (Fig. 4-3).

Ci, Py = MAX(pl’ pzi---pn)

(Eqg. 4.1)
0, py #MAX(p,, Pys--Py)

IF(pk) :{

where

- IF is a mathematical logical function (where the function values are fixed values or 0)
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- Ciis the i cluster,
- p is the probability of k™ cluster in a grid point,

- n is the number of clusters.

Another choice within the framework of GSLIB is a map showing the change of
probability belonging to a particular cluster membership (Fig. 4-3). It is necessary to find a
reasonable probability contour to clearly outline the shape of a supposed physiographic unit.
The borders of clusters change according to the different probability levels. It is necessary to
find a reasonably high (greater than 0.5) probability value which is able to outline the shape of

physiographic units.

B cluster

Display the most ) N
probable cluster Display the probability

Spatial
prediction

Visualization Visualization

1
<

Contour Map
definition of facies
by contour geometry

A

Classed Post Map

v

spatial distribution of cluster facies

Figure 4-3: Visualization options of cluster members based on spatial prediction (after Bierkens and
Burrough, 1993)

It has been shown that different depositional environments can be characterised by
special (although, not necessarily different) rock-body morphology (e.g. Moore 1949;
Pettijohn et al. 1972). These geometries of depositional facies are the basis of seismic
stratigraphy, multiple point simulations, and object-based simulation as a facies modelling
technique. Following this line of thought, the rock body geometry expressed by probability
contours in this work is interpreted in terms of depositional facies.
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The analysis of lateral continuity and spatial variance of cluster facies are also based

on these probability contours as border of physiographic units.

The defined and described physiographic units can be used as the training images in
object-based simulation. The main steps of a field application include a collection of training
images, identification and categorization of lithofacies and depositional facies and analysis of
spatial variability. The workflow outlined above can assist in establishing such a set of

training images.
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5 TWO CASE STUDIES FOR THE PRESENTATION OF APPLIED
METHODS

5.1 STUDY-I: ALGYO FIELD, SZOREG-1 RESERVOIR, HUNGARY

5.1.1 SOME GENERAL KNOWLEDGE ABOUT THE FIRST STUDY AREA

The first study area, Algyd Field, is located in the Pannonian basin, south-east
Hungary. This field is the largest Hungarian hydrocarbon accumulation, consisting of several
sandstone reservoirs (Fig. 5-1). The sediments of these reservoirs accumulated in Lake
Pannon in adjacent deltaic and fluvial environments during the late Miocene and earliest
Pliocene. This study focuses on one reservoir of this field, Széreg-1. Stratigraphically it

belongs to the upper part of the Ujfalui Formation.
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Figure 5-1: Location of study area-1 (Algyé Field, Széreg-1; after Bérczi, 1988 in Geiger, 2003)

The sedimentation processes of the Algy6 field and the Széreg-1 reservoir are
published in several papers in great details. This field has been explored since the 1960s.

Révész (1980) dealt with the deltaic sequences of Algy6é Field and showed that it
contains the most complete sequence of any general Pannonian (s.l.) basin filling

accumulation.

Later, the increased number of production wells made it possible to develop
geomathematical and geostatistical models and small-scale approaches to revealing the 3D

heterogeneity of this field. Geiger and Komlési (1996) introduced an application of the 3D
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geomathematical system modelling these rock bodies. Using this system, a new geological
presentation and a sedimentological model of Algy6 Field were created in 1998, and
published in 2002 and 2004 by Geiger.

According to these publications, the Algyé field was located in a shallow
interdistributary bay during the Late Pannonian period. It can also be assumed that the sources
of accumulation were at least two main river/distributary channels. The bay started to fill
following the lateral merging of crevasse splays and distributary mouth bar deposits. Because
of the periodic abandonments of the river processes, the interdistributary bay sedimentation
recurred several times in the area. This processes resulted in depositional cycles. The origin of
this delta plane in a significant amount of fluvial channel sedimentation has been
demonstrated by Révész (1982), Geiger (2002, 2004), and Sebok-Szilagyi and Geiger (2012).

The present dissertation focuses only on the Széreg-1 reservoir, in the whole reservoir
series (Fig. 5-1). In this work Széreg-1 is used to demonstrate the workflow outlined in
previous chapters and the subjects of the applied UNN are two horizontal surfaces selected

from the Sz6reg-1 reservoir.

Sebok-Szilagyi (2011), and Sebdk-Szilagy and Geiger (2012) presented an improved
depositional model of this reservoir with 3D modelling of sub-environments and a detailed
description of the sedimentological structures. They analysed this clastic deposit at small scale
(cell sizes were 100x100x0.5 m) using a geostatistical method. These works helped to select
the two well-known units. These two units belong to the delta plain record, with minor mouth
bars developing in front of them, and their lateral accretion infilling the bay area.

The horizontal surface means that the reservoir transformed into a stratigraphic
coordinate system where the bottom of the low permeability seal above the reservoir is Om
vertically. In this case the longitude and latitude is the same as in the geographical system but
the vertical coordinate was measured from this pre-defined surface. This surface is the almost
flat terrain of the deposition and characterised by a massive marl deposit. The average gross
thickness of the complete reservoir varies between 35-40m. The rock body in this new
coordinate system was cut by lateral surfaces which are parallel with the top (Fig. 5-2).
Originally, in the work of Geiger (2004, 2006) and Sebdk-Szilagyi and Geiger (2012), the

vertical distance between each lateral surface was 0.5m.
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Cut the reservoir rock body by parallel surfaces with the bottom of the sill
A B C

Time horizon
‘horizon’ #1

A B
A 2

Time horizon

o O

<+«—0m

‘horizon’ #2 24-27m

‘horizon’ #1 34-35m

The vertical distance between any two surfaces was 0.5m

Figure 5-2: The vertical decomposition of the rock body (based on the palinspastic principle; modified
after Geiger, 2004)

According to the sedimentation process the selected units indicate distributary mouth
bar development (lower surface), and transection of the distributary mouth bar through
bifurcation channels (upper surface). The first unit in this work, the distributary mouth bar
development, contains a rock body between 34-35m vertically. This is the lower lateral
surface of the dissertation (Horizon#1 in Fig. 5-2). The second selected unit locates upper the
Horizone#1, between 24-27m vertically (Horizon#2 in Fig. 5-2).

The selection was made based on the fact that these units include different but
connected sub-environments in the delta plain area. Their lateral position and character is
known from 3D models and detailed descriptions. Thus, it seems to be an appropriate study-
area to test the methodology that is the subject of this dissertation.

5.1.2 ROCK TYPES OF SZOREG-1

The general sequence of Széreg-1 begins with argillaceous marl units with claystone,
marl and coaly argillaceous marl. These rock types can also be seen in higher stratigraphic
positions where they are interbedded with lignite units. This succession evidences the
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abandonment processes of the previous delta lobes (Révész, 1982; Geiger, 2002, 2004;
Sebok-Szilagyi and Geiger, 2012). The grey and dark grey fine siltstones contain a great
amount of macrofauna, which in some places even resembles lumashell. This rock type is
generally rich in coalified plant fragments. The sediments coarsen gradually from fine to
coarse siltstone, but can also be interbedded with thin fine sandstones. Coarse siltstone is
usually a grey colour but ochre discolouration is seen frequently. This rock type contains a
huge amount of mica and fine sand. Usually it has a laminated structure, with coalified plant
fragments. Fine sandstones are characterised by their grey colour. Their laminated structure
alternates with coalified plant fragments and mica. Coarse sandstones have a yellowish-grey
colour and they can be laminated too, although, the more distinctive features of coarse
sandstones are their massive and structureless development, and the high and low angle cross
bedding/lamination sedimentary structures. Rock types, with the exception of the underlying
argillaceous marl, do not form laterally continuous layers. Laterally, they can be followed in
tens or hundreds of metres. Interfingering of the different rock types is a typical characteristic

almost everywhere in the studied section.

5.1.3 SOURCE OF DATA WITHIN THE SZOREG-1 RESERVOIR

Interpreted quantitative petrophysical data was available from 512 wells. The well
density is very high in this reservoir (Fig. 5-3). The petrophysical record was measured at
every 0.2m intervals. The averages of these records between the selected vertical intervals
were used as input data in the UNN clustering. The input variables were porosity, hydraulic
conductivity and sand content values. This data derived from quantitative well log

interpretation.

The clustering process used hydraulic conductivity as the auxiliary property, which
can be in a complex, non-linear relationship with the other two petrophysical features. Despite
the relationship between porosity and hydraulic conductivity showing weak correlation in
practical reservoir analysis, the relationship between these variables can characterise different
depositional facies (Sebok-Szilagyi, 2011). In her dissertation, Sebdk-Szilagyi showed
sandstones from, for example, the natural levee complex and the channel, described using

different correlations of porosity and hydraulic conductivity.
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The study assumed that reasonable and real depositional classification can be achieved
using the applied parameters, knowing that the porosity is highly dependent on digenesis. It
can be presumed that sediments are able to retain more strongly to the depositional
characteristics, and diagenetic effects do not modify or only slightly vary the original
character.

The lower unit (the emerging distributary mouth bar), penetrated by 209 wells, lies 34-
35m below the sill (Fig.5-2). The second (prograded bifurcation channel) is located 24-27m
below the top (Fig. 5-2). In this case the dataset came from 344 wells.

The farther up listed variables from both units were used together as input. The cluster
process and statistical analysis was not separated for these two horizontal surfaces, so UNN
input data was based on all variables from both units. This parallel analysis supports that the
progress of cluster facies (development, lateral extension, progradation, etc.) can be followed
through two lateral surfaces. The goal is to use the same depositional facies to characterise
and define any cluster that appears in both horizontal surfaces. All data was thus imported

simultaneously to the UNN, to separate subsets.
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Figure 5-3: Well density of Széreg-1 reservoir with gross thickness contour
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514 APPLIED METHOD AND INTERPRETATION OF RESULTS FOR THE
SZOREG-1 RESERVOIR

5.1.4.1 Settings of UNN and generated clusters

After the import of input data into the spreadsheet, the size of training set was fixed as
60% of all data points. For the validation and testing, 40% of the whole set was used, evenly
divided. These three subsets were collected by the network in a random way to avoid bias.
The training set is used by SOM to build a neural network. The validation set is applied to
tune the parameters of a classifier and to determine the end of the learning process. The test
set lends itself to assessing the performance of the trained clusters.

The dataset was not previously normalised. It was applied within UNN as an
additional option.

The number of cluster was pre-fixed for separation. During the final clustering, UNN
separated six clusters. Usually it is hard to determine the appropriate number of clusters. This
number depends on the user. In this case the number of clusters (six) was equal to the number
of depositional facies which had been proved. (In the first few experiments segmentation was
attempted using both less and more than 6 clusters, but these gave misclassification, or
clusters which were difficult to interpret geologically).

The variance analysis and the comparison of clusters by non-parametric test can help
to decide the number of separated clusters, but only subsequently.

The Kohonen-learning rate converges monotonically in the [0,1] interval from the first
to the last training cycle. The start value was specified as 0.5 and 0.03 for the end value. The
neighbourhood radius designates the adjacent area centred on the winning unit. In the
constructed UNN the size of radius was only 1 because of the low cluster number, and it
specified a 2X3 square.

Normal randomisation of weights was applied in the training; the mean and variance
were specified and are used to draw the initial weight values.

Another important parameter is the learning cycle. UNN learns the relationships of
data in each cycle. This process stops at the end of the last cycle or when the test error starts
to increase (Fig. 4-2). In this case, the number of cycles was 5000. It is also possible to stop
the network process early. This is when a test error breaks the run with increasing
convergence. Early stopping is also used if the learning cycle is hard to define. It is certain
that after a 4-5000 cycle the results of training did not change because the test error stopped

learning. Consequently, since the main objective was, with the constructed UNN, to reach
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close validation and low training with the best possible initialisations and settings, the
stopping condition was also applied.

According to the constructed UNN (Fig. 5-3) the input is organised into clusters controlled by
the neurons. Under the above conditions the input dataset is divided into six clusters. These
separated clusters comprise the data points from both horizontal surfaces. In this manner the
clusters can be followed in both horizontal surfaces, for example if they changed spatially or
if any cluster belonged to only one surface. The sematic construction of UNN, and the cluster
averages are shown in Figure 5-4.

Averages values in each clusters calculated for
D sand hydr. cond. .
clusters ratio (mD) porosity

c1

C2

c3
c.4
c5
C.6

lateral connection
forward K .
weights ohonen’s
layer
n=1,6

Figure 5-4: Sematic graph of constructed UNN with input and output in Széreg-1 Reservoir

5.1.4.2 Statistical comparison of clusters

The separated clusters are of different sizes. Figure 5-5 shows the number of points in
each cluster in Horizon #1 and Horizon #2. Figure 5-6 shows that Cluster C_1 appears only in
the lower horizon. Conversely, the lower horizon contains fairly few data points from C 5

and C_6 clusters. These clusters dominate in the upper horizon (Fig. 5-6).
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Figure 5-5: Frequency histogram of elements of clusters on both horizontal surfaces in the Széreg-1

Reservoir
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Figure 5-6: Frequency histograms of elements of clusters in certain horizontal surfaces in the Szoreg-1
reservoir (left part represents the frequencies from first surface and the right part from the second
surface)

For stable statistical comparisons it is necessary to increase the size of clusters in order
to retain the character and distribution of clusters. This was the reason for application of
Monte Carlo simulation. In this way the cluster sizes were increased to 650, which is the

amount of all input data.

These simulated sets were compared with the original well log-values. Goodman and
Kruskal’s gamma coefficient was applied to check the significance of similarity. The result
was that sets came from the same distribution at the 0.05 significance level. Consequently, the

sets of averages were suitable for describing clusters.

The comparison of particular clusters was based on non-parametric statistics (Mann-

Whitney test) and additional graphical statistics (frequency histograms and box plots).
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Cluster C_1, appearing in one rock horizon, is characterised predominantly by a low

porosity and sand ratio (Fig. 5.4). This cluster with low sand content and porosity values can

be described as deposits from still water in the interdistributary bay.

According to the histograms for Clusters C_2 and C_3, these subsets have similar pdf

in sand content and hydraulic conductivity values. Both have a polymodal histogram in sand

content (Fig. 5-7, first column), but the box plot of these properties and the porosity values

segregate them significantly. In the case of C_3 this plot shows that the samples are described

by moderate negative skewness, which means that the distribution concentrated on the larger

sand content (about 40%). For C_2 and C_3, the porosity values mostly confirm the existence

of an isolated group and this separation was confirmed by the Mann-Whitney test.

43F T 9 43F . , : : ! 3 a3F . : =
c2 sand ratio 1 i C2 Hydr.cond. ] C2 Porosity
23 - 1 o3[ ] 23 [ 1]
ﬁ 3 e | I
g 3 1% 5t 1% 3 ]
= 1 9 L 4
E | 18 18 B i
17 1 17F 1 17k 1
a7l ‘ . C3 sand ratlo a7l C3 Hydr cond - C3 Porosity - 1
0 100 0 100 200 300 400 500 600 0 5 10 15 20 25 30
Box-Whisker Plot Box-Whisker Plot Box-Whisker Plot
C2 sand ratio 2 Hvd d C2 Porosi
— | - - G2 Hydr.cond. ____C2Porosity
- H : . C3 Porosity .
L C3 sand ratio C3 Hydr.cond.
0 20 40 60 80 0 100 200 300 400 500 600 0 5 10 15 20 25 30
80T ‘ 7 5 = ; e
C3 sand ratio ] e c3 Hydr cond 34 C3 Porosity
50 F ] 40 1 24F ]
ﬁ a0l 1 ﬁ 20 9 g 14+ ]
g 1§ of 18 4F ;
210+ 4 £ @
g ] 820F 1% 6F E
40 1 40f ERT 3
] C4 Porosi
70 C4sandratio 1 el ‘ ‘ C4Hydrcond. 1t ‘ ty ‘ : . ]
00 0 200 400 600 800 9 13 17 21 25 29
Box-Whisker Plot Box-Whisker Plot Box-Whisker Plot
C3 Porosity
I C3 sand ratio H - C3 Hydr.cond. | o |«
C4sandratio : == [ - - . B I I
C4 Hydr.cond.
C4 Porosity
0 20 40 60 80 100 0 200 400 600 800 0 13 16 19 22 25 28

Figure 5-7: Statistical comparison of clusters C_2, C 3

and C_4 (Széreg-1 Reservoir)
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According to the cluster means, Cluster C_4 differs from the others, although
hydraulic conductivity has the same pdf in C_3 and C_4 (Fig.5-7, middle column). Sand
content can be differentiating between these groups (Fig. 5-7, left column). The Mann-
Whiney test also shows this similarity. According to the non-parametric test these clusters are
not significantly different based on the median of hydraulic conductivity. As a result of the

auxiliary variable, hydraulic conductivity was analysed in relation to porosity.

Correlation of porosity and hydr.cond. in Cluster 3

Y = 62.6044-12.3039*x+0.5747*x*2; 0.75 Conf.Int.
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Figure 5-8: Comparison of connection between hydraulic conductivity and porosity in clusters C_3 (upper
plot) and C_4 (lower plot)

The relationship between porosity and hydraulic conductivity was compared in these
two clusters because sometimes the database contains clusters which cannot be separated by

any hyperplane. This usually means that the variables are sometimes similar but that the
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connection between the variables is non-linear. In this case the cluster member connects in an

interfingering way, or like chains in the property space.

In the comparison of the relationship of porosity and hydraulic conductivity in
Clusters C_3 and C_4, we can see that both clusters are described by different correlations
(Fig. 5-8). Cluster 4 includes only one population of deposition which is described more or
less by exponential Q-Q plot. Conversely, Cluster 3 shows weaker correlation and it can be
approximated by polynomial function. According to this Q-Q plot, two populations belong to
this depositional cluster facies. Of course this analysis cannot reveal any exact correlation
function between these properties, but it can be said that both cluster facies characterised

different complex relationships between the porosity and hydraulic conductivity.

Since C_3 and C_4 contain more elements in Horizon#2, it can be suggested that
sediments with medium porosity and relatively higher sand content are more widespread in
the upper rock unit.
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Figure 5-9: Statistical comparison of clusters C_4 and C_5 (Széreg-1 Reservoir)
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C_5 and C_6 clusters dominant only in Horizon#2 (Fig. 5-6). C_5 and C_6 are
characterised by a highest porosity value and very large sand ratio. These differ significantly
from the other four clusters. The pdf of sand content shows a relationship between C_4 and
C_5 (Fig. 5-9), but other statistical character distinguishes C_5.

The question is whether they are two significantly separated cluster facies or not. C_5
seems to be relatively close to C_6 based on the pdf of sand content (Fig. 5-10, first column),
but nevertheless, based on the other two variables and the non-parametric test, the separation
is confirmed. The Mann-Whiney test supports the difference at a 95% confidence level. The
hydraulic conductivity and sand ratio also confirm the existence of an isolated group in the
cases of C_5 and C_6. The non-parametric tests also support this differentiation; p-values

converge to zero below the 95.0% confidence level.
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Figure 5-10: Statistical comparison of clusters C_5 and C_6 (Széreg-1 reservoir)

These two clusters (C_5 and C_6) are dominant only in Horizon#2 which lateral

surface was selected as a unit of bifurcation channel system. It can therefore be presumed that
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these two cluster facies both belong to this system. Considering the sand content and porosity,
C_6 may be defined as the channel fill deposit of a bifurcated channel and C_5 as the levee of
this system. But could these be clearly separated from each other? These facies spatially

interfinger and their characteristics are also similar.

If this assumption is right, this complex is described by a polymodal pdf in porosity
and sand content values. It is supported according to the work of Sebdk-Szilagyi and Geiger
(2012). The distribution of sand content is characterised by 60, 80% largest frequency, and
22, 30% frequencies describe the distribution of porosity (Fig. 5-11).

Sand content (%) Porosity (%)
45 35 - . - - . v
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f
No of obs

i i 0 i i |
257 364 471 57.8 68.5 792 90.0 14.14 16.37 18.60 20.83 23.07 25.30 27.53 29.76 32.00

Figure 5-11: Frequency histogram of sand content (left) and porosity variable (right) in C_5and C_6

Data separation seeks to minimise WGV and maximise BGV to collect mostly
homogeneous objects. The previous non-parametric tests analyse the separated groups if they
are significantly different, if the subsets are heterogeneous. This means that the measures for
spreading the cluster centroids are far enough from each other in the property space. This can
be expressed as the value of BGV and WGV shows the homogeneity. This variance analysis
is also able to validate the number or clusters. This variance was calculated based on Equation
4.3.

Table 5-1 shows WGV and BGV and their related parameters for the six defined
clusters. It suggests that the within group variance is much lower than the between group
variance. Consequently, UNN formed clusters which show more homogeneity inside than that

can be measured between them.

For all six clusters the parameters in Equation 4.3 are the following:
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m =16

n=634

n;=101; n,=90; n3=123; ny = 176, ns = 77 and ng = 67 (n; comes from frequency histogram in
Fig. 5-5).

Table 5-1: Calculated within group variance and between group variance for all six clusters

[wev Tesv W Twou/TVrmte( |Gv/ratel
m 9.12 96.61 105.73 8.63 91.37
_ 1.67 13.70 15.37 10.84 89.16

m 3783.04 31277.00 35060.04 10.79 89.21

According to the variance analysis the six separated clusters seem to be very
heterogeneous, with homogeneous content, because WGV is only about one tenth of the total
variance (Table 5-1). This analysis also shows that clusters are divided with similar variance

based on all properties. This means that all variables play a similar role in the clustering.

5.1.4.3 Probability of spatial extension of clusters
The extension and the spatial display of clusters have an important role in the
interpretation of the UNN results. The lateral extension and pattern of the statistically

described cluster facies can assist to define the facies sedimentologically.

In Széreg-1 Reservoir the shape and main properties of the facies have been reported

by Geiger (2003). The following geometrical characters were described:

(i) The distributary mouth bars have kidney-shape or lunar-shaped geometry
and in this part the sand content varies between 40-80%

(if) The distributary channels have elongated geometry, and the boundaries are
defined by approximately 40%, but the inner sand content can reach 70-80%

(iii)The interdistributary bay surrounds the elliptical distributary mouth bars,
since the sediment is from quiet water; it contains few sandy deposits, and is

characterised by low porosity.
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In this dissertation the pattern of facies was also analysed using extended cluster

facies. This extension used 1K and was applied for both lateral surfaces.

5.1.4.4 Preparation of input data for IK process

In practice, IK leads to some computation problems, such as in Horizon#1 where
Clusters C_5 and C_6 occur in isolated locations (Fig. 5-12). In such a case it is difficult to fit
a variogram for less frequent classes. These isolated locations usually characterise the nugget
effect model that involves random spatial arrangement, since these data points are omitted in

the IK process.

Class data from point observations

_A. A,
=]
f, ~ -
21 B
1 B* *B
C.
I | IEasltingI | |

Figure 5-12: Less frequent clusters with isolated location

At first, the variogram surfaces were analysed for all clusters (Fig. 5-13). The last two
variogram surfaces in this figure (exemplified by numbers 5 and 6) involved the nugget effect

model.

In the second horizontal surface only five clusters were elements. The variogram
surfaces of these five clusters were appropriate for use in modelling. Figure 5-14 shows the
variogram surfaces of this horizon (labelled with 2-6 values according to the cluster marker).

In the calculation of directional semivariograms, the lag spacing was the half of the
average well distance, and the angle tolerance was 22.5 degrees. Of the set of
semivariograms, calculated for every tenth degree in a counter clockwise direction, only two
were retained. They lay in the direction of the longest and shortest ranges. The
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omnidirectional semivariogram was added for modelling purposes. The settings and the final

models are shown

in Appendices 2 - 10.
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Figure 5-13: Variogram surfaces of all six clusters in Horizon#1, at Széreg-1 Reservoir
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Figure 5-14: Variogram surfaces of five clusters in Horizon#2, at Széreg-1 Reservoir

During the modelling process some permissible theoretical variograms were fitted to
the experimental ones. All models contained two or three structures which can be described

using several parameters, such as:

= type of structure in model (type)

* maximum range (hMax)

= minimum range (hMin)

= sill (cc, where the amount of cc value of structures and nugget value equal with 1)
= direction (ang.)

= anisotropy (anis.)

» nugget (ng.)
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Table 5-2: The model parameter for probability estimation by IK (horizon#1 in Széreg-1)

cluster type of
structure hMax hMin anis. hVert.
variogram

first spherical 390.693 244.183 0.52 1
second  exponential 6900.693 2208.22 0.06 281 0.32 1 042
first spherical ~ 620.539  365.022 031 82 1.7 1 05
- second spherical 896.770  320.275 0.09 54 2.8 1
first spherical ~ 551.539 172.355 024 273 3.2 1 o1
- second spherical 344.079 92990 0.05 299 3.7 1
first exponential ~ 781.616  304.830 0.65 315 0.39 1
second  exponential 1379.690 317.328 0.05 259  0.23 1 03

These parameters are summarised in Tables 5-2 and 5-3. It can be seen that the

clusters have a distinct spatial structure with different ranges.

Table 5-3: The model parameter for probability estimation by IK (Horizon#2 at Széreg-1).

cluster type of
structure hMax hMin ang. | anis. | hVert.
variogram

first exponential 346.59 203.079 0.52 1
second spherical 2080.00 717.446 0.08 9.5 2.9 1
first exponential 216.66 12745 055 350 1.7 1
second  exponential 520.00 118.18 0.05 10 4.4 1 04
first spherical 910 78260 04 60 086 1 o5
- second  exponential 801.66 364.39 0.1 275 2.2 1
first  exponential 33027  181.65 05 340 0.55 1 ous
second spherical 2275 94792 0.05 45 2.4 1
first ~ exponential  353.67  160.76 0.37 16.89 2.2 1 06
second spherical 2525466 7879.21 0.03 210 3.2 1

The results of IK are shown in Figure 5-15. On this map, the cluster was assigned to a
particular grid node which had the largest probability of appearance (Equation 4.1). This
figure also shows the facies identification of clusters (Fig. 5-15).
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Figure 5-15: The results map with laterally extended and identified clusters at the Széreg-1 reservoir (The
laterally extended clusters displayed by the larges probability values which estimated by 1K)

5.1.5 INTERPRETATION OF LATERALLY EXTENDED CLUSTERS AND

CONCLUSIONS AT SZOREG-1

C_1 represents the inter-distributary bay, which is predominantly characterised by a
low porosity and sand ratio. This facies surrounds the complex facies of C_2, C 3 and C 4
clusters. C_2, C_3 and C_4 are thus defined as cohesive groups. They are part of a major
environment which has a kidney shaped geometry due to lateral extension based on the
probabilities. This kidney shaped pattern characterises a distributary mouth bar system. This
sedimentary facies has a very complex structure. C_2 interfingers directly with the
interdistributary bay where the porosity and the hydraulic conductivity are very low but the

sand ratio increases in comparison with bay sediment.

The main part of the mouth bar is characterised by C_4. This facies is characterised by
the largest sand content in the lower horizontal surface. It could be defined as the bar crest of
the mouth bar deposit. This facies developed from two opposite directions (SW and NE). C_3
also interfingers with C_4. It encloses the body of the distributary mouth bar as a margin. C_3
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and C_4 are similar, as shown by statistical analysis, however, they can also be defined as two
separated facies. C_2 comprises outer bars, and is a disturbed (due to sliding and slumping)
region facing the bay. C_3 represent the marginal parts of distributary mouth bars. This fringe
of the mouth bar body is a narrow area in the lower horizontal surface. It is a kind of

transition zone with lower sand content and porosity values than the main area of mouth bar.

C_4 is the body of the bars which are involved from two directions. The sedimentation
of C_3 and C_4 is controlled by the bifurcated channel system in the hinterland area. The
shapes of lateral extensions changed greatly during the development of this area. These
changes can be seen in differences between the maps of the two lateral surfaces.

The main difference between C_3 and C_4 is the bimodal porosity distribution of C_3.
The genetic background of C_3 is a fact. C_3 was defined as the marginal part of a mouth bar.
Here, the bay sedimentation interacts with the accumulation of channel. The resulting silty
sand has very bad sorting and quite poor porosity.

The last two clusters appear only in the second, so-called horizontal surface of the
bifurcation channel. This is the hinterland area of the developing major mouth bar. C_6 is
characterised by the bifurcation channel deposit with a dendroid or finger-like network
geometry. This channel cuts to the body of mouth bar area. It developed from the SW
direction. C_5 facies followed the facies of this bifurcated channel. C 5 is defined as the
marginal part or levee of the distributary channel. These latter two cluster facies together
belong to a complex system which is a channel network system with channel fill deposit and

natural channel levee.

The sorting of the channel levee deposit is weaker (Fig. 5-10) than in the channel
deposit characterised by C_6 due to the porosity values shown in the polymodal histogram

and the lower sand ratio.

The size of the two main facies can be determined on the basis of the lateral extension
of the clusters. Let’s focus on the two main facies which are represented by Clusters C_4 and
C_6. Using the 0.6 probability contour to display their geometry, the shape of C 6 is a
channel network with a length of approximately 5km and is around 500m in width and the
pattern of C_4 is a 6.5-7km width kidney-shaped bar. The progradation of this major bar
might occur from the SW. From the opposite side a minor mouth bar developed with a

maximum 3-3.5km width.
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These identified facies with their lateral extensions and main directions may reflect
two main phases of the depositional history of the Szdreg-1 reservoir, as introduced by the
studies of Geiger (2003) or Sebdk-Szilagyi and Geiger (2012). Figure 5-16 summarises the
phases of temporal development for Széreg-1 Reservoir. The lateral surfaces selected and
represented in the present dissertation correspond to Phases C and D-E in Figure 5-16. The
applied approach of facies analysis could reveal the same sub-environments. The map of
results from IK (Fig. 5-15) for Horizon#1 shows Phase C when discrete major and minor
mouth bars formed from the SW and NE directions (Fig. 5-16, C). The map of results from IK
(Fig. 5-15) in Horizon#2 presents Phases D-E when bar bodies were involved due to the

progradation and bifurcation channel that broke it up.

Figure 5-16: Depositional history of Széreg-1 Reservoir (Seb6k-Szilagyi and Geiger, 2012)
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5.2 STUDY-II: SAVA FIELD, SAVA BASIN, CROATIA

52.1 SOME GENERAL KNOWLEDGE ABOUT THE SECOND STUDY AREA

The study area is a hydrocarbon field situated in the north-eastern part of the Sava
Depression, Northern Croatia, about 35km east of Zagreb (Fig. 5-17.). This field is called the
Sava Field through the rest of this study.

The first exploration activities began in the early 1940s and ‘Sava Field’ was
discovered in 1963. This field contains 11 hydrocarbon reservoir-units with oil, dissolved gas

and gas, in a gas cap (Hernitz et al., 1996).

A total of 87 wells have been drilled in the field so far. There are 42 in production, 13
monitoring, 14 are water injection wells, and 18 have been abandoned (Report?). In this case
study the input data was derived only from 78 wells (their data was suitable for data pre-
processing). 3D seismic survey of the field was carried out at the end of 1998 within the scope

of the 3D Sava-1 extension project (Report?).
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Figure 5-17: Location of Study Area 2 (Sava Field)

According to the genetic stratigraphic sequence concept (Galloway, 1989 in Hernitz et
al., 1996) 8 depositional events were originally identified. After reambulation, the number of

2 Unpublished report about the study field in Sava Depression - Tertiary CO2 Injection (2003): INA, Zagreb
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these events increased to 11. The main reservoir rocks are fine grained sandstones with a
significant amount of quartz content (lithoarenites).

5.22 ROCK TYPES OF RESERVOIRS IN SAVA FIELD

In the entire sedimentation sequence, 11 hydrocarbon pools have been defined in Late
Miocene sediments that belong to the Neogene and Quaternary periods. Generally, the Middle
and partially Upper Miocene clastic sedimentation was greatly influenced by a pre-Neogene
basement palaeo-relief.

As Figure 5-18 shows, Sava Field is an asymmetrical brachianticline. Its axis is in a
northwest-southeast direction and a slightly pronounced peak in the southern part of the
structure can also be seen. According to the seismic interpretation (Report®) the presence of
normal and reverse faults were established. These faults (mostly normal) originate from the
continuous tectonic activity during Pliocene, and were induced by reverse faults in the south-

western part of the field.

In this case study the method was only applied to two reservoirs of Upper Miocene
age. The total thickness varies between 120-150m in the whole rock body which contains all
11 reservoir units. The reservoirs would all be quite large scale for the model. The two
selected reservoirs are the two largest and these are positioned directly one above the other.
These two reservoirs have been divided into two different depositional units in the reservoir
rocks. Since the marl between the two units seems to be very thin in some wells, both units

were the subject of the depositional environment analysis.

The analysed sequence is made of Upper Miocene marls, siltstones and sandstones.
The latter two clastic (psammitic) lithofacies were deposited by periodical turbidity currents
in the entire depression (e.g., Simon, 1980; Novak-Zelenika et al., 2012). This sedimentation
was continuous during the Pannonian and Pontian ages, when the entire lacustrine area was
constantly reducing in size, depth and salinity (e.g., Vrbanac, 1996; Malvi¢, Veli¢, 2011).
Detritus was redeposited several times before it finally accumulated (Malvi¢ et al., 2005;
Malvi¢, Veli¢, 2011). The morphology of sandstone bodies follows the direction of turbidite

currents. At the axes of these flows generally thick bedded, fine-grained sandstones were

¥ Unpublished report about study field in Sava Depression - Tertiary CO2 Injection (2003): INA, Zagreb
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deposited. Towards the rims of these depocentres, sandstones are gradually replaced by

siltstones and marls (e.g. Safti¢ et al., 2003).

Legend:
Normal fault —wer—

[
Reverse fault —sp— om 500m T000m

Figure 5-18: Well density of the study area (Sava Field) with gross thickness contour of largest HC pool
and the location of fault

5.2.3 SOURCE OF DATA FROM THE RESERVOIR OF SAVA FIELD

The selected reservoir rocks were transformed into a stratigraphic coordinate system
(similarly to the first study case). The vertical coordinate was measured from the top of

reservoirs.

The average gross thickness of the complete reservoirs varies from several meters to
21m. All reservoir rocks in this new coordinate system were cut by lateral surfaces which are

parallel whit the top. The vertical distance between each lateral surface was 1m.

The analysed data comes from 78 wells (Figs. 5-18). Geophysical logs with their
guantitative petrophysical interpretations of porosity, water saturation and shale volume were

available at 0.2m intervals. Each horizontal surface contained the calculated averages of the
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petrophysical variables from any 1m thick interval, so, the original readings were averaged at
each 1m thick interval starting at the top. In addition to the interpreted petrophysical data, one
categorical data was used to describe the lithology. A code-number between 0-10 (according
to the shale alternation in the sandy deposit) characterised the lithology. 0 was thus assigned

to ‘clear sandstone’ and 10 to ‘marl’.

5.24 METHODS APPLIED FOR SAVA FIELD

5.2.4.1 Settings of UNN and generated clusters

The UNN method was applied for a set containing all samples belonging to the two
reservoirs. The input variables of UNN are the petrophysical parameters (porosity, water
saturation, shale volume) and a categorical variable, lithotype. The dataset was again
randomly subdivided into training, test and validation sets. The sizes of these subsets were the
same as for the first study area (60-20-20%). The required number of clusters was four

according to the preliminary information about the facies.

The training rate altered from 0.5 to 0.03 during the training cycles which were
maximised to 5000 cycles. The training showed a larger test error after 5000 cycles. Because
it was hard to define the best number of cycles, the length of learning could be affected by the
value of the test error, so, the training was halted independently of the cycle when the test

error started to increase (Fig. 4-2).

The neighbourhood radius was only one and the adjacent area specified a 1x4 square
which gave a linear Kohonen layer. Normal randomisation of weights was used for the

training.

The four separated clusters in the training cycles were controlled by the neurons and
their lateral connections. The general framework and the tabulated results of the major
averages are represented in Figure 5-19. The averages displayed in Figure 5-19 were
calculated in each cluster. The calculation was based on data points which belong to single

groups. The most general lithology code was highlighted from each cluster.

59



Averages values in each clusters calculated for  Lithology

1D : code
clusters  SW Sh Porosity (most general)

c
G2
€13

C4

W{, lateral connection
forward g
weights Kohonen's

layer
n=14

Figure 5-19: Schematic graph of constructed UNN with input and output in the Sava reservoirs

5.2.4.2 Statistical comparison of clusters

The sizes of the created four clusters were different (Fig. 5-20). Altogether, there are
1578 data points in the input sets of 76 wells. 200 data points belong to Clusters C_1, and
Clusters C_2, C_3 and C_4, contained 210, 363 and 800 data points respectively.

The average group porosity, and the most frequent lithotype suggested that these
reservoirs are primarily dominated by sandy sediments with more than 70% sand content (Fig.
5-20). Consequently, it is a sand-rich system. This will be an important statement in the
identification of the environment because the general models of deep-water clastic turbidite
systems are characterised by grain size according to, for example, Reading and Richards,
(1994), and Richards et al. (1998).
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Figure 5-20: Frequency histogram of elements of clusters in both reservoirs in Sava Field

As in the first case study, a Monte Carlo simulation was applied to increase the cluster
sizes. The simulated set was checked against the null hypothesis that both the original and the
simulated datasets come from different populations. According to Goodman and Kruskal’s
gamma coefficient those samples were significantly similar using a 0.05 signification level.
Consequently, the sets of averages were acceptable in the statistical description and in the
comparison between clusters. The following statistical analyses thus derive from this
extended dataset (by Monte Carlo simulation) where the increased number of data points was
1500.

Since the analysis confirmed the calculated averages of partitioned clusters, cluster
C_1 was regarded as independent from the others. It contains mainly shale lithologies with
very poor effective porosity. Its average porosity was not greater than 1.41% (Fig. 5-19). C_1

probably represents massive marl sediment on the basin plain.

The next question was whether the other three clusters were significantly separated
from each other. A Mann-Whitney non-parametric test and the variance analysis (comparing
WGV and BGV) helped to answer this question. In the non-parametric statistical tests the

null-hypothesis was that the ranks of medians were equals.

The results showed significant difference at p=0.05, however a comparison of
histograms and box-plots (Fig.5-21) suggests that although the difference is significant, the

characters of C_3 and C_4 still were closer to one other than to any other clusters.
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Figure 5-21: Statistical comparison of clusters C_2 and C_3 (Sava Field)

Cluster C_2 was characterised by 13.8% average effective porosity and relatively high
shale content (about 55%) (Fig. 5-19). Cluster C_2 had a bimodal porosity distribution where
the major mode was at 15% and the minor was only 9%. The shale values also had a bimodal
distribution. The major mode corresponded to the average (55%) and the minor mode was
85%. This bimodality may be derived from the lithological character. The sandy deposit often
alternated with shale. In this cluster the lithology code changed at relatively large intervals,
but the most frequent lithology code was 2-4 suggesting that only a few shale beds interrupted
the sandy deposition (Fig. 5-19). This cluster was regarded as laminated sandstones with

siltstones and marls.

The table of averages in Figure 5-19 showed that the mean effective porosity was 18%
in the third cluster. In the fourth cluster the porosity showed close values, 21%. The shale
volumes were also close to each other (34% and 32%). Consequently the descriptive statistics
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(Fig. 5-22) suggested that these cluster faces represented very similar sediments with slightly
shifted parameters. Both clusters contained sandy deposits, but in C_4 the porosity and the
shale volume showed better quality sandstones than in C_3. Cluster C_3 contained samples
with low effective porosity but quite high sand content. This cluster can be characterised by

thin sandstone with interrupted siltstones and massive sandstones.
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Figureb-22: Statistical comparison of clusters C_3 and C_4 (Sava Field)

The comparison of within group and between group variances (Table 5-4) showed a
close relationship between these clusters. The between group variance is lower than the within
group variance. Presumably, this analysis shows that (i) clustering of separated clusters which
are not heterogeneous enough, or (ii) that these clusters belong to a complex system such as a

chainlink dataset (see Chapter 2). In case of assumption (i), it is necessary to pool Clusters
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C_3and C_4. In case of assumption (ii), the analysis revealed miss-clustering. Unfortunately,
a clear decision could not be made. There are several validation techniques to reveal
misclassification but each depends on a different approach to cluster separation definition.
Thus, these clusters will be pooled in the lateral extension. This pooling modifies the
distributions of cluster elements, as shown in Figure 5-23, where C_4 _m is the merged C_3
and C_4 clusters.

In the variance analysis the applied parameters were as follows:

m=1.2
n=1168
n;=363; n,=805; (from Fig.5-4)

Table 5-4: Comparison of WGV and BGV for Clusters C_3and C 4
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Figure 5-23: Frequency histogram of elements of clusters after pooling C_3 and C_4 in both reservoirs in
Sava Field

5.2.4.3 Lateral extension of clusters using IK in Sava Field

According to the statistical information, the clusters are defined lithologically, but
during the identification of facies it is necessary to visualise the clusters on a map. The
extended cluster geometry can define the facies sedimentologically. The geometry and other

64



properties of submarine-fan systems were collected in several papers, including Reading and
Richards (1994) and Richards et al. (1998). These papers restricted the terms of submarine
fans to single point source turbidite systems. This paper follows the scheme of Reading and
Richards (1994) which is the most accepted and most often cited work on this issue. The

identification of facies follows the visualisation of clusters (based on these papers).
As this is a sand-rich system, the potential facies are as follows:

(i) On the proximal area of the deep-water siliciclastic system, there are
channels which are characterised by elongated finger-like geometry, where
sand content is greater than 60-70% and the porosity values are the largest.

(i)  On the distal area of submarine fan, the channelized lobes are in elongated
patterns which are often broken up with bifurcated channel geometry. They
also usually have greater than 60-70% sand content.

(iii) Where the sand content is less than 60-70%, the channel levees follow the
channel beds.

(iv) The basin plain surrounds the submarine fan system, with low porosity and

large shale volumes.

These listed points can be used to recognise and describe the extended cluster facies which

were visualised by IK.

5.2.4.4 Preparation of input data for the IK mapping process
The well density was first analysed in the pre-processing of the lateral extension. The
lateral distribution of wells is almost uniform on the field, so the wells were all applied in the

variography analyses.

At the beginning of the study both reservoir rock bodies were cut by surfaces parallel
with each other and by the top surface of the reservoirs. Vertically they were 1m apart. As a
result, both reservoirs decomposed approximately 20 horizontal surfaces. The UNN process
separated the clusters using data from each well in all horizontal surfaces, but the lateral
extension was not applied to all horizontal surfaces; instead, some lateral surfaces were

selected in both reservoirs.

This selection depended on two things: (i) the alternations of clusters distribution; and

(if) the alternations of porosity and sand content properties in the single surfaces. Eight
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horizontal surfaces were selected in the reservoirs altogether. In the case of the lower
reservoir, they were 13, 11, 10, 7, and 4m from the top. In the case of the upper reservoir they
were 9, 6, 3m from the reservoir top. The lateral distributions of porosity and sand content on
these surfaces are shown in Figures 5-24, and 5-25. These figures present the differences in

spatial distribution of clastic sediments during the different deposition phases.
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Figure 5-24: The selected horizontal surfaces from the lower reservoir where clusters were laterally
extended (Surfaces 13, 11, 10, 7 and 4m below the low permeability seal)
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Figure 5-25: The selected horizontal surfaces from the upper reservoir where clusters were laterally
extended (Surfaces 9, 6, 3m below the reservoir top)

Figure 5-25 shows that the differences were insignificant in the upper reservoir. The
depositional phases did not change greatly, the lateral and vertical differences in the spatial
distribution of sediments are not significant. This is why the lateral extensions of clusters
using IK were prepared only in these three selected surfaces. On the other hand, the number
of elements of the principal cluster (pooled C_4_m) also had to be considered in the selection
of surfaces. The unit with high sand content defines the pattern of deposition well. The
deepest horizon surface contains only a few wells which represent the C_4_m cluster. In this
way it is difficult to fit a variogram model for the less frequent cluster in an isolated location.
As a result the selected lowest surface lies 9m from the top.

It was also found that boreholes which belong to Cluster C_1 and C_2 were reduced.
Conversely the number of elements in Cluster C_4 _m increased in the upper surfaces. This
was seen in both reservoirs. Because of this, for example, the upper reservoir top cluster C_2

appeared in the surface 10m below the lower reservoir top or 9m below only in few isolated
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locations. In this case it is not possible to fit the variogram model to this cluster location. The

variogram surfaces of this cluster could refer to random spatial arrangements.

In the pre-processing of IK the variogram surfaces was analysed for all clusters
separately in each of the selected surfaces. Appendices 11 - 18 show the variography surfaces
of the clusters in all 8 selected horizontal surfaces. The variogram surfaces of the clusters
were appropriate to use in modelling.

The grid line geometry also derived from the variogram surface, and was imported to
the IK estimation. Usually the modelling of continuity is based on two directional variograms.
The first was chosen from [0°;90°] and the next was selected from [90°;180°] with 22.5° of
angular tolerance. Every cluster was modelled individually. The settings and model profiles
are shown in Appendices 12 - 38. Every model contained two or three structures which were
characterised by seven parameters. These were the same coefficients that were listed in the
Szoreg-1 case study (App. 39 - 46).

The results of IK are shown in Figures 5-26 - 5-33. These figures show the lateral
distribution of clusters and the contour geometry of the principal cluster (C_4 _m) according
to the probability contour map.

5.25 INTERPRETATION OF LATERALLY EXTENDED CLUSTERS IN SAVA

RESERVOIRS

Figures 5-26 to 5-33 represent the lateral extensions of point-like results on the
contours of porosity and sand content. Each figure comprises the lateral distribution of
clusters (Part A in Fig. 5-26 - 5-33). Part B represents the spatial probability of the principal
clusters (C_4 m with large sand content and the highest porosity value). Parts C and D
represent the contour of porosity and sand content maps combined with probability map of the
principal cluster. The last two parts (E and F) show the spatial distribution of sand content and

porosity in the surface generally.
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Figure 5-26: Results from the surface 13m below the reservoir top (in the lower reservoir)

In the three selected surfaces (13, 11, 10m below the reservoir top) the main clusters
appeared in elongated and bifurcated geometry with large estimated probability. This channel
shape extends in a NW-SE direction. It suggests a progradation process in a NW to SE
direction. This progradation can be followed surface by surface in Figures 5-26 - 5-28. These
maps show an increasing number of distributary channels. In these maps the geometry of
C_4 m defines the channel or channelized lob facies by dendroid geometry in the turbidite
system. In this system cluster C_2 appears at the forefront of lobs, between the bifurcation
channels, or follows the channel system at the marginal parts. These clusters are surrounded

by Cluster C_1 which represents basin pelitic deposits.

In all three surfaces (13, 11, 10m below the reservoir top) the extended principal
cluster with large probability corresponds to the contours of sand content (60%) and effective
porosity (18%). The result maps show that in addition to the main direction there is a
secondary direction where the sand body spreads. The depositional strike of this elongated
finger geometry suggests a south-north transport direction. The development of this sandy
area was also seen on the lowest selected surface. The progradation continues until the sandy
deposits from two directions interfinger (in the surface 10m below the low permeability seal).
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Figure 5-27: Result for the surface 11m below the reservoir top (in the lower reservoir)
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Figure 5-28: Result for the surface 10m below the top (lower reservoir)
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Due to the progradation of the submarine fan, three large distributary channels
developed in the next selected surface (7m below the top).

C_2 is detected sporadically, only in a few boreholes, 7m below the top. As a result,
C_2 does not appear in this surface. In contrast with the previous surface, the results map
contains the lateral extension of Clusters C_3 and C_4 separately. Both clusters were
separated by UNN in a relatively large number of boreholes. This made it possible to fit
variograms to both cluster locations and analyse the lateral distribution of these clusters
despite the variance analysis. The IK process supported the decision that these clusters were
also spatially separated, and they can be defined as two different facies within the C_4 m
cluster facies.

The channel system contained an increasing number of advanced bifurcate channels
(Fig. 5-29, E and F). It was interesting to determine which part of the main sandy deposit was
characterised by cluster C_3. This sandy deposit was of lower quality than C_4 according to

the porosity values and shale content. Group C_3 appeared among the channelized lobs.
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Figure 5-29: Result for the surface 7m below the top (lower reservoir)
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C and D maps of Figure 5-29 represent a slightly larger variability in porosity and
sand content within the contour of Cluster C_4. Sand content varied between 50-80% and the
porosity changes between 16-18%, generally. In the lower surface channels, channelized
lobes are characterised by around 20-22% of mean porosity and 70-80% of mean sand
content. Within the contour of Cluster C_3 the average porosity is around 14-16 and sand
content is 40-50%.

The definition of C_3 as the inactive lob areas of a deep-water fan system was based
on three reasons: (1) it is located among the channelized lobes; (2) its shape seems to be
elongated lobs; (3) its porosity values and sand content are smaller by one order than that of
C_4.
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Figure 5-30: Result for the surface 4m below the top (lower reservoir)

In the final selected surface, 4m below the reservoir top, the geometry of the sand
deposit completely changed and a generally sandy deposit dominated in the whole area (Fig.
5-30). In the northern part of the field an elongated channel complex extended along the NW-
SE line. The bifurcation channel system characterised by the sand-rich principal group
(C_4_m) prograded to a SE direction and also showed lateral movement. This sand-rich

deposit is more extensive towards the eastern and western edges.
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Farther up, the next reservoir clusters are appeared only in three selected lateral
surfaces. According to the porosity and sand content contour map it was apparent that the
spatial distribution of clastic rock in this reservoir differs from the previous. In addition to the
geometrical aspect, there is another difference between the lower and upper reservoirs. In all
surfaces the sand body geometry identifies as an elongated braided channel without
bifurcation or lob geometry. This shape is a so-called shoestring geometry. The point-like
extension of clusters also reveals this spatial distribution in the reservoir. The probability of
the main clusters corresponds to the porosity or sand content values (Fig. 5-31 - 5-33). The

cluster extension follows 50% sand content and 15-16% porosity contour lines.
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Figure 5-31: Result for the surface 9m below the top (upper reservoir)

The area of the identifiable channel system varies in all surfaces in the vertical series.

Its lateral dimension becomes larger, and its elongated shape is more widespread in the SE
direction. It is a clear progradation mechanism. The geometry and the relatively large porosity
and sand content values indicate that in this reservoir the main clusters can be identified in the
same way as for the previous reservoir. However, it is also noticeable that these large sand
content and porosity values are slightly lower in the Sava reservoir (this difference is
generally only 3-4% of porosity and 10-20% of sand content). This means that the same facies
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are characterised by somewhat worse petrophysical properties. This is the effect of the cluster
algorithm which made the outliers in some clusters possible.

DISTRIBUTION OF THE CURSTER SAND C. CONTOURS ON THE SAND C. (%)
ACCORDING TO THE PROBABILITIES C_4 PROBABILITY MAP i

(© &l
S

0 500 1000 0 500 1000 il 10 500 1000 0
POROSITY CONTOURS ON THE
C_4 &C_3 PROBABILITY C_4 PROBABILITY MAP POROSITY
®) Q&

| Eum) | mum)
0 500 1000 0 500 1000

| mum|
0 500 1000

Figure 5-32: Result for the surface 6m below the top (upper reservoir)

Another difference between the two reservoirs is that the relative frequency of Cluster
C_2 decreases from the lower towards the top surfaces. This cluster appears first at 6m below
the top and has larger area above this surface. This spatial pattern is seen in the north-west
part of the field.

In this reservoir Cluster C_1 surrounds other facies as well. It can be characterised as
having lower porosity and sand content and it is defined as basin plain sediment. This cluster
does not have a well-defined spatial structure and geometry.
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Figure 5-33: Result for the surface 3m below the top (upper reservoir)

5.26 CONCLUSIONS OF THE INTERPRETATION OF DEFINED CLUSTERS

The analysed clusters were defined lithologically on the basis of their statistical
characters. In addition to this, their probability based point-like extension also suggests
certain sub-environments in the deep-water fan system. Because Clusters C_3 and C_4 (sandy
deposits) were predominant in the clastic rock body, this clastic deposition is identified as a
sand-rich submarine fan system. This is important because the efficiency or range of turbidity
currents can be defined. Figure 5-34 demonstrates the dissimilarity between the different
systems based on the dominant grain size.

According to Reading and Richards (1994) the transport efficiency and the scale of the
depositional system are inversely proportional to the grain size. All types have a distinctive
characteristic according to the geometrical aspect, the range and the dominant grain size (Fig.
5-34). The sand-rich system has the smallest range (generally 10km, but it is never more than
50km) and the most compact lobate geometry (the length and radius volume is similar, but it
also depends on the basin geomorphology). The efficiency describes how far the turbidite
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flows can transport the sediments. Small grain sizes indicate that the transport mechanism
soon stopped. In a sand-rich system this efficiency thus means the smallest distance.

On the other hand, this model may also be useful in the characterisation of the main
reservoir property. The main depocentre of the sand deposition is the mid-fan or the close
proximity of the inner fan. In Normark’s (1978) terminology, the mid-fan area is the suprafan
lobe. The volume of mud within turbidites is low. This means that the reservoir homogeneity
is fairly good so the connectivity of sand bodies may also be good both horizontally and

vertically.

Figure 5-34: “Schematic block diagrams of deep-water clastic submarine fans according to dominant grain
size and the range of turbidity currents

It is also important to define the types of sand-rich clastic system. Based on Reading
and Richards (1994), there are three types. These are the point source submarine fans,

multiple source submarine ramps and the linear source slope aprons. Considering the

* Figure 5-35 is prepared after http://www.sepmstrata.org/page.aspx?pageid=40, 15.08.2013
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character of the depositional basin area, the study area may correspond to the first type.
According to the geometrical aspects and considering the statistical characteristics, the
defined facies describe a sand-rich point source submarine fan system. The result maps (Fig.
5-26 -5-33) show elongated shapes, and their corresponding petrophysical properties define
channel systems: braided channels with shoestring geometry, bifurcation channels with
dendroids, and lobate sand deposit with a radial fan shape.

In the vertical series of lateral surfaces the system suggests some phases of
progradation (P1 and P2 in Fig. 5-35). These phases are represented by the results maps for
the surfaces 13, 11, 10m below the top of the lower reservoir (Fig. 5-26 — 5-28). In the next
phase (P3 in Fig. 5-35) the proximal part of the mid-fan area is shown by the upper horizontal

surfaces of the lower reservoir (Fig. 5-29 — 5-30).

SUBMARINE FAN

Structure of sediment
in the marked cross sectins
A: SHALOW MOBILE CHANNELS B: FAN FRINGE FRONTAL SPLAYS

]

Figure 5-35: Summary block diagram illustrating a schematic sand-rich fan system including phases of
progradation (P1 - P4) and structures of deposition in two cross-sections in mid-fan (A, B) (after Reading
and Richards, 1994)

In the upper reservoirs the deposition processes are characterised by a braided channel

without bifurcation. It may be the main channel in the inner fan area. In this case this facies
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outlines the main transit zone, the so-called feeder channel. In the progradation mechanism
this is demonstrated by phase P4 in the summary block (Fig. 5-35). Usually this facies is
described as a sandy deposit of lower quality (in porosity values and sand content). In this
upper reservoir this area is characterised by a 10-20% lower sand content and 4-5% lower

porosity values than in the lower reservoir.

The probability contours of the principal cluster facies changed continuously
according to certain horizontal surfaces. This change shows the sedimentation history of the
Sava reservoirs, which corresponds to phases P1-P4 in the summary (Fig. 5-35). This history

can be seen in lithology columns in Figure 5-36.

Sand c. (%)

0.9

—0.7

H os

Figure 5-36: Lithology columns are displayed in the sand content contour map and the probability map of
cluster C_4_m. (The horizontal surface 11m below the lower reservoir is emphasised in a red rectangle in
the lithology columns).

The turbidity currents were active in the central area. In this area the lithology
columns show sand bodies several meters thick (Fig. 5-36). When the turbidity current shifted
to another area, an abandoned lob facies developed within the formerly active region. Here
the deposits formed thinning- and fining-upward sequences. These sequences can be

identified in the lithology columns. These abandoned lobs appeared between the active ones.
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Figure 5-37 shows this phase where the inactive lob area is outlined with a red line. Figure 5-
38 shows the location of the inactive lob according to Normark (1978). The lithology columns
in Figure 5-37 show the alternations of active and passive areas. Here the massive sandstones
are replaced by thin sandstones and interrupted siltstones. The difference between Figures 5-
36 and 5-37 demonstrates that the active accumulation moved from the central area towards
the edges and the central lob died. This is also suggested by the lower, sand content, less than
60% .

- border of inactive lob
defined by C_3

+ R

- Probability
of C_4m

==10.9

Figure 5-37: Lithology columns are displayed on the sand content contour map and by the probability
map for Cluster C_4. (The horizontal surface 7m below the lower reservoir is emphasised in a red
rectangle in the lithology columns and the inactive lob area is outlined with a red line).

Figure 5-38: Active and inactive lobs in the suprafan area (after Normark, 1978)
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The change in the type of deep-water system is demonstrated by a turbiditic flow zone
in Figure 5-39. This transport area shifted to the south-west wing of the field. The lithology
columns demonstrate several meter thick massive sandstones without any alternation. In the
other part of the field the deposits formed thinning- and fining-upward sequences and even

reached the persistent massive marl sediments.

—Probability
of C_4m

[ —
0 500 1000

Figure 5-39: Lithology columns are displayed on sand content contour map and by the probability map
for Cluster C_4_m (The horizontal surface 6m below the upper reservoir is emphasised in red)

The statistical analysis and description of clusters, the point-like extension of clusters
by IK and the general shapes of clusters indicate C_1 to be a massive marl sediment with very
low effective porosity and dominantly pelitic grain size. It was deposited continuously by
normal lacustrine basin pelitic sedimentation during the Upper Miocene in the Sava
Depression. The other cluster includes C 2, C_3 and C_4 groups, which were deposited
directly from the turbiditic current. Within these clusters C_3 and C_4 represent the main
sediment transport directions of the densest part of the turbiditic current. These clusters
generally correspond to the Tb-Tc turbidite facies (Reading and Richards 1994).
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Eventually the C_2 group represents laminated sandstones with siltstones and marl
deposits accumulated between the bifurcations channels which generally correspond to the

Td-Te Bouma facies.

The described clusters perfectly match the lithofacies defined for the Upper Miocene
sedimentation in the Sava Depression (Vrbanac et al., 2010). It could be established that the
thick-layered massive sandstones (F1) relate to Cluster C4; the facies of thin sandstones and
interrupted siltstones (F2) correspond to C 3, and the facies of laminated sandstones,
siltstones and marls (F3) match Cluster C_2. Finally, the facies of the massive marls (F4)
were found to be the equivalent of Cluster C_1. These results are in accordance with
previously published models of the depositional history of the Sava Depression (e.g., Simon,
1980; Vrbanac, 1996; Malvi¢, Veli¢, 2011).

5.2.7 Spatial variance and lateral continuity analysis of defined depositional facies

The point-like extension of clusters and the statistical analysis made the identification
of depositional facies possible, but the analysis of the lateral continuity of porosity and sand
content of bifurcated channels, lobate deposits and main channels may also have valuable

consequences for improving the oil production.

In this step, the contours of the above mentioned facies were first blanked in porosity
and sand content grids. The contour of the geometries was based on the 0.7 probability
contours of IK results. The boundary of the bifurcated channel comes from the horizontal
surfaces 13-11m below the lower reservoir top. On these surfaces the clusters appear as a

well-developed distributary channel system with elongated geometry (Fig. 5-40).

The channel orientation reflects a NW-SE progradation. It is 1200-1300m long and a
maximum of 750m wide. Within the blanked channel geometry this facies is characterised by

more than 22% porosity and more than 70% sand content properties.

The channelized system in the mid-fan area is the path for turbidity currents. It
developed where the turbulence loses energy and transforms to sustained flows. Because of
this, the sorting of grain sizes is better and the porosity is larger than in the proximal part or
the inner-fan area. This process is also expressed in the histograms of Figure 5-41. In this
figure the sand content forms a polymodal histogram and the mean is 81%. The porosity
histogram shows better distribution, its mode is 23.6% and the mean is 22.48% (Fig. 5-41).
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Figure 5-40: Average porosity values and sand content grid which is blanked by a contour of 0.7
probability value of principal cluster (derived from surfaces 13m and 11m from the top of the lower
reservoir.)
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Figure 5-41: Frequency histogram of porosity values (left part) and sand content (right part) within the
defined channel geometry in the lower reservoir of Sava Field

Variography analysis has been performed for both average sand content and porosity
grids. The results are shown in Figure 5-42. For both variables the principal continuity
direction is around 130 degrees, with 650m lateral ranges. In the perpendicular direction the
range is 390m for both porosity and sand content. Since the nugget effect is low, less than
one-tenth, this model can characterise almost 90% of the total variance in linear geostatistics.
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Spoke spacing: 45.0, spoke tolerance: 22.5; distance increment: 200.0; distance toerance: 100.0; maximum distance: 1100.0

(A) Exponential With Nugget

Correlation 0.83
Anisotropy Ratio  0.74
Nugget 25.028
Relative Sill 189.358

Major Axis Direction 125.4
Minor Axis Direction 35.4
Major Axis Range 606.715
Minor Axis Range 447.224

Gaussian With Nugget

Correlation 0.84
Anisotropy Ratio  0.75
Nugget 24,758
Relative Sill 176.592

Major Axis Direction 128.8
Minor Axis Direction 38.8

(B) Exponential With Nugget

Correlation 0.79
Anisotropy Ratio 0.48
Nugget 0.0
Relative Sill 0.001
Major Axis Direction 136.5
Minor Axis Direction 46.5
Major Axis Range ©91.038
Minor Axis Range  333.333

Gaussian With Nugget

Correlation 0.67
Anisotropy Ratio 0.72
Nugget 0.0
Relative Sill 0.001

Major Axis Direction 142.3
Minor Axis Direction 52.3

Major Axis Range 588.284

Major Axis Range 462.985
Minor Axis Range 442.117

Minor Axis Range  333.333

Figure 5-42: Model specifications and anisotropy ellipses (A- sand content, B- porosity) of channel system
in the lower reservoir of Sava Field

The next unit analysed is that of the lobate depositional facies. In this case the surface
10m below the top of the lower reservoir was selected for blanking. Figure 5-43 shows the
blanked porosity and sand content grids. This facies can be found at the distal end of the
channels. They correspond to the farthest depositional area in fans where most turbidity
currents die. The selected lobate unit has a geometry around 900m long and 700m wide in a
NW-SE direction. In the central part, where porosity is greater than 20% and sand content is
greater than 70%, the range along the minor axis decreases to 450-500m. The NW-SE

direction of progradation thus coincides with the bifurcating channel outlined above.

The frequency histogram for sand content has three modes (Fig. 5-44). The major
mode is very large, 91%. The first minor mode lies around the mean, 73%. The last minor
mode is between them, at around 80%. This polymodal histogram describes a complex facies.
It implies that the greatest sand content (major mode and minor mode) outlines channel facies
within the channelized lob. The second mode characterises the sandy lobes deposit. The
porosity histogram is also polymodal but less characteristic. The largest porosity values for
the major mode (23.5%) correspond to the bifurcation channels, and the lobate deposit is

described by 16-20% porosity. This corresponds to the minor mode.
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Figure 5-43: Porosity values and sand content grid blanked by the contour of 0.7 probability value of
principal cluster (derived from surface 10m at the top of the lower reservoir.)
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Figure 5-44: Frequency histogram of porosity values (left part) and sand content (right part) within the
defined channelized lob geometry in the lower reservoir of Sava Field

The lateral continuity of sand content is stronger than that of porosity, according to the
correlation of Gaussian and exponential semi-variogram models (Fig. 5-45). For both
properties the main continuity direction is 160 degrees. The principal axis coincides with the
channel axis in this lateral surface. The anisotropy ratios are 0.73 for sand content and 0.66
for porosity values. Usually, in the case of sand-rich systems the lobate deposits have a radial

rather than rounded structure and the anisotropy ratios also support that geometry. These
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elongated lobes can merge, and in this way they can form a broad sand sheet at a larger scale
(e.g. Link and Welton, 1982; Heller and Dickinson, 1985; Chann and Dott, 1983; Kleerlaan,
1989; Bushy-Spera, 1985; Smith, 1995; in Richards and Bowman, 1998).

Spoke spacing: 45.0, spoke tolerance: 22.5; distance increment: 200.0; distance toerance: 100.0; maximum distance: 900.0

(A) Exponential With Nugget (B) Exponential With Nugget
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Major Axis Range 467.138
Minor Axis Range 341.008

Major Axis Direction 171.0
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Figure 5-45: Model specifications and anisotropy ellipses (A- sand content, B- porosity) of channelized lob
in the lower reservoir of Sava Field

The last physiographic unit is a channel developed near the feeder channel area in the
he upper reservoir. Figure 5-46 shows the blanked porosity and sand content grids. The

elongated geometry (2000m long) suggests that the direction of progradation was from NW to
SE. The width of this channel is 800-900m.

Within the blanked facies geometry the average porosity values and sand content are
one magnitude lower than in the channel facies in the lower reservoir. The average of the
porosity values is about 18% and the average sand content is only 50%. This is also supported

by the frequency distributions (Fig. 5-47). Both histograms are polymodal and reveal poorly
sorted sediments.
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Figure 5-46: Porosity values and sand content grid blanked by the contour of 0.7 probability value of
principal cluster (derived from surface 3m from the top of the upper reservoir.)
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Figure 5-47: Frequency histogram of porosity values (left part) and sand content (right part) within the
defined channel geometry in the upper reservoir of Sava Field

The exponential and Gaussian type models gave almost the same results. Figure 5-48
shows that both models characterise a large anisotropy ratio. The major axis direction is 142
degrees (depending on both variables), and in this direction the range is more than 610m. In
the perpendicular direction it is 430m. The nugget affect suggests that this model may

characterise almost 90% of the total variance.
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Figure 5-48: Model specifications and anisotropy ellipses (A- sand content, B- porosity) of channelized lob
in the lower reservoir of Sava Field
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6 COMPARISON OF THE APPLIED UNN AND K-MEANS
CLUSTERING IN THE LIGHT OF THE RESULTS OF STUDY
AREAS

This dissertation focuses not only on the workflow of the identification of depositional
facies, but this chapter compares the applied UNN and the widely used K-means clustering
procedure. It has been proved that both methods have advantages and disadvantages. K-means
clustering has been a widely used process from the 1960s because it gives robust, fast and
efficient processing for large and high-dimensional datasets, however several authors found
that K-means sometimes failed to find any reasonable clusters. In this study the comparison of
these two methods relies on the results of variance analysis, and it is particularly based on the

classification results of both case studies.

In the comparison the same input dataset was used to separate cluster facies. In
addition, the number of clusters was pre-defined using a K-means algorithm in the same way
as for Kohonen clustering. K-means separated six clusters in the case of Széreg-1, and four in
Sava Field. The cluster centres were determined by maximisation of initial between-cluster
distances. This process seeks to maximise the between-group variance (BGW) and minimise
within-group variance (WGV).

Both UNN and K-means clustering break the observations into groups that are as
internally homogeneous as possible, and are as different from each other as possible. As a
result, the efficiency of these processes can be measured using the ratio of WGV and BGW.

So, the variances were calculated separately using Equation 4.3 in both cases.

The K-means algorithm has given significantly different cluster-results especially for Széreg-
1. In the Sava reservoirs the identified clusters are similar, with few differences between the
two applied methods, but based on the WGV and BGV rate of total variance, the UNN
clustering gave really better solution for separation.

First, let’s focus on Sava Field. On the basis of variance calculated for all four clusters
it would be difficult to say which solution is the better. Tables 6-1 and 6-2 display
WGV/BGV ratios. These tables reveal significant differences between UNN and K-means. In
the case of UNN clustering, porosity has the greatest weight in the separation. The objects in
particular clusters are highly homogeneous due to the porosity. Based on other properties the

within-group variances are only one fourth of the total variance. In the case of K-means
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algorithm the porosity values separate groups poorly. According to the porosity values the

homogeneity is characterised by 24% within-group variance (Table 6.2).

In the case of UNN, Clusters C_3 and C_4 were separately analysed. Both are defined
as sandy deposits and as merged clusters extended by the IK process, these clusters seemed to
be similar using nonparametric statistics. In addition, IK suggested that these cluster facies
can be individually defined sedimentologically as active (C_4) and inactive (C_3) lobate
deposit. The extended Cluster C_3, with a lower porosity value and sand content, outlined the
inactive lob area of the midfan in the lateral surface 7m below the lower reservoir top (Fig. 5-
29).

The analysis of WGV and BGV for these two clusters revealed considerable
differences. Table 5-4 collected the results of variance analysis for UNN and Table 6-3 shows
the variances of clusters by K-means. In the case of K-means, the variance analysis reinforced
the idea that these clusters were not separated in an acceptable way, since WGV could
characterise almost 96% of the total variance for SH content and 88% for porosity (Table 6-
3).

Table 6-1: Comparison of WGV and BGV for all clusters generated by UNN in Sava Field

NN WGV / TV BGV/TV
aII cluster rate (%) rate (%)
177.45 506.72 684.18 25.94 74.06

282.64  768.08  1050.72 26.90 73.10
N 00006 0.0059  0.0065 9.49 90.51

Table 6-2: Comparison of WGV and BGV for all clusters generated by K-means in Sava Field

K-m WGV /TV | BGV/TV
aII cluster rate (%) rate (%)
111.64 240.17 683.58 16.33 83.86

136.64  913.83  1050.47 13.01 86.99
N 00004 00049 0.0065 24.18 75.82
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Table 6-3: Comparison of WGV and BGV for Clusters C_3 and C_4 generated by K-means in Sava Field

K-m WGV /TV | BGV/TV
C 3andC 4 rate (%) rate (%)
97.61 313.58 411.18 23.74 76.26

114.43 513  119.56 95.71 4.29
N 00007 00001  0.0008 88.26 11.74

In the comparison of the two clustering processes the cluster members from K-means
separation were shown on classed post map in Figure 6-1 containing four lateral surfaces as
examples. These maps showed the sand content and the overlay results of K-means algorithm.
Sand content was used in this analysis, since its contours followed the defined UNN cluster
facies very well. Using K-means Cluster C_4 was clearly characterised as a massive sand
deposit (marked by a black symbol in the maps of Figure 6-1). The other two clusters
contained data points that UNN detected as C_4, or interchanged C_2 and C_3 (marked with
a red symbol in maps of Figure 6-1). This may be the result of misclassification. In this case
the within-group variance needs to be relatively low. This calculation also verifies that these
clusters are not homogenous enough (Table 6-4). K-means algorithm usually identified data
points with large porosity and sand content as Cluster C_2 and C_3 if the sample originated
from the upper reservoir. One possible reason for statement is that there are two
characteristically different depositional facies in the study area: the lob systems channelized
by turbidite current and the quiet water deposits. Using UNN clustering, the first depositional
facies were divided into more sub-facies, which were not seen in either reservoir. In the upper
reservoir the cluster facies outlined only channel fill deposit and basin floor sediment. This
channel facies was characterised by a one magnitude lower value in porosity and sand content

than the lower reservoirs. This may be why K-means misclassified several samples (Fig. 6-1).
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Figure 6-1: The classed post maps of clusters separated by K-means algorithm overlapped with the sand
content map of several surfaces of reservoirs in Sava Field

Table 6-4: Comparison of WGV and BGV for Clusters C_2 and C_3 generated by K-means in Sava Field

K-m WGV / TV BGV/TV
C 2and C 3 rate (%) rate (%)
183.48 155.82 339.30 54.75 45.92

181.76 23326  415.03 43.79 56.20
NG 00019 00001  0.0020 93.76 6.23

In the Széreg-1 study, there are also significant differences between the two clustering
techniques due to the variance analysis. Six clusters were generated by K-means, as in the
case of UNN, but these clusters did not correspond directly to clusters by UNN. Only the
pairs of pooled clusters corresponded more or less to UNN-clusters. These pooled clusters
were as follows: C_1 - C_2 as sedimentation from quiet water defined by UNN; C 3 -C 4 as
distributary mouth bar by UNN clustering; C_5 - C_6 as bifurcation channel by UNN-
clusters. The relationship between UNN and K-means clusters was thus recognisable. In a

comparison of pooled clusters C_1-C_2 with the clusters of quiet water deposit (defined
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clusters by UNN and IK) or the merged C_5-C_6 with the bifurcation channel (identified as

UNN clusters), the relationship was stronger than for the C_3-C_4 pair. The variance analysis

supported this observation (Table 6-5 - 6-7), however this merging could not yield enough

homogeneous clusters compared to the UNN clusters (Table 5-1). In the case of the C_3-C 4

pair, the variance analysis showed the greatest differences (Table 6-6).

Clusters C_3 and C_4 by K-means were visualised overlying with the UNN result

maps (Fig. 6-2). The main difference could particularly be detected in on Horizon#2

(bifurcation channel surface in the right part of Figure 6-2) where the number of facies

increased. Conversely, in Horizon#1 (distributary bar surface in the left part of Figure 6-2) the

correspondence is better.
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Figure 6-2: Classed-post maps of Clusters C_3 and C_ 4, overlapped with results map of extended clusters
by UNN (The classed-post maps display clusters which are separated by K-means)
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Table 6-5: Comparison of WGV and BGV for Clusters C_1 and C_2 generated by K-means algorithm in
Szoreg-1 reservoir

WGV / TV BGV/TV
L Y S VA P I

151.29 280.56 431.85 35.03 64.97
m .77 6.26 14.03 55.38 44.62
209.26 16.88 226.14 92.54 7.46

Table 6-6: Comparison of WGV and BGV for Clusters C_3 and C_4 generated by K-means algorithm in
Széreg-1 reservoir

Kem WGV [TV BGV/TV
rate (%) rate (%)

81.36 131,67 213.03 38.19 6181
m 11.27 2.748 14.02 80.40 19.60
1783.89 105.42 1889.32 94.42 5.55

Table 6-7: Comparison of WGV and BGV for Clusters C_5 and C_6 generated by K-means algorithm in
Széreg-1 reservoir

WGV / TV BGV/TV
ES TSV IV A I

102.17 70.61 172.79 59.14 40.86
m 5.60 4.03 9.63 58.12 41.88
11937.38 3394892  45886.29 26.02 73.98

The comparison of data separation using the Kohonen neural network and K-means
algorithm demonstrated that UNN is able to recognise clusters as facies even in such
situations where K-means clustering techniques fail to find any reasonable depositional units.

This can be explained by the difference in the separation algorithm.

In the iteration of K-means algorithm there are main two steps, (i) assign each data
point to the nearest mean, and (ii) move the “means” to centres of every single cluster. The
number of iterations is previously fixed. The problem is that the separation is almost
independent on the length of iteration since clusters can be characterised by the features of the
first data vectors and in this way they have greater weights in the definition of centres.

In contrast, the Kohonen network can modify the centres of clusters through the
modification of weight according to the training rate and using the test set. Thus, an advantage
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of using the Kohonen network is that its cluster-forming ‘capacity’ is self-regulated, which is

why it is more efficient than K-means clustering.

Of course there are some advantages to using the K-means technique. With a large
number of variables this method may be computationally faster than other clustering
techniques, but only in case of fewer clusters.

Other weak points of K-means are that the defined clusters may differ in size, density,
and non-globular shapes of dataset. If the clusters are not chained, K-means algorithm may
produce tighter clusters, as did UNN. If there is previous knowledge about cluster features or
centroids from an analogue area, the partition process may be efficient, robust and very fast.

Both techniques outlined above also have disadvantage. Since it is difficult to predict
the number of clusters, an auxiliary process (e.g. variance analysis, statistical test) or

precognition is generally necessary.
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7 DISCUSSION AND INFERENCES

This dissertation has demonstrated, through two case studies, a workflow for facies
identification in clastic depositional environments. The workflow was based on unsupervised

neural network clustering and probabilistic extension of cluster members.

UNN separated the input datasets which contained differently measured and
interpreted well-log parameters and categorical variables for lithology description. The aim of
clustering was to separate subsets that were potential depositional facies. The cluster facies

recognition was supplemented by statistical interpretation and lateral extension.

For the Széreg-1 reservoir two well-known horizontal surfaces were selected for the
demonstration of the workflow. Horizon#1 reflects the phase of the development of
distributary mouth bars in a bay. Horizon#2 represents the phase when bifurcation channels
break through distributary bars. In these lateral surfaces six clusters were defined as

depositional facies:

(i) Facies C_1 represents the sedimentation from the quiet water in the

interdistributary bay area.

(if) Facies C_2 is the outer bar area of a distributary mouth. It also represents still

water sedimentation.
(iii) Facies C_3 is identified as the marginal parts of distributary mouth bars.

(iv) Facies C_4 is the main body of the distributary mouth bars. Its accumulation is
characterised by a channel system. The lower horizon reveals major and a minor bar
development from SW and NE. These mouth bars are involved due to progradation which is

revealed in the upper lateral surface.

(v) Facies C_5 is identified as the marginal part of the bifurcation channel. It appears
around the dendriform channel geometry.

(vi) Facies C_6 defined the bifurcation channel with dendroid shape. This channel

developed from a SW direction.

C 4 and C_6 clusters outlined the two most characteristic depositional sub-
environments as the distributary mouth bar and bifurcation channel. The probability contours
of Cluster C_4 outlined a 6.5-7km wide kidney-shaped bar. The progradation of this major
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bar is from SW and from the opposite side a minor mouth bar developed which reached a
maximum 3-3.5km width. The shape of C_6 was approximately 5km in length with an
approximately 500m wide channel network. The identified facies showed two main phases of

the depositional history of Szdéreg-1 reservoir (Geiger, 2003).

The second case study came from the Sava basin. Two reservoirs from this area were
represented using the detailed workflow. The two sequences analysed were built up by Upper
Miocene marls, siltstones and sandstones. The latter two lithotypes had been deposited by

periodic turbidity currents over the entire depression.

Both reservoirs were cut by 1m thick surfaces, parallel with the top of the reservoir in
a stratigraphic coordinate system. Between any two cutting surfaces, the petrophysical data
(from well-log interpretation) of the 1.0 m thick vertical intervals was given by the average of

the data falling to these intervals. This dataset was the input for UNN.

Four clusters were separated using the UNN clustering technique and these were
identified as lithological facies. The depositional facies were also defined according to their
spatial pattern. The analysis demonstrated that UNN can segregate the different clastic
lithofacies which are deposited in different sub-environments of lacustrine turbiditic flows.
These facies correspond perfectly to the lithofacies which were defined as typical Upper
Miocene sedimentation in the Sava Depression (e.g., Simon, 1980; Vrbanac, 1996; Vrbanac et

al., 2010; Malvi¢ and Veli¢, 2011). The facies are as follows:

(i) C_1is identified as massive marly sediment deposited by still water sedimentation.
According to Vrbanac et al, (2010) it corresponds to (F4) lithofacies.

(i) Facies C_2 was defined as laminated sandstone, siltstone and marl deposits which
correspond to (F3) by Vrbanac et al., (2010). This facies was deposited directly from low-
density turbidity current. According to IK results, this cluster appears between the bifurcation
channels and lobate sediments. It is defined as the inactive part of a fan system and generally

corresponds to the Td-Te Bouma sequence.

(iii) Facies C_3 is the lithofacies of thin sandstone and interrupted siltstone which
corresponds to (F2) by Vrbanac et al., (2010). As part of low-density turbidites this
sedimentation was regarded as lob-type deposits.

(iv) Facies C_4 is identified as thick-layered massive sandstone which corresponds to
(F1) by Vrabanac et al., (2010).
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The sedimentary environments were identified according to the characterised cluster
facies. In general, the studied rock body of Sava Depression appears to be a mid-fan
(suprafan) area of a sand-rich submarine fan system. The process of facies migration suggests
that this submarine fan system prograded from NW to SE. During the progradation the lobate
sediments shifted laterally. The lower reservoir represents the distal and upper reservoir of the

proximal part of mid-fan in the submarine fan system.

The lateral distribution of Clusters C_3 and C_4 represents the main sediment
transport directions of the low-density turbidite within the sand-rich submarine fan system.
These clusters generally correspond to the Bouma Th-Tc sequences (Reading and Richards,
1994). The fourth facies outlined the axes of turbiditic flow and lobate deposit according to
bifurcation channel shape and the fan-like pattern in the distal part of the submarine fan
system. Custer C_3 is also defined as lobate deposit. In the surface 7m below the top of the
lower reservoir the probability map of clusters showed that C_3 may be identified as inactive

lobate sediment which appeared between the active lobs sedimentation by C 4.

Three physiographic units were characterised from the selected 1-2m thick intervals of

the reservoirs:

(i) a channel with an elongated and bifurcated shape in the direction of the main
progradation; it is maximum 1200-1300m long and 750m wide. This physiographic unit is
characterised by high quality thickly-layered massive sandstones with greater than 22%

porosity and more than 70% sand content.

(i) a lobate deposit with radial pattern which is about 700m in the major axis (NW-
SE) and at maximum 500m wide in the perpendicular direction. According to the anisotropy
ratios the lob-system has a radial pattern which is a common characteristic in sand-rich
systems. This physiographic unit is characterised by greater than 20% porosity values
decreasing toward the wings. The sand content is greater than 70% and decreases towards the

wings, where it is about 50-60%.

(iii) an elongated channel without bifurcation representing the proximal part of the
suprafan area. It has an approximately 2000m long axis from NW to SE, at maximum 800m
wide. According to porosity and sand content, this unit has a clearly different character
compared to the channel facies in the lower reservoir. The elongated pattern has shoestring

shape, and the one magnitude lower value for porosity and sand content indicates a position
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closer to the feeder channel. Here the porosity changes between 16-20% and the average sand
content is 50-60%.

On the basis of the characterised physiographic units, the heterogeneity of this
reservoir is very low, so the reservoir continuity and connectivity is very good laterally. In the
upper reservoir, the connectivity is very good, probably also vertically since the elongated

channel is not characterised by lateral migration.

The demonstrated workflow was based on data clustering but it was not classical, such
as K-means. This dissertation tried to show that the applied UNN is able to recognise clusters
in those situations where K-means clustering techniques fail to find any reasonable cluster
facies. Another advantage of using UNN in facies analysis is that its cluster-forming

‘capacity’ is self-regulated, so it is more efficient than ‘classic’ clustering.
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SUMMARY IN ENGLISH

During the past few decades a huge number of papers have introduced different
multivariate statistical methods and workflows to identify subsurface facies analysis. Most of
them have relied on clustering the objects in the sample, but few (if any) have tried to use
these classifying methods under the surface combined with lateral extension of cluster
members. In fact, this approach can be expected to have significant uncertainty because of the
scattered lateral distribution of sample points (wells). This dissertation aimed to contribute
this issue by addressing several main points: (1) cluster separation using neural network
technique; (2) the lateral estimation of point-like qualitative information of cluster members
using indicator kriging (IK); (3) the interpretation of the geometry presented by IK; (4) a
comparison of the efficiency of UNN and K-means clustering on the basis of results provided
by the previous three analyses.

There are many, widely used clustering techniques but in this dissertation the
separation of subsets, based on a neural network approach, the so-called Kohonen network
was demonstrated. This method was applied because neural network cluster separation
requires associative ability, learning ability and non-linear separation techniques. Often, a
database cannot be divided in a linear way. This may be the reason that in some cases the
separation procedures misclassify at relatively large rates. Using a suitable non-linear
transformation these linked clusters can be separated.

The Kohonen neural network is a non-linear separation technique. The K-means
approach is regarded the most similar to the Kohonen clustering. But the K-means is one of
from classical clustering techniques. Some papers have dealt with their comparison using
statistical tests and found that K-means sometimes failed to find any reasonable clusters. In
this study a comparison of these two methods relies on the results of variance analysis.
Clustering seeks to minimise within-group variance (WGV) and maximise between-group
variance (BGV) and it can rarely reach a substantial difference between them. The difference
between WGV and BGV can demonstrate the suitability of cluster results. The relatively low
WGV and larger BGV mean that cluster analysis has a number of heterogeneous groups with
homogeneous contents.

A comparison of data separation by Kohonen neural network and K-means algorithm
pointed out that: (1) UNN is able to recognise clusters as facies even in such a situation where

K-means clustering techniques fail to find any reasonable depositional units; (2) one of the
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advantages of using UNN in facies analysis is that its cluster-forming ‘capacity’ is self-
regulated, which is why it is more efficient than “classic’ clustering.

The applied Kohonen neural network is an unsupervised neural network. This is also
an analogy of the manner by which the human brain can logically arrange data, and new
information. This is a kind of associative memory, which supports the systematic organisation
process without any external help. To this end it was used as a clustering process to separate
the cluster facies in the data space.

The results of clustering mean only categorical information in well points. The
question is how can we spatially interpret and extend these point-like results? The workflow
described in the dissertation demonstrates the probabilistic approach of the extension. The
process uses indicator kriging. IK uses a discretized form of global probability distribution
derived from sample points, and the procedure uses discretization. The cluster categories are
the discretized form. According to the spatial correlation structure measured between
categories, this method estimates the probability distribution functions at any unsampled
locations. The goal of IK is thus the estimation of probability for each input cluster category
at every grid node. A particular grid node should be assigned to those cluster memberships
which have the greatest estimated probability. Another choice is a map showing the change of
probability belonging to a particular cluster membership. It is necessary to find a reasonable
probability-contour which can outline the shape of a supposed physiographic unit well.

Clustering any objects in the geographical space (whether UNN or K-means
clustering) results in disjunctive sets of spatial points. Using lateral extension by IK these
clusters can be defined spatially as interfinger facies. This also implies that the applied
methodology does not contradict the definition of either clustering nor depositional facies.

The identification of depositional facies was based on the geometry of laterally
extended clusters and their statistical characters. The different depositional environments can
be characterised by special (although, not necessarily different) rock-body morphology. Thus,
in this work the rock body geometry expressed by the probability contours was interpreted in
terms of the depositional facies. These contours can be used as a blank-polygon. In this case,
the differently defined physiographic units are blanked, and within the contours it is possible
to analyse the lateral continuity and spatial variance of the porosity and sand content.

Two case studies from different clastic sedimentary environments demonstrate the

workflow. The first represents a delta plain environment. The second one shows a deep water
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turbidity system. In addition to these, the type of available variables and the amount of data
were also different in these two cases.

The first study area was located in the Széreg-1 reservoir, Algy6 Field, south east
Hungary. In this reservoir, UNN was applied in two depositional sub-environments: (1)
emerging distributary mouth bar; and (2) prograded bifurcation channels. Their corresponding
stratigraphic positions were 34-35 m and 24-27m below the top argillaceous marl of the rock
body.

The second case study involved the Sava Field, north Croatia. The focus of this study
was only two selected reservoirs located one above the other in the reservoir series. The two
sequences analysed were built up by Upper Miocene marls, siltstones and sandstones. The
latter two lithotypes had been deposited by periodic turbidity currents over the entire
depression.

In both cases the depositional rock bodies were transformed into a stratigraphic
coordinate system. In this coordinate system only the vertical coordinates were changed. It is
measured from the top of the rock body, from the bottom of the massive clay-marl deposit
which separates the reservoir units. This system was sectioned by surfaces being parallel to
the top, and thus, it is possible to follow the change of depositional facies in a small-scale
analysis.

In the case of Algy6 Field, six NN-facies were defined. According to BGV and WGV
these were clearly well separated. These clusters seemed to be very heterogeneous with
homogeneous content and WGV was only about one tenth of the total variance. The lateral
extension of these clusters was based on IK. Due to the statistical characteristics and the
spatial pattern the clusters were defined as follows: (i) interdistributary bays; (ii) outer bars
facing to still water sedimentation; (iii) marginal parts of distributary mouth bars developed as
the result of channel and bay interactions, (iv) main body of the distributary mouth bars with
6.5-7 km width and kidney-shape geometry; (v) marginal part of the channels involved and
(vi) bifurcation channels with dendroid geometry. This channel pattern was characterised by a
length of approximately 5km and a channel network approximately 500m wide

The facies identified showed two main phases of the depositional history of Szdéreg-1
Reservoir. In the first phase discrete major and minor mouth bars formed. During the second
phase bars prograded and a bifurcating channel cut into their rock body.

For Sava Field, four NN-facies were defined. Cluster facies were extended laterally

using a probabilistic approach to several selected horizontal surfaces of the whole reservoirs.
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In some horizontal surfaces Clusters C_3 and C_4 were extended as pooled clusters. These
clusters together represent a main depositional facies due to the porosity values and sand
content. The C_3 cluster in some lateral surfaces has isolated locations. In addition, these
clusters were pooled because the variance analysis showed that these groups are not clearly
heterogeneous in the geographical space.

According to the statistical character and the spatial geometry of clusters the following
four facies were defined: (i) Massive marls with low porosity representing still water
sedimentation. (ii) Low-density turbidity currents resulting in sandstones interbedded by
siltstones and marls. They were accumulated between the bifurcating channels of a fan
system. (iii) Thin sandstone and interbedded siltstone of low-density turbidites were regarded
as belonging to lob-type deposits. This facies describe the passive-lob area. (iv) Massive
sandstone was probably deposited at the axes of turbidity channels of a sand-rich turbidity
fan. This facies was outlined by elongated shoestring and dendroid geometry. The
sedimentary environment was identified according to the depositional facies characterised. In
general, it is proposed as the mid-fan area of a sand-rich submarine fan system. The processes
of facies migration suggest that this submarine fan system prograded from NW to SE. During
the progradation the lobate sediments also shifted laterally.

The workflow demonstrated in the dissertation may aid depositional facies analysis
and the identification of depositional environments. This methodology may also support
object-based modelling and define training images. The weights belonging to clusters derived
from UNN process are applicable to the analysis of similar depositional environments if the

identification of facies is based on neural network classification.
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SUMMARY IN HUNGARIAN

A facies elemzés teriiletén mar szamos szakirodalom és cikk foglalkozott az elmult
néhany évtizedben a kiilonb6z6 tobbvaltozods statisztikai modszerek alkalmazasaval. A
munkak jelentds része szintén valamely csoportositd vagy klaszterezo eljarasra timaszkodva
tette lehet6vé a mintatér felosztasat, hogy abban valamely szempont szerint homogén

litologiai egységeket definialjanak.

A dolgozat témaja szintén az iiledékes facies elemzéséhez kapcsolodik. Jelent
tanulmany a klaszterez6 modszer alkalmazasanak €s a szeparalt csoportok valoszinliségi alapu
lateralis kiterjesztésének kombindldsaval valositja meg az tiledékes egységek azonositasat. A
dolgozatban bemutatott modszer tovabba kiegészitd statisztikai Osszehasonlitdsra, illetve

variancia analizisre egyarant tdmaszkodik.

Szamos, széles korben elterjedt klaszterezd eljaras ismert, ennek ellenére a
disszertacioban leirt eljaras egy neuralis halo alapt osztalyozason alapul, jelen esetben ez az
u.n. Kohonen hal6. A mintatér felbontdsdra azért egy neurdlis hald alapa eljaras lett
alkalmazva, mivel a csoportok kialakitadsaban az asszociativ képességnek, a tanitasi elvnek és
a nem-linedaris szeparacios technikdnak volt szerepe. Gyakran eléfordul, hogy az adathalmaz
nem szeparalhaté linearisan klaszterekre. Ez lehet az oka, hogy egyes esetekben a
csoportositd vagy egyéb szeparacios eljardsok nagy tévesztési ratdval hajtjak végre a
feladatot. Egy megfelel6 nem-linearis transzformaciot alkalmazva, a linearisan nem

szeparalhatd, 6sszeflizott klaszterek a tulajdonsagtérben linearisan szeparalhatova alakithatok.

Kohonen neuralis halé alapu klaszterezést leginkdbb a K-means tipust
csoportositassal hozzak Osszefliggésben. A két eljards Osszehasonlitasat elsdsorban tesztek
alapjan végezték és irtak le. A disszertacid lehetéséget adott a két modszer gyakorlati
szemponti Osszehasonlitasara. Ez az Osszehasonlitds a csoportokhoz tartozé kiils6-belsd
szOrasok aranyara tamaszkodott. Ez a fajta Osszehasonlitas lehetévé tette a klaszter
kiértékelését. A két szoras kozotti arany fejezi Ki a klaszterezés eredményének hatékonysagat.
Azaz, min¢l alacsonyabb a belsd szoras és nagyobb a kiilsd szoras aranya, anndl heterogénebb
klasztereket sikeriilt elvalasztani relative homogén mintaelemekkel. A tanulméanyban
bemutatott példak alapjan belathatd, hogy a K-means, mint gyors eljaras alkalmas ugyan kis

klaszterszammal el6zetes informaciot adni a faciesek tipusair6l, viszont azok teljesen
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elfogadhat6 szepardlasara nem képes. Ez azt is jelenti, hogy a Kohonen neuralis hal6 képes
felismerni egy faciest még azon helyzetben is mikor a K-means algoritmus mar nem képes az

adott iiledékes egység ésszerli besorolasara.

Az alkalmazott Kohonen halé egy feliigyelet nélkiili eljaras a neuralis halok széles
korében. A csoportositod eljarasok koziil maga a klaszterezés is tanitd halmazpart nélkiilozve
alakitja ki a szeparalt részhalmazokat a mintatér strukturdja, vagy mintazata alapjan. Ez az
emberi agy asszociacios képességének az analdgidja, hiszen az emberi agy is a felismerésen
¢s a hasonlosagok keresésén alapulva képes objektumokat besorolni és igy klasztereket

kialakitani.

A kialakitott Kklaszterek, mint pontszerii informaciok jelennek meg a térben. A
bemutatott modszer masodik pontja azzal a kérdéssel foglalkozik, milyen modon lehet ezeket
a kialakitott klasztereket Kiterjeszteni, és a klaszter faciesek kozotti hatarfeliiletet megadni.

Ehhez az indikator krigelés nytjtott megoldast.

Az IK lehetdvé teszi a diszkrét kvalitativ informaciok lateralis kiterjeszthetségét is.
Az eljaras minden egyes gridpont koriil a valoszinliségi eloszlas becslését végzi a térbeli
korrelacios struktura alapjan. Miutan a klaszterekhez tartozo indikator valtozokat definialtak,
az IK becslést ad a klaszterek laterdlis kiterjedését illetden azaltal, hogy minden egyes
racsponthoz hozzarendel csoportonként egy-egy valoszinliséget. A valdszinliségi értékek
alapjan mar konnyen definialhato a legjellemzébb klaszter. A masik alternativa, ha a
valoszintiségeket kontur térkép jeleniti meg minden egyes csoport esetében. Ebben az esetben

rrrrrr

kornyezet jellemz6 geometridjat.

A Kklaszterek matematikailag diszjunkt halmazokként értelmezhetdk, a valosziniiségi
kiterjesztés alapjan azonban mar térbelileg 6sszefogazddott faciesenként jelenithetdk meg. Ez

egyben azt is jelenti, hogy az alkalmazott eljaras nem sérti sem a klaszterezés matematikai,

crer

A kiterjesztett klaszterek geometridja és a csoportok statisztikai jellemzdi alapjan
lehetdség van a csoportok azonositdsara. Az {iledékes kornyezetek jellemzd térbeli
megjelenéssel, alakzattal irhatok le, még ha azok nem is sziikségképpen kiilonbozdek.
alkalmazhatok. A poligonnal koriilhatarolt tiledékes al-kdrnyezet porozitas és homoktartalom

tulajdonsagainak lateralis folytonossagat lehetett igy vizsgalni.
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A disszertacio a részletezett munkafolyamatot és kiértékelési szempontokat két, eltérd
tanulmanyteriilet bevondsadval szemléltette. Az els¢ tanulmdnyban egy deltasik
felhalmozodas, mig a masodik esettanulmanyban egy mélyvizi hordalékkup elemzése tortént

meg. Emellett a rendelkezésre all6 adatok mennyisége és az adatok tipusai is kiilonboztek.

Az elsé mintateriilet a DK-Magyarorszagon taldlhaté Algyd mezdébdl szarmazik. A
modszertani eljaras kiértékelésében nem a teljes iiledékes rendszer, hanem csak a Szoreg-1
rezervoarbol kivalasztva két felhalmozodasi egység lett kielemezve. Az iiledékes
felhalmozodas vertikumabol kivalasztott egyik egység egy torkolati zatonytest iiledékes

sorozatat, mig a masik a zatonytesten megjelend elagaz6é medrek rendszerét foglalja magaba.

A masodik mintateriilet mélyvizi iiledékes kornyezetet képvisel. Ez a mintateriilet a
Szava medencében, E-Horvatorszagban talalhato. Maga a tanulmany fokuszéban 1évé teriilet

csak a medence egyik rezervoar sorozatanak két, egymas felett elhelyezked6 tagjat dleli fel.

Az elemzésbe bevont két egységet Felsd Miocén korti agyagok, aleuritok és
homokkovek épitik fel, amelyek szakaszosan ismétldd6 turbidit aramlatok hatasara

halmozddtak fel.

Mindkét tanulméany esetén az iiledékes kdzet egy sztratigrafiai koordinatarendszerbe
lett elhelyezve. Minden esetben a rezervoarokat elvalasztd kitartd agyagmarga talpa, azaz a
rezervoar tetdszintje volt az a kitiintetett id6horizont vagy feliilet, amellyel parhuzamos
felszinek mentén a kézettestek fel lettek szeletelve. fgy lehetéség volt az iiledékes kézetek

kisléptékii vizsgalatara és iiledékes faciesek vertikalis valtozasosainak nyomon kdvetésére is.

Az algydi esettanulmanyban a neuralis halo alapu csoportositds alapjan hat klaszter
facies lett definidlva. Az elkiilonitett klaszterek a hozzajuk tartozo kiilsd és belsd szoras
alapjan egyértelmiien jol definialtak, minden bemend valtozé alapjan relative homogének,
azaz a bels6 szorés kis aranyt képvisel csak a teljes minta variancidjaban. Az klaszter faciesek
kiterjesztése indikator krigeléssel tortént. A statisztikai jellemzdk és geometriai megjelenés
alapjan a kovetkezO faciesek lettek azonositva: (i) Az 6bol teriilete, ahol a delta sikjahoz
tartozo torkolati zatonytestek fejlodtek ki. (i1) A kiilsé zatony teriilete, amely elsdsorban a
nyugodt tiledékképzddés térszinéhez kapcsolodik szorosabban. (iii) A torkolati zatonytest
szegélyteriilete, amely a petrofizikai adottsdgai alapjdn gyengébb tulajdonsagu
homokkovekbdl épiil fel. (iv) A torkolati zatonytest jellegzetes vese alaki megjelenésével,
amely 6.5-7km szélességben kovethetd. (V) A partagi teriilet, amely részben kdveti az elagazod

hordalékelosztd6 medret és ahhoz szorosan kapcsolodik. (vi) A hordalékelosztd medrek, ra
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jellemzo fadgszerien elagazd megjelenéssel, amely DNy-i iranybdl fejlédik ki, A

mederalakulat Skm hosszan és koriilbeliil 0.5km szélességben szeli at a torkolati zatonytestet.

Az azonositott faciesek a Szdreg-1 rezervoar iiledékes felhalmozodasanak két 6
fazisat korvonalazzak: az elsé fazis két diszkrét kifejlodésti (DNy-i és EK-i) torkolati
zatonytest megjelenését rogziti, mig a masodik a torkolati zatonytesteket felépitd tiledéket

szallito elosztdé medrek megjelenését korvonalazza.

A Szava medencebeli mintateriileten a neuralis halé alapu csoportositas segitségével
négy klaszter facies lett azonositva. A klaszter faciesek, mint pontszerii informaciok szintén
az IK alapjan lettek lateralisan kiterjesztve a kozettestbdl kivalasztott tobb horizontalis
felszinében. Egyes horizontokban a C 3 és C_4 jelzési klaszter 6sszevontan lett kiterjesztve,
mint porozitds és homoktartalom szerinti fécsoportok. Ennek oka a kis adatsiirliség egyes
szintekben. Az Gsszevonasra az lehetdséget is adott, hogy a varianciaanalizis alapjan ez a két

csoport relative homogén egyiittest tud képezni a teljes minta tekintetében.

A négy klaszter faciest a kovetkez6 kozettipusokkal lehetett definialni: (i) A medence
aljzati agyagmargak, alacsony porozitassal, amely a nyugodtvizi szedimentaciéhoz kétodnek.
(if) Az alacsony striiségii turbidites aramlatok altal felhalmozott homokkovek agyagmarga és
aleuritos betelepiilésekkel. Ezek az iiledékek az eldgaz6 mederalakulatos lobok koztes
teriileteit jellemzik. (iii) Az alacsony slriiségii turbidites aramlatok altal felhalmozott
homokkovek aleuritos beteleptilésekkel, amelyek a lobszerii iiledékekhez kothetdk. Ez a
klaszter facies a passziv lobokat tarja fel. (iv) Tiszta homokkovek, amelyek a turbidites
medreket és a mederalakulatos lobok centrélis részeit definialjadk. A medrek elnyujtott u.n.

cip6fiizo, illetve faagszertien elagazd geometriat mutatnak.

Az iiledékes kornyezet a jellemzett faciesek alapjan lett azonositva. A klasztereket
jellemzd litologiai tipusok eloszlasa alapjan elmondhato, hogy a vizsgalt iiledékes kdrnyezet
egy homokban gazdag mélyvizi liledékes rendszer tagjai koz¢é sorolhatd. Mivel az azonositott
faciesek alapjan elagazo, de partgatnélkiili mederalakulatos lobokat lehetett azonositani, igy a
faciesek egy homokban gazdag mélyvizi hordalékkup rendszer k6zépsé (suprafan) részét irjak

le.

A mintateriileten kivalasztott alsé rezervoar ennek a hordalékkip rendszernek a
progradacids fazisait Oleli fel. A rendszer térbeli valtozasat a vertikalis sorozatban méterrdl-
méterre (az egyes lateralis felszinek mentén) nyomon lehetett kovetni a klaszter faciesek

eloszlasa alapjan. A hordalékkup rendszer ENy-i iranybol prograddl DK-felé. Az IK
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eredményeként kapott térképek jol mutattdk, hogy mindekozben laterdlisan eltolédnak a

kifejlodott lobok és kialakulnak passziv lobteriiletek is.

A dolgozatban ko6z6lt modszer a facies elemzéshez és iiledékes kornyezetek
jellemzéshez kivan 1j eljarasi lehetéséget bemutatni, amely lehetové teszi tovabba a
kiilonb6z6 objektum alapt modellek készitését, illetve azokhoz tréning képek kialakitasat. A
neuralis halo altal lementett sulyok pedig lehetdséget biztositanak arra, hogy hasonlé tiledékes
kornyezetek feldolgozasandl a faciesek azonositasa neuralis halo alapt osztalyozassal

torténjen.
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Appendix

APPENDIX

Appendix of chapter 4.4. (EXTENDING CLUSTERS AS POINT-LIKE RESULTS
BASED ON INDICATOR KRIGING)

WORKFLOW OF DISPLAY OF CLUSTERS
USING INDICATOR KRIGING

INPUT DATA SET
Geo-EAS file
(common to many geostatistical software package)

CREATING PAIR COMPARISON FILE

- using PREVAR2D.EXE program from Variowin collection
- this step constructs a distance matrix for all pointpairs in the data set
- the output: *.pcf file

VARIOGRAPHY

calculate standard variogram surface and directioanal variogram
[for each IK variable (clusters)|

4

MODELING OF INDICATOR VARIABLE

(exponential or spherical model)

¢

INDICATOR KRIGING

- determination of relative frequency of categories
- define the grid geometry

- in GSLIB program: ~ parameterization of IK
(full IK, simple or ordinary kriging, grid geometry)

~ joining of coordinates to output of IK
- post processing to display in surfer program

(determine the clusters with largest probability in each grid points and finally
the visualization of these clusters)

Appendix 1: The workflow for display of clusters which is based on extending the point-like results into
the plan using indicator kriging
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Appendix of chapter 5.1.4.4. (Preparation of input data for IK process)

Plotting 1 in directions: omni., 50, 13, 160

MODELFOR 1
FelInl) Omnidirectional din)
Indicative goodness of fit
current fit: 6.9708e-02
best fit found: 6.4610e-02

J | _+|Nugget: 0.42

1st structure 2nd structure 3rd structure

Direction 130

DJ"J 22 - DJI[ jﬁ - Dir. 0 -
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Exponenlialj| |Spherica| j| | j|
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== i | K I | o | |

Sill:  0.52 Sill:  0.06 sill: 0 in Direction 50 wdinl) Direction 160
JECH B B | | T x| i |

Anis.. 1.6 Anis.. 0.32 Anis.. 1

[Exi 0 [] e Fi| | | = = 0 |

Store Reslure| Best fit found
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Appendix 2: Model for cluster C_1 in the first surface in Széreg-1 reservoir

0 L N N P P
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 500
n

MODEL FOR 2 Plotting 2 in directions: 10, 90, 130
Indicative goodness of fit Y<(Ihl) Direction 10
current fit; 5.6072e-03 12 . L, . . ., .
best fit found: 5.6072e-03 0 o ==
05
KN _ | _»IMugget 0.6 g:;
o L L L L . . . . -
1st structure 2nd structure 3rd structure 0 500 1000 1500 2000 " 2500 000 2500 4000 4500
Elr_l 8 - DJ"J 36 - Dir.. 0O -
4 L 4 r 4 L
T={lhl) . .
Model Model Model y Direction 90
Spherical j| |Spherica| j| | j| *
Range: 621 Range: 897 Range: 0
N | N [ [ T E
Sill: 0.3 Sill:  0.09 Sill: 0 L L L L L 1 r.
E= PN | T B | S | | | 1500 2000 2500 2000 3500 4000 4500
Anis.. 1.7 Anis.: 2.8 Anis.: 1 thl
= = LN [ P | AU [ B | |
Ts(lhl) Direction 130
Store| Resture| Best fit found } 1.2
T . . . .
08 N
08
0.4
0.2
o . . . . . . . L -
o 500 1000 1500 2000 2500 3000 1500 4000 4500
Il

Appendix 3: Model for cluster C_2 in the first surface in Széreg-1 reservoir
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Plotting 3 in directions: 0, 90, 160
MODELFOR 3 T (Ihl) Direction 0
1.4
Indicative goodness of fit T — P I Y b h -
08
current fit: 2.9657e-02 g:
best fit found: 2.605%1e-02 0.z
% 0 o0 pres ) 0 pres =0
1| _ | _+|Nugget: 0.71 -
1st structure 2nd structure — - 3rd structure Ts“"': Direction 90
Dir: 167 Dir: 151 Dir.: 2 . . . )
H 5 MM = (e i | 08
Model Model Model e
Spherical j| |Spherica| j|| j| oz ) ) ) ) ) ) -~
0 500 1000 1500 2000 2500 3000 3500
Range: 552 Range: 345 Range: 0 Il
N LN [ N | D
Sill:  0.24 Sill:  0.05 Sill:
e R 2 yeam Direction 160
Anis.. 3.2 Anis.. 3.7 Anis.. 1 R
= = Ml I [ EE | | tar . . . L . o
08
Sture| Flcstnrc| Best fit found oe
0z
% 50 1000 1500 200 ) 0 2500
Ihi

Appendix 4: Model for cluster C_3 in the first surface in Széreg-1 reservoir

MODEL FOR 4

Indicative goodness of fit
current fit: 3.1522e-01
best fit found: 3.1324e-01

[ENT _+|Nugget: 0.3

1st structure 2nd structure

3rd structure

Dir.: 135 Dir.: 191 Dir: 0

&1 I | i 2 | I [ I |
Model Model Model

Exponentialj| |Expunentialj| | j|

Range: 2346 Range: 4140 Range: 0

KN SN | | D B B | i |

Sill:  0.65 Sill:  0.05 Sill: 0

KN S TN | | g |

Anis.: 0.39 Anis.: 0.22 Anis.: 1

JIEH A ) | ) SN | D | ~

Sture| Rcsturc| Best fit found

Plotting 4 in directions: omni., 90, 130, 160

Telnl}
148

Omnidirectional

TInl}
144

Direction 130

o N M o P
Q500 1000 1300 2000 2500 3000 3500 4000 4300 3000
In|

EALIM
144
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Appendix 5: Model for cluster C_4 in the first surface in Széreg-1 reservoir
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Plotting 2 in directions: omni., 10, 170

MODEL FOR 2
Ts(Ihl) Omnidirectional
Indicative goodness of fit
current fit: 7.7439e-01
best fit found: is16er ||\ . o .
(] | Nugget: 0.4 0 2100 2800 %00 o
Ihl
1st structure 2nd structure 3rd structure
Dﬂ"J 28 o Dﬂ"':JB']'E o Dir.: 0 | st Direction 10
25
Model Model Model 3 N .
Expuncntialj| |Sphcrica| j| | j| A
1 - o % &
Range: 1040 Range: 2080 Range: 0 0.5
I EE | JIN | N N | v o . . . . L -
sill:  0.52 sill:  0.08 sil: 0 ' 40 om0 = = 4200
T B | | N | i |
Anis.. 1.7 Anis.: 2.9 Anis.. 1
E = ILAIRPENE - | JICH | Y B | Direction 170
Stnre| Flestnre| Best fit found . .
2800 =0 o
Appendix 6: Model for cluster C_2 in the second surface in Széreg-1 reservoir
Plotting 3 in directions: 0, 40, 140
MODEL FOR 3 Ysdnd Direction 0
1.2
1 —_—_———— — s . — - — +
Indicative goodness of fit 08
-
current fit 8.1819¢-03 0s
best fit found: 6.9804e-03 02
0 ) ) ) . ) ) ) ) -
. 0 500 1000 1500 2000 2500 3000 3500 4000 4500
[Enf | _+|Nugget: 0.4 Ih]
1st structure 2nd structure 3rd structure
Dir.: 100 Dir.: 80 Dir: 0 Direction 40
6= N | U SN | P | | o
Model Model Model 1 . - - - - —
Exponential - | Exponential - | K :
Range: 650 Range: 1560 Range: 0 4
JIEH N | RN | SN | D | | -g ) ) ) ) ) ) ) ) .
PO | T — 0 500 1000 1500 2000 2500 3000 3500 4000 4500
h
Anis.: 1.7 Anis.: 4.4 Anis.: 1 Il
6= U | U B | SN | DN | |
Store| Restore| Best fit found Direction 140
3 — . - - . . *
8
G
4
2
U 1 1 1 1 1 Il 1 1 =
] 500 1000 1500 2000 2500 3000 3500 4000 4500
In|

Appendix 7: Model for cluster C_3 in the second surface in Széreg-1 reservoir
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Plotting 4 in directions: omni., 20, 120

Y= (10D idi i
MODEL FOR 4 Omnidirectional
Indicative goodness of fit 1.2 .
} 09 — P — — - > — -
current fit: 1.2187e-02
best fit found: 1.2187e-02 06
0.3
D 1 Il 1 1 1 1 Il 1 -
<] _1 _Nugget 0.5 0 500 1000 1500 2000 2500 3000 3500 4000
1st structure 2nd structure 3rd structure Il
Dir.: 30 Dir: 175 Dir: 0 ¥s (Ihl) Direction 20
il i e | 15
Model Model Model 12 . . . . .
Spherical j| |Exponentialj| | j| 0.9 —_—— *
Range: 910 Range: 2405 Range: 0 08
A R i | 0-3 . . ‘ . . . . ‘ -
L B 1 R LN 1 — 0 500 1000 1500 2000 2500 3000 3500 4000 "
Anis. 0.86 | Anis. 2.2 Anis.. 1 Ih|
i | ) i R o
s (Ihl) Direction 120
Store Flesture| Best fit found 15
g}g —_———— e — + — — i
06
03
0 1 Il 1 1 1 1 Il -
0 500 1000 1500 2000 2500 3000 3500 4000
In|

Appendix 8: Model for cluster C_4 in the second surface in Széreg-1 reservoir

Plotting 5 in directions: omni., 10, 110

MODEL FOR 5
L . ¥s(In) Omnidirectional
Indicative goodness of fit 12 .
current fit; 9.3853¢-03 B
best fit found: 8.3107e-03 s
o4
az
K ~|Nugget:  0.45 % P o pr= pren prem e o s
Ih]
15t structure 2nd structure 3rd structure
Dir.. 110 Dir.. 855 Dir.. 0 ¥sdinly Direction 10
E=l = N | N I B N | I 1 1 . . . .
Model Model Model wl o
Expunentialj| |Spherica| j| | j| a6
a4
Range: 990.81 | Range: 2275 Range: 0 oz
;I _I ;I ;I _I ;I ;l_l ;I l]'J Ev;lJ 1-3‘:0 15::0 E‘ZIIZIJ 2.5:33 .':-S:JJ i-!IlI:lJ i-.i';
Sill: 05 Sill:  0.05 Sill: 0 Inj
B B | N | I |
Anis.: 0.55 Anis.: 2.4 Anis.: 1 , .
E = A [ | A | | v ]| YeUmD Dlrecﬂ.on 110
L I * *
Sture| Flesture| Best fit found
QIIIII 25::0 000 \}::ZIJ i-:lI:O i-a;

Appendix 9: Model for cluster C_5 in the second surface in Széreg-1 reservoir
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Plotting 6 in directions: 0, 10, 130

¥s(IhD) . -
MODEL FOR 6 Dlre.ctlon 10
*
Indicative goodness of fit i . . .
current fit: 4.4189¢+00 . *
best fit found: 4.4185e+00
0 1 1 1 1 1 1 =
0 500 1000 1500 2000 2500 3000 3500
4l _1 _»INugget 0.6 Ih
~1st structure — - 2nd structure — - 3rd structure — R -
s (IhD Direction 0
Dir.: 17 Dir.. 210 Dir.. 0
N | JACH [ T T | T | . .
M del M del el ; . . .
Exponentialj| |Spherica| j| | j| . *
Range: 353 Range: 2525 Range: 0 0 1 1 1 1 1 1 -
i fe A | JEN R [ e | i 0 500 1000 1500 2000 2500 3000 3500
Sill: 0,37 Sill:  0.03 Sill: 0 Ihl
E = N [ SN [ |
Anis.: 2.2 Anis.: 3.2 Anis.: 1
(Gl | ||| Y (I Direction 130
Storel Restorel Best fit found
=== ———————— - — — — -
*
*
0 1 1 1 1 1 1 =
0 500 1000 1500 2000 2500 3000 3500
Ihi
Appendix 10: Model for cluster C_6 in the second surface in Széreg-1 reservoir
Appendix of chapter 5.2.4.4. (Preparation of input data for IK mapping process)
2350 1 2350 - 2 2350 4
1880 Ys(h) ] .. Ts(h) a0 Ys(h)
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Appendix 11: Variogram surfaces in the lateral surface 13m below the top (in lower reservoir in Sava

Filed)
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Appendix 12: Variogram surfaces in the lateral surface 11m from the top (in lower reservoir in Sava

Filed)
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Appendix 13: Variogram surfaces in the lateral surface 10m from the top (in lower reservoir in Sava

Filed)
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Appendix 14: Variogram surfaces in the lateral surface 7m from the top (in lower reservoir in Sava Filed)
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Appendix 15: Variogram surfaces in the lateral surface 4m from the top (in lower reservoir in Sava Filed)
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Appendix 16: Variogram surfaces in the lateral surface 9m from the top (in upper reservoir in Sava Filed)
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Appendix 17: Variogram surfaces in the lateral surface 6m from the top (in upper reservoir in Sava Filed)
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Appendix 18: Variogram surfaces in the lateral surface 3m from the top (in upper reservoir in Sava Filed)
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MODEL FOR 1

Indicative goodness of fit

current fit: 6.3538e-02

best fit found: 6.1936e-02
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Appendix 19: Model for cluster C_

Field)

MODEL FOR 2
Indicative goodness of fit

current fit: 4.6648e-02

best fit found: 4.6648e-02
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Plotting 1 in directions: 20, 160
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1 in the lateral surface 13m from the top (in lower reservoir of Sava

Plotting 2 in directions: 160, 40
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Appendix 20: Model for cluster C_2 in the lateral surface 13m from the top (in lower reservoir of Sava

Field)
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Plotting 4 in directions: 30, 160

MODEL FOR 4 ¥s () Direction 30
Indicative goodness of fit 174‘_
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Appendix 21: Model for cluster C_4m (pooled C_3 and C_4) in the lateral surface 13m from the top (in
lower reservoir of Sava Field)

Plotting 1 in directions: omni., 170, 70
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Appendix 22: Model for cluster C_1 in the lateral surface 11m from the top (in lower reservoir of Sava
Field)
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MODEL FOR 2

Indicative goodness of fit
current fit: 4.3177e-02
best fit found: 4.3177e-02
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Plotting 2 in directions: 130, 20
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Appendix 23: Model for cluster C_2 in the lateral surface 11m from the top (in lower reservoir of Sava

Field)
MODEL FOR 4
Indicative goodness of fit
current fit: 4.4102e-02
best fit found: 4.4102e-02
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Plotting 4 in directions: 0, 170
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Appendix 24: Model for cluster C_4m (pooled C_3 and C_4) in the lateral surface 11m from the top (in

lower reservoir of Sava Field)
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Plotting 1 in directions: omni., 150
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Appendix 25: Model for cluster C_1 in the lateral surface 10m from the top (in lower reservoir of Sava
Field)

Plotting 4 in directions: 40,110
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Appendix 26: Model for cluster C_4m (pooled C_3 and C_4) in the lateral surface 10m from the top (in
lower reservoir of Sava Field)
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MODEL FOR 1

Indicative goodness of fit
current fit: 2.2438e-01
best fit found: 2.2438e-01
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Appendix 27: Model for cluster C_1 in the lateral surface 7m from the top (in lower reservoir of Sava

Field)
MODEL FOR 3
Indicative goodness of fit
current fit: 9.8761e-02
best fit found: 9.8761e-02
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Plotting 3 in directions: 130, 10
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Appendix 28: Model for cluster C_3 in the lateral surface 7m from the top (in lower reservoir of Sava

Field)
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MODEL FOR 4

Indicative goodness of fit
current fit: 4.2191e-02
best fit found: 4.2191e-02
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Plotting 4 in directions: 20, 150
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Appendix 29: Model for cluster C_4 in the lateral surface 7m from the top (in lower reservoir of Sava

Field)
MODEL FOR 2
Indicative goodness of fit
current fit: 3.7675e-02
best fit found: 3.7675e-02
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Appendix 30: Model for cluster C_2 in the lateral surface 4m from the top (in lower reservoir of Sava

Field)
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MODEL FOR 4

Indicative goodness of fit
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Appendix 31: Model for cluster C_4m (pooled C_3 and C_4) in the lateral surface 4m from the top (in

lower reservoir of Sava Field)

MODEL FOR 1

Indicative goodness of fit

5.7425e-02
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best fit found:
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Appendix 32: Model for cluster C_1 in the lateral surface 9m from the top (in upper reservoir of Sava

Field)
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Plotting 4 in directions: 0, 170
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Appendix 33: Model for cluster C_4m (pooled C_3 and C-4) in the lateral surface 9m from the top (in
upper reservoir of Sava Field)

Plotting 1 in derections: 80, 110
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Appendix 34: Model for cluster C_1 in the lateral surface 6m from the top (in upper reservoir of Sava
Field)

XVi



Appendix

MODEL FOR 2
Indicative goodness of fit
current fit: 1.3515e-01
best fit found: 1.3515e-01
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Appendix 35: Model for cluster C_2 in the lateral surface 6m from the top (in upper reservoir of Sava

Field)

MODEL FOR 4

Indicative goodness of fit

5.7943e-02
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Plotting 4 in directions: 10, 120
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Appendix 36: Model for cluster C_4m (pooled C_3 and C_4) in the lateral surface 6m from the top (in

upper reservoir of Sava Field)
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Plotting 1 in directions: 20, 170
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Appendix 37: Model for cluster C_1 in the lateral surface 3m from the top (in upper reservoir of Sava

Field)
Plotting 4 in directions: 20,170
s ("")n Direction 20
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Appendix 38: Model for cluster C_4m (pooled C_3 and C_4) in the lateral surface 3m from the top (in

upper reservoir of Sava Field)
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Appendix 39: Table of the model parameter for probability estimation by IK (in lateral surface 13m from
the top of lower reservoir in Sava Field)

code variogram
-_------

second spherical 146.65 0.12 310

second spherical 0.05 130 5

first exponential

third spherical 615.4 0.1 120 1.3

Appendix 40: Table of the model parameter for probability estimation by IK (in lateral surface 11m from
the top of lower reservoir in Sava Field)

code variogram
-_------

second spherical 0.1 22 4.6

f|rst spherical 400 0.53 358 1.25

flrst exponential 133.33

Appendix 41: Table of the model parameter for probability estimation by IK (in lateral surface 10m from
the top of lower reservoir in Sava Field)

code variogram
-_------

second spherical 208.3 220

flrst exponential 161.29 0.08 130
-_------
third spherical 116.66 116.66  0.18
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Appendix 42: Table of the model parameter for probability estimation by IK (in lateral surface 7m from
the top of lower reservoir in Sava Field)

cluster | structure type of hMax hMin cc | ang. | anis. | hVert. | ng.
code variogram

second spherical 60.34

first exponential 133.33 7843 05

Appendix 43: Table of the model parameter for probability estimation by IK (in lateral surface 4m from
the top of lower reservoir in Sava Field)

code variogram
-_------

second spherical 210
-_------
second spherical 580 89.23 0.1 220 6.5

Appendix 44: Table of the model parameter for probability estimation by IK (in lateral surface 9m from
the top of upper reservoir in Sava Field)

code variogram
c.1 -_------

second spherical

second exponential 160 85 04 215 19

Appendix 45: Table of the model parameter for probability estimation by IK (in lateral surface 6m from
the top of upper reservoir in Sava Field)

cluster | structure type of hMax hMin GG ang. | anis. | hVert. | ng.
code variogram

second spherical 33.33 220

second spherical 66.66 0.21

second spherical 22.94 0.1 225 17
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Appendix 46: Table of the model parameter for probability estimation by IK (in lateral surface 3m from
the top of upper reservoir in Sava Field)

code variogram
-_------

second spherical 57.14

second spherical 7143 0.25 110 4.2

second spherical
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