
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
TR/65                                                            JUNE  1976 

FINITE    ELEMENT   MULTISTEP 
MULTIDERIVATIVE   SCHEMES 
FOR  PARABOLIC   EQUATIONS 

BY 

PHILIP   MOORE 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Brunel University Research Archive

https://core.ac.uk/display/334633?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
W9260487 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                          ABSTRACT 

The   linear,   homogeneous,   parabolic   equation   is 
solved  by   applying   finite  element   discretizations 
in   space   and  A0 —stable,  linear  multistep, 
multiderivative   (L.M.S .D. )   methods  in  time.  Such 
schemes   are  unconditionally   stable.     An  error   analysis 
establishes   an  optimal  bound   in   the L2  —norm.  Methods 
typifying   the   class  of   L.M.S.D. schemes  are derived 
and   their  implementation  examined. 
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1.       The  Linear  Parabolic  Problem

We  shall  consider  the  initial  boundary  value problem 
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u    -  a (x)u ≡ Lu,(x,t) ∈  Ω x(0,∞)                     (1·1a)

                   u(x,0)   =  g(x).   ,       x  ∈  Ω                                                             (1·1b) 

                   u(x,t)   =  0          ,       (x  ,  t )    ∈   Γ  x   (0,∞)                                   (1 · lc) 

where  x  =   (x1,...,xN)   is   a  point  of   a  bounded  domain  Ω, 

with  boundary   Γ,   lying  in   the  N-'dimensional   Euclidean  space. 

Without   loss   of   generality   the  boundary  value   is   taken   to  be 

homogeneous  Dirichlet.  Non-homogeneous  Dirichlet  and  Newmann 

boundary  conditions   apply  with  only  minor  adjustments. 

For   simplicity  we   allow 

                     ∞∈∞∈= CΓ,)Ω(Ca(x),N
1ji}(x)ij{a  

where   Ω   is   the   closure  of   Ω.  We  also   assume  that 

                           a(x)  ≥ 0                                                                                       ( l ·2 i )  
and   the  matrix  aij (x)   is  uniformly  positive   definite 

i.e. aij  (x)   =  a j i  (x) 1   ≤   i,  j  ≤  N,      x ∈ Ω  
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Before  we  can  formulate  the  weak  form  of  the  problem 

(1.1)  it  is  necessary  to  introduce   Sobolev  spaces.   The 

Sobolev  space  Hm   (Ω)   is   defined   to  be   the   space  of   real 

functions   which,    together   with    their   first   m   generalised 

derivatives,   are   in  L2   (Ω)   the   space  of   square   integrable 

functions   over  Ω.    The   space   Hm(Ω)   is   a  Hilbert   space, the 
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inner  product   (· , · )m being  given  by 

                             dxvjDujD
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The  associated  norm,    || · ||     ,   is  defined  to  be
1
2
mv)(v,m||v|| =

The  norm  and  inner  product  on  L2(Ω)   are   denoted  respectively 

by   || · ||    and   (· , · )   where 
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Further  we   denote  by    the   space  of   all   real   functions   v, Ω)(1
0H

where  v  Î  H 1  (Ω)   and  Γv  =  0  in  the  generalised  sense.  To  formulate 
the  weak  problem  associated  with  (1·1)  we multiply   the equation  by  an 
arbitrary   function  v  ∈  (Ω)  and integrate  over  (Ω).  Using   Green's 1

0H
theorem we  get 
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We  adopt   the  notation 
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and   consequently   rewrite    (1·3)   as 

             0t,)(1
0Hv0v)a(u,v,

t
u

>Ω∈∀=+
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The  weak  solution  of  the  problem  ( 1 · 1 )    is   the  function 

 u(x,t)    w hich   satisfies   (1 ·4 )    for  all   t > 0  and  the )(1
0H Ω∈

initial    identity   (l·lb). 
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We   determine   the   asymptotic  behaviour  of  u(x,t)   by   employing 

the   'energy  method '.   Denoting   α( t ) ≡ || u (· , t)  ||  we  have  by   applying     (1·2) 

to   the   expression   ( 1 ·4 )    with  v = u(x,t) 

  
0u)(u,au,

t
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d
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Cancelling   throughout   by  α(t),   multiplying  by  e -γt ,  and   integrating 

from  0   to  T we  achieve 

                                                                                      (1·5)||(x)g||γTe||T)(x,u|| −≤

2. The  Galerkin  Procedure

Let  Vº   be   a  finite   dimensional   subspace  of   The  Galerkin )(1
0H Ω

method  is   to   find   an  approximation,   U(x,t),   to   u(x,t)   of   the   form 

                                                                                     (2·1) (x)iV(t)iC
d

1i
t)U(x, ∑

=
=

where  is   a  basis   of  Vº  .     The   continuous-time   Galerkin d
1i}(x)iV{ =

 
solution   to   (1·1)   is   the   function   ( 2 - 1 )    where   the   coefficients 

d
1i}(t)iC{ =     are   determined  by   the  discrete   analogue   to   (1·4),   namely 
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   +  a(U,V)   =  0   for   any  V  ∈ V0,   t > 0                                 (2·2) 

 

Substituting      in   turn  for  V  in   (2 ·2 ) ,    and   assembling   in d
1i}(x)iV{ =

Matrix   form,  we   see   that 

                                 0CKC
dt
d

M =+                                                                      (2·3) 

 

where    M  and  K  are  constant,   positive-definite  matrices.     The 

elements   of   M   and  K  are 

Mi j   =   (Vi,Vj )    and     Ki j    =   a(Vi ,Vj)  , 1 ≤ i, j ≤  d. 
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An   appropriate  initial  condition  is  derived   from  a 

discretized   form  of   the  identity( 1·1b) . Let  0V(x)g ∈     be  an   approxi- 
 
mation   to   g(x)   and  define  U(x,0)  =  (x)g .  This   yields   an  initial 

condition   for  C(0) ,   say 

C(0)    =    a                                                                     (2·4) 

The  equations   (2·3)   and   (2-4)    define  the  continuous   time 

Galerkin   solution. 

Applying   the  energy  method  to   (2 ·2 )    we  have,   by   the  previously 

described    manipulations,   that 

                         ||(x)g||γe||)(x,U|| TT −≤                                                   (2·5)

The expressions (1 ·5 )  and (2-5) will be influential in our 

choice of time discretization schemes to approximate U(x , t ) .  Any 

method   that   preserves   the   asymptotic   behaviour   of   the   true  

solution is 'well-posed'. This concept of 'strong stability' or 

well-posedness is investigated by Crouzeix [2] and Nassif [10]. 

Following    them   we   define   a 'k-step'   approximation   method    to  be  

strongly  stable   if   Un   ,   the   approximant   to  U(x,n∆t  ),  satisfies 

                     ||jU||
1k

0j
tαnΔ-

eC||nU|| ∑
−

=
≤  (2·6)

where  α   is   some   positive  constant.   Throughout   this,   and   the 

following  pages,  we  use   C  and  c  as   generic  constants. 

We  now  impose   a  necessary  property  on  the  subspace  V0, 

 namely    where      has   the  property   that  for  any ,p
hV0V ≡ p

hV

   there  exists   an  element     such   that p
hV V ∈)(1

0H)(1pHv~ ΩΩ+∈ I

whenever   h   is    sufficiently   small 

                p,...,1,2s,1s||v~||1sch1||vv~||h||vv~|| =+
+≤−+−             (2.7) 
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Any     function   can   be   expressed  as   f  =   p
hV∈φ x T  v   where   x   is 

a   vector   of   constants   and   V  =   (V1 , V2 ,. . . , V d) .      We   assume   that   the 

space    exhibits     the    following    properties   : p
hV

 

 (Pi)       2||||Nch2
E||x||2||||Nch φ−≤≤φ−  

(pii)         a (φ,  φ )  ≤  Ch -2  ||  φ  ||2

for  any  where   ||  ,p
hV∈φ x  ||E     is   the  Euclidean  norm  on  IR d . 

The  above   properties    are   satisfied   by   the   finite   element   subspaces 

used   in   practise. 

               Let    Λ[k] ,   x[k]   and    Λ [m]  ,   x  [m]    be   respectively   an   eigenvalue,  

eigenvector  of   the  matrices  M  and  K.     We  derive  bounds  on   these 

eigenvalues   by  utilising   (Pi ) ,    (Pii)   and   ( 1 · 2 ) .      Now, 
 
 
            2||[m]||[m]xMT

[m]x]m[xT
[m]x[m]Λ2

E||[m]x||[m]Λ φ==  

 

                .Nh
C
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)[k],[k](a]k[xkT
[k]x2

E||[k]x||[k]Λ φφ==  

     .2-Nh
C[k]ΛNh

C
e..i

C
≤≤

γ  

It   is   important   to   see   that   the   eigenvalues  of  S=M -1   K  are 

positive   and  unbounded  with  respects   to  h.     The   largest    eigenvalue 

of  S,  Λ max ,  is   of   magnitude     Λ max , ~  Ch -2    whereas   the  smallest 

eigenvalue    is   bounded   from  above.    Consequently    the   system   of 

differential    equations    (2·3)   is   a  stiff   system. 
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3.        A0  -  stable,   linear  multistep,   multiderivative  methods 

 
Most  classical  methods  for  solving  initial  value  problems  of 

first   order   ordinary   differential  equations  require,   for   reasons   of 

stability, a condition of  the  form   | Λ max ∆ t |   <  C,  where  ∆ t  is  the 

time  increment  and  C a  constant  usually  between  one  and  ten.  For  the 

stiff  system  (2·3)   this  condition  requires  h-2 ∆ t   to  be   small  which 

imposes  a  severe  limitation  on  the  step  length  ∆t . As  we  will  be 

required   to   solve   a  linear   algebraic  equation   at   each   time  interval 

this   restriction  is  prohibitive.     We   are   thus  lead  to  consider  only 

methods  where  the  region  of  absolute  stability  is  unbounded.   Since 

the  eigenvalues     A   of   the  matrix  S  are  real  the  classes  of 

A0  -stable  methods  are  sufficient.     Zlamal   [15]  employed  the  class 

of   A0 - stable,   linear  multistep   methods   to  solve  the  system  (2·3). 

Other  authors,   including  Nassif   [10],  Makinson  [8],  have  studied 

various   one-step   methods  for  the  solution  of  stiff   systems.   Following 

Obrechkoff   (see  [ 7 , p p l 9 9 ] ) ,  Enright  [ 4 ] ,  Genin  [ 5 ]  amongst  others, 

we  shall   consider   multistep   formulae   that  incorporate   the  higher 

derivatives.     We  refer  to   such   schemes  as  A  -stable,  linear   multistep, 

multiderivative  methods   (L.M.S.D's) .      This   follows  the   terminology 

of   Genin   but  we  note   that  the   title   'Obrechkoff   methods'   is  also 

used,   e.g.    [ 7 ] . 

               A  L.M.S.D,   method  is  of   the  type 
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Analogous   to    linear    multistep   methods   (cf . [  6 , pp   221 ] )   the 



-  7  - 

method   (3·1)   is   said   to  be   of   order  q  i f ,   for   ∆t  sufficiently 

small 

                            (3.2) 
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for   any   sufficiently   differentiable  function  y(t).     Expanding 

L [ y ( t ) ,∆t ]   by  Taylor's   theorem  with  integral   form  of   the   remainder 

we   have   (cf.[  6, pp  247]) 

                           

)3.3()s(1qy 
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where  G(s)   is   the  kernel   function  and        (s)ds. G
k
0

G ∫=

The   concept  of   A0  -stability   was   introduced  by  Cryer   [ 3]. 

A   multistep    method  is  A0  -stable   if,   applied  to   the   equation 

yn  =  λy,   y(0)  =  1,   for  any  real  λ >  0 ,    it  gives   approximate  values 

y     of   y(nΔt  )   such  that   y n  →  0    as  n→∞ . Considering   (3·1),   this 

is   equivalent   to   the   roots  of  P ( ξ ,  τ )    being  of  modulus   less   than 

one  for  τ>  0,   where 

j1r1)(rjβ
k

0j
)(rσandj

jα
k

0j
ρ(ξ),)(rσ

rτ
m

1r
)(ρ)τ,p( ξ−−∑

=
=ξξ∑

=
=ξ∑

=
+ξ=ξ   

                                                                                                                          (3-4) 
r =  1 , 2,...,m. 

In  addition  we  require   that   the  L .M.S.D.   methods   satisfy 

the   conditions   of   zero-stability   and    consistency,    ( [7 pp.30]  ). 

Zero-stability   dictates    that   the   roots   of   p ( ξ )    with   modulus 

equal    to   one   are   simple.     The   consistency  condition  is   maintained 
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by 
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We   shall   always   assume   that   the   characteristic  polynomials   ρ(ξ ) 

and    m
1r}(rσ[ =ξ   have  no common  factor.  Similarly,  the  polynomials, 

,k
0j})(τjμ{ =  

where 

                          rτrjβ1r1)(
m

1rjα)(τjμ
−−∑

=
+=

 

shall   have  no   common  factor.      These   assumptions   are   compatible 

with   the   L.M.S.D.scheme   being   irreducible   to   an  equivalent  scheme 

with   a   lower   value   for   k  or  m. 

The    following   two   results,    although     required   in   the   later 

analysis,   are  of  interest   in   themselves. 

Lemma   1     Let   the  L.M.S.D.   scheme    (3·1)  be  A0 - stable,   then 

                        there   exists   a  positive   constant   µ,  such   that 

                                              µk   (τ)  >    u   ,  for  all   τ  ≥   0 

Proof:      Since   a     >   0     by   definition   the   expression   µk   (τ)   is   not 

identically   zero.   Let  us   assume   that  µk  (τ)   has   a  root   at   τ   =  τ . 

The   function 

                            

 jξ
(τ )kμ

(τ )jμk

0j( τ )  k  μ  
τ )  P ( ξ ,, 

τ )  f(  ξ ,, ∑  
=  

=  ≡  
 

is   well   defined   except   at   the   zeros   of   µk   (τ) .      As  τ  → τ     at   least 
one  of   the   coefficients   of   f(ξ, τ)   must  become  unbounded   since 

τ  =   τ      may  not  be   a  root  of   all    Consequently,   as .1-k
0j})(τjμ ={

τ  →  τ   ,    at   least  one  of   the   roots   of   f ( ξ ,  τ) ,    and  hence  of  p ( ξ ,  τ) ,  

must     become   unbounded   and  have  modulus   greater   than  one.  This 
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contradicts    the    assumption  of  A0  - stability   and  we    deduce   that 

µk (τ)   must  be  bounded  away  from  zero,   τ > 0.   Since  µk (0) = αk > 0  

the  proof   is   complete. 

Lemma  2.   Let  the  L .M.S .D.  scheme  (3 ·1)  be  A0-stable,   then 
                               βmk ≠ 0 

Proof:      Trivially,   if     are  all  zero  then  β1k
0j}mj{β −

= mk ≠ 0   otherwise 

 
the   scheme  will   incorporate  only  the  first   (m - 1)   derivatives.   Let  us 

assume   that   at  least   one  βms ≠ 0,  0 ≤ s ≤ k-1, and  further   that  βmk=0. 
   

Using  the  function  f(ξ ,  τ)    of   lemma  1  it  is  obvious  that  the  coefficient 

of   ξs  must   become  unbounded  as  τ→ ∞ . Once  again  (cf. lemma  1)  this 

comprises  a contradiction   in  the  initial   assumption  of   A0 -stability 

and  we  deduce  that βmk ≠ 0. 
 

Corollary.   Every  A0  -stable  L.M.S.D. scheme  (3 ·1)  must  be  implicit. 

Finally,  we   investigate   the   approximate   solution   of   (2·2)   by 

the  L.M.S.D.  method  (3 ·1 ) .  Let  us   again  denote Un  to be  an  approximant 

to  U(x,n ∆t ).     Assuming  that      are  given,   the  recurrence 1k
0j}j{U −

=
relationship   for  Un+k  ,   n ≥  0,    is   given  by   the   system  of  difference 

equations 

             

( ) ( ) (3·6)m,...1,2,r0V,jn
1)(rUaV,jn

(r)U

(3·5)0V,jn
(r)Ur

tΔrjβ
m

1r

k

0j
V,jnUjα

k

0j

==+
−++

=+∑
=

∑
=

−+∑
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⎠

⎞
⎜⎜
⎝

⎛
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⎠

⎞
⎜⎜
⎝

⎛

The   computational  aspects  of   (3·5)   and   (3·6)  will   be 

investigated   in   chapter  6.     The   implementation   procedures 

described   there   are   equivalent   to   the   solution  of   the   linear 

system   of   equations 

                    U~knUrK)1(Mr
tΔ

rk
β1r1)(

m

1r
Ikα

knUA =+−−−∑
=

+≡+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
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for   some  predetermined  vector  .U~   The   condition  number   of   the 
matrix   A     where 

                                
( )
( ) ,

]a[min
]a[max)A(Cond

Λ
Λ

=  

 
and   (   Λ [a ] )   is   the   set   of   eigenvalues  of  A  is   readily   seen  by   (Pi) 

 
and   (Pii)   of   chapter   2   to   satisfy 

                                         Cond(A)   =  0(h-2m   ∆m
t  ) . 

Hence,   by   lemma   1,   the  matrix  A  is  positive   definite   and,   if  we 

exclude   the   unrealistic   case  when    ∆ th-2  → 0,    the   condition  number 

of  A  does   not  grow  too   fast   for   small  m. 

4.        Theorems

The   analysis   of   chapter  5   will   prove   the  following   theorems. 

Theorem   1

Let   the  L.M.S.D.method   (3 ·1 )    of   order   q  be   consistent,   zero-stable 

and   A0 - stable.     Let   the   roots   of   the   polynomial   p (ξ )    with  modulus 

equal   to   one  be   real,   the  modulus   of   the   roots   of   the  polynomial 
  σm (ξ)   be   less   than  one,   and  σ1 ( - l )≠  0.   Further,   let   g(x)  ∈   L2 (Ω). 

Then  for   any   t o    >   0   there   exists   a  positive   constant   C(t0 )   such   that 

for   n  ∆ t  ≥  t0    ,    and   h ,∆t      sufficiently    small 

||jU||
1k

0j
αnΔtλ1eC||nU||

||jU)tjΔ(x,u||
1k

0j
||g||)1phq

tΔ)0(tC||nU)tnΔu(x,||

and

∑
−

=
−≤

−∑
−

=
+++≤−

⎭
⎬
⎫

⎩
⎨
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Corollary

             If   in   addition  we   assume   that   U0    is   the  projection  of   g(x)  

onto  by   the  Lp
hV 2    - inner   product  and     are   the  values   derived 1k

1j}j{U −
=

from  a   weakly  A0 - stable  Padé   scheme   of   order q-1,   then 

{ }
||g||αnΔtλ1eC||nU||

||g||1phq
tΔ)0(tC||nU)tnΔu(x,||

and
−≤

++≤−
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 Theorem  2

Let    us    further    restrict    w=1    to  be   the    only    root   of  ρ (ξ) 

with   modulus   equal   to   one,   then  with   the   assumptions    of   theorem   1 

⎭
⎬
⎫

⎩
⎨
⎧

−∑
−

=
+++−<− ||jU)tjΔu(x,||

1k

0j
||g||)1phq

t(Δ1λtβnΔeβ),0(tC||nU)tnΔu(x,||  

for  some   for arbitrary   positive  constant β, 0 < β < 1 . 

Corollary 
If  the  initial  values  are  defined   to  be  exactly   those 

described     in    the   corollary    to   theorem    1,    then 

                         { } ||g||1phq
t(Δ1λtβnΔeβ),0(tC||nU)tnΔu(x,|| ++−<−  

 
5.        Proof  of  Theorems

           Let          be    respectively    the    eigenvalues     (in ∞
=

∞
= 1i}i{ψand1i}i{λ

increasing   order)    and    the   corresponding    orthononnal    eigenfunctions 

of   the  continuous   eigenvalue   problem 

  a (ψ,v)   =   λ   (ψ,v)        ∀  v  ∈                                              (5·1) )(1
0H Ω

The    eigenvalues   are   well-known   to  be   positive   and   distinct. 

Further   let       be   the   eigenvalues    (in    increasing dd
1i}i{ψand1i}i{ ==Λ

order)    and    the    corresponding     orthonormal     eigenfunctions    of     the 

discrete     eigenvalue   problem 

a(ψ,V)    =   Λ   (ψ,V)                                                           (5·2) p
hvv ∈∀

Strang    and    Fix    [12, Theorem   6·1, 6·2]    have   proved   results 

for    eigenvalues    and   eigenfunctions    using   subspaces,   Sh  ,  on  a 

regular    mesh.   The   only   property   of   Sh   utilised   in   the   proof   is 

the    approximation     property 

                                          ||  u  -  Pu ||s ≤  Chk-S || u ||k             s   =  0,   or   1 

where   Pu  is  the  Ritz   approximation   of  u   (i.e.a(u - Pu,V)  =  0,  ∀ V ∈  Sh  ) 
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A well-known    consequence    of   (2 .7)   is   that 

                 ||  u – Pu ||  + h || u- P u || 1≤Ch P+l || u ||  p+1    . 

Hence,   for k = p+l,   all  conditions   are   satisfied   and  the   theorems 

yield   for   h   sufficiently   small 

0  ≤    Λi  - λi  ≤    Ch2  p     ,,1p
iλ

+
               i =1 , 2,... , d                              (5.3)

||ψi - ψi ||   ≤   Chp+1     
,)1p(

2
1

iλ
+

               i =1 , 2,... , d                                      (5.4)

We   adopt   the   following    notations 

vi =   (v,ψi)   ,   iv =  (v,ψi)   , 
 )(1

0Hv Ω ∈ 
                                                              (5.5

Vi  =   (v,ψi)  , 
 

i V = (V,ψ i)  , P
hVV ∈

We  bound  the  error  u(x,n∆t  )  - Un  by  using  the  relationship 

u(x,n∆t )  -  Un   =  e1 +e2

where  e1  = u(x,n∆ t ) - U(x,n∆t  )   and   e2  = U(x,n∆ t  )-Un   and  proving 

bounds  on  e1  and  e2  . 

The  solution  u(x,t)   of   (1·1)   can  be  expressed  as 

                    iΨ
tiλeig

1i
t)u(x,

−
∑
∞

=
=                                                        (5.6)

 where     are  the  Fourier  coefficients   of   g(x),  ∞
= 1i}i{g

Similarly,   the  solution  U(x,t)   of  the  continuous Galerkin  problem 

(2·2)   can  be  expressed  by 

                            

 

iΨ 
t i e o 

i U 
d 

1 i 
t) U(x, 

Λ − 
∑ 
= 

= 
                                                            (5.7)

 where      are    the   coefficients   of    d
1i}0

i{U =
P
hV(x)g ∈  with    respect 

to   the  basis   .d
1i}i{ Ψ =
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a/ 

      Let   Using   (5.7)   we  can  write    and iψ
n
iU

d

li
nU ∑

=
= ∑

=
∈=

d

1i iψn
i2e

hence        where ,2|n
i|

d

1i
2||2e|| ∈∑

=
=

                            

 
n 
iU 

t n Δ 
i e o 

i U n 
i − 

Λ − 
= ∈ 

                                                         (5.8) 

         Also   let    be   the discreate   approximation∑
=

≡
d

1i iΨn
i,rUn

(r)U

 

 to   .tnt|t)U(x,rt

r
Δ=∂

∂ Substituting   into (3.6)  and  (5.2)n
(r)U

with   V = ψi    gives    us    the    relationship 

              
 n 

i U n
o i, U where m .., 1,........ r , 0 n 

1 i,r U i 
n 
i,r U ≡ = = − Λ+ 

Consequently,   we   can   construct   the  recurrence   relationship 

 n 
i U r 

i 
r 1) ( n 

i,r U Λ  − =              r  =  1 ,…, m                 (5.9)                

Combining   (5.9)   and   (3.5)   with  V=  ψ1   yields 

               

 
∑ 
= 

= + Λ − − ∑ 
= 

+ 
m 

1 r 
0 j n 

i )U r 
i 

r 
t Δ rj β 1 r 1) ( 

k 

0 j j ( α 
                           (5.10) 

Derfine    δj ( τ )   =  µ j ( τ ) / µ k( τ )  where    rτrjβ1r1)(
m

1rjα)(jμ −−∑
=

+=τ

and    subsequently    rewrite    (5.10)    as 
 

                                  

 
0 j n 

i )U i t ( Δ j δ 
k 

0 j 
= + Λ∑ 

=                                                         (5.11)

The   expressions   (5.8)   and   (5.11)   combine   to  give 

   

 n 
i d j) Δ) i(n e o 

i )U i t ( Δ j δ 
k 

0 j 
j n 

i ) i t ( Δ j δ 
k 

0 j 
≡ + Λ − Λ ∑ 

= 
= + ∈ Λ ∑ 

=               (5.12)
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We   conclude   this sub-section  by  bounding we seen
id

  from   (3·2)   and   (3·3)   that 

  

 

t n Δ t t Δ , t i e o 
i U L j) Δt i(n e o 

i U 
k 

0 j 
) i t ( Δ j µ 

= ⎥ ⎦ 
⎤ 

⎢ ⎣ 
⎡ Λ − ≡ + Λ − ∑ 

= 
Λ 

 

                                                                    
 i t n Δ e | o 

i U | 1 q 
i 

1 q 
t G Δ Λ − + Λ + ≤ 

   
  

By   lemma   1   a  positive   supremum  of  µk   (τ)-1   , τ  > 0,must  exist 

from  which  we   conclude   that 

            
 

i t n Δ e | o 
i U | 1 q 

i 
1 q 

t C Δ n 
i d Λ − + Λ + ≤                                      (5.13)

Alternatively,    by   lemmas   1   and   2,    δj  (τ)  j=0,l,...,k,  are   bounded 

for   any  τ  >  0,    thus 

                                  
 

i
t n - e | o 

i U | C n 
i d Λ Δ ≤ 

                                                          (5.14)

b)     This   section  uses   a  method  employed  by  Henrici [ 7,pp242] 

and  adapted  by  Zlamal   [14].     Define (ξ, τ)   by p̂

p̂  (ξ, τ ) =  δk (τ )  +  d k – 1 - ( τ) ξ  +….. + δ0( τ ) ξ k

Note    that    ),1(p)(),(P̂ k1
k τ

ξ
ξτμ=τξ −    and   hence   the  roots   of 

p(ξ,T)   are   the   reciprocals   of   the   roots   of   p(ξ, τ).      It   is 

intuitively   obvious   that   the   roots  of  p(ξ, τ)   approach  the   roots 

of    ρ(ξ)    and    σm  ( ξ )  as ,  respectively,    τ → 0    and   τ → ∞  . 

                 The   essential   roots   of   p(ξ)  (i.e.those   of  modulus   one)   are 

by  assumption  real,   and  by   zero—stability  single.    The   consistency 

condition   dictates   that  w =  1  is   always   an  essential   root.   Let  us 

assume   the  most   general   situation  when  these  essential  roots  are 

w1 =1 ,   w2 = -1.     Any  other   root   k
3i}i{w =  of    ρ( ξ )   has  modulus  less 

than  one,   say   | wi |  ≤ 1  - θ, 0  <  θ  ≤   1.    We  employ  a   theorem  from 

complex   analysis   eg.   [  1  ,   Theorem   11,pp   131]  , to   show   that   for 
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each  sufficiently  shall    ∈ > 0 ,   there  exists  a   τ∈ > 0,   such  that 

the  equation  p(ξ, τ)  = 0, τ  < τ∈ , has   the   same  number of  roots in the 

disc   | ξ -ξ0 | <  ∈ as   the  equation  p(ξ)  =0.   Furthermore,   if ξ0  is  a 

root  of  ρ ( ξ )   of  multiplicity  p   then  the  p  roots   of  p(ξ, τ)   that 

approach  it  are  distinct     for  τ  sufficiently  small.   Hence  no  compli- 

cations  arise  from  a  root  of  multuplicity  greater  than  one. 

We  denote  w 1,2   to  be  correspondingly  w1    or  w2  .    Selecting 

2
θ

∈< we  have  that,   for  τ < τ θ/2 ,  the  equation  p(ξ, τ)  has only  one 

root  in  the  disc  | ξ - w 1,2 | < 
2
θ Let   this   root  be   ξ w 1, 2  (τ). 

Rearranging  the  above  we  deduce  that  for any  0 < ∈ < θ/2  there 

exists  a  τ ∈  such  that  | ξ w1,2 (τ) -W1,2 | <∈ whenever  τ < τ∈. This 

is   a   definition   for   to  tend continuously  to  w )τ(
1,2wξ 1,2   as  τ 

 
tends   to   zero.       Thus  can   be  expressed   as   an   analytic )τ(

1,2wξ

function  of  τ, 

      i .e.                    i   = 1, 2  .....2τi
2aτi

1aiw)τ(
iwξ +++=

Corresponding    expressions    hold   for   the   other   roots      p( ξ, τ)  . ofk
3i))(τ

i
w(ξ =

Remembering  that  |wi |<1 - θ, i=3,4, ... , k, we  deduce  that  for  τ 

sufficiently  small,   say  τ   <  τ 1, .k,...3,i,
2
θ

1|,)(
i
Wξ| =−<τ

         Expanding    about  the  point  w τ)),τ(
1,2wp( ξ 1,2   we  see  that 

 2 , 1 i 0 ) τ ( 0 ) w ( τσ ) (w ρ' τa ) w ( ρ ) τ ), τ ( (  2
i1i 

i 
1 i w i    and  p = = + + + = ξ

by   comparing  coefficients   that 
 

                                     
)i(wρ'

)i(w1σi
1a =

            
i  =  1,2                               (5.15)

We  know  that  σ1   (l)= ρ’(l)  by  the  consistency  condition, 

σ1  (-1)  ≠  0  by  assumption  and  ρ’(w1,2 ) ≠ 0  by  zero-stability. 
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Thus, 

  zerononandrealisi
1awhere)20( ττi

laiw|)τ(
iwξ −++

and

   1,2.i|)2τ0(
iw
τila

1||)  τ(
iwξ| =++=

But       as       
 0 for 1 | ) ( | i w < τ < τ ξ    we  must have 0

i
w

i
1a < .   Consequntly , 

for     τ        sufficiently     small,    say    τ   <  τ2 

{ }|1
2a|1,|1

1a|min2
1α̂,α̂samefor1,2,iτ,α̂1)τ(

iwξ| =≥=−<

Thus,    we    have    shown    that    for    τ  <  τ̂   , τ̂     =    min( τ1, τ2 ) 

|)τ(
iwξ|   <  1  - α τ   ,   α > 0,                 i  =  l, 2,...,k 

and    hence,   for       satisfy  ),(P̂of)  τ(ξ̂rootsallτ̂τ τξ<

.
1

1|)(|
^

ατ−
>τξ  

theand,,
1

1||forholmorphicis
),(p

1,Therefore
^

^ τ<τ
ατ−

≤ξ
τξ

 

function    can    be    expressed   by   a   Taylor   series    expansion 

          

^
2

210^ ...)()()(
),(p

1.e.i τ<τ+ξτγ+ξτγ+τγ=
τξ 

where,    by    Cauchy's     estimate, eg     [1.  pp  122 ] 

                                     .whenever..,.1,0)1(C|)(|
^
τ<τ=ατ−≤τγ ll

l

Similarly,     let    the     roots  of  k
1i}i{zbe) ξ (mσ =    These   roots 

are  by  assumption less  than  one  in  modulus,  say     |zi|  ≤   1   θ   0   <   θ    ≤   1 . 

Applying   the   aforementioned   theorem   we   prove   that    the   equatio 

P(ξ, T ) =  0   has   the   same  number  of  roots   in  the  dis c  
2

|z| i
θ

<−ξ     as 

 

the  equation  .Cehenever,0)(m >τ=ξσ   Repeating   the   above 

argument   we   have   that,    for  ),(pof)(rootsthe,C i τξτξ>τ     satisfy 
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.k,..,.2,1i,
2

1|)(i| =
θ

−<τξ  

Tills    leaves    a    finite    interval     | τ̂   , C |    where    the    roots    ξ i    of )(τ

p(ξ,  T )   are    known    to   be    of   modulus   less    than   one.      The    roots    are 

continuous     functions    of          over   a   finite    intervals ,   hence τ

.C
^

whenever,1
^

0,
^

1|)(i| ≤τ≤τ<θ<θ−<τξ  

and    we    conclude    that   there   exists   a   constant    α,0  <  α <  1,  such 

that 

α−<τξ 1|)(i|                      whenever      .
^
τ≥τ

An   identical    argument   shows    that 

l
l )1(C|)(| α−≤τγ             whenever        ...,1,0,

^
=τ≥τ l

 
Summarising,    we   have   proved    that, 
 

⎪
⎩

⎪
⎨

⎧

τ≥τα−≤α−

τ<ττα−≤ατ−
≤τγ

^
,eC)1(C

^
eC)1(C

|)(|
ll

ll

l

Making  τ̂      smaller    if   necessary   we   achieve    .
^
τα=α       Denoting   by    i* 

the    smallest    integer    such    that     ∆t  Λi  >      we    see    that 
^
τ

 

⎪ ⎩ 

⎪ 
⎨ 

⎧ 

≥ τ α − 

< 
Δ Δ α − 

≤ Δ Δ γ 

* i i e C 

*i i i t e C 
| ) i t ( | 

l

l

l 
                                 (5.16)

c)        We    now    assume    that  w =1    is    the    only   essential     root    of 

p (ξ).   The    value   a 1    of    (5·15)    is   now   equal    to  -1    by    the 

consistency       relationship.       Thus       for      ∆t ∆i       sufficiently      small 

giΔtΔe)2
iΔ

2
t0(ΔiΔtΔ1)iΔtξw(Δ +

−
=+−=  

 

where    g    is    an   analytic    function   of    ∆t ∆i   and 0iΔtΔat)2
iΔ

2
t0(Δg ==
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Expanding    
 ) ) ( ( p i t w Λ Δ ξ   about   the    point    e - ∆

t 
∆

i     and    equating    to   zero 

we    have   by    (3·4)    that 
 

) i t e ( ' g ) i t e ( r 
r ) 

m 

1 r 
i t ( ) i t e ( ρ ) i t , ) i t ( w ( p 

Λ Δ − 
ρ + 

Λ Δ − 
σ ∑ 

= 
Λ Δ + 

Λ Δ − 
= Λ Δ Λ Δ ξ  

                                             +   0(g2)   +  o(∆t ∆i g)   =  0. 

By substituting  y(t)  =  e-∆it it   into (3·2)  and   letting    t  =  0    we   deduce 

.2q)iΛt(Δ01q)iΛ(1q
tΔ1qC)iΛtΔ(erσ

r)iΛt(Δ
m

1r
)i

ΛtΔ(eρ ⎟
⎠
⎞⎜

⎝
⎛ +++−+

+=−∑
=

++
−

 
  

Consequently,    by    combining     the    above    expressions 

 ( ) ) 2 g ( 0 2q)it(0)it(01 q ) i t (1 q C ) i t e ( ' g + + Λ Δ + Λ Δ + + Λ Δ − + − = Λ Δ − ρ  

and   thus,   using  )iΛt(Δ0(1)'ρ)iΛtΔ(e'ρ +=−  

  

 ( ) ( )2 q ) i t ( 0 1 q ) i t ( C 2 q ) i t ( 0 1 q ) i t ( 1 q C 
) 1 ( ' 

q ) 1 ( 
g + Λ Δ + + Λ Δ ≡ + Λ Δ + + Λ Δ + ρ 

− 
= 

 
With    the    above   expression    of     g    we    have    established    the    bound, 
 

                                    

 [ ] 11q)it(C1ite) i t ( w < + Λ Δ + 
Λ Δ − 

≤ Λ Δ ξ  
whenever       ∆t ∆i       is       sufficiently      small.      Utilising      a      previous      result, 

 

we      realise      that      the    other     roots  
 { } satisfy ) ,(pof i t2j

k
iw Λ Δ ξ ξ =  

,
2

1|iw|
θ

−<ξ     given     ∆t ∆i      sufficiently     small.      Therefore,        we   can    

select    a   value    > 0   such    that,   for   0  <  ∆
^
τ t Λi  <  

^
τ

  
 

. k , ,... 2 ,1 j1 1 q )it(C 1 i t e ) i t ( i w 
| 

− < + Λ Δ + 
Λ Δ − 

≤ Λ Δ 
ξ 

⎥⎦
⎤

⎢ ⎣ 
⎡  

 
Extending  the  argument   as  before  we   easily  achieve 

[ ] τ̂iΛtΔ,
1q)iΛt(Δc1i

ΛtΔeC)iΛt(Δγ <++
−

≤ l
l

l  
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Hence,    for        and    β,   0  < β  <   1 
 ^ 

i t τ < Λ Δ 

[ ] [ ]
l

lll ⎟
⎠
⎞

⎜
⎝
⎛ ++

−
−

+
−≤++− 1q)iΛtc(Δ1iΛtΔ2

β)(1
eiΛtΔ2

β)(1
e1q)iΛtC(Δ1ΔtΛie  

    

havewe
^

xwheneverx
2

1
e1qcx!cesinand τ<βτ<

β−
≤++

 

        βτiΛtΔ,iΛtΔ
2
β)(1eC)iΛt(Δγ <

+−≤ ll  

 

For       we  recall  from  a  previous   result   that 
 βτ ≥ Λ Δ i t 
 

 10,e C | ) i t( | < α < α − ≤ Λ Δ γ l
l 

Making      smaller   if  necessary  we   achieveβτ .
2

)1(
βτ

β+
=α

    
Denoting 

by     i * ( β)    the    smallest    integer    such    that     ∆t Λi    >    τ  β     see    that 
 

       

 

⎪ 
⎪ 
⎩ 

⎪ ⎪ 
⎨ 

⎧ 

β ≥ β τ β + − 

β < 
Λ Δ β + − 

≤ Λ Δ γ 

) ( * i i 2 
) 1 ( 

e C 

) ( * i i i t 2 
) 1 ( 

e C 
| ) i t ( | 

l

l

l 

 
for   some    β,   0  <    β   <  1 . 

By    comparing    coefficients    in    the    expansion   of 

....)(1)(0
)(0

k...)(1k)(k

1

),(
^
p

1
+τγξ+τγ=

τδξ++τ−δξ+τδ
=

τξ 
we    establish 

⎩
⎨
⎧

>

=
=τδ++τ−γτ−δ+τγτδ

00
01

)(0....)(1)(1k)()(k l

l
ll      (5.18)

where    γ ℓ     =  0   for  ℓ     <   0. 

d)         Henceforth,     the    following    inequalities    will    be    used 

extensively: 

1)2(1)e(xex −α<−α≤α− (5.19) 

    p
p

2xepx −α
<α−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
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for    any x    ≥   0,   α    >   0    and  p   a   positive    integer. 

If   we   rewrite   (5-12)   with n ≡ n -k- ℓ,   multiply   this  by 

Yℓ(∆t Λi  ),     sum    for    ℓ=0,1,..., n-k   and  then  apply  (5·18)  we  prove 

      [ ]

)iΔt(Δγkn
id

kn

0
0
i)iΔt(Δknγ)iΔt(Δ0δ.....

2k
i)iΔt(Δ22knγ)iΔt(Δ0δ.....)iΛt(Δknγ)iΛt(Δ2-kδ

1k
i)iΔt(Δ12knγ)iΔt(Δ0δ.....)iΔt(Δknγ)iΔt(Δ1kδ

n
i

l
l

l

−−∑
−

=
+∈−−−

−∈+−++−−

−∈+−++−−−=∈ ⎥⎦

⎤
⎢⎣

⎡

 

  
                                                                                                (5.20) 

 
Using    (5·13),  (5·16)  ,  (5·20)   and    the   inequalities    (5·19)    a 

bound  on   ∈     can  be   constructed  as  follows:   for  i  <  i
n
i * 

iΛtΔα
eiΛt)Δk(n

e0
iU1q

iΛ
kn

0
1q

tΔCj
i

1k

1j
i

Λt1)Δ2k(nα
eCn

i
ll

l

−−−−+∑
−

=
++∈∑

−

=

+−−
≤∈  

                (5.21) 
   

2/0tt)1k2(and0ttnfortheNote ≤Δ−≥Δ
 

 

                                                  (5.22) s
iΛ)0(tCi

Λ
0

αt
2
1

ei
Λt1)Δ2k(nα

e −≤
−

≤
−−−

where   s   will   be   determined   later.     For   a-  1   ≥  0 

1)(q
iΛ)0t(C4i

Λ0te

iΛ
C

i
ΛtΔ2

k)(n

e
iΛ

Ci
ΛtΔk)(n

etΔk)(n

i
ΛtΔk)(n

etΔ1)k(ni
ΛtΔ1)(α

e
kn

0
i

ΛtΔk)(n
etΔ

+−≤
−

≤

−−
≤

−−
−≤

−−
+−≤

−−
∑
−

=

−− l

l

 

  
For  α -  1  <   0 

   ,Hence
1iΛtΔ1)(α

e

iΛtΔ1)k(n1)(α
eiΛtΔ1)(α

e
kn

0
S

−−−

+−−−

≤
−−

∑
=

=
=

l

l
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i)1(

it)kn(
eC

1it ) 1 ( e 

it)kn ( 
e t Ci t ) k n ( 

e t S 
Λ α − 

Λ Δ − α − 
≤ 

− Λ Δ α − 

Λ Δ − α − 
Δ 

≤ 
Λ Δ − − 

Δ  

 
)1 q ( 

i ) 0 t ( C 
i 

2 / i to 
e C + 

Λ 
− 

≤ 
Λ 

Λ α − 
≤  

Thus,   we   have    shown    that 

  )23.5(1)(q
iΛ)0(tCiΛtΔ1)(α

e
kn

0
i

Λtk)Δ(n
etΔ +−≤

−−
∑
=

=

−− l

l

Collecting    together    (5·21)—(5·23),   we   conclude   that  whenever 

i < i* , 

                            i
0Uq

tΔ)0(tCj
i

1k

1j
s

iΛ)0(tCn
i +∈∑

=

=
−≤∈                           (5.24) 

For   i   >   i * ,  using   (5·14)  ,   (5.16)  and  (5.20) 

        ll

l

τ̂αet)Δk(niΛe
kn

0
0
iUCj

i
1k

1j

1)2k(nτ̂αeCn
i

−−−−
∑
−

=
+∈∑

−

=

+−−≤∈        (5.25)

But     q
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Combining  we  have  proved  that 
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and    the    expressions    (5.25)  -  (5.27)    yield,   for   i   ≥   i*
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Mihlin    [ 9 ]   has   proved   that   c,N
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from  which 
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The   expression   (5.30)   can  be  investigated  by  using   (5.3) 

and   (5.4),   whence 
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Substituting  the  above  bounds   in   (5.30)   we  establish  a 

bound  on   | e3 |,   namely 
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The   desired  result   is   obtained  by   substituting   (5·31)   into 

(5·29)    and   using   the   inequality 

      ||g||||jujU||||ju||||jujU||||jU|| +−≤+−≤
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e)     We  now  extend   the  analysis   of   section  d   to  the   situation 
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From  (5·33)  -  (5·35)   we  have  whenever   i < i*(β) 
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Similarly,   for  i ≥ i* (β),   using   (5·14),   (5·18)   and   (5·20)   we 
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where,   for   simplicity,   we  denote   τ ≡ τ β   .   But 
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The   expressions   (5·37)  -(5·39)   yield  that,   for  i  ≥i*(β) 
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where  we   take     ∆t ,   sufficiently  small   to  allow  ∆tλ1<τ  . 

Following  a  course  identical   to  section  d  we  arrive 
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at   the   result 
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f)      The   error   e1  = u(x,n∆t )-  U(x,n∆ t )   will  now  be   bounded. 

From   (5·6)   and   (5·7)   we  have 
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Zlainal   [15]   uses   a   technique  from  Thome'e   [13]   to   show 

that  λd+1  ≥   ch-2   .    Hence,   using   (5·3)   and   (5·4)   we   have   for 

some   β,   0  ≤ β <  1 
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        i  .e.    ||  e 7  ||   ≤   C ( t 0 , β ) h P + 1    e –β n ∆ tλ1   ||  g  ||  . 
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Using   (5·42)   and  the  above bounds we   conclude   that 
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1(hp+1||g|| .  If  U°  is   the L2 -inner product 

projection of  g(x)   onto  p
hV

for   some  arbitary   β, 0  ≤ β < 1 

g)       Returning  to   (5·11)  we  have 
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Rewrite  the  above  with  n - n - k - ℓ,   multiply  this  by γℓ(∆t ⋀i), 

sum  for  ℓ=0,1...,n-k  and  apply   (5·18)   to  achieve   the  expression 
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which  is  the  desired  asymptotic  result. 
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h)      Initial   Approximants   Uj      to   u(x, j ∆t  ),   j=0,l , . .  ,  k — 1  . 

This   section   is   concerned   with   the   estimate    ||  e 2   ||     under   the 

assumption   that   U°      is   the   orthogonal   projection   of   g(x)   onto  p
hV

with   respect   to   the   L2 -inner  product   and 1k
1j}j{U −

= are  the  approxi- 

mate   solutions   of   (2.2)   at   time   t=j∆t     obtained  by   a  weakly  A0  -stable 

Padé   scheme   of   order   q -1 . 

 

Other  viable  methods   for   deriving   these   approximants   include 

the  weakly  A0  -stable   Runge-Kutta   schemes.   Such   schemes   have   been 

thoroughly   investigated   by   Crouzeix   [2 ]   and  we   refer   the   reader  to 

his   thesis   for   an  account  of   these   schemes. 

A  difference  method   derived   from  a  Pade   approximation  of   order 

q -  l    is   a  one-step  method   of   the   type 
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e- τ      ,   such   that 
| e - τ  -   R( t ) |  ≤    C  τ q    as  τ   →  0  (5·46) 

We   note   that   any   Pade   scheme   is   a   one-step,   multiderivative 

method   and   satisfies    (see   (3·2))  the   relation 
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A   Padé   scheme   is   said   to   be  weakly   A  —stable   (see   |  2  | ) 

if   | R(τ ) |   ≤   1,   for   any   τ   ≥   0.   The   inequality   (5·46)   is   stated 

to   hold   for   small   τ .   However,   as    | e - τ  - R(τ ) |  ≥    2   τ    ≥   0,(5·46) 

is   satisfied   a   fortiori   for   any   τ  ≥   0.        Applying   the   scheme   (5·45) 

to   the   system  of   differential   equations   (2·2)   we   see   immediately 

from  an  obvious   adaptation   of   (5·10)    that 

0j
iUr

i
r1)(roβ~r

tΔ
m~

1r
11j

iUr
iA1-r1)(rlβr

tΔ
m~

1r
1 =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
Λ−∑

=
+−+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−∑

=
+  

or                                          (5.48) 2.k,0,1,......j,j
i)UitR( Δ1j

iU −=Λ=+

 

The  recurrence  equation   (5·48)   yields 

            [ ] o
iU1j)itR( Δ1j

iU +Λ=+                                                     (5.49) 

It   is   easily   derived   from   (5·8)   and   (5·49)   that 

           [ ] ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +Λ−
+Λ

−=+∈ 1j)itR( Δt1) Δ(jieo
iU1j

i
 

and   by   using   the   definition  of   weak  A 0 —stability,   and   (5·46) 
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j   =   0,1,..  .,k - 2 (5·50) 

Consequently,   returning   to   (5·29)   we   note 
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The  initial  approximant  U°     to  g(x)   is  defined  to  be  the 
projection  of  g(x)   onto  V p

h   by  the  L2  - inner   product,   and  is  thus 
well  known  to  satisfy, 

||  U° ||    ≤  ||  g  || 

Using  the  definition  of  weak  A0  -stability,   namely   |  R (τ )  |  ≤   1, 

for  τ ≥  0    we  have  by   (5·49) 
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The  expression  (5·29)  can  now  be  reformulated  by  (5·51)and 

(5·52)   to  read 

| | e 2 | |    ≤   C ( t o )  ∆ q
t  | | g | |                   (5·53) 

We  are  able  to  deduce  immediately  the  corresponding  result  when 

w=1   is   the  only  essential  root  of  ρ (ξ) 

i.e.        || e2 || ≤  C(to ,β)  e -βnt∆ λ1 ∆ q
t  || g ||                                               (5·54) 

The   theorems   can  now  be  established.     Theorem  1   is 

determined  from  the  relation   || u(x,n∆t ) -Un   ||  ≤ || e1 || + || e2 ||   and 

the  bounds   (5·32),   (5·43)   with β =0,   and   (5·44).   Its  corollary 

follows  immediatelt  by  using   (5·53)   instead  of   (5·32).Theorem  2 

and  its  corollary  follow  from  the  bounds   (5·41),   (5·43),   and 

(5·54). 
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6.     Practical  Examples  of  L.M.S.D.Schemes

To  illustrate   the  multistep,  multiderivative  methods  we 

select  k  =  m  =   2 and  derive  a  family of  fifth-order,A0  -stable 

methods.   Any   fifth  order  method  with  k =  m =  2  may  be   expressed   as 

     { '
1ny15
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nβ)y15
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360
1(                                                                      (6.1)

 
  
We   test   for  Ao  -stability  by  employing   the  Routh-Hurwitz   criterion 

e.g.   [7,pp.80],     For  simplicity  we  define,   as  before, 

                     2) τ
360

1
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3
β(βτατ)(2µ −−++=  

                     2)τ180
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6
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3
4 β(τ15

8) α 2-(1τ)(1µ +−++=  

                     2) τ
72
5

12
α

3
β(β)τ

15
7(1)-(ατ)(0µ −−+−+=

    

for  any  τ >  0.       By   (3·4)   we  require   the  roots   of   the  polynomial 

jξ)τ(jµ
2

oj
τ),p( ∑

=
=ξ to  be   less   than  one   in  modulus,   for   all   τ  >0. 

By   the   Rough-Hurwitz   criterion  this  requirement   is   satisfied   if, 
 

µ2 (τ)  >    µ1 (τ)   -   µ 0 (τ) 

                        02)τ
45
8

3
2β

3
2α(

15
τ2)(4 αe..i >−−+−−           (6.2i)

µ2(τ)  >   µ0 (τ)  

                       015
2ττ)

15
7-(2 β1.e.i >++                       (6.2ii)

µ2(t)   +   µ1( τ)   +  µ0(τ)   >   0 

                    02) τ
30
1α-(2 βτe..i >++                                (6.2iii) 

 for all  τ   >  0.        Note  that,  by  lemmas   1   and  2 
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                             0.)
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1
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α

3
β(0,τ)(2µ >−−>                           (6.2iv) 

 The inequalities   (6·2)   are   satisfied   if 
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and               )
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3
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The   region   defined   is   best   seen  if  we   change   the  basis   and   let 

                              
30
7-ββ,

2
1αα =−=  

from   which  we  deduce  that 

                       )βα(α
3

322)
15
1(and0αβ2,0α −<>−>

(Diagram   I) 

The   shaded   area  of   Diagram   1   contains   the  permissible   values 

for  βα and       We  note   that   the   error   constant   of   the  L.M.S.D. 

scheme   (7·5)   is   given  by 

90
β

240
α

21600
11

6C +−−=  
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The   selection  of   particular  values   from   the   admissible   range   of 

the  parameters   α   and   β    is  now  considered.  Any   scheme  proposed   to 

solve   the   s t i f f    system  of   equations   (2·3)   should   exhibit   certain 

characteristics,   of  which,   the  principle   is   related   to   the  nature 

of   the   analytic   solution. 

Let   us   apply   the   scheme   (3·1)   to   the   scalar   test   equation 

y  =  -λy, λ >0.     By  the  definition  of  A0  -stability  we  know  that   the 

approximate   solution  Yn     →  0   as   n →  ∞.  For   λ   >>  0    the   solution  Yn

  
approaches   the   solution  of   the   difference   equation 

                             0jnYmjβ
k

0j
=+∑

=
      as  λ → ∞ .  

Without   loss   of  generality  we  shall  assume  that   the   roots   k
1i}i{ ξ =  

of   the  equation   σm (ξ)   =  0   (see   3·4)   are   real   and   distinct,   then 

                                as  λ → ∞  n
iξia

k

1inY ∑
=

=

where  k
1i}i{a =  are   constants   determined  by   the   initial   values 1-k

oi}i{Y =  

By   assumption  we  know  that  | ξ i |  < 1,   i =  1,2, . ..,k,   and   hence 

Yn→  0 as   n  →  ∞  .   This   convergence   has   previously  been   referred   to 

 as   stability   at   ∞.   However,   the   rate   of   convergence  may   be   increased 

by   allowing   the   roots k
1i}i{ξ =  

of   σm  (ξ)  =  0  to  be   equal,   or   close   to   zero. 

Consequently,   given  a  very  stiff   system  of   equations   it   is   desirable 

to   use   a  multistep   scheme  where     the   roots   of  σm (ξ)    are  equal, or 

close   to   zero. 

Equally,   we  desire   that   the  normalised  error   constant, 

C~  q+1 , is   small 

i.e. 
∑
=

+
≡+ k

0j ljβ

1qC
1qC~  where  Cq+1  is  defined  by  (3.2)
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Consequently,   we   advance   the   following  possibilities: 
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====
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where     ξ1     is   the   largest   root   in  modulus  of  σ2   (ξ) . 

Higher  order  A0  -stable  L.M. S.D.   methods  may  be  obtained  by- 

allowing  either   or  both  of  m  and  k  to  be  greater   than   two. 

Without  reference   to   the  general   class   of   such  schemes  we  note 

the  following  particular  examples; 

 k =   2,   m =   3. 
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k  =  3,   m  =   2 

              ''
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where 

         

c
4
9

20
9

2βc
4

63
20
9

2α

c
12
67

20
1

3βc
4

39
60
11

3α

+=−=

+=+=

                    (6.4ii) 
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This   is  a  sixth  order  method  with  error  constant 

  )
35
1(c

80
1

7C~ −= unless 
35
1c =  which yields a seventh order scheme 

 with   error   constant 
.19600

1C~ 8 = A0  - stability  is  ensured  by  the 

condition 

c   >   384/17,275 

From  the  relevant  theory,   e.g.   Cryer  [3],   or  by  direct 

evaluations  we  have  established  the   following  table  concerning 

maximum  orders  of  A0  -stable  L.M.S.D.   schemes.   The  diagram 

expresses  for   1   ≤  m +  k  ≤  5  : 

q1  =  maximum  order  of  A0  -stable  L.M.S.D.scheme 
for  specific  values  of  m  and  k. 

q2  =  as  q 1   but  with  added  stipulation  of 

stability  as  ∞. 
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b.        Implementation

Any   scheme   proposed   to   solve   the   linear  parabolic  equation 

should  be   efficient   in   terms   of   computer   storage   and   operations. 

For   any   finite  element   space     the  matrices  M  and  K  are   banded  matrices, p
hV

thus   an  efficient  method   of   solution   should  preserve   and   utilise 

this   characteristic.        Remembering   the  definition  of   the  matrices 

M  and  K  we  have   immediately   from   (3·5)   and   (3 ·6)  

              ojn
(r)UMrjβr

tΔ
m

1r

k

oj
jnUMjα

k

oj
=+∑

=
∑
=

−+∑
=

 
 

 
where 
                                    jn

1)(rUKjn
(r)UM +

−−=+       r = 1,2,……., m. 

 On  combining   these   two   equations   we  achieve 

           ojnUrk)1(Mr1)(rjβr
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m
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=
∑
=

−+∑
=

              (6.5)

The   equation   (6-5)   is   obviously   impractical   as   it 

entails   full  matrices  M-1      K,(M -1  K)2   , . . .    (M -1     K)m .    However,   by 

the  use   of   complex  arithmetic   the   sparseness   of   the  matrices 

M  and   K  is   utilised. We   illustrate   this   mode   of   implementation 

by  reference   to   the   family  of   equations   (6·1).    Equation   (6·5) 

can  be   seen   to  be 
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The   roots   of are   readily   seen   to   be   complex  whenever (x)2µ~

  α   and   β   are   permissible.      Thus   let 

x)2Zx)(2(Z(x)2µ~ −−=               and  further  let

      be   respectively   the   roots   of    (2)
oZ,(1)

oZand(2)
lZ,(1)

lZ 2 α1(x)/1µ~γ −  

      and  .1α(x)/oµ~γ −  

     Consequently   a   simple  manipulations   shows   that    (6·6)    is 

     equivalent   to 
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Although   three   intermedi ate   steps   are   necessary   at   each 

time   interval   it   is   necessary   to   invert   only   two   matrices-      For 

the   particular   example   (6·3iv)    only   one   intermediate   step   exists 

at   each   time   interval,   requiring   the   inversion   of   only   one   matrix. 

The   use   of   complex   arithmetic,   and   the   extra   storage   necessary, 

may   be   prohibitive.    However,   A—stable   L.M.S.D. methods   of   arbitrary 

order   have   been   investigated   by   several   authors   with   the   intention 

of   simplifying   the   implementation.   Of  particular   interest   is   the 

family   of   one—step   Hermite   formulae   suggested  by  Makinson   [8]   and 

investigated   fully   by     Norsett   [11].   Norsett   derived   a   family   of 

A(o)—stable,   one—step  methods   of   order   m  +  1   where   the   coefficient 
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matrix,   G m  (M-1  K),   of U n+1      is   given  by 

,mk)1M
γ

tΔ
(Ik)1(MmG −+≡−  for   a   specified   parameter   γ. 

Continuing  with   the   construction  of  L.M.S.D.   methods  with  k  =  m  =2 

we  now  establish  a  family  of   fourth  order,   A0  -stable  methods  where 

the  coefficient  matrix  of  Un+2       has   the   same   characteristics   as 

G 2  (M-1 K).  The   family   of   fourth  order   schemes  with   the  above   properties 

is   given  by 
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Applying  the  Routh-Hurwitz  criterion  we  deduce  that   (6·7)   is 
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The  normalised  error  constant  of   the  scheme   (6·7)    is  expressed  by 
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As  before,we  require   that   the  choices   of  values   for   α   and   β  yield 
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a  balance   between   the   stability   of   infinity   and   the   error   constant. 

However,   the  A  -stability   requirement   on   β   forces   the  modulus   of 

the   roots   of  σ2(ξ)   to   be   extremely   close   to   one   for   small   values 

of      .      The   one   important   exception   is  when .C5
~
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The   scheme   (6·8)   has   roots   equal   to   zero   at  infinity.    Its   implemen- 

tation   is   readily   seen   to  be   expressed  by 
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and   requires   the   inversion   of   only   one  matrix.      The   scheme    (6 ·4 i i i )  

can  be  manipulated   to   exhibit   the   same   characteristic   i.e.   the 

polynomial   µ2(τ)   having  a  double   root.      Given 

                             C  =   105(4√2-3)/1127

the   scheme   (6 ·4i i i )    yields   a   sixth   order   method  with   the   property. 
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We   conclude   this   chapter  with   the   following   remarks 

(1) We   conjecture   that   the  maximum  order   of   an  A0  —stable  L.M.S.D. 

scheme  which   is   stable   at   infinity   is 

q   =   m(k+l)   -  1 

Thus   it   is   advisable   to   select  m  >   1   for   the   derivation  of 

high   order   schemes. 

(2) A  clear   advantage   in   increasing  m  rather   than  k   results   from 

the   error   constant   decreasing  more   rapidly   for  m  increasing 

than  with  k   increasing,   particularly   if   considered   in  conjunction 

with   the   rate  of   convergence   of   infinity. 

(3) With   respect   to   the   system  of   equations   (2 ·3) ,    maximum  order, 

A0  —stable   L.M.S.D.   schemes,   with  m > 1,   invariably  require   complex 

arithmetic  for   their   implementation.   Ease  of   implementation,   as 

characterised  by   ( 6 ·7 ) ,    may   only  be   obtained   by   relaxing   the 

stipulation  of   maximum  order.   However,   once   this   relaxation   is 

operative  we   can  derive   high   order  A0 —stable   L .M.S.D's    that   are 

simple   to   implement.     We   conjecture   that   schemes   of   order  q =mk 

can  possess   this   property. 

  Note   that   the   number   of   intermediate   step   evaluations   at   each 

            time   interval   increases  with  m. 

With  regard   to   the   above   remarks  we   advance   the  merits   of   the   classes 

of   L.M.S.D.    schemes  where  m  =  k-l,   k  or   k  +  l, for  k ≥ 2.      Such   schemes 

incorporate   a  balance   of   high   order,   low  error   constant, and   ease   of 

implementation. 
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