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ABSTRACT

The linear, homogeneous, parabolic equation is
solved by applying finite element discretizations
in space and Ao —stable, linear multistep,
multiderivative (L.M.S.D.) methods in time. Such
schemes are unconditionally stable. An error analysis
establishes an optimal bound in the L, —norm. Methods
typifying the class of L.M.S.D. schemes are derived

and their implementation examined.






1. The Linear Parabolic Problem

We shall consider the initial boundary value problem

% = Ig 9 ajj (x) u - a(x)u = Lu,(x,t) € Q x(0,90) (1-1a)
i,j=1 0xj ox i
ux,0) = gx). , X € Q (1-1b)
ux,t) = 0 , (x,t) € T x (0,00) (1-1c)
where x = (X[,...,Xxn) 1s a point of a bounded domain Q,

with boundary I', lying in the N-'dimensional Euclidean space.

Without loss of generality the boundary value is taken to be

homogeneous Dirichlet. Non-homogeneous Dirichlet and Newmann
boundary conditions apply with only minor adjustments.

For simplicity we allow

fajj (0} ;a0 € €7 (@) T e €”

where Q 1is the closure of Q. We also assume that

a(x) =0 (1-21)

and the matrix ajj(x) is uniformly positive definite

ie. ai; (x) = aji (x) 1 <i,j<N, xeQ

N
aj § & > v X §i2 for some positive constant vy (1-2i1)
=1

Before we can formulate the weak form of the problem
(1.1) it is necessary to introduce Sobolev spaces. The
Sobolev space H" (Q) is defined to be the space of real
functions which, together with their first m generalised

derivatives, are in L, () the space of square integrable

functions over Q. The space H™(Q) is a Hilbert space, the



inner product (-, -)m being given by

WLv)pm = 2 I D/ uDJ v &
j| SmJQ

) ) ) ) ) ) 8|j|u
where j= (ji ... .. N, [jl=Jj1+ ...+ ]j~n and Dly = .
J J

1 N
axl.. 8XN

The associated norm, ||-|| , is defined to be

1

[VIim =®"V)m
The norm and inner product on L[,(2) are denoted respectively

by [[-][ and (-,-) where

1
| v = (Lz Vzdxj2 , (uv) = J-Q uv dx

Further we denote by H%) (Q) the space of all real functions v,
where v I H' (Q) and V|r = 0 in the generalised sense. To formulate
the weak problem associated with (1-1) we multiply the equation by an

arbitrary function v € H%) () and integrate over (). Using Green's

theorem we get

o N du 0
I Mydxk + 3 ajj () A +I a(x) u v dx =0 (1.3)
Q ot 1,j=1 JQ an 6Xi Q

We adopt the notation

N
a(u,v) = ¥ aj(x) o

dx +I a(x) uv dx
1,)=1 an 0X § Q

and consequently rewrite (1:3) as

ou
(E’Vj +oa(y) = 0 VveH) Q) .t >0 (1.4)
The weak solution of the problem (1-1) is the function

u(x,t) e H%) (Q) w hich satisfies (1:-4) for all t>0 and the

initial identity (1-1b).



We determine the asymptotic behaviour of u(x,t) by employing
the 'energy method'. Denoting o(t)=|u(-,t) || we have by applying (1-2)
to the expression (1-4) with v =u(x,t)

ou

d
ACECIOREEY ) 2 < (é’t

,u) + a(u = 0

Cancelling throughout by a(t), multiplying by e ", and integrating

from 0 to T we achieve

luD<e " e (1-5)

2. The Galerkin Procedure

Let V° be a finite dimensional subspace of H}) (Q) The Galerkin

method is to find an approximation, U(x,t), to u(x,t) of the form
d
U, t) = .Zl Ci® Vi (2-1)
1=

where {V; (x)} ?zl is a basis of V° . The continuous-time Galerkin

solution to (1-1) is the function (2-1) where the coefficients

1C D} ;1:1 are determined by the discrete analogue to (1-4), namely

(%J,V) + a(U,V) =0 for any V eV’ t>0 (2:2)

Substituting {V; (x)} ?:1 in turn for V in (2-2), and assembling in

Matrix form, we see that

ML +KC =0

dt — - (2:3)

where M and K are constant, positive-definite matrices. The

elements of M and K are

M;; = (Vi,Vi) and Ki; = a(Vi =Vi) , 1 < 1,_] < d.



An appropriate initial condition is derived from a
discretized form of the identity( 1-1b) . Let é(x)eVO be an approxi-

mation to g(x) and define U(x,0) = é(x). This yields an initial
condition for C(0), say
CO) = a 2-4)
The equations (2-3) and (2-4) define the continuous time
Galerkin solution.
Applying the energy method to (2-2) we have, by the previously

described manipulations, that

TuD<e ™ legm | (2°5)

The expressions (1:5) and (2-5) will be influential in our
choice of time discretization schemes to approximate U(x,t). Any
method that preserves the asymptotic behaviour of the true
solution is 'well-posed'. This concept of 'strong stability' or
well-posedness is investigated by Crouzeix [2] and Nassif [10].

Following them we define a 'k-step' approximation method to be

strongly stable if U" , the approximant to U(x,nA; ), satisfies
n -anA k-1 ]
U7 <C e .ZO U] (2-6)
J:

where o 1s some positive constant. Throughout this, and the
following pages, we use C and c¢ as generic constants.

We now impose a necessary property on the subspace V°,

0 p

namely V= = V}Il) , where Vh has the property that for any

Ve Herl Q) N H%) (Q) there exists an element V e V}Il) such that

whenever h is sufficiently small

~ ~ +1, ~
19 = vl +h [ ¥=vig<ch ST Fllgrp, s=12,...,p 2.7)



Any function ¢ € VII: can be expressed as f = x' v where x is
a vector of constants and V = (V;,Vy,..., V4. We assume that the
space V}II) exhibits the following properties
. -N 2 2 -N 2
(P1) ch ol < [[x[[g <ch ol
(i) a(d, $) < Ch? || ¢ |
for any ¢ € VP | where Il x |le is the Euclidean norm on R®.

The above properties are satisfied by the finite element subspaces

used in practise.

Let Ay, X and A, X ) be respectively an eigenvalue,

eigenvector of the matrices M and K. We derive bounds on these

eigenvalues by utilising (Pi), (Pii)) and (1-2). Now,

At I %m] I = A fm] Xpmg X[m] % o) M ] = 1 o 12

1
1.e. —hN < A[m] <

Similarly,

It is important to see that the eigenvalues of S=M ™' K are

positive and unbounded with respects to h. The largest eigenvalue

of S, Amax, 18 of magnitude A nax, ~ Ch 2 whereas the smallest

eigenvalue is bounded from above. Consequently the system of

differential equations (2-3) is a stiff system.
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3. Ao _- stable, linear multistep, multiderivative methods

Most classical methods for solving initial value problems of
first order ordinary differential equations require, for reasons of

stability, a condition of the form |A naxA¢|] < C, where A is the

time increment and C a constant usually between one and ten. For the

stiff system (2-3) this condition requires h? A, to be small which

imposes a severe limitation on the step length A;. As we will be
required to solve a linear algebraic equation at each time interval
this restriction is prohibitive. @ We are thus lead to consider only
methods where the region of absolute stability is unbounded. Since
the eigenvalues A of the matrix S are real the classes of

Ao -stable methods are sufficient. Zlamal [15] employed the class
of Ay - stable, linear multistep methods to solve the system (2:3).
Other authors, including Nassif [10], Makinson [8], have studied
various one-step methods for the solution of stiff systems. Following
Obrechkoff (see [7,ppl199]), Enright [4], Genin [5] amongst others,
we shall consider multistep formulae that incorporate the higher
derivatives. @ We refer to such schemes as A -stable, linear multistep,
multiderivative methods (L.M.S.D's). This follows the terminology
of Genin but we note that the title 'Obrechkoff methods' is also

used, eg. [7].

A LM.S.D, method is of the type

k k m rr
JEO Oj Yn+j = JEO El Py At Ynu; (3-1
qr
where o >0 and ygzdt—ry t=nAt

Analogous to linear multistep methods (cf.[ 6,pp 221 ]) the



method (3-1) is said to be of order q if, for A sufficiently
small
k ' m - _
LIy®.80]= X {a;ytejd )= X By afy’ @+jap
= r=1

(3.2)
+1 q+1 +2
CqHA? y4I™@® +0ad™)

for any sufficiently differentiable function y(t). Expanding
L{y(t),A:] by Taylor's theorem with integral form of the remainder
we have (cf.[ 6, pp 247])

+1 (k +1
LIy®,A¢ 1= < Al Io G)yd ™" (t+sA,) ds

< GA;1+1 sup qu+1 (s)
tSsSt+kAt

j (3.3)

k
where G(s) is the kernel function and G-= J.O G (s)ds.

The concept of Ap -stability was introduced by Cryer [ 3].
A multistep method is Ay -stable if, applied to the equation
y" = Ay, y(0) = 1, for any real A> 0, it gives approximate values
y of y(mA; ) such that y" — 0 as n—" . Considering (3-1), this

is equivalent to the roots of P(E, t) being of modulus less than

one for ™ 0, where

b

m j k r—1.j
PED=p@+ X <for @@ = X ajt)and or®)= 2 Py (<D
(3-4)

r=1,2,..m.

In addition we require that the L.M.S.D. methods satisfy
the conditions of =zero-stability and consistency, ([7 pp.30] ).
Zero-stability dictates that the roots of p(§) with modulus

equal to one are simple. The -consistency condition is maintained



We shall always assume that the characteristic polynomials p(&)

and [o} (&};n:l have no common factor. Similarly, the polynomials,

k
{Hj(T)}jZO , where

m —_
W= i T D' oy o

shall have no common factor. These assumptions are compatible

with the L.M.S.D.scheme being irreducible to an equivalent scheme

with a lower value for k or m.

The following two results, although required in the later

analysis, are of interest in themselves.

Lemma 1 Let the LM.S.D. scheme (3-1) be Ay - stable, then

there exists a positive constant pu, such that

g (t) > u , for all T > O

Proof: Since a > 0 by definition the expression px (t) is not

identically zero. Let us assume that pux (tr) has a root at t = T.

The function

P, _ § i) ]
nx (1) ji=0 ng (1)
is well defined except at the zeros of ux (7). As 1t — 1

one of the coefficients of f(&§, t) must become unbounded since

f(S,,t)

at least

T = T may not be a root of all {pj (r)}g{z'}) . Consequently, as

T — T , at least one of the roots of f(&, t), and hence of p(§&, 1),

must become unbounded and have modulus greater than one. This



contradicts the assumption of A, - stability and we deduce that

Wk (t) must be bounded away from zero, T>0. Since px (0)=ox>0

the proof is complete.

Lemma 2. Let the L.M.S.D. scheme (3-1) be Ap-stable, then
Bmk =0

Proof: Trivially, if {ij}? (} are all zero then PBmk # 0 otherwise

the scheme will incorporate only the first (m- 1) derivatives. Let us

assume that at least one Bms# 0, 0 <s <k-1, and further that B,=0.

Using the function f(§, t) of lemma 1 it is obvious that the coefficient
of & must become unbounded as t— . Once again (cf. lemma 1) this
comprises a contradiction in the initial assumption of A, -stability

and we deduce that B,k #= 0.

Corollary. Every A( -stable L.M.S.D. scheme (3-1) must be implicit.

Finally, we investigate the approximate solution of (2-2) by

the L.M.S.D. method (3-1). Let us again denote U" to be an approximant

to Ux,n A¢). Assuming that {UJ} ﬁ(:_(% are given, the recurrence

relationship for U™ n>0, is given by the system of difference

equations
k .
J:O J 01"—
n+ n+
((r)J’V) + a(U( S V) 0 r=12,...,m )

The computational aspects of (3-5) and (3:6) will be

investigated in chapter 6. The implementation procedures

described there are equivalent to the solution of the linear

system of equations

m ~
AQn+k = g1+ ¥ (_l)r—l B A{ (M_IK)r gn+k -0
r=1 rk
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for some predetermined vector EJ The condition number of the

matrix A  where
max (A[a])

Cond (A) = min (A[a])

b

and ( Apy) 1s the set of eigenvalues of A is readily seen by (Pi)
and (Pii) of chapter 2 to satisfy

Cond(A) = 0O(h™™ A™ ).
Hence, by lemma 1, the matrix A is positive definite and, if we
exclude the unrealistic case when Ath'z — 0, the condition number

of A does not grow too fast for small m.

4. Theorems

The analysis of chapter 5 will prove the following theorems.

Theorem 1
Let the L.M.S.D.method (3-1) of order q be consistent, zero-stable
and Ay - stable. Let the roots of the polynomial p(&) with modulus

equal to one be real, the modulus of the roots of the polynomial
Om (§) be less than one, and o;(-1)# 0. Further, let g(x) € L, (Q).

Then for any t, > 0 there exists a positive constant C(tp) such that

for n At >t , and h,A; sufficiently small

k-1 :
+1 :
!W@mAO—UnHSCmﬂ{A?+hp ku+,2|wadAo—UJ@

1=0
and
~ k-1 :
HUnHSCe‘mNM_ZOHUJH
J:
Corollary

If in addition we assume that U’ is the projection of g(x)

onto Vlrl) by the L, -inner product and {UJ} ?:_11 are the values derived

from a weakly Ay - stable Padé scheme of order q', then

+1
Ju, nA)- U™ | <Ctg) 1A% +nPTT | g
and

— anAtil
U <Cce™ ™ gl
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Theorem 2

Let wus further restrict w=1 to be the only root of p (§)

with modulus equal to one, then with the assumptions of theorem 1

k-1 .
—pBnA A +1 .
luGxnA) ~ UM < Clg.p) e P 1{<A?+hp Vgl + %t jAg) - U H}
J:

for some for arbitrary positive constant 3,0 < <1 .

Corollary
If the initial values are defined to be exactly those
described in the corollary to theorem 1, then

—BnA A 1
| ux nAg) — UM | < Clg.p e P2 R {ad 4 nPH g

5. Proof of Theorems

Let {Xi}?;l and {\Vi}fil be respectively the eigenvalues (in
increasing order) and the corresponding orthononnal eigenfunctions

of the continuous eigenvalue problem

a(y,v) = A (y,v) V v € H%) (Q)
The eigenvalues are well-known to be positive and distinct.
Further let {Ai}?:l and {\yi}?:l be the eigenvalues (in increasing
order) and the corresponding orthonormal eigenfunctions of the
discrete eigenvalue problem

a(w.V) = A (V) Y ve v

Strang and Fix [12, Theorem 6-1,6:2] have proved results

for eigenvalues and eigenfunctions using subspaces, S, , on a

regular mesh. The only property of S, utilised in the proof is
the approximation property

| u - Pulls< Ch*%|lu |k s =0, or 1

where Pu is the Ritz approximation of u (i.e.a(u-Pu,V) = 0, Vve S, )

(5-1)

(5-2)



A well-known consequence of (2.7) is that

| u—Pull +hlu-Pul[:=Ch""|[u|l pu

Hence, for k =p+l, all conditions are satisfied and the theorems

yield for h sufficiently small

p+1
0< A -An< ChHP M - i=1.2...d

1
—(p+1,
i-wil| < ChPt A i=1.2...d

We adopt the following notations

1
- veHA(Q
vi= (v,yi) ., vi= (Vi) o, 02

V.
Vi= (v,y) , ' =(V,yy) ,VeVIIIJ

We bound the error u(x,nA; ) - U" by using the relationship

u(x,nA;) - U" = e +er

where e; =u(x,nA;)-UXx,nA; ) and e, = Ux,nA )-U" and proving

bounds on e; and e> .

The solution u(x,t) of (1-1) can be expressed as

o0 —A.t
ux, t) = > g.e 1 W¥.
i=1 1 1
where {g .} fD:l are the Fourier coefficients of g(x),
Similarly, the solution U(x,t) of the continuous Galerkin problem

(2:2) can be expressed by
d . -At
Ux, t)=> U. e 1 V.
i=1 ! !

where {U?}id=1 are the coefficients of g(x) e Vﬁ)

}d

to the basis {¥ .} . ..
171=1

with respect

(5.3)

(5.4)

(5.6)

(5.7)

(5.



a/

d
Using (5.7) we can write €y = 2 €. v and

d
hence || €, ||2 = |ein |2, where

! 0 .
i i i (5.8)

d
Also let U ?r) = > U " ¥ . be the discreate approximation

al’

to
¢ T

U, ) [(_ ¢ - Substituting U ?r) into (3.6) and (5.2)

with V=vy; gives us the relationship

ull + Ayl =0, r=1y. .. ,m where UD =yl
1,r 1 1r-1

Consequently, we can construct the recurrence relationship

n _ , 1\ T r n _
Ul =0T AfUj r=1,...,m (5.9)

Combining (5.9) and (3.5) with V= y; yields

k m _ :
> (e +x (-DTlp Al ATy M) =
i=0 ] =1 I) 1 1
J (5.10)
m r—1 r
Derfine oj(t) = pj(t)/ pni(t) where uj (1) = aj+ Zl (=D Brjr
=
and subsequently rewrite (5.10) as
k n+j
2 Sj(At Ai)Ui =0
=0 (5.11)

The expressions (5.8) and (5.11) combine to give

LA+ A) _ an

k Lk
> Sj(AtAi)einﬂz_z 3 (Mg AU
j=0 (5.12)

=0
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We conclude this sub-section by bounding din we see

from (3-2) and (3-3) that

3 op(ag AU Ai(n +7) A EL[UiOe Alt,At}

]=O t=nAt

<GATTAIT y o eTnA A

By lemma 1 a positive supremum of pi (t)"' ,t > 0,must exist

from which we conclude that

n q+tl , q+l 0 _nA
di SCAt Ai |Ui | e ‘[/\i (5.13)

Alternatively, by lemmas 1 and 2, 9;(v) j=0.l,....k, are bounded

for any t > 0, thus

dM < U0 e DAt )
i Ui e i (5.14)

b) This section uses a method employed by Henrici [ 7,pp242]

and adapted by Zlamal [14]. Define p(&, t) by

PET)=8(t) + dr_1-(T)E +.oc.. +8(T)E"

Note that P (&,1)=p, (1) e~ p(é,r) and hence the roots of

p(§,T) are the reciprocals of the roots of p(&, ). It is

intuitively obvious that the roots of p(§,t) approach the roots
of p(§) and on (&) as, respectively, T—0 and T— o0 .

The essential roots of p(§) (i.e.those of modulus one) are
by assumption real, and by zero—stability single. The consistency
condition dictates that w= 1 is always an essential root. Let us

assume the most general situation when these essential roots are

w; =1, wy=-1. Any other root {w i}}(:3 of p(&) has modulus less

than one, say |wi|] <1 -6,0 <6 < 1. We employ a theorem from

complex analysis eg. [ 1 , Theorem 11,pp 131] ,to show that for
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each sufficiently shall € >0, there exists a t<>0, such that

the equation p(§,t) =0,t <1<, has the same number of roots in the
disc | £-&y| < € as the equation p(§) =0. Furthermore, if&y is a
root of p (&) of multiplicity p then the p roots of p(§, t) that
approach it are distinct for t sufficiently small. Hence no compli-

cations arise from a root of multuplicity greater than one.

We denote w ;> to be correspondingly w; or w, . Selecting

e<%we have that, for t<7tgn, the equation p(§, t) has only one

root in the disc |E-w 2| < %Let this root be &w 1 2 (7).

Rearranging the above we deduce that for any 0 < € <0/, there
exists a T such that | E w;s (T)-W;2| <€ whenever t < tc. This

is a definition for éwl 5 (1) to tend continuously to w1, as t

tends to zero. Thus E:le (t) can be expressed as an analytic

2

function of T,

i.e. iw.(T):Wi+aiT+ai2T2+ ..... i =1,2
1

Corresponding  expressions hold for the other roots (§yw (1) )%{:3 of p(& 1) .
i

Remembering that |w;|<l1 -0, i=3,4, ... , k, we deduce that for <t
. 6 .
sufficiently small, say © < 7T,y (1),I< 1—5 ,1=3,...,k.
i

Expanding p(cﬁWl 5 (1), ©) about the point w ;, we see that

p(&, (1), t)=p(w;)+a;p(w,;)+1 ,(W;)+0(t’)=0i=1,2 and
by comparing coefficients that

) o (W )
al = —L—1— i=12 (5.15)
p (W i)

We know that o; (I)=p’(l) by the consistency condition,

o1 (-1) = 0 by assumption and p’(wi2 )= 0 by zero-stability.



Thus,
Ew. (T)[wy + air + 0(12) where ai is real and non — zero
and 1 ‘
Gw, (1)) =11+ aif ot i=12
i
But as & (O] <1 for T <0 we must have a%/w <0- Consequntly ,
for 1 sufficiently small, say 7t < 12 1

]éwi (t)<l-ar,i=1_2, for same a, & Z%min ﬁa1|: 1, |ay | }

Thus, we have shown that for T < 1 ,T = min( 7Ty, T2)
lEw (1) <1 -at , a>0, 1=12,.k
i
and hence, for 1 < 1 all roots é(r) of 13(5, 7)  satisfy
) 1
[ &() | >
l-ar
1 . . 1 )
Therefore , - is holmorphic  for [§|< , T < 1, and the
I-ar
p(&,1)
function can be expressed by a Taylor series expansion
. 1 )
ie. —— =7y, ()+7v, (DE+7v, (DE> + ... 1<1
p(&,1)
where, by Cauchy's estimate,eg [1. pp 122 ]
ly, (1) £ C (1-at)’ ¢t =0,1,. .. whenever 1 < T .

Similarly, let the roots of op, (&) be {Zi}%(zl These roots

are by assumption less than one in modulus, say |z| < 1 6 0 < 06 < 1.
Applying the aforementioned theorem we prove that the equatio

0

P(§, T)= 0 has the same number of roots in the disc |E—z;| < > as

the equation o_,,(§) =0, ehenever t© > C. Repeating the above

argument we have that, for t>C, the roots (1) of p(§,t) satisfy



0 :
[ &i(v) I <l- —, i=12,..,k.
2
Tills leaves a finite interval |71 ,C| where the roots &; (1) of
p(&, T) are known to be of modulus less than one. The roots are

continuous functions of 1T over a finite intervals, hence
A A A

1§i(DI<1-6 , 0< 06 <1, whenever 1<1t< C.

and we conclude that there exists a constant o,0 < a< 1, such

that

1Ei (D] <1- o whenever 1t 2>

An identical argument shows that

A
(@] < Cl-a) whenever 121, £ =0,1,...

Summarising, we have proved that,

N
Cl-ar)! < e T T< 1
vy (0] < g - .
Cll-a) <Ce T > o1
Making 7 smaller if necessary we achieve a=art. Denoting by i

A

the smallest integer such that A{ A; >t we see that

_O%At Ai
Ce i< i
7, (AgAp | < * (5.16)
Ce *F i 2 ix
c) We now assume that w=1 1is the only essential root of

p(§). The wvalue a; of (5-15) is now equal to -1 by the

consistency relationship. Thus for A¢ Aj sufficiently small

—-AA.
(A =1-A +0ATAD =e g

where g is an analytic function of A(A; andgzO(A%Aiz) at A¢A; =0



Expanding P Gw (AcAi)) about the point e %% and equating to zero

we have by (3-4) that

“A A m ) A A A A
pEw (AtA)) , At Ay) =ple ) + Zl (At Ay op (e DY+ gp' (e 1)
r=

+ 0(g?) + o(AAig) = 0.

By substituting y(t) = e

A A

t+ m r B _
)+ X AT A A)=C

it into (3-2) and letting t = 0 we deduce
b (e A?+l(—Ai)q+l +0((AtAi)q+2) .

Consequently, by combining the above expressions

‘ +1 +2 2
gp (e_AtAi)z_ Cq+1 (_AtAl)q + O(AtA1)+ 0 ((AtAl)q )+0(g )

and thus, using p '(e—AtAi) =p'(1)+ O(AtAi)

14
° (P'l()l) Cqr1 Berp a4+ 0 (aeap a2 ) campa*t + o0 ((aapa*2)

With the above expression of g we have established the bound,

~A A,
Ew(AA) < e U [+C(AtAi)q+1] <1

whenever A¢ Aj is sufficiently small. Utilising a  previous result,

k .
i i § j=2 of JA AL satish
we  realise that the other roots {ﬁwl} j p (§,AA) y

0
[ Ewil <1 - 5 given  A¢ A sufficiently  small. Therefore, we can

A A

select a wvalue T >0 such that, for 0 < A A; <7

RS —AA.
woAA) S ¢ ! 1[ 1+C(aA) 9] } <1 12,k

Extending the argument as before we easily achieve
—lA A,

+1
v, AaAp <ce b [1 WA

]g A <1



AN

Hence, for A < T and B, 0 <B < 1

~(AtA [ 1

A
. +1 1-
and since ! + cx4 < e p

X whenever X < B < 1 we have

- (1+P)
v (agAp)| < Ce T A AA <

B

AtA; >
For "t =B we recall from a previous result that
v, QA< Ce X 0<a <1
Making B smaller if necessary we achieve o
Denoting
by 1+(B) the smallest integer such that AA; > 13
- (1+B) gAtA.
A C e 2 1 i <ix(B)
: <
"Yg(tl)‘ = _(1+B)T€
ce 2 B i > ik (B)
for some f, 0 < B < 1.
By comparing coefficients in the expansion of
1 1
R = K = v+ &yp (o) +
p(£.7) 81 (1) + &8y 1 (D) +... + & 6¢ (1)
we establish
1
Sk(r)yg(r) +8k_1(r)yg_1(r)+....+80 () = 0
where vy, =0 for £ < O.
d) Henceforth, the following inequalities will be used
extensively:

x e % <en)! < @

p

14
ciaa) ™ se-t i, (C‘LzmAtA- [1+c(AtAi>q+1D

(I+B)
2

S€C

/>

0

(5.18)

(5.19)



for anyx > 0, a > 0 and p a positive integer.

If we rewrite (5-12) withn=n-k- £, multiply this by

YAt Ai ), sum for £=0,1,...,n-k and then apply (5:-18) we prove

n k-1
Ei = — |:6k_1 (AtAl)y n_k(AtAi) + ..., + 80 (AtAl) Y n—2k+1 (AtAl)j| ei

-k
> d
=0

n n-k-/¢

0
— = B3 (AN Y, (AAL) e+ i

v, (AA)

(5.20)

1

Using (5-13), (5:16) , (5-:20) and the inequalities (5-19) a

n
bound on o can be constructed as follows: for 1 < i«
i

—o(n—2k+1)A A, k-1 | n—k —(n—-k-0OA A. —ofA A.
M <ce ti z e+ cal 'y A?H‘Uioe thie ot
J: =
(5.21)
Note the for n Ag=ty and (2k—-1) Ay < tg,,
—o(n—-2k-1)A A, -lat A,
e tice2 0 ISC(tO)Ai_S (5.22)
where s will be determined later. For a- 1 > 0
-m-kAA phkx —(a-1)lAA, —-(n-k)A A,
Ay e Li'y e Picm-k+) A e ti
(=0
-k
~m-AA _(n=k) )AtA,
<(n-k)A;e tic > 2 !
Ai
C ety —~(q+1
<= O iazcagn, (a+D)
i

For a-1 < O

nek (1A, @TDO-kED AN

=y e ti

/=0 B —(@-DAA,
€

Hence,



SAt e

Thus,

Ate

Collecting

S

For 1

<C

But

as nA;

g =
=0

For a - 1

S<(n-k-

< Ce —1n/2

Similarly,

—(n—k) AA,

we have

~(n-k)A A, nk
iy

> 1, using (5-14) ,

—of(n—2k+1) kil

e—at(n -2k +1) < Ce
>

nike—/\i(n—k—f)At -y

1)

o~ Em-K) #(1-a) (n-k+1) _ce

—a(n-k)A A,
C At c ti Ce

<
e (l—oc)A,[Ai -1

—o(n—k) AA

a- oc)Ai

o e—OLtOAi/z

Aq

IN

< C (tO)Ai_ (q+1)

shown that

~(a-1) LA A,

e < ey, -@+h (5.23)

=0

together (5-21)—(5-23), we conclude that whenever

ell + C(ty) A{ ‘Ub (5.24)

el =cap aft g

(5.16) and (5.20)

n-k
> e
/=0

“A.(n-k—=0A,
u? i t o0t (5.25)

el +C
1

i=1

S0 < on 9 < o)Al (5.26)
t, Also,

—%(n-k-f+al)

IN

n—-k
e > e
f=0

o~ k) nz-k o~ oD/

/=0

= 0

¢ TR og e TTOK) om0k

<cn 1< )ad
for a- 1 <O

—za(n -k+1) .
< Ce T < C(t 5)A Y.

S <

e%(l-a)_l (1 - o)



Combining we have proved that

-k -A.(m-k-y) .
Tt e i Age *TL <ot o)A T

V=0 (5.27)
and the expressions (5.25) - (5.27) yield, for i > i«

k-1
< C(tom?{ S Jedj+u? |} (5.28)
=l i
From the bounds (5.24) and (5.28) we achieve
d d k - .
SlefPcce iafd 2 jul Pz ATE s el
i=1 i=1 i<i, j=1
2
k-1
v A s T e
121 =1
%
Using |eiJ|S]U? |+|UiJ|Weprovethat
d g k=1 9s k-1
ley 7= % jelP<ct g){aid T Jud 2+ 5 AT s )
i=1 1=0 1<t j=1
2
Mihlin [9] has proved that A Loz bz o N ¢ a positive
constant.. Thus for any s > N
o0
Y A<y aytsc
i= i=1
We wuse this result frequently in the following analysis. Let
k-1 ; i
ey = 3 3 AT 2 |e:]|2 ~We can write eiJ as
i>i_ j=1 ! !
%
: —JjA A —JjA A o -jJA AN
el=UYe U1-Ul=e ' I@UY-UH+e ' (U -ud)

A A, —e—jA X)) S
e ot tlu?+(uij—Uij)+(Uij—Uij)



from which

- _ : — k-1
eyl C > % ATE ju)-TU!P4s
j=o i<i ! ! 1 '

~1 3 j . j .
FCyY X ATB e T Ui T Ui
=1 s,

(5.30)

The expression (5.30) can be investigated by using (5.3)
and (5.4), whence

o
N
I

. _' (D . _.
S OATE WU Pear B s jud-Ul 2
i<i 1 1 1 1
*

L
<clul-uly
1 1 1:1

Lo A2 U -ul 2.
i<i 1 1

o
N
|

-T2 vy, -
Now, U; Ui_AU (v, — vy, )dx

e U U Pecud 2 n® P b as a2 i N the  series

o0
2 A @s-p-1 j5¢ onvergent if we select 2s =p + 1 + N.

Thus

- : P+
el <culy?n?

e% . |e—‘]At\i _e-JAtk1|2 A72s |u? 2

i<i* 1

-2s | . . 2,.02_.2,2.4 8, -2(s-p+l), o2
< i<zi: AT AN — A [T uy [7< j7ATH iélxi [uy |
%

. N
and selecting s = p + 1+ — we have

el scaZn® g2,
Substituting the above bounds in (5.30) we establish a
bound on |e3|, namely

k-1 ; (p+D k-1
2 1.2 2 2,4 2
|e3|sc+z luj =0 +h U S +agh™ g

(5.31)
- i=0
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The desired result is obtained by substituting (5-31) into

(5:29) and using the inequality

Jud <o —ud et grud —ud 4 )

: k-1 i +1
ic. e, ||s0(to){zo Jud—uljf+@mP +A?>||g\|}
J:

e) We now extend the analysis of section d to the situation

when w =1 1is the only essential root of (§). Using (5-13),
(5-17),(5-:20) and the inequalities (5-19) a bound on ein is

constructed as follows; for 1 <i+ ()
SOEB) ok A A g
2 t 1

Xl
j=1

0 (1+B)€AtAi
i|e—(n—k—€)At/\ie— 3

Now for n Ay > to and (2k-1) A < top
1 p pnA A - Q‘z@lt Ai/2
e-———(m-2k —)AA, <Ce tig 0

-fnA A
<Cty.pe  tIAT

where as before, s will be determined later. Also, define

-n-kK)A A q—k 1-Bmn-k+1)A _A.
t 1 — t 1

S=Ae e 2 and hence
/=0
~(n -A A, cUZP (= k+DAA,
S<Ae ti 2
67(1_B) A A.
2 t 1 1
Ce (1-B)(n—-k+DA A. _ 1-B)(n—k+DA A,
) e t i gC(B) BnAtAi _(25)@1 +1) ¢
(I'B)/\i Ai
—BnA A (I-pt -A, -BnA A
< C/(\B) t 1 e — 2 0 /2 < C(t Ooﬁ)e t lAi_(q+1)

(5.32)

(5.33)

(5.34)



i <i«(B)

From (5-33) - (5-35) we have whenever

-BnA A k —1 . 0
C(t o,Pe LA s el +ad Ul (5.36)

<
j=1

en|
i

Similarly, for i>1i«(f3), using (5-14), (5-18) and (5-20) we

have

1 k-1 :
Pk ey =
2 J=1
nk -A(-k-0A
rclu? ze ! te— LB

e < Ce —(

(5.37)

we denote T=1g But

_(1+B) ) _ (=B
. (=3 ) T(n -2k +1) < oo BT ( 5 )mgcus)e'

where, for simplicity,

(5.38)

ot q

< C(t 4,Be X

nok -A m-k-0Aa By
1 te 2 ,and thus

Also,let S = X
(=0

€

e—r(n -k) nik er(%il)é Se_T(n -k) et( B
[-p

2

)n —k —1T)

) -1

(5.39)

< Ct . P A

IN

The expressions (5:37) -(5-39) yield that, for i >i«(p)

n q _BnAt}LI kol J 0
e | <Ct §.PA ¢ e e+ | U | (5.40)

where we take A;, sufficiently small to allow A<t

Following a course identical to section d we arrive



at the result

k-1

_BnA A . . 41
ley | <Ct . B el = HUd —uwd )+ P Ay gl

]=
(5.41)

1) The error e; =u(x,nA;)- Ux,nA;) will now be bounded.

From (5-6) and (5-7) we have

0 —nAtK. d 0 —nAtA.
ep = X gje 'yi— X Uje v
i=1 1=1
-n A t)bi d —nAtk. —nAtA.
= X gi yi+ 2 (e T-e Dgiv;
i>d i=1
d —nAtAi _ d — nAtAi_
+ '21 e (8; — gpv; + _Zl e gi(vi — vy
1= 1=

ol

+ 2 e A - UD)v;
1=

Zlainal [15] uses a technique from Thome'e [13] to

show

that Aqr1 = ch® . Hence, using (5-3) and (5-4) we have for

some B, 0 <B<1

-nA_A. —BnA A —(1-B)nA A
e7 = Y e tlgi\yiﬁeﬁ oy e(B) trd+l1

g.\l].
i>d i>d i

-BnA A, (1-B)t A 0 .
e t7le d+1i§1 giv; < C(t ¢, B)e t l}hd+l

ie Jlesll = C(to,B)h"™" " cPnAn [l gl .

) —(J'%l)oo

bX
(=1

(5.42)

giVi
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—-nA A, -nA A
t 1

d
Let eg =X (e -e t l)gi\p ;- By the mean—value theorem
i=1

d —nAtA,
i
eSSizl nAg [ - A e gV,

nAtkig  p+l ~(=PnA (A,
1

p
SCnAth2 e—PB
i=1

giVi

p n d o i
sCcphie-p Y afe 2 gV

—BnA A, o©
t I‘Zl givi
1=

— BnA

< Ct o ph Pe

) o) A
i.e. |eg |l < Ct o.ph Pe g

d -—-nA,A. _ _
Let e E'Zl e ! '(g; —gi)v;. However g.-gj=[n g®(y;—y,)dx
1=

and thus by Cauchy’s inequality

—BnA txlg S=BA Ay
- 2

+1
legllI<CllglhPTe 1 .
1=

—BnA

A, o©
< C(ty.P) llgllhPHe 'l y xi‘N by (5.19) and nA >t,
i=1

2
—BnA A =
P 1T a5 A, >¢ci N

+1
<Clto.B)llglhP e ;

—nAtA._

d
Let e = ‘Zl e lgi(\ui-\yi). Thus
1=

+1 ;
lepg | <ChPThe gl X

—pnA 2 d —(=pmA 2 poy
VI

1= 1

+1 _—PnA A o +1 —BnA A
<C(t o,ph P77 e tlngw%xﬁNscammhpe g
1=
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—nAtA.

Finallye(; = e i(g; - UP)y, . If U° is the

1 Ma

orthogonal

projection of g(x) with respect to the L, -inner product then

e11 =0, otherwise
—nAtA.

d _
11 :igle 1((gi_gi)+(gi_Ui0))‘Vi and

—BI’IA A +1
leyy II<Cto.B) ¢ T e hP s g-U | (cf, eg)

Using (5-42) and the above bounds we conclude that

¢ (to,B)e P 10" g+ g-u®|) (5-43)

ler] < c(to.f)e P2 (0P |g|| . If U° is the L, -inner product

projection of g(x) onto V}Il)

for some arbitary B,0 <B <1

g) Returning to (5-11) we have

n+j _
; =

k
0. (A AU
jgo jA A

0.

Rewrite the above with n-n-k- £, multiply this by y¢(A¢ Ai),
sum for £=0,1....n-k and apply (5-18) to achieve the expression
(5.20) with eiJ replaced by U iJ ,and d; = 0. Let us assume that At
is sufficiently small so that A (A, < 1 Using the remodelled

expression of (5-20) and (5-16) we obtain

UM < Ce DR
J=0
from which it follows that (5-44)
d 2 —onA A, k-1 :
HUHH=(ZI|U?FJ <Ce — ULX U]
1= J=

which is the desired asymptotic result.
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h) Initial Approximants U!  to u(x.jA )., j=01... . k—1 .

This section is concerned with the estimate || e, || under the

assumption that U° is the orthogonal projection of g(x) ontoV}?

k-1

with respect to the L, -inner product and{U J}j=l are the approxi-

mate solutions of (2.2) at time t=jA; obtained by a weakly Ao -stable

Padé scheme of order q-1.

Other viable methods for deriving these approximants include
the weakly Ao -stable Runge-Kutta schemes. Such schemes have been
thoroughly investigated by Crouzeix [2 ] and we refer the reader to

his thesis for an account of these schemes.

A difference method derived from a Pade approximation of order

q- 1 1s a one-step method of the type

1 m o rr
Ya+1l ~ Y¥n = s;o rzl BrsAtYn+s (5.45)
where
m
1+ ¥ (-n' Bro !
R(t( = rrﬁzl iIs an approximation
1+ > (=D et
r=
e " , such that
le " - R(t)| < C1t? ast — O (5-46)

We note that any Pade scheme is a one-step, multiderivative

method and satisfies (see (3:2)) the relation

1 m
yn+l_yn - z rél

= P +1
Lo 2, Prsdiyhes =Cqafyima+oay™

<GAY swp Yyl +9a)]] (5.47)
0<s<1
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A Pad¢é scheme is said to be weakly A —stable (see | 2 |)
|R(t)| < 1, for any t© = 0. The inequality (5-46) is stated
hold for small t. However, as |e " -R(t)| > 2 t© > 0,(546)
satisfied a fortiori for any t > O. Applying the scheme (5-45)

the system of differential equations (2-2) we see immediately

from an obvious adaptation of (5-10) that

m -1 j+1 m ~ -
(1+r§1 A=Al Ju - 1+ 3 AfBro (DAY |UJ =0
or U= Rr(A ADUT . j= 0l k- 2. (5.48)
The recurrence equation (5-48) yields
j+1 j+1:;0
uy = [R(AtAi)]J U, (5.49)

It is easily derived from (5-8) and (5-49) that

Eij+l= U?(C_Ai(mmt _[R(AtAi)]jH]

and by using the definition of weak A (—stability, and (5-46)

: -A.(G+D A
e < juo e i t

j+ 1
1 1 _[R(AtAi)]J |
S(j+1)|U?|e—AiAt—R(AtAi)‘£C|UiO|A?A?

j = 0,1,.. k-2 (5-50)

Consequently, returning to (5-29) we note

, i 2 _ (s —
SoATE el call . A7 T ue 2

. e 1
% 1<1>X<

< CAtzq | U° ||2 by selecting s = q +£\I (5-51)
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The initial approximant U° to  g(x) is defined to be the
projection of g(x) onto VE by the L, - inner product, and 1is thus
well known to satisfy,

ol =l gl

Using the definition of weak A, -stability, namely | R (t) | < 1,

for t= 0 we have by (5-49)

o

. . d
||UJ||2=.zl |Ud < x U = U Pl g P =120 k1 (5.52)
1= 1=

The expression (5:29) can now be reformulated by (5-51)and

(5-52) to read

lleal] < C(to) A |Igll (5-53)

We are able to deduce immediately the corresponding result when

w=1 1is the only essential root of p (&§)

ie. leall< C(to.p) e ™M AT g (5:54)
The theorems can now be established. Theorem 1 is
determined from the relation || u(x,nA;)-U" || <]l ei ||+ e2]] and

the bounds (5-32), (5-43) with 3 =0, and (5-44). Its corollary
follows immediatelt by using (5-53) instead of (5-32).Theorem 2
and its corollary follow from the bounds (5-41), (5-43), and

(5-54).



6. Practical Examples of L.M.S.D.Schemes

To illustrate the multistep, multiderivative methods we
select k = m = 2 and derive a family of fifth-order,A(, -stable

methods. Any fifth order method with k= m= 2 may be expressed as
_ 7 ' g '
(0-Dyn+d-2a)yp41 +0p12 =8¢ g5 " PYn+ {15 Yn+l

' 2) S L By 19 S5a _ AP, v
+BYH }+At{(72 + 12 3)yn+( 180 + 6 3 )yn+l

1 a B "
+(—+—-= 6.1
S0 12 3)yn+2} ©b

We test for A, -stability by employing the Routh-Hurwitz criterion
e.g. [7,pp-80], For simplicity we define, as before,

B_o 1 2
312 360
Ml(T)=(1-2a)+%r+(4B—560‘+11890)12
= (a - T B_ o _ 5,2
o (D = (0= + (5= BT + (= == =1

uz(r):a+[3r + (

for any t> 0. By (3-4) we require the roots of the polynomial

2 .
p(€,1) = X u j(r)e“;]to be less than one in modulus, for all t >0.
J=0

By the Rough-Hurwitz criterion this requirement is satisfied if,

pa(t) > wi () - po(o)

: oy o (2o 2B 8,02 i
1i.e Ga-2) T + ( 3 3 25 )T° >0 (6.21)
p2(t) > po (1)
i.e.l+(2[3-%)r+f%>0 (6.211)
pa(t) + pi(t) + po(t) > 0
. 1 2
i.e. T+ Q2P -0+ W)T > 0 (6.2111)

forall T > O. Note that, by lemmas 1 and 2



B o 1 )
) > 0, (— - - > 0. 6.21v
L, (1) (3 > 360 ) ( )
The inequalities (6-2) are satisfied if
o > 1—, 2B - > - 1_
2 30
1 .2 20 2B 8
and — <44 a - 2 - -
(15 ) ( X 3 3 45 )

The region defined is best seen if we change the basis and let

— 1 _ 7
a = a - —, =B -—
2 P=F-3
from which we deduce that
@« > 0,2B-o>0 and (quz 3; a(o - PB)

(Diagram 1)

The shaded area of Diagram 1 contains the permissible values
for « and B We note that the error constant of the L.M.S.D.
scheme (7-5) is given by

C _ 11 .« +B

6 21600 240 90




The selection of particular values from the admissible range of
the parameters a and 3 is now considered. Any scheme proposed to
solve the stiff system of equations (2-3) should exhibit certain
characteristics, of which, the principle is related to the nature
of the analytic solution.

Let us apply the scheme (3-1) to the scalar test equation
y = -Ay, A >0. By the definition of A, -stability we know that the

approximate solution Y, — 0 as n— . For A >> 0 the solution Y,

approaches the solution of the difference equation
E [5 Yn+j=0 A—
. + as 0 .,

k

Without loss of generality we shall assume that the roots { & ; } T

of the equation c,(§) = 0 (see 3-4) are real and distinct, then
a.g§ N as A > w
121

where {a i}%{zl are constants determined by the initial values{Y i}ik:-i)

By assumption we know that |§;i| <1, 1= 1,2,...,k, and hence
Y,— Oas n — o . This convergence has previously been referred to

as stability at oo. However, the rate of convergence may be increased

by allowing the roots {ii}il of om (§) = 0 to be equal, or close to zero.
Consequently, given a very stiff system of equations it is desirable
to use a multistep scheme where the roots of on (&) are equal, or
close to zero.
Equally, we desire that the normalised error constant,

C ¢+1,1s small
q

C
ie. C g+l = & A+t here Cq+1 is defined by (3.2)
DI



Consequently, we advance the following possibilities:

a:%, B=%, 66=ﬁ|§1|~.86 (6.3i)
o = % , B = % : Cq = ﬁ &1 ~ 77 (6.3ii)
@ = % : B = % , Cq = ﬁ & ~ 55 (6.3iii)
az%, B=%, 66=ﬁ§1=0 (6.3iv)
where &, is the largest root in modulus of o, (&).

Higher order A, -stable L.M. S.D. methods may be obtained by-
allowing either or both of m and k to be greater than two.
Without reference to the general class of such schemes we note

the following particular examples;

9 4 1 B 23 ' 1 '
10 Yn+2 5_yn+l_10 Yn t] 40 Yn+2 ?yn+1+40 Yn
(6.41)
3 2 (N} 3 (] —_ ~ j— 1
20 St ne2T g0 S tY 2 - 4=6.Cq =m0
15 8 39 16 1 '
14 yn+2_7yn+1+14 Yn t) 70 yn+2+35 yn+1_70 Yn
(6.411)
4 { " " } 1 " _ 7 ~ B 1
_gyn+2_yn+l +105 tY¥nyo2 ~ 4= 75 8 __176400
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where
L _u 39 g, - | 67
3 60 4 3 20 12 .
(6.411)
o 9 63 B 9 N 9_C
2 20 4 2 20 4
. 9 s 9_C B _ 9 2 .
1 20 4 1 20 4
0 60 4 0 20 12
This 1s a sixth order method with error constant
C 7 = 1—(c - 1—) unless c=L which yields a seventh order scheme
80 35 35
with error constant C ¢ = 1—Ao - stability is ensured by the

19600

condition
c > %/17,275
From the relevant theory, e.g. Cryer [3], or by direct
evaluations we have established the following table concerning

maximum orders of A -stable L.M.S.D. schemes. The diagram

expresses for 1 < m+ k < 5

q1 = maximum order of A -stable L.M.S.D.scheme
q for specific values of m and k.
q,_
| Q2 = as q 1 but with added stipulation of
stability as oo.
k
i 2 3 4
2 .
V|2 T 2 s
L . {
m 2 4',‘_ 31 517 7 SR R
316 _—~"| 8 ; ]
.5 81 o e e o~ -
4 18 ' | !
.(.’f_.._ ?_{._.._._._ S :_____._. _'.._._.....-. —L-——v--—-—
[ I ! '
| |
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b. Implementation

Any scheme proposed to solve the linear parabolic equation
should be efficient in terms of computer storage and operations.
For any finite element space V; the matrices M and K are banded matrices,
thus an efficient method of solution should preserve and utilise
this characteristic. Remembering the definition of the matrices

M and K we have immediately from (3-5) and (3-6)

k : k m :
> aMU"T oy ¥ oalp .MU =0
where
n+j _ n+j _
Mg(r) = Kg(r_l) r=1,2,....... , M.

On combining these two equations we achieve

e D S I D (A SRV (6.5)
o J =0 r=1 1

The equation (6-5) is obviously impractical as it
entails full matrices M?' KM’ K)* ,... M K)™. However, by
the use of complex arithmetic the sparseness of the matrices
M and K is utilised. We illustrate this mode of implementation
by reference to the family of equations (6-1). Equation (6-5)

can be seen to be
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The roots ofﬁz(x)are readily seen to be complex whenever

a and [ are permissible. Thus let

i, () =(Z,-x(Z2 - X and further let

Zfl) , Zfz) and Zgl) , Zgz) be respectively the roots of 7y ﬁl (x)/ 1-2q

and Y[, (x)/ a—1"

Consequently a simple manipulations shows that (6:6) is

equivalent to

n, 1 1 n
M U :(M—Zg)Atk)Q

n,2 1 n+l
M U :(M—Zg)Atk)Q

(ZZM —Atk)gnﬁ = (M](M _ Zgz) Atk)gn’l
Y

+(1—aJ(M _Zfz)Atk)Qn,z
Y

yn+2 _ Imgnﬁ
T Im Z

mZ2

Although three intermedi ate steps are necessary at each
time interval it is necessary to invert only two matrices- For
the particular example (6-3iv) only one intermediate step exists
at each time interval, requiring the inversion of only one matrix.
The use of complex arithmetic, and the extra storage necessary,
may be prohibitive. However, A—stable L.M.S.D. methods of arbitrary
order have been investigated by several authors with the intention
of simplifying the implementation. Of particular interest is the
family of one—step Hermite formulae suggested by Makinson [8] and
investigated fully by Norsett [11]. Norsett derived a family of

A(o)—stable, one—step methods of order m + 1 where the coefficient
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matrix, G, M K), ofU™ is given by

~1 Ay =1,y m :
Gy M ky =1+ —M k) , for a specified parameter Y.
Y

Continuing with the construction of L. M.S.D. methods with k = m =2

we now establish a family of fourth order, A, -stable methods where

n+2

the coefficient matrix of U has the same characteristics as

G, (M'K). The family of fourth order schemes with the above properties
is given by

ay 42 +(1—2oc)yn+1 +(a—-1Dyn =A{Pay’

1 '
042 +(E—a+4[3a-3[30c)yn

+1

1 , 2 . 1.
+ (o +—=5Ba +3p%a)y,} + A} _E OL.‘/n+z+(—3q —4Ba +2p%a - —)y,,,
2 4 2 12

o 1 5., "
+(—+ —=2Ba + —B 6.7
(2 5 p 4B )yn} (6.7)

Applying the Routh-Hurwitz criterion we deduce that (6-7) is

A, — stable if for any « >%

I—E<B<min {1——1/20( ———\/40( }

6

and (12(3B2+1—4B)2<(4a—2){B2a—2Ba+a-é—)

Alternatively, A, -stability is ensured by a > ;— and

1 20 /12
I + — 6

< <1+
2a 3 P

The normalised error constant of the scheme (6-7) is expressed by

2
N p_ 1 _B 1
C =-uf - —-— _—
s =« % s )7
As before,we require that the choices of values for a and B yield
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a balance between the stability of infinity and the error constant.
However, the A -stability requirement on [ forces the modulus of
the roots of c2(§) to be extremely close to one for small wvalues

of 65. . The one important exception is when

o =

S + 16 /10 B = 12 - 2+/10
90 ’ 13
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The scheme (6-:8) has roots equal to zero at infinity. Its implemen-

tation is readily seen to be expressed by

6 — /10 112-88@][2—@
3

] 1
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and requires the inversion of only one matrix. The scheme (6-41ii1)
can be manipulated to exhibit the same characteristic i.e. the
polynomial p»(t) having a double root. Given

C = 105(4V2-3)/1127

the scheme (6-4iii) yields a sixth order method with the property.



We conclude this chapter with the following remarks

@) We conjecture that the maximum order of an A, —stable L.M.S.D.

scheme which is stable at infinity is

q = mk+l) -1
Thus it is advisable to select m > 1 for the derivation of
high order schemes.
2) A clear advantage in increasing m rather than k results from
the error constant decreasing more rapidly for m increasing
than with k increasing, particularly if considered in conjunction
with the rate of convergence of infinity.
3) With respect to the system of equations (2-3), maximum order,
Ao —stable L.M.S.D. schemes, with m > 1, invariably require complex
arithmetic for their implementation. Ease of implementation, as
characterised by (6-7), may only be obtained by relaxing the
stipulation of maximum order. However, once this relaxation is
operative we can derive high order Ap—stable L.M.S.D's that are
simple to implement. We conjecture that schemes of order q =mk
can possess this property.
Note that the number of intermediate step evaluations at each
time interval increases with m.
With regard to the above remarks we advance the merits of the classes
of L.M.S.D. schemes where m = k-1, k or k + 1, for k> 2. Such schemes
incorporate a balance of high order, low error constant, and ease of

implementation.
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