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ABSTRACT

A general numerical method is described for the solution of
linear elliptic and parabolic partial differential equations
in the presence of boundary singularities. The method is
suitable for use with either a finite-difference or finite
element scheme. Modified approximations for the derivatives
are developed using the local analytical form of the
singularity. General guidelines are given showing how the
local analytical form can be found and how the modified
approximations can be developed for many problems of
mathematical physics. These guidelines are based on the
reduction of the differential equation to the form Au = gu + f.
The potential problem treated by Motz and Woods is taken as a
numerical example. The numerical results compare favourably

with those obtained by other techniques.






1. Introduction

The problem of boundary singularities in the numerical solution of
elliptic and parabolic partial differential equations has received
a great deal of attention. These singularities arise when sudden
changes occur either in the direction of the boundary, as at a
re-entrant corner, or they may be associated with mixed boundary
conditions. Such singularities are found in a wide variety of
physical problems e.g. stress analysis in regions with cracks,
discontinuities, point sources etc. [8,14,43], flow around an
obstacle [18], seepage through a dam [1], heat flow, diffusion or
potential problems in regions with re-entrant corners, electrodes,

heat sources or sinks [3-7,11-15,19-25,27,30-39,42].

Analytical solutions based on separable—variable or integral transform
techniques are available for infinite or semi-infinite regions with
relatively simple governing equations (usually Laplace's) and boundary
conditions [25,27,30], However such solutions are, in general,
difficult to obtain for finite regions with more complicated equations

and boundary conditions and so numerical solutions are considered.

It will be shown later how the field gradients become unbounded at
such singularities. This property means that standard numerical
approximations using a uniform mesh for the derivatives in the governing
differential equation are highly inaccurate at and near the singularity.
For example, consider the usual five-point finite-difference
approximation A®)u(x,y) for the Laplacian A ¢,
2h? ot ot

A(S)u =Au+ ) 7}
4| ox oy

; (1.1)

where h is the mesh length in both the x and y directions. The usual
assumption that terms of order h? are negligible is no longer true
because unbounded derivatives exist near the singularity. For similar

reasons the methods of deferred correction and deferred approach to



the limit are difficult to apply near such singularities. Although
the errors die away with distance from the singularity (the rate at
which they die away depending on the neighbouring boundary conditions),
their effects spread throughout the entire region. This is called
the 'pollution effect' by Babuska and Aziz [2].

Special numerical schemes have been devised to obtain accurate
solutions without a large amount of computation, the two most popular

methods being:

I - mesh refinement near the singularity [7,12,19,32,36,39],

II - modified approximations to the governing differential equation
and its solution near the singularity, e.g. as in the Motz
method [3-6,8,11,14,15,17,21,35,37,42,43].

Either method may be part of, and dovetails readily into, a global
finite-difference or finite element scheme. In method II, the
standard approximations near the singularity are replaced by modified
approximations based on the local analytical form of the singularity.
Such forms require some prior analysis but usually are readily
available in the form of an asymptotic expansion by separable-variable
[4,17,28,43] or complex variable [20,22,40,41] techniques. Although
method I is computationally inefficient relative to method II, since
the order of the matrix is increased, it is a viable alternative in
that no knowledge of the form of the singularity is required and
any symmetry or banding present is preserved. Either method can be
used if more than one singularity is present as long as the singularities
are far enough apart, or the mesh is fine enough, for the effect of one

singularity on another to be negligible.

Alternative methods based on conformal transformations [23,24]
modified integral equations [31], modified collocation [29], power
series [22], dual series [38], and removal of the singularity [34,40-42]
have been proposed. The most promising of these is the conformal
transformation method which has proved to be highly accurate and
efficient for the solution of elliptic problems in simply-connected

polygonal regions with general mixed boundary conditions. The method



is limited to differential equations which remain invariant under
conformal transformations, e.g. Laplace's equation in Cartesian

co-ordinates.

Application of the above methods has been restricted, for the most
part, to equations of the form
n 62
ZK1—2—gu+f (1.2)
; 0Xj
1=1
where K; = 0,1 or -1, and u,g,f are functions of x; only. Courant
and Hilbert [10], with later work by Sankar [28], have given a general
technique for reducing the general linear differential equation of

second order,

a2y n oy
Z Aik % * 2 Bi - +CU+D=0, (1.3)
el A

Aix, Bi, C, D are functions of X; alone, to the simple form (1.2).

This is valuable in that available techniques for equations of the
form (1.2) can now be used. In particular, the general separable-
variable technique of Fox and Sankar [17], which gives the asymptotic
expansions needed by method II for equations of the form (1.2), can
now be used. Also, work is in progress on extending the conformal
transformation techniques to equations of the form (1.2), sea [19],
and so this method in conjunction with the above reduction, will then
be capable of dealing with general equations of the form (1.3).
Further, the invariance of the left-hand side of (1.2) under conformal
transformations means that method II can be extended to cover curved

boundaries by conformal transformations to straight line boundaries.

In the following sections a new way of developing the modified
approximations for method II for differential equations of elliptic
and parabolic type is given. The method differs from available methods
of type II in that modified approximations for the derivatives in the

governing equation are developed and take the place of the algebraic



equations for the solution values as originally used by Motz [21].
General equations of the form (1.3) are first reduced to the form
(1.2) in order to take advantage of the points mentioned above and
to keep the number of derivative approximations to a minimum. The
method is applied to the potential problem of Motz [21] and Woods [42].
First, a discussion of how the separable-variable technique can
be used to find the local form of the singularity for a wide range

of practical problems of mathematical physics is given.

Local analvytical forms for boundary singularities

In this section local analytical forms for the solution of general
linear second order differential equations of elliptic and parabolic
type for general boundary conditions are developed. The solutions
are obtained in the form of asymptotic expansions using separable-
variable techniques rather than complex variable ones since the
latter, although useful for analytical properties such as

existence [20,22,40,41], are more complicated to apply in practice.

Consider, first, equation (1.2) in the Cartesian co-ordinates (x,y)
with a singularity at the point (a,b) on the boundary. In local
polar co-ordinates (p,0) centred on the singularity, x = a + p cos 0

and y = b + p sin 0, equation (1.2) with k; =k = 1 is

2 2
—a;+l@+%—8;:gu+f. (2.1)
op* P P % 0
If a separable-variable solution of the form
u(p,0) =R(p)©(0) , (2.2)

is sought then, for the case f = g = 0, one obtains the following
harmonic forms of the singularity corresponding to the point where
two straight-line boundary segments 6=0 and 6 = ©® meet with

homogeneous Dirichlet, Neumann or mixed boundary conditions:



(i) foru=0on 6=0 and =0,

km
o0 -
u(p,0) = z Ck p @ sin kn 0 , ck are arbitrary constants, (2.3)
®
k=1

(i1) for%ZOonGZOandOZm ,

kr
o0 _

upd)= Y cx p @ cos %‘ 0, (2.4)
k=0

(iii)for%=Oon9=0andu=00n9=m ,

T
< (k2> I\ m

u(p,9) = Z Ck P ® cos(k+§) s 0 . (2.5)
k=0

If the conditions in (1i1) are interchanged then the cosine function
in (2.5) is replaced with the sine function. The above forms are
only valid provided that any other singularities are far enough away
for their effect to be assumed negligible. For cases (i) and (ii),

by considering the k = 1 terms, it can be seen that ? is infinite
p
at p = 0 for ® > m (re-entrant corner). Similarly for (iii), by

considering the k = 0 term, ? is infinite at p = 0 for ® > n/2,
i.e. even for obtuse o. "
Corresponding results for non-zero g in (2.1) of the form
©
g(p.0) = D> gn (0) p" (2.6)
n=0

for the more general boundary conditions

(e8]
u=Fp) = f, p"P  pxo0
n=0 on either 6=0 or 6=0, (2.7)
1 Ou & n+
— — =H(p)= Y hy p""7 , y20
p 08 n=0



are given in Fox and Sankar [17]. Following Fox [16] these

results may be summarised as
0

u=69 (P0) + X ¢ i (p,O) , (2.8)
i=1

where the c; are arbitrary constants. Each ¢ (p,0) is a linear
combination of terms like

p%H Agi(0) or p*Hi{(In p)Agi(6) + Be i (0)] (2.9)
where a is found by fitting (2.7) and depends on n; A, B are

trigonometric terms obtained from a sequence of ordinary differential

equations with constant coefficients e.g. for the first of (2.9),

Alv

a,0°

+ a?Ay, =0 )

2.10
Ay + (@+D)?A,, =0 @10

m
(] 2
j=0 )

The presence of a non-zero f in (2.1) merely adds known terms to
(2.8).

The corresponding problem

2 2
OTu [ O%u i (2.11)
6X2 8}12 ot

for boundary conditions of the form (2.7) has been treated by
Bell C4] by seeking solutions of the form

u=e M R(P)OO) + W(p,0) , (2.12)

where W(p,0) represents the steady state solution.



For more general elliptic and parabolic equations of the form (1.3)
the above techniques could be extended to cover the first or cross
derivative terms e.g. see Sankar [28] or Zak [43]. However the
presence of such terms, particularly if non-constant coefficients
are also present, considerably complicates the corresponding polar
co-ordinate equation and the sequence of equations for the functions
of 0 in (2.9). A more convenient way of proceeding is to reduce
the general equation (1.3) to the simpler form (1.2) by transformations
of the co-ordinates X; to x; and of the unknown function U to u and
then seek a separable-variable solution. First, (1.3) is reduced

to the canonical (normal) form

n 2 n
ZKiag+Zbi%=cU+d : (2.13)
i=1 X" =l !

where K; = 0, 1 or -1, and bj,c,d are functions of x;, by the

transformation of co-ordinates
xji =xj X1,X2, .., Xq), 1=12, ., n. (2.14)

In this form equation (1.3) can readily be classified, see Riz [26].
Equation (1.3) is elliptic if in (2.13) all the K; are non-zero and
of the same sign (either +1 or -1), hyperbolic if all the K; are
non-zero and one K; is of opposite sign to the rest, parabolic if

one or more of the K; are zero.

The condition for this change of co-ordinate system can conveniently
be expressed in terms of tensor calculus for the n-dimensional space
V, corresponding to the co-ordinates. The condition is that the
space V, be flat for which the necessary and sufficient condition
is that the Riemann-Christoffel (or curvature) tensor be identically
zero, see Sankar [28]. In the two dimensional case there is just
one condition since the rest of the components of this tensor are
zero. Also, in this case, the simpler algebra enables the condition
to be derived from first principles e.g. in the elliptic case with D =

B, =B, =C=0, A1, = Ay; in (1.3), it gives rise to the Beltrami



differential equations for x; and x;

ox 1 ox 0x
8_2 = — |Ap o+ Ay

0x 1 ox 0x
2= Ay — A, —
0X, 0X,

X, W

The derivation and solution of (2.15) is given in Courant and

Hilbert [10, Ch.III and p. 350].

Equation (2.13) is now reduced to the form (1.2), viz.

n azu
ZKi—zzgu+f, K;=01or -1, (2.16)
i=1 X

by using the exponential transformation of Sankar [28]

n
u—Uexp{% Z _[bi dxi} , (2.17)

i=1
which removes the first derivative terms in (2.13). A similar
transformation was given by Courant and Hilbert [10,p.183] for
the case when the b; are constant. In the parabolic case this
transformation corresponds to the removal of the exponential
time term as in (2.12). The following examples illustrate the

use of the transformations (2.14) and (2.17):

(i) Reduction of Tricomi's equation

2 2
ag+xag:0, (2.18)
0x oy

for the elliptic case x > 0, to the canonical form (2.13) by the

transformation of co-ordinates (page 162, Courant and Hilbert)

xi=-x32 . xy =2y, (2.19)



giving
22U 1 U  8%u
> T2
8x1 3x1 0x1 6x2

=0 . (2.20)

Tricomi's equation is of special interest in high velocity gas flows

[9].

(ii1) Reduction of

2 2
o’u , k ou o' _ 2.21)
8x12 X1 0x1 ax%

to the form (2.16) by the use of transformation of unknown function

u=xf"2U | (2.22)
giving
2 2
0 ; ¢ 2 ; _ k2 (%k—l) . (2.23)
8X1 6x2 2x1

The case k > 0 represents the family of axially symmetric problems
discussed in Crank and Furzeland [11]. The case k < 0 represents
axially symmetric flow problems where U is the stream function. In the

parabolic case where the right-hand side of (2.21) contains a

%J term, the transformation (2.21) can still be used and just gives a

au term in (2.23).
ot

(ii1) More complicated equations may require both transformation of co-

ordinates and functions to obtain the form (2.16), e.g.

2 2
X12812J+X16—U+(1+X) 8[2J =0 , (2.24)
X7 0X1 X5

which arises in the vortex theory of screw propellorss needs both
transformations, see Fox and Sankar [17]. Tricomi's equation can
be reduced to (2.23) if both transformations (2.19) and (2.22) are

used.
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Boundary conditions of the third kind,

YV pu-q; (2.25)
0Xj
where P;, Q; are functions of x;, 1 =1, 2, ..., n, are harder to

deal with since separable-variable solutions of the form (2.9), and
which fit (2.25), are harder to find. In such cases the exponential

trans formation

u=Uexp P duf, (2.26)
can be used to reduce (2.25) to
&y (2.27)
0Xj

however this transformation adds corresponding first derivative
terms to the governing equation. Thus for third boundary value
problems the separable-variable solution has to be found from
equations of the form (2.13), which contains first derivative

terms, rather than from equations of the form (2.16). Conversely,

if one is treating problems with derivative boundary conditions,
and the differential equation (2.13) contains first derivative

terms with respect to the same variable that appears in the derivative
boundary condition, then the exponential transformation (2.17) cannot
be used since it would transform the boundary condition to the type

(2.25).

Non-linear differential equations or non-linear boundary conditions
cannot be dealt with using the techniques of this section unless
some transformation or approximation to linear form is used. For example

the compressible flow equation for high velocity gas flow

o (you), o (jau) _ (2.28)
ox, | X, ) oX, | ox,

where p is a function of the first derivatives of U, can be

linearised by a hodograph transformation [9].



I1.

Development of modified approximations near the singularity

Consider, for example, the two-dimensional, elliptic case of (1.3)
and assume that it is of such a form that it can be reduced using

transformations (2.14) and (2.17) to the form

2 2
o“u  0%u
S S ey - f(xy) =0, (3.1)
ox oy
where the transformation between U and u is given by say,
U=L[u]. (3.2)

Assume that an analytical solution of the form (2.8), valid near
the boundary singularity at the point 0, has been found. Taking
the first N terms of (2.8) an approximation for u, valid near 0,
is
N
u*(p,0) = 00(p.0) + D cidi(p.0) (3.3)

i=1
and the corresponding approximation for U is defined by

* N
U (p,0) = Lu™(p,0)] =wo(p.0) + D civi(p,0) (3.4)
i=1

Instead of applying standard finite-difference or finite element
approximations throughout the entire region a neighbourhood N(0)
near the singularity is chosen and, for points in N(0), modified
approximations for u and its derivatives in (3.1) are developed
which take into account the nature of the singularity. The

derivatives are approximated using the standard differential

relations

o*u_  2,0% sin20 0% sin®0 0w sin®0 du  sin20 du 55)
2 2 . 2 2 2 2 .

6u:sin268 u s8in20 J07u cos“ 0 0 u  cos 6 du sin260 du . (3.6

+
8y2 op p 0Opdd p2 202 pOp p2 00
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where approximations for the p and 6 derivatives are obtained by
differentiating (3.3). Thus approximations for (3.5) and (3.6)

can be expressed as

otut &
7 = Z CiWwi (p,t9) (3'7)
882)6 . ; 1 with truncation error 0(p" ) ,
u
P . cowi(p,0) (3.8)
i=1

where M is the highest power of p in the¢ (p,0) of (3.3) .

The wj,wj are readily found by following the above steps and the

symmetry in (3.5) and (3.6) leads to symmetry between the w; and

w; (see the example in section 5).

The N unknown constants c¢; are approximated by fitting (3.4) to
the set of U values {U;:j =1, 2, ..., N} at N points in and

near N(0). More than N points can be used if a best fit (e.g. least
squares) technique is used. For each point n, say, in N(0)

the same set of points for the {U;} values can be used. In this case
the set usually consists of points just outside N(0), - called 'far’
points, Motz [21]. Alternatively, a different set of points for
each point n can be used. In this case the set usually consists of

points surrounding the point n, Bell and Crank [6]

The proposed method is a variation of the latter type in that a
different set of points is used for each x and y derivative for
each point n. The method is illustrated by developing a modified
five-point formula for the typical point 1 in N(0), see Figure 1.

yT /i\
Figure 1 L/ /: // | ]
2/ .
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To construct a five-point formula the approximations (3.3) and
(3.4) are used with N = 3. Referring to Figure 1, and denoting

Uj':, pj,ej to be the corresponding u’, p,0 values at the points
j =110 5, then the most obvious choice of points to approximate
2 %
0“u

1s to use
6x2

the unknown constants c¢; in (3.7) for

point 1
points j = 1, 2, 3 in the horizontal direction. Using (3.4) this
gives the following three equations for the c;

n
* .
Uj=vo(pj:0j) + 2 civipj,0j) , j=123 (3.9)
i=0
whose solution can be denoted by
ci=Aj+Bj Uy +C{ U] +D; U3 _ i=1,2,3 . (3.10)
02u
Similarly, for the c¢; in (3.8) for ) , point 4, 1 and 5
oy point 1

in the vertical direction are used and the solution is denoted by
' ' * ' * ' * .
ci =Aj +Bj Ug +C; U +D;j Us , 1=1,2,3 . (3.11)

Substituting (3.10) and (3.11) in (3.7) and (3.8), and using (3.3)
with the c; given by (3.10) for the term g(x,y)u in (3.1), gives
the following five-point approximation for (3.1) at the typical
point 1 in N(0)
o*u* o*u”

> T2
0x oy

Where

—gu —f=e,U, +¢;U; +e,U, +eUs +¢,U; +¢, = 0, (3.12)

3 3
el =), [Ci(Wi—g¢i)+WiCi} , e = Bj(wj—gbi) .
=1 i=1

3 3

e3 =) Dij(wi—gdi) . e4=, wiBj . (3.13)
i=1 i=1
3 3

es=) wiDj , eg= ) [Ai(Wi—g¢i)+A'iW'i} —goo - f
=1 i=1
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The functions w;, wi, i, g and f are evaluated at the point (p;,0;).

If the original differential equation (1.3) is equivalenced (via
the zero right-hand side) to the reduced equation (3.1) then (3.12)
represents a five-point approximation to the original equation.

The above technique of horizontal and vertical derivative replacement
is based on that used by Bell and Crank [6] but is a generalisation
in that

(i) both derivatives are treated,

(i1) the approximations (3.7) and (3.8) are written in a general way
so that the neighbouring points chosen to approximate the ¢; need not
lie on the same horizontal or vertical line.

Generalisation (ii) is useful in developing higher-order, multi-point
modified approximations by varying the number of terms included in
the truncated series expansion and the set of neighbouring points
used for any one point in N(0). The neighbourhood N(0) can include
points away from 0 as long as the approximations (3.3) and (3.4)
remain valid (this may be checked as described in Motz [21]). The
optimum size of N(0) can be determined by comparison of the
discretisation error in the standard approximations used outside
N(0) with the truncation error in (3.7) and (3.8), see section 5.

The five-point approximation (3.12) could be incorporated in either
a finite-difference or finite element scheme. An equivalent finite
element approximation can be developed by the use of equations

similar to (3.5) - (3.8) for approximations to ' Qu in the
ox'

variational formulation corresponding to (3.1). For example, in the
solution of the problem of Motz considered in section 5, both
Barnhill and Whiteman [3] and Wait and Mitchell [35] used the
variational functional

2 2
ou ou
[u] = j j [a_x} + {E} dR (3.14)

where R is the closed region under consideration.
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Five-point 'molecules' differing from the one given in Figure 1
are needed for points in N(0) which involve the boundary. Two
problems can arise, the first is that some of the five points
required may, depending on the geometry of the problem, lie outside
the region of solution, and the second is that the values of yi(p,0)
at the point (p;,0;) may all be zero (e.g. if in (2.5), 6 = © = n)
so that solutions to (3.9) for the c; cannot be found. The remedy
for both problems is simply to choose alternative points near (p;,0;)

giving a new five-point molecule, e.g. see section 5, Figures 4-6.

Discussion and extensions of the modified approximations

An alternative way of approximating u* in (3.3) is to split it into

the form

n
uw¥(p.0) + 3 ciSi (p.0). (4.1)
i=1
where the function n represents the well-behaved part and the

functions S; represent the singular terms only in the series
expansion (3.3). In this case fewer terms in the series in (4.1)
are needed than in (3.3), usually one or two singular terms are
sufficient, and this is advantageous in situations where it is
difficult to obtain more than one or two terms in (3.3). This
approach was first proposed by Woods [42] and has been extended to
finite-difference and finite element methods by Emery and Segedin

[14,15], Benzley [7],

Both the proposed method and the alternative Woods approach can
readily be extended to the parabolic, time-dependent, case
since the form of the boundary singularity depends on the space
co-ordinates rather than the time co-ordinate. Thus seeking a
solution in the form (2.12) or, equivalently, using the exponential
transformation (2.17) in time, one finds that the time-dependent
form of (3.3) can be expressed as

N
u*(p.0,t) = 60 (p.0,1) + Y. ci(1)oj (p,0) (4.2)
i=1
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and so the above methods can be applied with the c; being re-evaluated

at each time level, see Bell and Crank [4-6].

Equations of higher order than (1.3) could be treated in a similar
way by considering higher order differential relations to (3.5) and
(3.6). The biharmonic equation used in elasticity problems,

e.g. in two dimensions

4 4 4
4U:ali+2 82U2+83:0, (4.3)
oX; oXIX35  oX5

\Y%

can be formulated, using Southwell's stress function formulation,
as two second order equations and thus the techniques of section 3
can be used. Boundary singularities for such problems have been

treated by Bernal and Whiteman [8], Zak [43]. Emery and Segedin [14]

have given the necessary singular functions for (4.3).

The theory of sections 2 and 3 has been developed for a singularity
at the point 0 where two straight line segments =0 and 6 =® meet
and would need modification for points involving curved segments unless
conformal transformations are first used to transform the curved
segments to straight lines. Unless this is done the curved segments
will have to be approximated by straight lines (only for a short
distance from 0) or the local analytic form and derivative
approximations will have to take into account the curvature. A
particular example of such curved segments occurs at the separation
point between the fixed and free boundaries in problems concerning

seepage through a dam [1] and cavitational flow past a disc [18].

The line integral

1=§F B—[ﬂrdl , (4.4)
where I' represents part of the boundary and includes the boundary
singularity is often required, e.g. for the evaluation of the flux
in diffusion problems, Crank and Furzeland [11] or for the measurement

of capacitance in potential problems, Duncan [13]. Large errors
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near the singularity can be avoided if the analytical form (3.3)
is used in the numerical quadrature of (4.4) near the singularity,

see Crank and Furzeland.

Modified approximations such as (3.12) can be developed by heat
balance methods, see Bell and Crank [4-6], or by the analogous
integration method of Varga [33],

5 Application of the method to the problem of Motz and Woods

The problem of Motz [21] requires the solution of Laplace's equation
in a rectangle with a slit, i.e. a re-entrant corner of internal
angle 21 (see Figure 2). It has been treated by many authors to
demonstrate the effectiveness of their singularity treatments.
Woods [42] gave an alternative formulation based on the fact that
u - 500 is antisymmetric about the line BE containing the slit and,
by imposing the boundary condition u = 500 on EO, only needed to
consider the top half of the rectangle (Figure 3). It is in this
form that the problem is treated in the literature [3,19,22,23,32,35-39].

Figure 2 Figure 3
v. YA
!
du 3u_|o
—— 0 a- =
D 33" c D oy : c
) !
Au =2 0 u = 1000311 Au # O u = 1000
! =0 !
du * !
= I — =0 i
Il oy ]§__._> E 4 - —>
0 du _ H x u = 500 o 3_u=0 B x
w0 3y
u=20
¥ du _ ¢
oy

Examples of such singularities occur in potential problems concerning
transmission lines with microstrips, Daly [12], and in diffusion

problems with narrow band type electrodes, Saito [27].
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Since the governing Laplacian equation is already in the simple
form (1.2) with g = f = 0 there is no need for a transformation
of co-ordinates or unknown function. For an application of the
method to a problem where such a transformation is necessary see
Crank and Furzeland [11] who treat problems of the form (2.21).
In the Woods formulation the singularity is regarded as
resulting from the mixed boundary conditions
@:0,x>0;u=500, x<0 on y=0, (5.1)
y
rather than being due to the re-entrant corner of 211 with homogeneous
Neumann conditions on both arms. A separable-variable
solution of the form (2.2) in the polar co-ordinate form of Laplace s

equation (see (2.1) with g = f = 0) yields the local analytic form

- i 2i-1)
u=>500 + Z cip(zl_l)/zcos e 0 . (5.2)
i=1
The problem of Figure 3 is scaled by setting
(i) v=u-500 , (5.3)
(11) B = (130) 5 €= (1’1) 5 D= (_151) 5 E = (_150) ’ (54)

and standard five-point finite-difference approximations are used for
the discretised region of Figure 7 with 6x = 8y = h. To enable
comparisons the choice of discretisation follows that of Motz and
Woods, although this choice results in unequal intervals near the
edges and so the discretisation error is only 0(h) for these
points. For points involving the Neumann boundary condition the
usual central difference approximations for the derivatives are
used in conjuction with fictitious points. Figure 7 compares
the numerical solution obtained using these standard finite-
difference approximations with the highly accurate results produced
by the conformal transformation method of Papamichael and
Whiteman [23]. The results show that a high degree of inaccuracy
occurs near the singularity and illustrate the fact that inaccuracies

spread throughout the entire region.
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Instead of applying the standard finite—difference approximations
throughout the entire region, a neighbourhood N(0) near the
singularity is chosen and, for points in N(0) modified approximations
are developed which take into account the nature of the singularity
given by (5.2). Following section 3 the derivative approximations
(3.7) and (3.8) with N = 3 lead to the modified five-point

approximation (3.12) where we have

g ) e6 s
1
cos3 0 3cos1o 15p200sl0

W = — 2 W = 2 W= 2. (5.5)

1 4032 2 1 73 4 ’ '

p 402
p

wo=-w. , i=1,2,3

i i

The approximate size of N(0) can be determined by noting that the
discretisation error in the standard five-point approximations to
Laplace’s equation is 0(h?), see (1.1), whereas it is easily
verified that the modified approximations based on (3.7) and (3.8)

32, Thus application

with N = 3 contain a truncation error of O(p
of the modified approximations is advantageous as long as the
truncation error does not exceed the discretisation error. An
approximate rule is then to choose N(0) such that the maximum p

value in N(0), pmax. say, is such that P%n/azx. is of the same order

of magnitude as h?. Practical experience suggests that ppax.< 5h?

is a useful guide. In practice only a few points in N(0) are needed.

Five-point 'molecules' differing from that given in Figure 1 are
needed for points in N(0) which involve the boundary. Points to
the right of 0 on j = 0 do not have a point at the j-1 level,
necessitating a different molecule, e.g. Figure 4. Points to the left
of 0 on j =1 involve points on j = 0 for which 6 = n. The
fact that 6 = m means that, by comparing (5.2) with (3.9), each
of the y; (p,0) are zero and thus solutions to (3.10) cannot be
found. A suggested alternative is given in Figure5. The first point
on the right of 0 on j = 0 involves both the above problems and a
suggested molecule is given in Figure 6. The general form of the
modified approximations allows for any combination of five

neighbouring points provided 0 # =.
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Referring to Figure 8, the four immediately neighbouring points Py,
P,, P3; and P4 around 0 are chosen for N(0) since here

Pr3n/a2x. ~ 0.26 and h> ~0.08. This choice of points is similar to

that used by Motz and Woods and enables comparisons to be made
with their results. Modified approximations of the form (3.12)
and (5.5) are applied at points inside N(0) using the suggested
molecules of Figures 4-6 where appropriate. Standard finite-
difference approximations are used for points outside N(0). The
results obtained are comparable with those of Motz and Woods and
give good agreement with the conformal transformation values of

Papamichael and Whiteman [23].

The values of the e; in (3.12) are given in Figures 9-12 for the
points P;- P4 with h = 2/7. The values given have been scaled

so that e; = -4.0000.
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N.B. The above e values are for v = u - 500 values, see (5.3).

H



