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A mixed membership model is an individual level mixture model where individuals have
partial membership of the profiles (or groups) that characterize a population. A mixed
membership model for rank data is outlined and illustrated through the analysis of voting
in the 2002 Irish general election. This particular election uses a voting system called pro-
portional representation using a single transferable vote (PR-STV) where voters rank some
or all of the candidates in order of preference. The data set considered consists of all votes
in a constituency from the 2002 Irish general election. Interest lies in highlighting distinct
voting profiles within the electorate and studying how voters affiliate themselves to these
voting profiles. The mixed membership model for rank data is fitted to the voting data and
is shown to give a concise and highly interpretable explanation of voting patterns in this
election.
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1.1 Introduction

Mixture models are a well established tool for statistical model-based clustering of data
[39, 16]. Mixture models describe a population as a finite collection of homogeneous groups,
each of which is characterized by a specific probability density. While based on a similar
concept, mixed membership (or grade of membership (GoM)) models allow every individual
have partial membership of each of the groups that characterize the population. Thus mixed
membership models provide a method for model-based soft clustering of data. The mixed
membership (or GoM) model for multivariate categorical data is developed in [13] and [3]
and this model has been used in a number of applications including [12, 11, 2] amongst
others.

Rank data arise when a set of judges rank some (or all) of a set of objects. Rank data
emerge in many areas of society; the final ordering of athletes in a race, league tables, the
ranking of relevant results by internet search engines and consumer preference data provide
examples of such data. In this chapter, a mixed membership model for rank data that was
originally developed in [24] is described and applied to the problem of finding structure in
Irish voting data.

The Irish electoral system uses a voting system called proportional representation using a
single transferable vote (PR-STV). In this system, voters rank some or all of the candidates
in order of preference. When drawing inferences from such data, the information contained in
the different preference levels must be exploited by the use of appropriate modeling tools.
An illustration of the mixed membership model for rank data methodology is provided
through an examination of voting data from the 2002 Irish general election. Interest lies in
highlighting voting profiles that occur within the electorate. The mixed membership model
provides the scope to examine if and how voters exhibit mixed membership by sharing
preference behavior described by more than one of these voting profiles.

A latent class representation of the mixed membership model for rank data is used for
model fitting within the Bayesian paradigm. A Metropolis-within-Gibbs sampler is necessary
to provide samples from the posterior distribution. Model selection is achieved using the
Deviance Information Criterion (DIC) and the adequacy of model fit is assessed using
posterior predictive checks.

The chapter proceeds as follows: in Section 1.2 the Irish voting system and details
surrounding the 2002 Irish general election are outlined. The Plackett-Luce model for rank
data is employed in this application as the rank data model; this model and other rank data
models are discussed in Section 1.3.1. The specification of the mixed membership model for
rank data follows in Section 1.3.2. Estimation of the mixed membership model for rank
data is outlined in Section 1.4.1. The question of model choice is addressed in Section 1.4.2.
The application of the mixed membership model for rank data to 2002 Irish general election
data is given in Section 1.5. The article concludes in Section 1.6 with a discussion of the
methodology.

1.2 The 2002 Irish general election

Dáil Éireann is the main parliament in the Republic of Ireland and it has one hundred
and sixty six members. Members (called Teachtáı Dála or TDs) are elected to the Dáil
through a general election which must take place at least every five years. On the 17th of
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May 2002, a general election was held to elect the 29th Dáil and candidates ran in forty
two constituencies. Each constituency elected either three, four or five candidates where the
number of candidates to be elected is determined by the population of the constituency; the
speaker of the house (Ceann Comhairle) from the previous parliament was automatically
returned as elected in their constituency. The outgoing government consisted of a Fianna
Fáil and Progressive Democrat coalition with Fianna Fáil having seventy seven seats and
the Progressive Democrats having four seats. Thus, the outgoing government was a minority
government who relied on a number of independent TDs for support. After the election,
a coalition government involving Fianna Fáil and the Progressive Democrats was formed
again but returning with a majority and holding eighty one and eight seats, respectively.
This was the first time that a government had been returned in an Irish general election in
thirty years. Extensive descriptions of the 2002 election are provided by [31, 50, 18, 38].

In the 2002 general election, a trial was conducted in three constituencies (Dublin North,
Dublin West and Meath) where electronic voting was introduced. The voting data from these
three constituencies was made publicly available and these data provide an unprecedented
insight into the voting in Irish elections, beyond what had previously been available in
poll data. The data from the Dublin North constituency is analyzed because it contained
a particularly diverse range of candidates and thus the data would be expected to contain
interesting voting behavior.

In 2002, the Dublin North constituency consisted of an electorate of 72353 and four TDs
were to be elected from this constituency. A total of 43942 people voted and twelve can-
didates ran for election. Fianna Fáil, who were the largest political party at the time, ran
three candidates, Fine Gael who were the largest opposition party ran two candidates, the
Labour, Green, Sinn Féin parties ran one candidate each and more minor parties like the
Socialist, Christian Solidarity and Independent Health Alliance parties also ran one candi-
date each. One independent candidate ran for election and the Progressive Democrats did
not run any candidate in Dublin North. Four of the candidates were incumbent candidates
from the 28th Dáil but where Seán Ryan (Labour) was elected to the 28th Dáil through a
by-election after the resignation of Ray Burke (Fianna Fáil) from his seat during the 28th
Dáil.

Irish general elections employ an electoral system known as the proportional representa-
tion by means of a single transferable vote (PR-STV) system. Under this electoral system a
voter ranks, in order of his/her preference, some or all of the electoral candidates on a ballot
form. The votes are totalled through a series of counts, where candidates are eliminated,
their votes are distributed, and surplus votes are transferred between candidates. A detailed
introduction to the PR-STV voting system in an Irish context is given in [46] and a good
overall comparison of different voting systems is given by [15, 19].

Details of the counting and transfer of votes in the Dublin North constituency are
shown in Table 1.1. The total valid poll was 43942, so the number of votes required to
guarantee election (called the droop quota) was 8789 votes. In the first count the number of
first preferences for each candidate are counted. If no candidate exceeds the droop quota,
then the lowest candidates are eliminated and their votes are distributed using their next
available preferences. If a candidate is elected by exceeding the droop quota, then their
surplus votes (the amount by which they exceed the droop quota) are distributed using their
next available preferences. The procedure of eliminating low candidates and distributing
surpluses continues until either four candidates have exceeded the droop quota or only four
candidates remain. In Dublin North, two candidates reached the quota and two were elected
without reaching the quota. The four candidates elected were also the four candidates with
the highest number of first preferences, but this does not necessarily happen.
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TABLE 1.1
The counting and transfer of votes in the Dublin North constituency in the 2002 Irish general
election. The incumbent candidates are marked with an asterisk. The point at which each
candidate was elected is marked in bold.

Candidate Party Count
(Abbreviation) 1 2 3 4 5 6 7 8
Trevor Sargent∗ Green 7294 7380 7678 7818 8118 9785 8789 8789
(Sa) +86 +298 +140 +300 +1667 -996
Seán Ryan∗ Labour 6359 6407 6535 6665 6847 8578 9128 9128
(Ry) +48 +128 +130 +182 +1731 +550
Jim Glennon Fianna Fáil 5892 5945 6028 6152 6294 6511 6598 8640
(Gl) +53 +83 +124 +142 +217 +85 +2044
G V Wright∗ Fianna Fáil 5658 5707 5739 5777 5868 6139 6249 8617
(Wr) +49 +32 +38 +91 +271 +110 +2368
Clare Daly Socialist 5501 5551 5730 5796 6244 6590 6772 7523
(Dy) +53 +179 +66 +448 +346 +182 +751
Michael Kennedy Fianna Fáil 5253 5309 5368 5422 5532 5732 5801
(Ke) +56 +59 +54 +110 +200 +69 -5801
Nora Owen∗ Fine Gael 4012 4030 4132 4720 4763
(Ow) +18 +102 +588 +43 -4763
Mick Davis Sinn Féin 1350 1382 1424 1440
(Dv) +32 +42 +16 -1440
Cathal Boland Fine Gael 1177 1189 1216
(Bo) +12 +27 -1216
Ciarán Goulding Independents 914 1009
(Go) Health Alliance +95 -1009
Eamon Quinn Independent 285
(Qu) -285
David Walshe Christian 247
(Wa) Solidarity Party -247
Non Transferable 33 92 152 276 607 607 1245

+33 +59 +60 +124 +331 +638
Total 43942
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1.3 Model specification

The Dublin North general election voting data possess some unique properties which require
careful statistical modeling. A mixed membership model can easily accommodate the dif-
fering preferences that voters may have for the candidates. Although a finite mixture model
may be used for the same purpose [eg. 22] the finite mixture model needs a large number
of mixture components to account for the voting behavior exhibited in the electorate; con-
versely the mixed membership model can account for different behavior using a relatively
small number of profiles. In order to account for the ranked nature of the preference voting
data, the Plackett-Luce model for rank data is used.

1.3.1 The Plackett-Luce model for rank data

Under the PR-STV electoral system a voter ranks some or all of the candidates in order of
preference. In order to appropriately model such data, a model for rank data is required. A
large number of models for rank data have already been developed [4, 36, 43] and these are
reviewed in [37]. In this study the Plackett-Luce model [43] is utilized to model the rank
nature of the data.

The Plackett-Luce model is parameterized by a ‘support’ parameter

p = (p1, p2, . . . , pN )

where N denotes the total number of electoral candidates. Note that 0 ≤ pj ≤ 1 and∑N
j=1 pj = 1. The parameter pj has the interpretation of being the probability of candidate

j being ranked first by a voter. The probability of candidate j being given a lower than first
preference is proportional to their support parameter pj . Hence, at preference levels lower
than the first the probabilities are re-normalized to provide valid probability values.

Let voter i record the vote xi = {c(i, 1), c(i, 2), . . . , c(i, ni)}, where ni is the number of
preferences expressed by voter i. The Plackett-Luce model states that the probability of
vote xi is given as

P{xi|p} =
ni∏

t=1

pc(i,t)

pc(i,t) + pc(i,t+1) + · · · + pc(i,N)

=
ni∏

t=1

pc(i,t)∑N
s=t pc(i,s)

=
ni∏

t=1

qit, (1.1)

where c(i, ni +1), . . . , c(i,N) is any permutation of the unranked candidates. Note that the
probability of the ranking is conditional on ni, the number of preferences expressed and it
can easily be shown that (1.1) sums to 1 over all ni! possible permutations of the candidates
ranked in the vote xi.

1.3.2 The mixed membership model for rank data

Mixed membership models allow every individual in a population have partial membership
of each of the profiles that characterize the population; thus, a soft clustering of the popu-
lation members is achievable. Herein we describe a mixed membership model for rank data
as developed by [24].

Under the mixed membership model each voter i = 1, . . . , M has an associated mixed
membership parameter πi = (πi1,πi2, . . . ,πiK) which is a direct parameter of the model.
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The mixed membership parameter πi describes the degree of membership of individual i
in each of the K profiles which characterize the electorate. Note that 0 ≤ πik ≤ 1 and∑K

k=1 πik = 1 for i = 1, . . . , M . Thus, if individual i is fully characterized by profile k,
then πik = 1 and πij = 0 for j "= k. Additionally, if individual i is characterized by profiles
K ⊂ {1, 2, . . . , K}, then πij > 0 for j ∈ K and πij = 0 for j "∈ K.

The mixed membership model for ranked data is formulated as follows. We assume
that the probability of voter i ranking candidate j in position t on their ballot is a convex
combination of the probability of the voter choosing candidate j in position t as described
by each profile, where the weights in the convex combination are equal to the voters mixed
membership parameter. That is, the probability of voter i choosing candidate j at preference
level t, conditional on voter i’s mixed membership parameter πi and the profile specific
support parameters p = (p

1
, p

2
, . . . , p

K
), is given as

P{c(i, t) = j|πi,p} =
K∑

k=1

πik

[
pkj∑N

s=t pkc(i,s)

]
. (1.2)

Additionally, local independence is then assumed between each preference level t, given
the mixed membership parameters. Thus, the conditional probability of ranking xi given
membership parameter πi and support parameters p is

P{xi|πi,p} =
ni∏

t=1

{
K∑

k=1

πik

[
pkc(i,t)∑N

s=t pkc(i,s)

]}

and the likelihood function based on the data x = (x1, x2, . . . , xM ) is therefore

P{x|π,p} =
M∏

i=1

ni∏

t=1

{
K∑

k=1

πik

[
pkc(i,t)

∑N
s=t pkc(i,s)

]}
.

Note that under the mixed membership model each voter has partial membership of
each profile and mixing takes place at each preference level t rather than at the vote level
as would be typical of a rank data mixture model [49, 41, 21, 5, 22, 23]. Modeling rank data
in this manner provides a deeper insight to the structure within the electorate by allowing
mixing to occur at a finer level. This is a desirable characteristic as it may be restrictive
to assume a voter expresses all preferences in their vote as dictated by a single profile; it
is likely that a voter may express some preferences in line with the support parameters of
one profile, and other preferences in line with the support parameters of other profiles. This
is clearer when we look at the latent class representation of the mixed membership model
(Section 1.3.2.1).

1.3.2.1 A latent class representation of the mixed membership model

The mixed membership model for rank data can be expressed using a latent class repre-
sentation in a manner similar to [10]; this representation facilitates efficient inference for
the model and it assists with model interpretation. The latent class representation of the
mixed membership model for rank data involves augmenting the data for each voter i with
categorical latent variables which record the profile that is used by voter i when recording
preference level t. The discrete distribution for the latent classes has a functional form that
depends on mixed membership parameters πi for voter i.

For each voter i, we impute binary latent vectors zit = (zit1, . . . , zitK) for t = 1, . . . , ni

where zit ∼ Multinomial(1,πi). The value of zit records the voting profile that is used by
voter i when recording preference level t.
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It follows that under the mixed membership model the ‘augmented’ data likelihood
function based on the data x and the binary latent variables z is therefore of the form

P{x, z|π,p} =
M∏

i=1

K∏

k=1

ni∏

t=1

{
πik

[
pkc(i,t)

∑N
s=t pkc(i,s)

]}zitk

. (1.3)

Employing the latent class representation of the mixed membership model not only
allows estimation of the characteristic parameters of each profile but also direct estimation
of the mixed membership parameter for each voter, thus achieving a soft clustering of the
voters. In addition, the mixed membership of each individual can be further probed to
establish which profile is best appropriate for modeling voter i when they are making choice
level t.

1.3.3 Prior and posterior distributions

A Bayesian approach is taken when estimating the mixed membership model for rank data
and thus the specification of prior distributions for the parameters of the model is required.
It is assumed that the mixed membership parameters follow a Dirichlet(α) distribution and
that the support parameters follow a Dirichlet(β) distribution i.e.

πi ∼ Dirichlet {α = (α1,α2, . . . , αK)}
p

k
∼ Dirichlet

{
β = (β1, β2, . . . , βN )

}
.

The conjugacy of the Dirichlet distribution with the multinomial distribution means the
use of a Dirichlet prior is naturally attractive. The use of a Dirichlet prior does however
induce a negative correlation structure between parameters. The sensitivity of inferences
drawn under the mixed membership model for rank data to this prior specification is consid-
ered in [24]. For even moderate sized data sets they found that the posterior inferences were
not heavily influenced by the prior specification. In practice the prior parameters are fixed
as α = (0.5, . . . , 0.5) and β = (0.5, . . . , 0.5) which is the Jeffreys prior for the multinomial
distribution [42].

Given these prior distributions and the augmented data likelihood function (1.3) from
the mixed membership model for rank data, the posterior distribution based on the data is:

P{π,p, z|x} ∝
[

M∏

i=1

K∏

k=1

ni∏

t=1

{
πik

[
pkc(i,t)∑N

s=t pkc(i,s)

]}zitk
][

M∏

i=1

K∏

k=1

παk−1
ik

] 


K∏

k=1

N∏

j=1

p
βj−1
kj



 .

This posterior distribution differs from the posterior distribution in the case of the
original mixed membership model [13, 14] in the form of the likelihood function. In the
original mixed membership model, discrete response variables are treated as independent
given the mixed membership parameters. The likelihood function is therefore the product of
independent Bernoulli distributions. In the mixed membership model for rank data however,
the dependence of choices within a rank response leads to a more complex likelihood function
that is the product of terms that share parameter values.
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1.4 Model Inference

1.4.1 Parameter Estimation

The mixed membership model for rank data can be efficiently fitted in a Bayesian framework.
Due to the structure of the posterior distribution, Markov chain Monte Carlo methods are
necessary to produce posterior samples of the model parameters. In particular, a Gibbs
sampling step can be used in the algorithm if the full conditional distribution for a model
parameter has a tractable form. For most of the model parameters in the mixed membership
model for rank data this is indeed the case, however in the case of the support parameters
p it is not the case.

The full conditional distributions of the latent variables zit and the mixed membership
parameters πi are readily available. In particular,

zit∼Multinomial

{
1,

(
πi1q1it∑K

k′=1 πik′qk′it

,
πi2q2it∑K

k′=1 πik′qk′it

, . . . ,
πiKqKit∑K

k′=1 πik′qk′it

)}
,

where qkit is defined as in (1.1) for k = 1, 2, . . . , K, i = 1, . . . ,M , t = 1, . . . , ni and

πi ∼ Dirichlet

(
α1 +

ni∑

t=1

zit1, . . . , αK +
ni∑

t=1

zitK

)
for i = 1, . . . , M.

In the case of the support parameters, the full conditional distributions are

P{p
k
|π,x, z} ∝

[
M∏

i=1

ni∏

t=1

{
πikpkc(i,t)

∑N
s=t pkc(i,s)

}zitk
] 


N∏

j=1

p
βj−1
kj



 . (1.4)

Due to the form of the likelihood function based on the rank data, the complete conditional
distribution of the support parameters is not readily available for sampling and a Gibbs
sampling step cannot be implemented. However, a Metropolis step can be used to sample
the support parameters. Thus, a Metropolis-within-Gibbs sampler [7] can be used to sample
from the posterior for all model parameters.

In any Metropolis-based algorithm, the rate of convergence of the chain depends on the
relationship between the proposal and target distributions. The use of a proposal distribu-
tion which closely mimics the shape and orientation of the target distribution provides an
improved rate of convergence and good mixing.

The approach taken to construct a proposal distribution starts by examining the loga-
rithm of the full conditional of the support parameter p

k
(1.4) which is of the form

log P{p
k
|π,x, z} ∝

M∑

i=1

ni∑

t=1

zitk

{
log pkc(i,t) − log

N∑

s=t

pkc(i,s)

}
+

N∑

j=1

(βj − 1) log pkj .

The function − log(·) is a convex function and thus the term − log
∑N

s=t pkc(i,s) can be
approximated (in fact lower bounded) by a hyperplane that is tangent to the function at
the currently sampled value of p

k
. The resulting function is the log of a gamma density

and this can, in turn, be replaced by the log of a Gaussian density because the shape
parameter is typically quite large. Thus, the proposal distribution for pkj emerges as a
Gaussian density with mean and variance dependent on the previously sampled values of
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the model parameters. As the Gaussian distribution extends beyond the [0, 1] interval in
which the support parameters lie, proposed values from this surrogate proposal must be
suitably normalized.

When estimating parameters via MCMC algorithms some special features of the mixed
membership model for ranking data require attention. A fundamental issue in the fitting
of any mixture based model within a Bayesian framework is that of label switching. This
arises because of the invariance of posterior distribution to permutations in the labeling of
the profiles. The methods proposed for dealing with label switching, including [48, 9, 29]
need to be considered to avoid this issue. The online relabeling algorithm of [48] was found
to be an effective method for handling this issue.

Full details of the Metropolis-within-Gibbs algorithm for fitting this model are given in
[24].

1.4.2 Model selection

Another feature of the mixed membership model is the need to infer the model dimensional-
ity, that is, the number of voting profiles (K) needed to appropriately model the electorate.
Within the Bayesian paradigm the natural approach would appear to be to base inference
on the posterior distribution of K given the data x, P{K|x}. However this posterior can
be highly dependent on the model definition and is typically computationally challenging
to construct. A comprehensive overview and comparison of model selection criteria within
the context of mixed membership models is provided in [30].

In this application of the mixed membership model for rank data, the Deviance Infor-
mation Criterion (DIC) introduced by [47] is used to choose an appropriate model. The
DIC criterion penalizes the posterior mean deviance of a model by the “effective number of
parameters”. The effective number of parameters is derived to be the difference between the
posterior mean of the deviance and the deviance at the posterior means of the parameters
of interest. Explicitly for data x and parameters θ the DIC is

DIC = D(θ) + pD

where D(θ) = −2 log[P(x|θ)] + 2 log[h(x)] is the Bayesian deviance and h(x) is a function
of the data only. The effective number of parameters is defined as pD = D(θ) − D(θ̄). The
criterion has an approximate decision theoretic justification. In any case, models with small
DIC are preferable to models with large DIC values.

1.5 Application to the 2002 Irish general election

The mixed membership model for rank data was applied to the voting data from the Dublin
North constituency in the 2002 Irish general election. This study aims to establish the
existence of different voting profiles in the electorate and to establish how voters align
themselves with these profiles. This investigation will thus provide an enhanced insight into
the actual voting behaviors exhibited in this electorate.

The Metropolis-within-Gibbs sampler, as outlined in Section 1.4.1, was run over 50000 it-
erations with a burn-in period of 10000 iterations. The model was fitted with K = 1, 2, . . . , 7
voting profiles in order to establish the appropriate number of profiles to adequately model
the data.

For each value of K, the DIC value was computed and these are shown in Figure 1.1.
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The plot shows a sharply decreasing trend when K increases from 1 to 3 and the DIC values
decrease slightly thereafter. Consequently, the fitted models for K ≥ 3 were examined and
it was determined that the K = 3 model was most appropriate.
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FIGURE 1.1
Values of the DIC for the mixed membership model for rank data fitted to the 2002 Dublin
North constituency data over different values of the number of voting profiles K.

1.5.1 Support for the candidates

The marginal posterior density of the support parameters for each candidate within the
three voting profiles are illustrated in Figure 1.2; a violin plot [26, 1] is used to show these
marginal posterior densities.

The three voting profiles have distinct and intuitive interpretations within the context
of the 2002 Irish general election. The four elected candidates have high support in at least
one of the voting profiles and some other prominent candidates also have high support.

Voting profile 1: non-mainstream opposition and protest voters.
(Figure 1.2(a)) The posterior mean support parameter estimate for the candidates in
this voting profile suggest that this voting profile shows strong support for the non-
mainstream opposition parties and single issue/protest candidates. Clare Daly (Socialist
Party) has the largest support and she would be characterized as a major candidate in
the non-mainstream opposition in Ireland; despite having such high support in this
voting profile she failed to get elected. Trevor Sargent (Green Party) was leader of the
Green Party at the time of the election and the 2002 election saw the party increase
its number of seats in the Dáil from two to six seats thus moving them towards the
mainstream opposition. Seán Ryan was a Labour party candidate, the Labour party
has a diverse range of support within the Irish electorate so it could be considered to
be a mainstream party but it would also have appeal to voters who don’t support other
mainstream parties. Interestingly, candidates that received very few first preference votes
(eg. Eamon Quinn and David Walshe) have appreciable support in this voting profile.

Voting profile 2: mainstream opposition voters.
(Figure 1.2(b)) The support parameters for Trevor Sargent (Green Party), Seán Ryan
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(a) Voting profile 1. Non-mainstream opposition
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(b) Voting profile 2. Mainstream opposition
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(c) Voting profile 3. Fianna Fáil

FIGURE 1.2
Violin plots of the posterior samples for the support parameters. The plot shows the
marginal posterior density for each support parameter, for each of the twelve candidates
and the three voting profiles. The abbreviation used for each candidate’s name is given in
Table 1.1.
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(Labour), Nora Owen (Fine Gael) and Cathal Boland (Fine Gael) are all large relative to
the other candidates. Fine Gael were the largest opposition party before the election and
their support here suggests that this voting profile shows support for the mainstream
opposition parties. Labour were the second largest opposition party and traditionally
Labour and Fine Gael have formed coalition governments, so they share much support
amongst the voters. The 2002 election saw the Green party move towards becoming a
mainstream opposition party and this is reflected in this voting profile too. Prior to the
election, there was some discussion in the print media about Fine Gael, Labour and the
Green party forming a coalition government if they gained enough seats, but this did
not happen.

Voting profile 3: Fianna Fáil voters.
(Figure 1.2(c)) The posterior mean support parameter estimates for the candidates in
this profile reveal that this profile only has appreciable support for the three Fianna
Fáil candidates. All other candidates have very low support.

The division of the voters into three profiles provides a systematic method for decom-
posing the electorate into a small number of profiles. The relevance of the revealed profiles
is supported by the exploratory analysis of these data in [32]. Interestingly, the division of
candidates amongst the profiles corresponds very closely to the hierarchical decomposition
of the candidates and parties in Dublin North as found in [27, 28].

1.5.2 Mixed membership parameters for the electorate

The unique feature of the mixed membership model is that the partial memberships of the
voting profiles for each voter are inferred directly when estimating the model. The entropy
[45] of each voter’s mixed membership vector measures the degree to which they exhibit
mixed membership across voting profiles. In fact, the exponential of the entropy can be seen
as the effective number of profiles [6, 52] which are required to model voter i’s preferences.
Figure 1.3 shows a histogram of the exponentiated entropy values for the Dublin North
voters and these show that there is significant evidence of mixed membership for the voters
with many voters being effectively members of two or more of the profiles.

The voter with the lowest effective number of profiles has a membership vector πi =
(0.068, 0.885, 0.047) and they recorded the vote xi =(Boland, Owen, Sargent, Ryan, Gould-
ing, Quinn, Walsh, Daly, Glennon, Wright, Kennedy, Davis). Since their highest preference
choices all have high support in voting profile 2, it is clear why they have particularly high
membership to this profile and low membership to other profiles. The voter with the high-
est effective number of profiles has a membership vector πi = (0.333, 0.336, 0.331) and they
recorded the vote xi =(Goulding, Daly, Ryan, Boland, Owen, Glennon, Wright, Kennedy).
In this case, the voter’s highest preference votes have high support in different profiles,
so the mixed membership model suggests that all three profiles are needed to model their
preferences.

We can further explore the mixed membership vectors by dividing the voters into groups
by assigning each voter to the voting profile for which they have the highest membership
score. We construct a kernel density estimate of the mixed membership parameter for each
voting profile, for each of the groups of voters (Figure 1.4). Clearly, a significant proportion
of the voters who have strongest affiliation to voting profiles 1 and 2 also have strong
affiliation to at least one other profile. In contrast, voters who have strongest affiliation to
voting profile 3 tend to have very little affiliation to the other voting profiles. This suggests
that voting profiles 1 and 2 are closer and thus voters exhibit more mixed membership
between these two profiles. This makes intuitive sense within the context of the 2002 Irish



Mixed Membership Models for Rank Data: Investigating Structure In Irish Voting Data 15

Exp(Entropy)

Nu
m

be
r o

f V
ot

er
s

1.5 2.0 2.5 3.0

0
10

00
20

00
30

00
40

00
50

00

FIGURE 1.3
A histogram of the exponential of the entropy values for each voter’s mixed membership
parameter. The values shown give an “effective number of profiles” needed to model each
voter.

general election as voting profile 3 represents the current government party, with profiles 1
and 2 representing two different types of opposition.

1.5.3 Posterior predictive model checks

Posterior predictive simulation [20] was employed to assess model fit. Subsequent to a burn-
in period of 10000 iterations, 40000 samples thinned every 100th iteration were drawn
from the posterior distribution P{π,p, z|x}, giving R = 400 sets of parameters simulated
from the posterior. A predictive election data set xr was then simulated from the mixed
membership model for rank data, given each of the r = 1, . . . , R draws of the parameters
from the posterior distribution. Due to the discrete and structured nature of the data, it
is difficult to fully assess model fit, so first order summaries were used. For the simulated
votes, the number of first preference votes obtained by the twelve candidates was recorded.
Figure 1.5 illustrates the number of first preferences received by each candidate in each
simulated posterior predictive data set, and in the Dublin North voting data.

The posited model appears to capture the main structure of the data but there is some
discrepancy between the observed and the simulated values. The discrepancy can be ex-
plained by the fact that the support parameters p are used to model the probability of
candidate selection at all preference levels and thus the posterior estimates for these pa-
rameters depend on all preference levels rather than just first preferences. So, this may
lead to a slight under or over estimation of the number of first preference selections for a
candidate.
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(b) Members of profile 2
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(c) Members of profile 3

FIGURE 1.4
Kernel density estimates of the membership parameters for those voters most likely to be
characterized by each profile.
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FIGURE 1.5
This plot shows the posterior predictive counts for each candidate in the Dublin North
constituency. Each circle indicates the number of first preference votes received by the twelve
candidates in each of 400 simulated posterior predictive data sets. The crosses indicate the
number of first preferences received by each candidate in the actual voting data.

1.6 Conclusions

A mixed membership model for rank data has been described and applied to the analysis of a
large election data set. It has been shown that in the context of analyzing rank response data,
the model provides scope to examine a population for the presence of preference profiles,
to estimate the characteristics of these profiles and to investigate the mixed membership of
population members to the profiles on a case by case basis. The loss of information which
may result from a hard clustering of the data is avoided by providing a soft clustering of the
population. In addition, the mixed membership model provides a parsimonious description
of the population because complex preference patterns can be captured using the mixed
membership machinery.

The method provides an alternative modeling framework to the many mixture modeling
approaches for rank data [49, 41, 21, 5, 22, 40]. In particular, [22] developed a finite mixture
of Plackett-Luce models for modeling PR-STV data which provides a competing modeling
framework. However, when studying large voting data sets with diverse candidates, a large
number of mixture components are needed to appropriately model the data. In contrast,
the mixed membership model can model voting in such elections with many fewer profiles.

The model described herein can be fitted in a Bayesian paradigm using an efficient
Markov chain Monte Carlo scheme. The method is able to explore the posterior efficiently
because the proposal distributions developed for sampling the support parameters, which
don’t have a closed form conditional posterior, are accurate approximations of the parame-
ter conditional posterior distributions. Recently, [8] developed a Gibbs sampling method for
the Plackett-Luce model and this could be adapted to fitting the mixed membership model
outlined herein, thus improving the accuracy of model inference. An alternative method
for fitting such models would be to use variational Bayesian (VB) methods or expectation
propagation (EP); [51] developed an online VB algorithm and [25] developed an EP algo-
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rithm for a single Plackett-Luce model and there is potential to extend these methods to
the mixed membership model herein.

The mixed membership model for rank data could be developed in several directions.
In terms of the application in this article further model accuracy could be attained by
imposing a hierarchical framework — a hyperprior could be introduced for the Dirichlet
parameters α and β of the mixed membership and support parameter priors respectively;
such hierarchical priors are employed in [44] and [14]. The issue of model choice for mixed
membership models is still problematic [30]. The combination of the use of DIC [47] and
posterior predictive model checks [20] provided a suitable method in this application, but
there were a number of competing models that achieved similar fit. Thus, there remains the
need for more automatic model choice methods.

Recently, a number of models have been developed that capture underlying group
structure for rank data when concomitant information for the voters is also available
[23, 17, 33, 34, 35]. It would be worthwhile to extend the mixed membership modeling
framework for rank data to include such concomitant information. Such a modeling exten-
sion would help explain the structure revealed by the mixed membership model for ranked
data.

Appendix A: Data sources

The 2002 Dublin North constituency voting data was made available by the Dublin County
Returning Officer. The data are available from the authors on request.
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