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Abstract—Data center optimization, mainly through virtual
machine (VM) placement, has received considerable attention
in the past years. A lot of heuristics have been proposed to give
quick and reasonably good solutions to this problem. However it
is difficult to compare them as they use different datasets, while
the distribution of resources in the datasets has a big impact
on the results. In this paper we propose the first benchmark
for VM placement heuristics and we define a novel heuristic.
Our benchmark is inspired from a real data center and explores
different possible demographics of data centers, which makes it
suitable when comparing the behaviour of heuristics. Our new
algorithm, RBP, outperforms the state-of-the-art heuristics and
provides close to optimal results quickly.

Index Terms—VM Placement; Server Consolidation; Heuristic;
Benchmark

I. INTRODUCTION

With the rapid growth of computing resources’ demand, the
scale of the IT infrastratures in data centers increases sharply,
with workloads distributed across the centers. However, the
average server utilization in many large organizations is at
or below 20%-30% [1]. In order to drive higher utilization,
server consolidation [2], [3] has been widely adopted to locate
workloads on fewer, powerful physical machines (PMs, also
referred to as hosts or servers in the remainder of this paper) to
enable the decommissioning of the unneeded PMs. With vir-
tualization technology, workloads are encapsulated in virtual
environments which are referred to as virtual machines (VMs)
that provide application isolation when co-located on one PM
and can be migrated easily. The key of consolidation becomes
deciding which VM should be placed on which PM. This
underlying VM placement problem is usually considered as
an instance of the NP-hard bin-packing problem (BPP), which
makes the finding of an optimal solution a challenge in terms
of quality and time, given that the problem consists of tens of
thousands of PMs and hundreds of thousands of VMs. Quality
(e.g., number of PMs required and resource wastage [4]) and
time to find a good solution are both important as the first one
allows the solutions to save money and the second is essential
for capital allocators to make their decisions (see [5]).

Many heuristics have been proposed to solve this prob-
lem [6]–[8], and we propose a novel effective one in this paper
(see Section III): RBP, a Resource Balancing VM Placement
algorithm that aims to maintain a balanced resource utilization
among different dimensions of one PM and minimize the

number of PMs required for accommodating a certain set of
VMs. In short, RBP fits in VMs that do not saturate one type
of resource of a PM and waste the others.

However, very often papers in this area are based on
their own datasets, either real ones or synthetic ones defined
by researchers (sometimes using characteristics of real data
centers). This makes a comparison between two algorithms
presented in two papers challenging, for two reasons: (i) the
demographics of data centers can vary and (ii) heuristics are
dependent on the demographics of data centers.

Firstly, there is a large variety of possible PMs and VMs
and the distribution of them in different data centers can be
very different. For instance, one can be “historic” or acquired
recently and hosts old machines that are not powerful in terms
of CPU or RAM; while another one can be brand new with the
latest version of powerful servers. Moreover, different types of
workloads have distinct resource requirements (e.g., scientific
application are compute-intensive, web servers require mostly
network resources) and the proportion of a certain type of
workloads is different in data centers or clusters with different
purposes (a recent work shows that for clusters at Google [9]).
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Fig. 1. Performance of 3 heuristics against various datasets.

Secondly, it is clear from a small example that heuristics
behave differently against various datasets. We plotted in
Figure 1 the results of three algorithms in terms of the number
of PMs required: First-Fit Decreasing (FFD) according to
CPU and RAM, and Dot-Product [6], on three datasets that
are inspired from a real world data center’s demographics
(1,000 PMs and 2,000 VMs). For all datasets, the CPU and
RAM demands of VMs are “normal”, i.e., most of them have
balanced CPU and RAM demands and are in medium size,



while the CPU and RAM capacities of PMs vary: dataset A
contains mainly large and small, with few medium servers
which are either powerful in CPU or RAM, but are not
well balanced in these two types of resources; dataset B is
mostly composed of large servers with large RAM capacity
and relatively less CPU; dataset C also consists of servers
with large RAM and small CPU capacity, but are in small
size. We can see that the three algorithms perform differently
on the different datasets, which hints at telling us that when
comparing heuristics for VM placement, one needs to try
different demographics.

To overcome this problem, this paper presents a benchmark
for the comparison of VM placement algorithms. This bench-
mark generates a large number of “virtual” data centers with
different demographics, inspired from one original real data
center. It combines different distributions of VMs and PMs
that cover many possibilities of data center demographics.

In the rest of this paper, we present a definition of the VM
placement problem (Section II), some related work and our
proposed algorithm RBP (Section III), the benchmark (Sec-
tion IV), and the evaluation of our algorithm’s performance
(Section V). There are two main contributions for this paper:
the benchmark for VM placement algorithms evaluation, and
RBP, our proposed heuristic that outperforms classical place-
ment heuristics in terms of PMs required (9.9%-46.6% less)
and resource wastage (21.2%-64.6% better), and produces
results close to the optimization problem solver (CPLEX) [10]:
only 5.54% more PMs needed on average while orders of
magnitude faster.

II. PROBLEM DEFINITION

Every VM or PM can be defined as a vector (i.e., ~v or ~p)
in the d-dimensional space defined by the hardware resources,
with each dimension representing one type of resource (e.g.,
CPU, RAM, network, disk): see Figure 2.

We denote by V = {~v1, . . . ~vn}, with n = ‖V ‖, the set
of VMs, and by P = {~p1, . . . ~pm}, with m = ‖P‖, the
set of PMs. Many tools exist for monitoring and collecting
hardware configuration information and VM resources usage,
such as ITM (IBM Tivoli Monitoring) [11]. These tools can
help fill in the vectors in V and P . PMs are defined by
their hardware configuration while VMs’ resource demands
are estimated from their usage over time. Workload estimation
and forecasting for VMs [12], [13] is a challenge and an
important area of research but it is out of the scope of this
paper and it has been shown that historical traces and non
peak (i.e., 90th percentile or more) resource usage can produce
good estimations [8], [14]–[16]. In this paper, we estimate each
VM’s resource demand based on the high percentile (i.e., 95th)
of its resource usage over the past 90 days. As the performance
degradation caused by unusual peaks or interference between
co-located VMs is often unavoidable, we apply the common
strategy [6] to tolerate it, which allows VMs to use up to
75% of the total capacity of a PM, leaving 25% as a buffer
for virtualization overhead or resource utilization spike (see
Figure 2b).

(a) VM

(1,1)

(0.75,0.75)

(b) PM

Fig. 2. Vectors and shapes of a VM’s demand and a PM’s capacity. (a) ~v:
vector of a VM’s demands; θ′ represents the shape of a VM’s demands. (b) ~h:
vector of a PM’s residual capacity; ~p: vector of 75% of a PM’s total capacity;
θ represents the shape of a PM’s residual capacity; The VM in (a) has similar
shape as the residual capacity in (b).

The VM placement problem, consisting in placing VMs on
to PMs, is usually treated as a BPP, considering VMs as items
and PMs as bins.

Definition 1 (VM Placement): We denote any placement as
a mapping P : V 7→ P , such that P(~vi) → ~pj , and (i) ∀~vi ∈
V,P(~vi) = ~pj ∧ P(~vi) = ~pk ⇐⇒ j = k, i.e., every VM can
be placed on only one PM, (ii) ∀~pj ,∀k ∈ [1 . . . d], ~pj [k] ≥∑
{~vi|P(~vi)→ ~pj} ~vi[k], i.e., the total resource demands of all

VMs placed on ~pj can not exceed ~pj’s capacity.
There are two costs associated with every VM placement

Pk: (i) the number of PMs used:

costhosts(Pk) = |{~pj |~pj ∈ P,∃~vi ∈ V,Pk(~vi) = ~pj}|

and (ii) the resource wastage [4], which indicates how bal-
anced the resources of different dimensions are occupied by
measuring the sum of the differences between every dimen-
sion’s normalized remaining resource and the smallest one:

costwaste =
∑

{~pj |~pj∈P,∃~vi∈V,Pk(~vi)=~pj}

(

α

d∑
di=1

(
~h[di]/~pj [di]−

d
min
dk=1

(~h[dk])/~pj [dk]

))
with ~h the vector of a PM’s residual capacity and α the
buffer threshold (i.e., α = 0.75). Classically, heuristics for VM
placement are evaluated on these two costs, or costs derived
from them (e.g., power consumption), that they try to minimize
[4], [17].

III. VM PLACEMENT ALGORITHMS

In this section, we propose two new heuristics following
some related work on the existing VM placement algorithms.

A. Algorithms in the Literature

The approaches for the VM placement problem include
heuristics [4], approximation algorithms [12], and approaches
using constraint programming models [18], [19], integer pro-
gramming models [17], [20]. However, the majority of these
studies concentrate on the optimality of the solutions, and
are computation intensive that require long execution time.



Xu et al. [4] proposed a genetic algorithm with fuzzy multi-
objective evaluation to simultaneously minimize the total
resource wastage, power consumption and thermal dissipation
costs. However, the hosts considered in their experiments are
uniform, and the algorithm takes about 3 minutes to solve a
problem with 1, 000 PMs and 2, 000 VMs. Feller et al. [17]
proposed an Ant Colony Optimization (ACO) based algorithm
that produces solutions close to that of CPLEX. However, the
ACO based algorithm takes about 2 hours to find the optimal
placement on 167 PMs for 600 VMs. These approaches can
compute near optimal results in small-scale experiments, but
may not be applicable in large-scale environments due to their
long execution time.

Greedy heuristics are potential solutions when considering
scalability, complexity and process time. Analytical and em-
pirical results also suggest that FFD is the best heuristic for
(one-dimensional) bin packing problem [21]. Sandpiper [8]
presented a heuristic based on its metric Volume. However, it
is designed for hotspot mitigation. The Volume metric does not
fit in our case as it indicates servers’ resource utilization level,
not their capacity. Lee et al. [6] provided a review of various
FFD-based (i.e., FFDRAM, FFDCPU, FFDProd and FFDSum)
and dimension-aware heuristics (i.e., Dot-Product and l2norm).
Srikantaiah et al. [7] proposed a heuristic making use of the
sum of Euclidean distances. In this paper, we compare our
proposed solutions with these seven commonly used heuristics.
A brief introduction for these heuristics is provided below.

a) FFD-based: FFDRAM considers RAM as the dom-
inant resource so that PMs and VMs are ordered by their
RAM capacity and RAM demands respectively in descending
order. The other FFD algorithms work similarly using different
sorting metrics, namely CPU, the product of resources and the
weighted sum of resources. The weight is calculated as the
ratio between the total demand of one type of resource and
the capacity of that resource on the host.

b) Dot-Product: It places the VM that maximizes the
dot product

∑d
r wr~v[r]

~h[r], where ~h[r] is the host’s residual
capacity of resource r, ~v[r] is the VM’s demand of resource
r, and wr is the weight of resource r calculated as it is in
FFDSum.

c) l2norm: l2norm looks at the difference between the
vector ~v and ~h under l2 norm distance metric, and places the
VM that minimizes the metric

∑d
r wr(~v[r]− ~h[r])2.

d) Sum of Euclidean distance: This algorithm tries to
maximizes the sum of Euclidean distances of the current
allocations to the optimal point at each server.

B. Resource Balancing Placement (RBP)

The idea behind our algorithm is that balancing the uti-
lization of different resources on the target PMs makes the
placement less prone to waste any resources and hence require
fewer PMs. What RBP wants to avoid is the situation where
only one type of resource on a host is fully occupied while
plenty of other resources are wasted, then no more VMs can
be placed on this host. In order to fulfill the above objectives,

the shapes of the residual resources on hosts (~h) and the shapes
of the resource requirements of VMs (~v) are considered.

We propose to use the angle between the vector of resource
demands or residual capacity and the unit vector on one
dimension to represent the shape of a VM or the residual
capacity of a host. In two-dimension cases, the shape is
hence represented as the angle between the demands/residual
capacity vector and one dimension (θ′ and θ in Figure 2). As
the shapes of VMs in heterogeneous environments vary a lot,
there is no standard shape that can suit more VMs than the
other. Therefore, the best way to increase the possibility of
hosting more VMs is to keep the normalized value of each
dimension on the candidate host as close as possible. This
can be achieved by always selecting the VM whose resource
requirements are complementary to the occupied resources of
the host. For instance, a VM requiring a large amount of
CPU and small amount of RAM should be chosen when the
considered host’s remaining CPU is greater than RAM and
vice versa. In other words, the VM whose shape is the most
similar to the shape of the residual resources of the considered
host should be placed on that host.

To this end, RBP places the VM that has the most similar
shape with that of the currently considered PM’s residual
capacity, using the cosine similarity between ~v and ~h. The
bigger the value of Equation (1) the more similar the two
shapes are.

cos(~v,~h) =

∑d
r=1 ~v[r]× ~h[r]√∑d

r=1(~v[r])
2 ×

√∑d
r=1(

~h[r])2
(1)

The proposed algorithm RBP is presented in Algorithm 1.
Considering that it might be difficult for some exceptionally
big VMs to find a big enough host after other VMs are placed,
we first sort VMs according to their sizes, which is represented
as
∏d
r=1 ~v[r], and place the first VM of the list on the current

host, which is the biggest one among available hosts (lines
4-5). If there is no host that the VM can fit in, there is no
need to check the cosine similarity (lines 6-8). Otherwise, we
sort VMs by their values of cosine and place the VM that has
the maximum value.

Note that Dot-product contains cosine as ~v ·~h =‖ ~v ‖‖ ~h ‖
cos(~v,~h). However, the lengths of the vectors have significant
impact on the result of Dot-product. For instance, a VM with
a small cosine, which means it is not complementary to the
occupied resources of the host, can be selected if it has a big
value of ‖ ~v ‖. We argue that the shape of a VM is more
important to fully utilize resources in all dimensions.

C. RBP with Cosize (RBPc)

An alternative to the cosine used in RBP is to take into
consideration both the angle and the length of the VMs, as
one could think that when two VMs have similar angles with
the remaining capacity of a PM, the bigger one should be
considered first. We call this modification of the cosine cosize,



Algorithm 1 VM Placement Algorithm - RBP
1: pmList← sortPMs //sort by available capacity
2: placementSolution← NULL
3: for all pm in pmList do
4: vmList← sortV Ms() //sort VMs by size in descend-

ing order
5: place the first vm in vmList that can fit in pm
6: if no vm can fit into the current pm then
7: continue //check next PM
8: end if
9: vmList ← sortV Ms(cosine) //sort VMs again by

cosine similarity in descending order
10: while pm has available resources and index <

vmList.size() do
11: vm← getV M(index)
12: if available resources on pm are enough for vm then
13: placementSolution.add(pm, vm)
14: vmList.remove(vm)
15: vmList← sortV Ms(cosine)
16: index← 0
17: else
18: index++
19: end if
20: end while
21: if vmList = NULL then
22: break
23: end if
24: end for
25: return placementSolution

and we define it as:

cosize = cosα(~v,~h)×
d∏
r=1

~v[r] (2)

where α is used to adjust the significance of cosine similarity.
Figure 3 shows the values of cosize with two different α and
we can see that the bigger the α, the less impact the size has.

We call RBPc the modification of RBP using cosize as a
similarity measure instead of cosine.

IV. BENCHMARK FOR VM PLACEMENT ALGORITHMS
EVALUATION

Comparisons between placement algorithms in the literature
often use real world traces from companies or synthetic data
generated in an ad-hoc manner. Both solutions are to some
extent biased as they describe a specific demographic of a
data center: either a real one with its history and decisions
made by previous managers (e.g., lots of new machines or
old machines, of certain types) or an ideal single data center
which may never be found in the real world. The problem is
that this may affect the placement results, and the generality
of the conclusions drawn upon them.

In our work, we collected real world traces from our indus-
trial partner IBM. Based on that, we generated a VM placement
benchmark that can represent a large variety of possible
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Fig. 3. Cosize for VMs with Different Shape and Size

data centers with diverse demographics. The objective is to
perform a more fair and general comparison between different
placement algorithms, as the specificities of a particular dataset
are eliminated.

Our benchmark is composed of 625 datasets, representing
what we think is a comprehensive sample of what data centers’
demographics can be. Each dataset consists of a set of VMs
and a set of PMs, each of which has a specific distribution, and
represents a potential data center with 2, 000 VMs and 1, 000
PMs. In the benchmark, we consider only two resources (CPU
and RAM), which is coherent with most of the work in the
literature – although our approach is not limited to these two
resources. As we have already said (see Section II) VMs and
PMs are vectors in a d-dimensional (here, d = 2) space and
as such, they have an angle (e.g., θ′ in Figure 2a) and a length
(norm of vectors). We consider those as the crucial elements
of the placement problem as the shape (angle) and the size
(length) of the VMs and PMs make the placement more or
less difficult, as it does for items and bins in the bin-packing
problem [22].

We identified 5 different distributions for the angles and
lengths of VMs or PMs in a data center (see Figure 4):
i) normal, with the majority of VMs or PMs having an
average angle/length; ii) U-shaped, with the extreme values
of angle/length being more representative; iii) uniform, where
all possible values of angle/length have the same density; iv)
J-shaped, when high angle/length values are more likely; v)
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reverse J-shaped, for distributions where small angles/lengths
are more likely. The ranges of angles for VMs and PMs are
the same (i.e., 0-90), while the ranges of lengths are different
as PMs are generally bigger.
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Figure 5 illustrates the generation of the benchmark. Each
angle distribution can be combined with any one of the 5
length distributions. This generates 25 combinations (indexed
as in Table I) for VMs and PMs respectively (i.e., 25 VM sets
and 25 PM sets), or 625 couples of (VMs, PMs) demographics.

To generate VMs and PMs from (decoupled) distributions
of angles and lengths, we use the following formulas:

RAM = length× cos(angle)

CPU = length× sin(angle)

Note that each point in a length or angle distribution
together with one point in an angle or length distribution can
construct an element of a VM or PM set, i.e., a VM or a
PM. When creating a single VM or PM, each point of the

TABLE I
COMBINATIONS OF SHAPE/SIZE DISTRIBUTIONS

Size
(Length)

Shape
(Angle) Normal U-

Shaped Uniform J-
Shaped

Reverse
J-Shaped

Normal 1 2 3 4 5
U-Shaped 6 7 8 9 10
Uniform 11 12 13 14 15
J-Shaped 16 17 18 19 20
Reverse
J-Shaped 21 22 23 24 25

angle distribution can be matched with a point in the length
distribution. This gives us a huge number of possible VM sets
or PM sets: 2, 000! and 1, 000! respectively for one angle and
one length distribution (reminder: we want 2, 000 VMs and
1, 000 PMs). Obviously an exhaustive generation of datasets
would be extremely expensive, and it is not clearly adding
anything from the following test we performed. We generated
pseudo randomly 2, 000 VM sets on one combination of angle
and length distribution and compared the results of the various
heuristics mentioned before against them. It appears that, for
each heuristic, the coefficient of variation among the number
of PMs required by each of the 2, 000 datasets is negligible
(below 0.46%), which indicates that generating all the possible
VM sets and PM sets from a combination of one length and
one angle distribution is not necessary - we then pick a random
one.

V. EXPERIMENTAL RESULTS

There are three things that we show in this section:



• that RBP is a better VM placement algorithm than
the other state-of-the-art heuristics: for this we use the
benchmark described in the previous section, and real
traces from IBM;

• that RBP’s results are close to one of the best optimization
solver, CPLEX: here we use a subset of our benchmark
and real traces from IBM;

• that RBP gives its solutions faster than CPLEX, which
is relatively slow: we extrapolate a scale-up experiment
from IBM’s traces.

A. Experimental setup

All algorithms were implemented in Java, and the experi-
ments are carried out on a laptop with 8GB RAM and an Intel
Core i7-2760QM 2.4GHz CPU.

Throughout the experiments section we use three metrics:
(i) the number of PMs required by an algorithm to place
all the VMs (see definition 1, Section II); (ii) the resource
wastage [4], which indicates how balanced the resources of
two dimensions are (reminder: we consider only CPU and
RAM) and is described in definition 1 as well; (iii) the time
to compute the VM placement solution.

The comparison between RBP and the various heuristics
are done through 626 experiments using the benchmark we
describe in Section IV (625 datasets) and one big real indus-
trial dataset containing 1, 327 PMs and 8, 686 VMs. When we
compare the quality of RBP to IBM CPLEX, we perform 26
experiments using (i) the 25 VM sets of the benchmark and
the PM set from the above big IBM dataset, which contains
1, 327 PMs; and (ii) a small IBM dataset containing 342 PMs
and 2, 869 VMs. The reason for using the big PM set with
the 25 VM distributions is to guarantee enough PMs for all
VMs of any distribution. However, a smaller IBM dataset is
also used because CPLEX is computationally expensive and
we could not run it on the benchmark, or the big VM sets
from IBM for time and memory related reasons.

B. Comparison between VM placement heuristics

The average results from the 626 experiments are illustrated
in Figure 6. The results show that RBPc does not show an ad-
vantage over RBP, and RBP outperforms the other algorithms
in terms of number of hosts required (Figure 6a) with 9.9%-
46.6% reduction, and resource wastage caused (Figure 6b)
with 21.2%−64.6% reduction. Another interesting observation
is that the number of hosts follows the same trend as the
resource wastage, certainly because a good placement (limiting
the resource wastage) allows to put more VMs on the hosts
and limits the number of hosts needed.

Dot-Product and l2norm have the same results in both
measurements. Note that l2norm’s metric can be transformed
to
∑d
r(wr(~v[r]

2+~h[r]2)−2wr~v[r]~h[r]), where Dot-Product is∑d
r wr~v[r]

~h[r]. The different part is wr(~v[r]2 +~h[r]2), which
is a constant for a given pair of VM and PM. Therefore, it is
not surprising that these two algorithm perform the same.

The result of the Sum of Euclidean distance is not presented
because it requires extremely large number of hosts (i.e., 489.4
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on average). The reason is that the Sum of Euclidean distance
is a VM-centric on-line algorithm that deals with one new
arriving VM at a time, considering on which one of the active
servers the VM should be placed. It is not suitable for the
scenario we are addressing. If we modified it to be PM-centric,
which processes PMs one by one, it can be simplified to
calculate the Euclidean distance of one PM after placing one
VM on it instead of the sum of Euclidean distance of all PMs,
since the Euclidean distance of the other PMs will remain the
same as no VM is placed on them. However, the Euclidean

distance of one host is d(~v,~h) =
√∑d

r(~v[r]− ~h[r])2, which
is actually the square root of l2norm. Therefore, we did not
implement the algorithm using the Euclidean distance of one
host only.

We discovered in the experiments that the results of different
algorithms vary when executed using different datasets, which
suggests that the dataset distribution indeed has an impact on
the results. The fluctuation is particularly big for FFDCPU
and FFDRAM as they consider only one dimension and are
vulnerable to the change of the shape and size of workload
and capacity in a dataset. This observation would need a more
complete study of the impact of the data center demographics
on the VM placement heuristics. Due to space limitations, we
present only the Min/Max/Avg results (i.e., number of PMs
required) for the 25 experiments of each PM set (each PM set
is combined with 25 VM set) in table II with the best result
of each column in bold and the worst results in italic. The PM
sets are indexed as the distribution combinations (table I). The
corresponding VM sets’ indexes are indicated as the subscript



TABLE II
RESULTS OF SEVERAL OF THE HEURISTICS AGAINST ALL THE PM DISTRIBUTIONS: THE FIRST NUMBER IS THE MINIMAL NUMBER OF HOSTS REQUIRED

(THE CORRESPONDING VM DISTRIBUTIONS ARE INDICATED IN THE PARENTHESES), THE SECOND NUMBER IS THE MAXIMUM NUMBER OF HOSTS
REQUIRED (THE CORRESPONDING VM DISTRIBUTIONS ARE INDICATED IN THE PARENTHESES), AND THE THIRD THE AVERAGE. BEST VALUES OF EACH

COLUMN ARE IN BOLD, WHILE WORST ARE IN italic.

PM Set 1 PM Set 2 PM Set 3 PM Set 4 PM Set 5
min:max [average] min:max [average] min:max [average] min:max [average] min:max [average]

FFDCPU 26(24):161(20) [79 ] 46(24):385(20) [191] 35(24):273(20) [134 ] 52(24):472(20) [220 ] 34(24):184(19) [91]
FFDRAM 26(25):161(19) [77] 47(25):378(19) [192 ] 33(25):269(19) [123] 35(23,25):180(20) [87] 43(25):463(19) [213 ]
FFDProd 22(23):124(19) [66] 30(23):151(15,19) [83] 25(23):140(19) [74] 28(24):206(20) [86] 29(23):213(19) [89]
FFDSum 27(21):128(19) [73] 38(25):251(17,18) [128] 32(25):165(17) [91] 30(24):263(20) [110] 33(25):264(19) [116]
DotProd 25(21):127(19) [70] 31(25):153(19) [85] 28(23):141(19) [76] 29(24):204(20) [89] 30(25):220(19) [96]
RBP 19(22):124(19) [60] 22(22):150(19) [72] 20(22):140(19) [66] 26(22):207(20) [79] 24(22):213(19) [82]

PM Set 6 PM Set 7 PM Set 8 PM Set 9 PM Set 10
min:max [average] min:max [average] min:max [average] min:max [average] min:max [average]

FFDCPU 21(24):134(20) [68] 52(24):336(20) [173 ] 35(24):203(20) [107 ] 53(24):339(20) [183 ] 25(24):133(19) [64]
FFDRAM 21(25):133(19) [69 ] 33(25):149(19) [82] 33(25):200(19) [106] 25(22,23):133(20) [64] 51(25):350(19) [186 ]
FFDProd 19(23):98(20) [54] 22(23):160(20) [65] 20(23):101(20) [57] 21(23):147(20) [65] 22(23):148(19) [65]
FFDSum 21(22 ,23):99(19) [58] 24(22,23):178(20) [70] 23(21,22):112(17) [63] 24(21,22,23):183(20) [72] 25(25):187(19) [75]
DotProd 21(21):98(19,20) [57] 24(21):158(20) [65] 23(21):103(17) [60] 23(21,23):148(20) [65] 24(23):150(19) [70]
RBP 17(22):98(20) [50] 20(22):160(20)[60] 18(22):101(20) [52] 19(22):148(20) [60] 19(22):148(19) [61]

PM Set 11 PM Set 12 PM Set 13 PM Set 14 PM Set 15
min:max [average] min:max [average] min:max [average] min:max [average] min:max [average]

FFDCPU 22(24):135(20) [68 ] 41(24):303(20) [148] 31(24):208(20) [108 ] 51(24):366(20) [177 ] 29(23,24):160(19) [75]
FFDRAM 22(25):135(19) [68 ] 40(25):303(19) [151 ] 31(25):212(19) [100] 25(25):139(20) [68] 44(25):388(19)[179 ]
FFDProd 20(23):103(20) [57] 24(23):127(16) [68] 20(23):109(19) [60] 23(23):158(20) [69] 25(23):183(19) [75]
FFDSum 23(21 ,23):107(20) [62] 29(25):203(18) [95] 26(21,22,23,25):122(17) [68] 27(24):211(20) [85] 25(25):252(19) [98]
DotProd 22(21):103(20) [60] 27(21):128(16) [71] 23(21):110(19) [62] 25(21,23):157(20) [69] 26(25):190(19) [82]
RBP 17(22):103(20) [52] 20(22):118(20) [59] 18(22):109(19) [54] 19(22):159(20) [62] 20(22):183(19) [70]

PM Set 16 PM Set 17 PM Set 18 PM Set 19 PM Set 20
min:max [average] min:max [average] min:max [average] min:max [average] min:max [average]

FFDCPU 23(24) :149(20) [75 ] 59(24) :327(20) [176] 41(24) :239(20) [126 ] 66(24) :405(20) [216 ] 24(24) :114(20) [65]
FFDRAM 21(25) :142(19) [71] 55(25) :330(19) [187 ] 39(25) :246(19) [126 ] 23(25) :112(19) [62] 67(25) :403(19) [213 ]
FFDProd 19(23) :97(19) [54] 21(23) :106(20) [59] 19(23) :100(19) [56] 20(23) :116(20) [58] 21(23) :130(19) [61]
FFDSum 21(23) :97(19) [57] 23(22,23) :123(17) [67] 22(22) :103(19) [60] 23(21,22,23) :125(20) [64] 26(21,22) :141(21) [68]
DotProd 21(21) :98(19) [57] 23(21,23) :109(20) [61] 22(21) :101(19) [58] 23(21) :116(20) [60] 24(21) :134(19) [66]
RBP 17(22) :97(19) [50] 18(22) :106(20) [53] 17(22) :100(19) [51] 18(22) :116(20) [54] 18(22) :130(19) [57]

PM Set 21 PM Set 22 PM Set 23 PM Set 24 PM Set 25
min:max [average] min:max [average] min:max [average] min:max [average] min:max [average]

FFDCPU 29(24) :189(20) [91] 35(24) :419(16) [201] 36(24) :285(20) [131] 47(24) :633(20) [244 ] 39(22,25) :630(19) [156]
FFDRAM 30(23) :186(19) [89] 51(25) :412(16) [199] 32(25) :294(19) [128] 40(23) :647(20) [154] 40(25) :615(19) [232 ]
FFDProd 26(23) :161(20) [81] 34(24) :407(16) [132] 32(23) :200(16) [96] 30(24) :580(20) [162] 27(25) :553(19) [159]
FFDSum 31(21 ,23) :171(17,20) [93 ] 47(24) :619(18) [245 ] 38(24) :285(18) [139 ] 40(24) :677(20) [223] 33(25) :654(19) [205]
DotProd 28(21,23) :163(19) [85] 35(24) :415(16) [143] 34(22,23,24) :201(16) [103] 30(24) :654(20) [165] 29(25) :562(19) [172]
RBP 20(22) :162(20) [70] 26(22) :301(16) [102] 22(22) :185(19) [81] 30(24) :547(20) [146] 27(25) :540(19) [150]

of each result. The results of l2norm, RBPc (α = 2) and RBPc

(α = 10) are not presented because l2norm has the same
results as Dot-Product (see Section V-B), and RBPc (α = 2)
and RBPc (α = 10) have results very close to but do not
outperform RBP as shown in Figure 6. The results show that
a heuristic (e.g., FFDRAM) which performs the best in one
dataset (e.g., (PM set 7, VM set 19) ) can become the worst in
another dataset (e.g., (PM set 5, VM set 19). RBP has the best
minimum and average results through the 25 PM sets. 10 of
RBP’s maximum results are not the smallest. However, none
of them is the worst. The biggest difference between RBP’s

maximum result and the best maximum result is 15.76%.

C. Comparison with CPLEX

To investigate how close RBP’s results are from optimal
results, we compare it with CPLEX, one of the leading
optimisation problem solvers.

Figure 7 shows that RBP generates results close to CPLEX
with the biggest gap as 13.58% and average gap as 5.54%.

The execution time of RBP is less than one second when
executed using the small IBM dataset [5]. The scalability of
RBP is evaluated using the set of PMs from the big IBM
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Fig. 7. Comparing Number of Hosts required by RBP and CPLEX against
(i) the small IBM dataset and (ii) different VM sets (from the benchmark)
and the PM set of the big IBM dataset.

dataset and duplicating the VM set of the small IBM dataset
(2, 869 VMs) in order to obtain various number of VMs.
Figure 8 shows that RBP is orders of magnitude better than
CPLEX when the size of the dataset scales up. When the
size of VM set increases to 8, 607, CPLEX failed to produce
a solution within acceptable time (i.e., more than 10 hours)
while RBP requires 5.9 seconds to execute.
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Fig. 8. Scale-up experiement: execution time of RBP and CPLEX (note the
logarithmic scale) with 342 PMs and different number of VMs.

VI. CONCLUSION AND FUTURE WORK

This paper proposes RBP, a VM placement heuristic and a
benchmark for a fair comparison of VM placement algorithms.
RBP is validated using both real industrial traces and synthetic
data. It is compared with commonly used heuristics and
optimal solutions, and is proved to be able to provide a close
to optimal solution in a few seconds even when the dataset
scales up. The evaluation experiments also suggest that the
dataset demographics have an impact on the results of VM
placement heuristics, and the results presented in this paper
can provide a hint in selecting a heuristic according to the
data center’s infrastructure and workload structure.

For future work, it would be interesting to evaluate VM
placement algorithms further using more datasets extended
from our benchmark. Moreover, we intend to investigate the
interference between co-located VMs at a finer granularity

to achieve an even more efficient utilization when alleviating
performance degradation.
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