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Abstract

We consider the problem of optimal state estimation for a wide class of nonlinear
time series models. A modified sigma point filter is proposed, which uses a new
procedure for generating sigma points. Unlike the existing sigma point generation
methodologies in engineering where negative probability weights may occur, we de-
velop an algorithm capable of generating sample points that always form a valid
probability distribution while still allowing the user to sample using a random num-
ber generator. The effectiveness of the new filtering procedure is assessed through
simulation examples.
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1 Introduction

We consider the problem of latent state estimation in a discrete, nonlinear
time series. The general class of the systems considered have the following
state space form:

X (k + 1) = f (X (k)) + g (X (k))W(k + 1), (1)

Y(k) = h (X (k)) + V(k), (2)

where X (k) is the state vector at time tk, Y(k) is the measurement vector at
time tk, f,g,h are given nonlinear (vector-valued) functions and V(k),W(k)
are symmetric vector-valued random variables with bounded mean, variance
and marginal kurtosis. We assume that tk − tk−1 is constant for all k. At
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each time tk, the noisy measurement vector Y(k) is assumed to be available
and an estimate of the random vector X (k) based on information up to (and
including) time tk is desired.

The state estimation problems for these nonlinear models are practically im-
portant and occur in a wide spectrum of research areas such as radar navi-
gation, climatology, geosciences and financial modeling, among others. These
problems can be numerically quite challenging since the optimal recursive
solution to the state estimation problem requires the propagation of full prob-
ability density; see, e.g. [1] for an approximate solution to a more general
nonlinear filtering problem. In the special case of linear Gaussian state space
models, a closed-form expression exists for the conditional state density and
is given by the linear Kalman filter. In practice, the current approaches ad-
dressing the nonlinear filtering type problems make use of one of the following
ways of approximation:

• One may use the extended Kalman filter (EKF), which utilizes local lin-
earization of equation (1). This leads to the derivation of a linear state
space system and then a Kalman filter is employed to derive the conditional
state density of X (k). This approach has been used in engineering for more
than three decades [2] and has been extensively discussed in standard text-
book such as [3]. EKF works well if the system is, indeed, approximately
linear. This assumption is often extremely difficult to verify. [4] discusses a
successful implementation of EKF for a nonlinear interest rate model.

• Another approach for nonlinear filtering is sequential Monte Carlo filter-
ing (also called particle filtering), where the required density functions are
represented by a set of random samples (or particles) with discrete prob-
ability weights and these samples are then used to compute the necessary
conditional moment estimates. As the number of samples becomes large,
the estimate approaches the optimal Bayesian estimate under fairly general
conditions; see [5], [6], [7] and the references therein. While this method
can perform significantly better than EKF for highly nonlinear systems, it
is computationally quite expensive since a large number of samples need
to be generated at each time tk. Some computational saving is possible if
the system contains a linear substructure which can be dealt with linear
Kalman updates. These marginalized filters have found some applications
in engineering; see [8] and the references therein.

• A modification of EKF in terms of unscented filter or sigma point filter has
become popular in the recent years. In [9], a survey of several applications of
sigma point filters in engineering is provided, specifically in communication,
tracking and navigation (also see [10]). Other reported applications of this
filtering technique include modeling of population dynamics [11] and state
estimation in electrochemical cells for battery management [12]. Approx-
imate methods to deal with multiplicative uncertainty in the observation
equation under sigma point filtering framework are discussed in [13]. This
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type of filters may be seen as a compromise between an EKF and a particle
filter.

Similar to the propagation equations in EKF, the sigma point filters use
closed-form recursive formulae based on the linear Kalman filter to prop-
agate the mean and the covariance of state vector. However, the system
equations are not linearized in this case. Instead, a small set of sample
points (or sigma points) is generated and propagated through the nonlinear
transformation to compute the conditional moment estimates. Instead of
using a large number of points and matching the distributions asymptoti-
cally (as in a particle filter), the sigma point filter uses a small set of points
which are chosen such that some of the moment properties of the a priori
distribution are matched exactly. The main problem with these type of fil-
ters is that the sample points do not necessarily define a valid distribution
since the weights corresponding to probability masses are not guaranteed to
be non-negative. Further, the algorithms for generating samples are purely
deterministic and do not allow for a source of randomness in the filtering
procedure.

A sigma point filter requires computing square root of the state covari-
ance matrix at each time-step. This may not be computationally feasible
if the number of states is very large, which is the case for most problems
in geosciences. A variant of sigma point filter, usually called the ensemble
filter, is used in geosciences where the state is not sampled at all and only
the noise distributions are sampled using traditional Monte Carlo sampling
techniques 1 . This technique was introduced in [14] and has also been em-
ployed in [15]. The method we propose is closer in spirit to ensemble filters.
We will discuss the similarities and differences between the two filtering
methods, i.e., ensemble filter vis-a-vis our proposed new method later in
section 5.

The purpose of this paper is to propose a new filtering algorithm for state
estimation in nonlinear time series which addresses the above mentioned defi-
ciencies of sigma point filters and to assess the performance of this algorithm
through numerical examples. The sigma point generation step in this algo-
rithm is adapted from a recently proposed method for generating samples
from a discrete distribution with specified moment properties [16]. The rest
of the paper is organized as follows. The next section outlines the recursive
equations for linear Kalman filter, which are then used in the development of
subsequent sections. Section 3 outlines the use of the proposed sigma point
filter, while section 4 outlines the underlying algorithm for sigma point gener-
ation. The operation of the algorithm is demonstrated through two examples
in section 6. Finally, section 7 concludes and outlines the directions for future
research.

1 The first author is grateful to Prof. Sachin Patwardhan from Indian Institute of
Technology, Mumbai, India for pointing out this technique.
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2 Linear Kalman filter

For a linear state space system of the form

X (k + 1) = AX (k) + B + UwW(k + 1), (3)

Y(k) = CX (k) + D + UvV(k), (4)

where A,B, C,D, Uv and Uw are constant matrices, assume that the condi-
tional expectation X̂ (k|k) and its covariance matrix Pxx(k|k) at time tk (de-
rived after measuring Y(k)) are known. The Kalman filtering algorithm for
finding conditional moments at the next time tk+1 proceeds as follows.

X̂ (k + 1|k) = AX̂ (k|k) + B, (5)

Pxx(k + 1|k) = APxx(k|k)A> + UwU>
w , (6)

V̂(k + 1) = Y(k + 1)− CX̂ (k + 1|k)−D, (7)

Pxv(k + 1|k) = APxx(k + 1|k)C>, (8)

Pvv(k + 1|k) = CPxx(k + 1|k)C> + UvU
>
v , (9)

X̂ (k + 1|k + 1) = X̂ (k + 1|k) + Pxv(k + 1|k)P−1
vv (k + 1|k)V̂(k + 1), (10)

Pxx(k + 1|k + 1) = Pxx(k + 1|k)

− Pxv(k + 1|k)Pvv(k + 1|k)−1Pxv(k + 1|k)>, (11)

where X̂ (k + 1|k) denotes the optimal estimate of X at time k + 1 given
the measurements and other available values up to time k. P> denotes the
transpose of matrix P . To initialise the procedure, it is assumed that X̂ (0|0)
and Pxx(0|0) are known.

Equation (10) is an optimal linear filter, in the sense that it yields the minimum
variance over all linear filters, even when V(k), W(k) are not Gaussian. When
V(k), W(k) are Gaussian, X̂ (k + 1|k) is the conditional mean estimator for
X (k + 1), given Y(k). In fact, equation (10) may be derived using a standard
conditional mean relationship for two Gaussian variables X ,Y [17]:

E (X|Y) = E (X ) + ΣXY Σ−1
Y Y (Y − E(Y)) (12)

where ΣY Y and ΣXY are covariance matrices.

The main idea of sigma point filters as well as ensemble filters is to derive ap-
proximations to the quantities on the right hand side of (10) through sampling
the distributions of V(k) and W(k) and then use the same, closed-form up-
date formula (10), which is known to be optimal for the linear Gaussian case.
In sigma point filters, certain moment properties of the prior distribution are
matched exactly using determinstic sigma point generation. In ensemble filters,
pseudo-random number generators are used to sample the known distributions
of the noise terms.
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The next section details a new sigma point filtering algorithm. At the mo-
ment, we set aside the question of which statistical properties to match and
assume that a method for generating samples matching appropriate statistical
properties is available. We shall consider the problem of generating samples
in section 4.

3 A sigma point filter

At time tk+1, assume that sample points (or sigma points)

[
W(i)(k + 1)> V(i)(k + 1)>

]>
, i = 1, 2, . . . 2ns + 1

are available for the discrete time state space system (1)-(2), along with the
associated joint probability weights pi, i = 1, 2, . . . s. Here, n is the dimension

of the composite vector
[
W(i)(k + 1)> V(i)(k + 1)>

]>
. As will be seen in the

next section, some of the probability weights are common to two or more
support points and the set of s probability weights determine the 2ns + 1
support points above. Further, the sample points of the updated state estimate
X (i)(k|k) are available.

Remark: Note that X (i)(k|k) is not sampled and the joint probability pi

for
[
W(i)(k + 1)> V(i)(k + 1)>

]>
at each i is effectively assigned as the joint

probability of occurrence of
[
W(i)(k + 1)> V(i)(k + 1)>X (i)(k|k)>

]>
. In this

respect the procedure is similar to an ensemble filter.

To initialize the procedure, we assume that X (0) is a random vector with
a known mean, known covariance matrix and zero marginal skewness. The
sample points X (i)(0|0) can be generated from this prior knowledge about
the moments of X (0) using the procedure outlined in section 4. For k ≥ 0,
The steps involved in the computation of sigma points at time tk+1 once the
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measurement Y(k + 1) becomes available are as follows:

X (i)(k + 1|k) = f
(
X (i)(k|k)

)
+ g

(
X (i)(k|k)

)
W(i)(k + 1), (13)

Z(i)(k + 1|k) = h
(
X (i)(k + 1|k)

)
+ V(i)(k + 1), (14)

V̂(i)
Y (k + 1|k) = Z(i)(k + 1|k)− Y(k + 1), (15)

X̂ (k + 1|k) =
2ns+1∑

i=1

piX (i)(k + 1|k), (16)

V̂(i)
X (k + 1|k) = X (i)(k + 1|k)− X̂ (k + 1|k), (17)

Pxx(k + 1|k) =
2ns+1∑

i=1

pi(V̂(i)
X (k + 1|k))(V̂(i)

X (k + 1|k))>, (18)

Pxv(k + 1|k) =
2ns+1∑

i=1

pi(V̂(i)
X (k + 1|k))(V̂(i)

Y (k + 1|k))>, (19)

Pvv(k + 1|k) =
2ns+1∑

i=1

pi(V̂(i)
Y (k + 1|k))(V̂(i)

Y (k + 1|k))>, (20)

X (i)(k + 1|k + 1) = X̂ (k + 1|k)

+ Pxv(k + 1|k)P−1
vv (k + 1|k)V̂(i)

Y (k + 1|k). (21)

Note the similarity between equations (10) and (21). Implementing the above
algorithm yields the sigma points X (i)(k +1|k +1), i = 1, 2, . . . , 2ns+1. Note
that the heuristics we have used to generate the samples for the measurement
innovations V̂(i)

Y (k + 1|k) is different from the more common approach in the
literature on sigma point filtering, which replaces (15) and (21) by

V̂(i)
Y (k + 1|k) = Z(i)(k + 1|k)− Ẑ(k + 1|k) and

X (i)(k + 1|k + 1) = X̂ (k + 1|k)

+ Pxv(k + 1|k)P−1
vv (k + 1|k)(Z(i)(k + 1|k)− Y(k + 1))

respectively, with Ẑ(k + 1|k) =
∑

piZ(i)(k + 1|k). However, we found that
using the heuristics (15) and (21) in place of the above equations improves
the state estimation performance significantly. Intuitively, our choice may be
justified by the fact that Ẑ(k + 1|k) is simply an estimate of Y(k + 1) and it
makes sense to use the actual measurement value, when it is available, than
using its estimate.

To reiterate the point of this exercise, we can preserve the nonlinearity in
the system dynamics while generating the state estimate and can do better
than linear filters without having to resort to the computationally expensive
sequential Monte Carlo-based estimation. In particular, instead of asymptoti-
cally generating entire distributions which requires a large number of samples,
we use only a small number of samples but reproduce some statistical prop-
erties exactly.
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In the above algorithm, we have assumed that a procedure to generate a

set of sigma points
[
W(i)(k + 1)> V(i)(k + 1)>

]>
, i = 1, 2, . . . 2ns + 1 with

the desired statistical properties is available. The next section outlines such
a procedure to generate a symmetric discrete distribution to match a given
mean vector and covariance matrix exactly and also match the sum of marginal
kurtosis exactly in some cases, without requiring an additional optimization.

4 Generation of sigma points

4.1 Notation

We first outline here the notation used in our development of the sigma point
generation algorithm.

n number of random variables (or dimension of a random vector),

s number of samples,

Φ target mean vector,

R target covariance matrix,

κi target marginal 4th central moment for the ith random variable,

Lij entry in the ith row and jth column of a matrix L,

For a symmetric matrix R, R ≥ 0 indicates that the matrix is positive semi-
definite, i.e. has all non-negative eigenvalues.

We aim to generate samples from a symmetric distribution with a specified
mean vector and a specified (positive definite) covariance matrix. In the case
of the sigma point filtering algorithm described in the last section, the pur-

pose is to generate G :=
[
W(i)(k + 1)> V(i)(k + 1)>

]>
, i = 1, 2, . . . 2ns + 1

which match a given mean vector Φ, a given covariance matrix R and have a
symmetric marginal distribution.

4.2 Algorithm for generating sigma points

The algorithm described below is adapted from the scenario generation algo-
rithm in [16].
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(i) Find a symmetric positive definite matrix L such that R = LL>. For a
symmetric positive definite R, L is unique. If R has distinct eigenvalues,
this may be found using singular value decomposition; see, e.g. [18] and
the references therein for the methods in finding L. This matrix L is
usually referred to as the square root of the matrix R.

(ii) If
∑n

i=1
κi∑n

i,j=1
(L4

ij)
> n, generate s−1 numbers qi ∈ [2sn, ψ], i = 1, 2, . . . , s−1,

where the constant ψ is given by

ψ =
2s2 ∑n

i=1 κi

(s− 1)
∑n

i,j=1(L
4
ij)
− 2ns

s− 1
,

and set qs =
2s2

∑
κi∑n

i,j=1
(L4

ij)
−∑s−1

i=1 qi. It can be easily shown that if
∑n

i=1
κi∑n

i,j=1
(L4

ij)
>

n, it is always possible to choose s such that ψ > 2ns. Further, due to
the definition of the upper bound on qi, it can be shown that qs > 2ns
holds. For a scalar random variable, the constraint κ1

(L4
11)

> 1 implies that

the kurtosis is greater than unity, which is always true for elliptic distri-
butions [19].

If the condition above is not satisfied (i.e. if ψ ≤ 2ns), generate s
numbers qi ∈ [2sn,∞], i = 1, 2, . . . , s − 1. Given its lower bound and
(possibly) upper bound in either case, qi may be generated using any
deterministic algorithm or using a random number generator.

(iii) Set pi = 1
qi

, i = 1, 2, . . . , s and ps+1 = 1− 2n
∑s

i=1 pi.

(iv) Define a multivariate discrete distribution G over a support of 2ns + 1
points as follows:

P
(
G = Φ +

1√
2spi

Lj

)
= P

(
G = Φ− 1√

2spi

Lj

)
= pi,

j = 1, 2, . . . , n, i = 1, 2, . . . , s,

P (G = Φ) = ps+1. (22)

where Lj denotes the jth column of a matrix L.

Steps (i)-(iv) constitute the entire set of procedures needed to construct the
required samples. Step (i) need not be repeated in a sequential procedure, if
the covariance matrix is to remain the same through multiple time-steps. This
is practically important, since noise covariance matrices are usually assumed to
be constant and they need not be factorized at each time-step during filtering.

The following result collects together the distributional properties of these
samples:

Lemma 1 (1) For pi defined as above, pi ≥ 0, i = 1, 2, . . . , s and 2n
∑s

i=1 pi+
ps+1 = 1.
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(2) For G defined as above,

E[G] = Φ, (23)

E
[
(G − Φ)(G − Φ)>

]
= R, (24)

E
[
(Gi − Φi)

3
]

= 0. (25)

Further, if ψ > 2ns holds,

n∑

i=1

|κi − E (Gi − Φi)
4 | =

n∑

i=1

κi. (26)

Proof : Since qi ≥ 2ns, i = 1, 2 · · · , s, and ps+1 = 1− 2n
∑s

i=1 pi by definition,
we need to show that ps+1 ≥ 0 for part (1) to hold. This follows by noting
that

ps+1 ≥ 1− 2ns
1

mini qi

≥ 0.

In part (2), equations (23) and (25) are immediate due to the symmetry of
the support points around the target mean vector Φ. Equation (24) follows by
noting that

E
[
(G − Φ)(G − Φ)>

]
= 2

s∑

i=1

pi
1

2spi




n∑

j=1

LjL
>
j


 =

n∑

j=1

LjL
>
j = R.

Finally,

E
[
(Gi − Φi)

4
]

=
s∑

k=1

pk
1

2p2
ks

2

n∑

j=1

L4
ij =

(
s∑

k=1

qk

)
1

2s2




n∑

j=1

L4
ij


 ,

so that, when ψ > 2ns holds,

n∑

i=1

E
[
(Gi − Φi)

4
]

=
n∑

i=1

κi,

where the last equality follows from the definition of qs in step (ii) of the
algorithm.

Lemma 1 and its proof above demonstrate one of the main advantages of our
method: provided that the weights pi form a valid probability measure, their
exact values have no impact on the exact matching of Φ and R. In particular,
pi’s get cancelled in forming the covariance matrix from the support points and
the associated probability weights of G. If G(k) itself represents a discrete time
stochastic process, this crucial fact allows us to choose random probability
weights {pi} within the specified bounds,

(
1

2ns
, 1

ψ

)
or ( 1

2ns
, 0), at each time k,

thereby generating a different realization of G(k) at each time k. Of course,
we may choose to use deterministic pi’s instead if desired.
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5 What’s new in our approach?

The filtering algorithm described in section 3 is similar to various sigma point
and ensemble filtering algorithms described elsewhere. However, the sampling
approach involved in our method differs radically from those of others as
described in section 4. The main differences between sample generation meth-
ods in traditional sigma point filters and the filter using the proposed sam-
pling method, which we will henceforth refer to as modified sigma point filter
(MSPF) are as follows.

• In the existing methods, the sigma points or samples generated do not
necessarily form a valid probability distribution, as some of the probability
weights can be negative. This puts the probabilistic interpretation of the
whole procedure into question. This problem does not arise in MSPF, as
seen from the first part of lemma 1.

• The existing sigma point generation algorithms are deterministic, with no
way of incorporating random behavior. The randomness may be desirable
to reflect the real dynamics of the system, especially when the system is
assumed to have explicit sources of randomness. This is especially true when
modeling econometric or financial time series. As mentioned earlier, we have
the flexibility of using either a deterministic or probabilistic sigma point
generation in our algorithm, since qi may be generated in either way.

• In addition to the points mentioned above, we can also match the sum of
fourth marginal central moments in cases when the condition ψ > 2ns holds,
as detailed in section 4.2. This criterion will often hold for a system with a
single measurement and a single state. In case it does not hold, it is possible
to minimize the worst case error in matching the marginal fourth central
moments of the components of G using a convex optimization procedure.
The details of this procedure are described in [16] and are hence omitted
here.

• Similar to ensemble filters, we do not sample the state X (k|k). This makes
intuitive sense since we are sampling all the exogenous sources of random-
ness and X (k|k) is simply a function of these exogenous random processes.
This also has a very significant computational advantage over traditional
sigma point filters in terms of not having to compute a new matrix square
root of covariance matrix at each time step (which would be the case if we
were sampling X (k|k)). The ensemble filters, however, use random number
generators with the specified distributional properties to generate samples

for
[
W(i)(k + 1)> V(i)(k + 1)>

]>
and then use the corresponding sample

mean and the sample covariances in (21). However, sampling from an un-
derlying distribution with a very small number of samples and then using
the sample moments may yield misleading results and it may be better to
match a few moments exactly instead, which is what MSPF is designed to
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do.

MSPF integrates the numerical simplicity of the ensemble filter with the exact
moment matching of the traditional sigma point filter. Further, it extends the
moment matching method in traditional sigma point filters beyond match-
ing the mean vector and the covariance matrix. In MSPF, the third marginal
moment is matched exactly in all cases and the sum of fourth marginal mo-
ments can also be matched exactly in some cases. Achieving even approximate
matching of these higher moments in the case of existing sigma point genera-
tion algorithms requires non-convex optimization.

6 Numerical examples

We consider two different examples to illustrate the proposed filtering method.

6.1 CEV type time series model

The first numerical example is a nonlinear, non-Gaussian time series given by

x(k + 1) = ax(k) + b + σw

{
(x(k))2

} γ
2 w(k + 1),

y(k + 1) = cx(k) + d + σvv(k + 1). (27)

Examples of this specification include the constant elasticity of variance (CEV)
model in stock option pricing described in Cox [20] and several exponential
affine term structure models including the Cox, Ingersoll and Ross model [21].
We consider a univariate example for simplicity. The parameters of the model
are a = 0.9, b = 0.1, σw = 0.01, c = 1, d = 0.1, σv = 0.01. The noise terms
w(k+1) and v(k+1) are i.i.d. with standard normal distribution. We consider
three different values of γ: γ = 0.125, 0.25, 0.375. Sample paths of the state
x and observation y are generated by sampling w(k) and v(k). Based on the
observation sample path, we wish to see whether we can predict x(k + 1|k)
accurately using MSPF proposed here and we want to compare its predic-
tive ability with that of the EKF and the ensemble filter. As a measure of
performance of a filter, we consider the average of root mean squared er-
ror (AvRMSE) in one step ahead prediction. The root mean squared error
(RMSE) for a filter and for a particular sample path i is given by

RMSE(i) =

√√√√ 1

M

M∑

k=1

(x(i)(k + 1)− x̂(i)(k + 1|k))
2
,
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where the superscript i denotes the ith sample path and M is the time hori-
zon. AvRMSE, as the sample mean 1

N

∑N
i=1 RMSE(i), and VarRMSE as the

corresponding sample variance,

VarRMSE =
1

N − 1

N∑

i=1

(
RMSE(i) − AvRMSE

)2
,

are computed over N=100 sample paths with each path consisting of M=100
time-steps. At each time-step only 10 samples or sigma points are generated.
Table 1 illustrates the results of this error analysis. We see that MSPF yields
the lowest AvRMSE and the lowest VarRMSE among the three filtering meth-
ods, for all values of γ.

Table 1 : Comparison of prediction errors using different filters for
system in (27). For a specific filter and a value of gamma, the
corresponding numbers in the table give the AvRMSE and

VarRMSE.

Filtering method γ

0.125 0.25 0.375

EKF AvRMSE 2.9563 ∗ 10−2 2.9584 ∗ 10−2 2.9606 ∗ 10−2

VarRMSE 8.8845 ∗ 10−5 8.9478 ∗ 10−5 9.0154 ∗ 10−5

Ensemble filter AvRMSE 2.6251 ∗ 10−2 2.6258 ∗ 10−2 2.6267 ∗ 10−2

VarRMSE 3.9879 ∗ 10−5 3.9882 ∗ 10−5 3.9916 ∗ 10−5

MSPF AvRMSE 2.4960 ∗ 10−2 2.4967 ∗ 10−2 2.4974 ∗ 10−2

VarRMSE 2.7946 ∗ 10−5 2.7888 ∗ 10−5 2.7859 ∗ 10−5

6.2 Univariate non-stationary growth model

The second numerical example is a univariate non-stationary growth model
given by

x(k) = αx(k − 1) + β
x(k − 1)

1 + x2(k − 1)
+ γ cos(1.2(k − 1)) + σww(k), (28)

y(k) =
x2(k)

20
+ σvv(k), (29)

where v(k) are i.i.d. N(0, 1) random variables and w(k) are i.i.d. random
variables with a zero mean and unit variance following a t-distribution having
10 degrees of freedom. A nonlinear model of this type has been discussed
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in [22] and in [23].

We use the parameters α = 0.5, β = 28, γ = 8, σw = 0.1, σv = 0.1. In this case,
we compare the performance of the ensemble filter and MSPF for one step
ahead prediction, using AvRMSE and VarRMSE as defined in the previous
example. As in the previous case, AvRMSE is computed over 100 sample paths,
each path consisting of 100 time-steps, and 10 sigma points are generated at
each time-step. The AvRMSE for MSPF is 0.61172 while that for the ensemble
filter is 0.61558. The VarRMSE for MSPF is 0.00028 while that for ensemble
filter is 0.00107. As in the previous example, it is seen that the proposed
method outperforms the ensemble filter, with a lower AvRMSE and a lower
VarRMSE.

While VarRMSE reflects variation of RMSE across different sample paths, it is
also worth commenting on the variation in the one step ahead prediction error
across different time steps along the same sample path. Even though both the
filtering methods, viz. ensemble filter and MSPF use a small number of ran-
domly generated samples for computing moments, the samples in MSPF are
likely to yield locally closer predictions due to moment matching constraints.
To illustrate this point, a plot of a simulated sample path (denoted by solid
line) and the corresponding one step ahead prediction using MSPF (denoted
by dashed line) is plotted in figure 1, while the same sample path and one
step ahead prediction using ensemble filter is plotted in figure 2. Indeed, this
intuition is confirmed by comparing figures 1 and 2 and observing the contrast
between the behaviours of the two predictions occurring most notably within
the first 20 time-steps.

We do not compare the methods with a linearized filter in this example since
the system is too nonlinear for a local linearization procedure to be effective.

7 Concluding remarks

We have developed a modified sigma point filtering algorithm for nonlinear
and non-Gaussian systems. This algorithm combines the numerical simplicity
of the ensemble filter (in the sense that the state covariance matrix need not be
factorized) along with the exact moment matching properties of the traditional
sigma point filter. Further, while the traditional sigma point filtering methods
match only the first two moments, the exact moment matching is extended to
three and in some cases four moments in the MSPF. The use of the algorithm
is demonstrated through numerical examples.

To the best of our knowledge, sigma point filters have not been adopted widely
by researchers in fields such as econometrics, finance and actuarial science. We
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Fig. 1. Prediction for univariate non-stationary growth model using MSPF
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Fig. 2. Prediction for univariate non-stationary growth model using Ensemble filter
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feel that with the methodology we develop in this paper that addresses some
of the major shortcomings of sigma point filters, the method of sigma point
filtering will be more attractive and useful to researchers and practitioners
alike in these fields of research. Further, the proposed method also provides
a very useful alternative to traditional sigma point filters in engineering and
ensemble filters in geosciences.
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