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ABSTRACT

Several findings suggest that CO2 emissions in lakes

are not always directly linked to changes in meta-

bolism but can be associated with interactions with

the dissolved inorganic carbon equilibrium. Alka-

linity has been described as a determining factor in

regulating the relative contributions of biological

and inorganic processes to carbon dynamics in

lakes. Here we analyzed the relationship between

metabolic changes in dissolved oxygen (DO) and

dissolved inorganic carbon (DIC) at different time-

scales in eight lakes covering a wide range in

alkalinity. We used high-frequency data from

automatic monitoring stations to explore the sen-

sitivity of DIC to metabolic changes inferred from

oxygen. To overcome the problem of noisy data,

commonly found in high-frequency measurements

datasets, we used Singular Spectrum Analysis to

enhance the diel signal-to-noise ratio. Our results

suggest that in most of the studied lakes, a large

part of the measured variability in DO and DIC

reflects non-metabolic processes. Furthermore, at

low alkalinity, DIC dynamics appear to be mostly

driven by aquatic metabolism, but this relationship

weakens with increasing alkalinity. The observed

deviations from the metabolic 1:1 stoichiometry

between DO and DIC were strongly correlated with

the deviations expected to occur from calcite pre-

cipitation, with a stronger correlation when

accounting also for the benthic contribution of

calcite precipitation. This highlights the role of

calcite precipitation as an important driver of CO2

supersaturation in lakes with alkalinity above

1 meq L-1, which represents 57% of the global

area of lakes and reservoirs around the world.
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HIGHLIGHTS

� Calcite precipitation is a major driver of carbon

dynamics in lakes with alkalinity above 1 meq L-1.

� At low alkalinity, metabolism is the main driver

of carbon dynamics.
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INTRODUCTION

Considering that lakes occupy a relatively small

area in the global landscape, they are dispropor-

tionally active sites for carbon cycling due to their

important roles in carbon transport, transformation

and storage (Cole and others 2007; Battin and

others 2009; Tranvik and others 2009). Globally,

most lakes are supersaturated in CO2 and act as

carbon sources to the atmosphere (Sobek and

others 2005). The carbon emitted by these ecosys-

tems is relevant and comparable in magnitude to

global terrestrial net ecosystem production (Tran-

vik and others 2009). The CO2 emissions from lakes

have widely been attributed to their heterotrophic

activity that oxidizes terrestrially produced carbon

(Del Giorgio and others 1999; Jonsson and others

2003; Duarte and Prairie 2005; Roehm and others

2009; Larsen and others 2011). Many studies that

directly link CO2 supersaturation to net heterotro-

phy are conducted in lakes that have relatively low

alkalinity and high dissolved organic carbon (DOC)

values. Although this paradigm is often valid for

such systems, it has recently been rejected for lakes

and reservoirs of higher alkalinity. A study that

relates CO2 emissions to lake metabolism in nine-

teen lakes of higher alkalinity shows that despite a

positive relationship between CO2 emissions and

respiration of organic matter, CO2 emissions often

exceed the rates expected from lake metabolism

(Sand-jensen and Staehr 2009). Several findings

suggest that in such systems, major drivers of car-

bon dynamics include direct exogenous dissolved

inorganic carbon (DIC) inputs from soil respiration

and mineral weathering of the catchment, inter-

actions with the DIC equilibrium, and calcite pre-

cipitation (Maberly and others 2012; McDonald

and others 2013; Marcé and others 2015; Wey-

henmeyer and others 2015; Wilkinson and others

2016).

The chemical equilibrium between photosyn-

thesis and respiration implies a balance between

inorganic carbon variability and net ecosystem

production (NEP), whereby 1 mol of O2 respired

produces 1 mol of DIC, and inversely, 1 mol of DIC

is photosynthesized into 1 mol of O2 (Stumm and

Morgan 1996). Imbalances between inorganic car-

bon variability and metabolic rates resulting in

deviations from the one to one stoichiometry be-

tween dissolved oxygen (DO) and DIC in lakes are

widely reported in the literature (Stets and others

2009; López and others 2011; McDonald and others

2013; Peeters and others 2016; Perga and others

2016). Such imbalances have in some cases

reached a point where lakes are simultaneously in

an autotrophic state, yet they emit CO2 to the

atmosphere (Stets and others 2009; Marcé and

others 2015; Peeters and others 2016; Perga and

others 2016). According to a recent model, this

could be the case for approximately 35% of the

lakes and reservoirs in the contiguous United States

(McDonald and others 2013). Hydrologic inputs

and CO2 released by calcite precipitation are likely

to be the main factors driving CO2 emissions in

such lakes (Stets and others 2009; McDonald and

others 2013; Marcé and others 2015; Perga and

others 2016). A recent study shows that the sen-

sitivity of CO2 supersaturation to DO disequilib-

rium weakens with increasing alkalinity and that

above an alkalinity threshold of 1 meq L-1 it is

possible to find lakes that are simultaneously

supersaturated in CO2 and DO (Marcé and others

2015). This implies that above this alkalinity

threshold CO2 supersaturation in lakes is directly

regulated by DIC inputs from carbonate weathering

and calcite precipitation and that this is a wide-

spread phenomenon since 57% and 34% of the

global area occupied by lakes and reservoirs have

alkalinity values above 1 and 2 meq L-1, respec-

tively (Marcé and others 2015).

In such lakes, summer DIC depletion due to

photosynthesis comes largely at the expense of

alkalinity, with only minimal changes in pCO2 and

pH (Mcconnaughey and others 1994). An expla-

nation lies in the biogenic process of calcite pre-

cipitation that is enhanced during summer

stratification, when algal blooms increase pH

through photosynthesis and offer abundant

nucleation sites around the surface of micro-algae

(Müller and others 2016). Summer calcification

reduces alkalinity and calcium levels, generating an

equal molar quantity of CO2, thereby compensat-

ing photosynthetic CO2 depletion and maintaining

CO2 partial pressure (pCO2) values within bounds

that sustain primary production (Mcconnaughey

and others 1994; Andersen and others 2019). This

mechanism is less relevant in lakes of low alkalinity

where calcite precipitation is unlikely to occur at

high rates and therefore primary production is

potentially carbon limited because of the lack of

inorganically produced CO2 (Kragh and Sand-

Jensen 2018). The mass balance equation of calcite

precipitation implies the release of 1 mol of CO2,

yet it results in a net loss of 1 mol of DIC and two

equivalents of total alkalinity (TA):

Ca2þ þ 2HCO�
3 ! CaCO3 þ CO2

þ H2O DTA ¼ �2 eqð Þ ð1Þ
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A recent study on a lake of relatively high alkalinity

(4.5 meq L-1) shows that about 40–70% of sedi-

ment organic carbon originates from alkalinity ex-

port from the catchment, suggesting that primary

producers actively take up DIC of terrestrial origin,

promoting calcite precipitation and turning such

lakes into ‘‘alkalinity sinks’’ during summer (Nõges

and others 2016). Despite acting as an alkalinity

sink, it is widely acknowledged that calcification

promotes CO2 supersaturation of surface waters by

releasing CO2 (Opdyke and Walker 1992; Gattuso

and others 1993, 1996, 1999; Frankignoulle and

others 1994, 1995; Suzuki 1998). Therefore, sum-

mer calcification could be an explanation for the

deviation from the 1:1 stoichiometry between DO

and DIC variability commonly found in lakes of

high alkalinity. However, other processes could

result in such deviations, such as anaerobic respi-

ration (Stumm and Morgan 1996; Torgersen and

Branco 2007; Wissel and others 2008), physical

processes such as gas exchanges with the atmo-

sphere (Wissel and others 2008) or horizontal and

vertical gas exchanges with nearshore or deeper

waters (Antenucci and others 2013), as well as di-

rect DIC inputs caused by storm events (Vachon

and del Giorgio 2014). While the importance of

calcite precipitation in CO2 levels and emissions is

well documented in marine systems, it is yet to be

recognized as an important component of the car-

bon cycle in freshwater systems.

The objective of this research is to assess the

sensitivity of DIC variability to metabolic changes

in DO along a gradient of alkalinity. For this, we

use high-frequency data of dissolved oxygen,

pCO2, pH and temperature from lakes covering a

wide range in alkalinity. A theoretical model that

accounts for the effect of calcite precipitation on the

DO–DIC relationship is used as a comparison to the

empirical data to highlight the importance of this

process as a driver of carbon dynamics in lakes. The

overarching aim of this study is thus to determine

the main drivers of DIC dynamics along an alka-

linity gradient. Our hypothesis is that lake meta-

bolism is the main driver of carbon dynamics in

lakes of low alkalinity but that with increasing

alkalinity the importance of this driver becomes

relatively low compared to other processes such as

calcite precipitation.

METHODS

Study Sites

The data for this study were collected from eight

Estonian lakes during the summer period from July

to September in 2014 and are available in open

access (Laas and Khan 2019). The studied lakes

include Lake Peipsi, Võrtsjärv, Saadjärv, Lake Üle-

miste, Mullutu Suurlaht, Lake Erastvere, Äntu Si-

nijärv and Valguta Mustjärv (Table 1). Based on

their area, conductivity, thermal stratification,

alkalinity, chloride content and color, each of these

lakes belongs to different lake types (Ministry of the

Environment 2009) according to the European

Water Framework Directive (European Union

2000). Total alkalinity ranges from 0.5 to

4.8 meq L-1. The lakes also cover a variety of

trophic states, ranging from mesotrophic to

hypertrophic states according to the OECD trophic

state classification (Caspers 1984). In addition, they

differ substantially in their water retention time as

well as in their catchment characteristics, especially

in regard to land use. Each of these lakes has been

described in detail in previous studies (Rõõm and

others 2014; Cremona and others 2016; Laas and

others 2016).

Monitoring Stations and Measured
Parameters

All lakes were continuously monitored between 6

and 12 full days using a high-frequency measure-

ment platform or a small lake buoy (OMC-7012

data-buoy). In most lakes, the automated stations

were installed near the deepest point, except in

lake Peipsi, where it was placed in Mustvee bay,

approximately 1 km from the western shore be-

cause of security reasons. A multi-parametric sonde

(Yellow Springs Instruments 6600 V2-4) was used

for continuous measurements of DO concentration,

pH and water temperature at 0.5 or 1-m depth in

all lakes. The multi-parametric sonde was equipped

with an in-built cleaning system for optical DO

sensor, whereas other sensors were manually

cleaned on a weekly basis. Dissolved CO2 was

measured at 0.5 or 1-m depth using membrane-

covered optical CO2 sensors (AMT Analysen-

messtechnik GmbH) with measuring ranges of

30 mg L-1 and 80 mg L-1. Measured water tem-

perature and air pressure data were used to calcu-

late the real pCO2 and dissolved CO2 concentration

from the signals captured from the sensor, accord-

ing to manufacturer manuals (Laas and others

2016). A calibration of all sensors was performed

before and after the deployment. For data collec-

tion and storage, all platforms were equipped with

OMC-045-II GPRS data loggers. Sensors were

automatically measuring at a time interval of 10 or

30 min depending on power availability.

Alkalinity, Metabolism and DIC Dynamics in Lakes



Data Analysis

For each lake, an alkalinity value for each time step

was calculated using pCO2 and pH as input

parameters for the CO2sys program (Lewis and

others 1998) following Millero (1979). These were

then averaged to obtain the mean alkalinity value

for each lake and sampling period. Dissolved inor-

ganic carbon (DIC) was calculated for each time

step using pH and the average alkalinity as input

parameters in CO2sys. Alkalinity had to be aver-

aged to avoid unrealistic DIC values due to the

large errors in alkalinity propagated by the limited

precision of the field pH sensors (typically � 0.2 pH

units). Using average alkalinity and pH as inputs

resulted in cleaner and more realistic DIC values

compared to other alternatives of calculating DIC

(for example, using CO2 and pH as inputs).

After obtaining the DIC time series, the next step

was to identify the presence of a 24-h metabolic

signal for DO and DIC. This was done by perform-

ing a continuous wavelet-based analysis using the

R (R Development Core Team 2015) ‘‘biwavelet’’

package (Gouhier and others 2015). Wavelets can

be used to identify time-dependent structures in

time series, in this case the diel metabolic pattern

known to occur for DO and DIC concentrations

(Hanson and others 2006) (see supplementary

material). As a support to the wavelet analysis,

periodograms for DO and DIC concentrations were

made using the time series analysis ‘‘TSA’’ package

in R (Chan and Ripley 2018). Periodograms offer a

more general view of the main time-dependent

structures within an entire time series.

Then we assessed how DIC variability relates to

DO variability by testing the sensitivity of DIC to

changes in DO. Bivariate wavelets were used to

identify common time periods at which DO and

DIC oscillate, and how these common periods

evolve during the entire length of the time series.

Besides indicating common oscillations between

two time series, cross-wavelets also examine whe-

ther there is a consistent phase relationship be-

tween the series, which is suggestive of causality

between the two time series (Grinsted and others

2004) (see supplementary material). In the case of

common oscillations between DO and DIC, one

would expect an anti-phase relationship because

the metabolic reaction implies that an increase in

one leads to a decrease in the other, and vice versa.

Because of the large amount of noise and random

signals that are not related to the metabolic diel

signal, we decided to enhance the signal-to-noise

ratio by isolating the 24-h-frequency oscillations of

DO and DIC from all other signals. To do so, we
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used the Singular Spectrum Analysis ‘‘SSA’’ R

package (Zhao 2016). SSA is a tool that allows

identifying and extracting fundamental oscillatory

components from an original time series (see sup-

plementary material). The R code that was used in

this analysis is published and freely available (Khan

2019). Once the 24-h diel cycle components were

identified, they were grouped and reconstructed

into a new time series following Golyandina and

Korobeynikov (2014). This method efficiently iso-

lates the diel seasonal signal from a time series,

even if it is weak or if the time series is noisy (see

supplementary Figures S5 and S6 for comparison of

a diel signal extracted from a clean versus noisy

time series). For lake Äntu Sinijärv, the diel signal

in DIC was very weak and had to be extracted by

performing a Multivariate Singular Spectrum

Analysis (MSSA) using the isolated diel signal of

DO and the original time series of DIC as inputs.

DIC and DO rates of change (dDO/dt and dDIC/dt)

were calculated from the signal enhanced series

and expressed in lmol L-1 min-1. Therefore, cor-

rections for air–water gas exchanges are not nec-

essary because the rates are calculated from isolated

metabolic signals that have been removed from the

effect of any non-metabolic process, including air–

water gas exchanges.

Linear regressions were used to test the effect of

dDO/dt on dDIC/dt in all lakes. Although all these

relationships were highly significant, the main

parameter of interest was the slope of the rela-

tionship. A theoretical slope of about - 1 is ex-

pected from the stoichiometry of aerobic

respiration and photosynthesis (Stumm and Mor-

gan 1996; Torgersen and Branco 2007). The slope

of - 1 is an estimation that can be applied only in

aerobic conditions without anaerobic respiration or

other processes that can affect DIC concentrations

such as calcite precipitation or direct DIC inputs

following a storm event (Stumm and Morgan 1996;

Vachon and del Giorgio 2014). All measurements

were taken from surface waters where the effect of

anaerobic respiration on DIC concentrations is not

relevant according to the depth distributions of

temperature, DO and CO2 reported for each lake

during the same period of measurements in a pre-

vious study (Laas and others 2016). However, cal-

cite precipitation could influence DIC

concentrations in these lakes. Therefore, deviations

from the theoretical - 1 metabolic slope were

interpreted with a focus on calcite precipitation.

The final step was to assess how alkalinity affects

the sensitivity of DIC to metabolism. To do so, the

slopes of the linear regression models were plotted

against the alkalinity for all studied lakes. We

compared the empirical slopes with the theoretical

slopes under the presence of reactions with calcite.

For each lake, we calculated a theoretical time

series of dDIC/dt that accounts for the effect of

precipitation and dissolution of carbonates on

dDIC/dt following a simple model:

dDIC=dttheoretical ¼ �dDO=dt � a dDO=dt ð2Þ

where a is the molar ratio between precipitation

and dissolution of carbonates and NEP (McCon-

naughey and Whelan 1997). The values of a were

calculated according to three different hypotheses

(Table 2). The first hypothesis assumes that a = 0

which corresponds to a system with no calcite

precipitation, that is, where all changes in DIC are

explained by aerobic metabolism. The second

hypothesis assumes an alkalinity-dependent value

for a, using the same values as suggested in Marcé

and others (2015), whereby a = 0 at alkalinity be-

low 1 meq L-1 (McConnaughey and Whelan

1997), a = 0.2 at alkalinity between 1 and

2.23 meq L-1, and a = 0.6 at alkalinity above

2.23 meq L-1. The third hypothesis assumes these

same alkalinity-dependent values for a with an

additional correction for the benthic fraction (BF)

of total primary production in the lakes. By doing

this correction, the a parameter is able to account

for pelagic calcite precipitation as well as benthic

calcification by calcifying macrophytes. To do this,

we used the percentage of benthic primary pro-

duction of each lake obtained from a previous

study on these same lakes that was conducted

during the same period of study as the data used

here (Cremona and others 2016). We assumed

benthic production to be composed of calcifying

macrophytes, based on previous studies of these

eight lakes (Cremona and others 2016; Laas and

others 2016). An approximate 1:1 calcification to

photosynthesis ratio in such organisms has been

reported (McConnaughey 1991; Mcconnaughey

and others 1994; McConnaughey and Whelan

1997). Therefore, we attributed an a value of 1 to

the benthic production and corrected the a values

from Marcé and others (2015) according to the

ratio between pelagic primary production and

benthic primary production.

At this point, one must remember that the ob-

served dDIC/dt values come from DIC values that

were calculated using a constant average alkalinity.

Although the diurnal changes in alkalinity are too

small to be accurately estimated by using CO2 and

pH coming from field probes, assuming a constant

alkalinity value tends to underestimate the changes

in DIC, as it omits changes in the chemical equi-

Alkalinity, Metabolism and DIC Dynamics in Lakes



librium of the carbonate system. To overcome this

limitation, we calculated a corrected observed

dDIC/dt that accounts for calcite reactions:

dDIC=dtcorrected ¼ dDIC=dt � a2 dDIC=dt ð3Þ

where a is the calcification parameter in equa-

tion 2. This procedure is thus generating a cor-

rected observed dDIC/dt dataset (and thus an

observed slope between dDIC/dt and dDO/dt)

which is dependent on the three hypotheses used

for assigning values to a. Note that for Hypothesis 1

a equals 0 and dDIC/dtcorrected equals dDIC/dt. The

slopes dDIC/dtcorrected versus dDO/dt and dDIC/

dttheoretical versus dDO/dt were calculated using

linear regression and compared by plotting them

along the alkalinity gradient. The rationale of the

analysis is that the theoretical slopes and the ob-

served slopes (using dDIC/dtcorrected) will agree only

in the case of using the appropriate hypothesis for

the calcite reactions (a).

RESULTS

Presence and Strength of Metabolic
Signals in DO and DIC Dynamics

The presence of a metabolic signal was assessed

using periodograms which estimate the spectral

density of a time series and shows what are the

dominating frequencies of oscillation composing it.

The dominating spikes at 24-h frequency indicate a

clear diel metabolic signal (24-h pattern) for DO

and DIC in most lakes, except in Äntu Sinijärv,

Saadjärv and lake Ülemiste where the diel signals

are weak resulting in a shorter spike at the 24-h-

frequency mark (Figures 1 and 2). The peri-

odograms showed an important number of signals

at other frequencies that did not correspond to the

metabolic diel pattern. While the spectral density of

these non-metabolic signals was relatively low,

their relevance was amplified when using rates of

change (dDO/dt and dDIC/dt) rather than raw

concentrations, especially the noisy signals at short

frequencies (see Supplementary Figures S1 and

S2).

Relationship Between DIC and DO
Variability

Cross-wavelets were used to identify at what time

period synchronized oscillations can be found be-

tween DO and DIC and the phase of these syn-

chronizations. Due to the metabolic stoichiometry

between DO and DIC, an anti-phase synchroniza-

tion between both variables is to be expected at the
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24-h frequency, whereby an increase in DO results

in a decrease in DIC, and vice versa. This was

apparent for most of the lakes in the cross-wave-

lets, where a ‘‘cloud’’ of arrows pointing to the left

indicate a relatively strong anti-phase synchro-

nization around the 24-h period (Figure 3). Al-

though this diel synchronization in oscillation was

relatively strong in some lakes (Valguta Mustjärv,

Erastvere, Mullutu Suurlaht, Peipsi and Võrtsjärv),

it was weak in others (Saadjärv, Ülemiste and Äntu

Sinijärv), causing disruptions in the synchronicity

between DO and DIC along the time series (Fig-

ure 3). The lack of coupling was most obvious in

lake Äntu Sinijärv. All lakes showed a relatively

important amount of significant coupling in oscil-

lation at time periods shorter than 24 h (Figure 3).

Figure 1. Periodograms for dissolved oxygen (DO) in the studied lakes. The x-axis corresponds to the frequency of

oscillation (hours) at which the spectral density is estimated. The y-axis corresponds to the spectral density or power

spectrum, with higher values indicating important features of the signal at a given frequency. Notice the dominating spikes

at 24-h frequency.

Figure 2. Periodograms for dissolved inorganic carbon (DIC) in the studied lakes. The x-axis corresponds to the frequency

of oscillation (hours) at which the spectral density is estimated (y-axis). The y-axis corresponds to the spectral density or

power spectrum, with higher values indicating important features of the signal at a given frequency. Notice the

dominating spikes at 24-h frequency.
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These common oscillations ranged from time peri-

ods of less than 1 h up to several hours and could

be caused by water movements caused by convec-

tion, minor mixing events or seiches, as well as

noise resulting from the sensitivity thresholds of

the sensors.

The presence of non-metabolic signals in DO and

DIC that were oscillating at other frequencies than

the metabolic 24-h frequency resulted in poor

relationships between dDO/dt and dDIC/dt (Sup-

plementary Figure S3). However, using the isolated

metabolic diel signals to calculate dDO/dt and

dDIC/dt (Supplementary Figure S4) resulted in

much stronger relationships between the two

(Figure 4). These relationships were significant for

all lakes, with substantial differences in slope be-

tween lakes.

In most of the lakes, the slopes of these rela-

tionships were close to the ones found by per-

forming linear regression models on dDO/dt and

dDIC/dt obtained from the raw data, yet the R2

values dramatically increased (Table 3). However,

the slope for this relationship in Saadjärv turned

from positive to negative. Considering the low R2

value (0.05) of the relationship using the raw data

and its high increase (R2 = 0.91) when using the

Figure 3. Cross-wavelets between DO and DIC for each lake, showing regions in the time–frequency space with common

power. The power bar represents the amplitude-squared of signals, with higher values corresponding to important features

of the signal. The x-axis represents the time (expressed as day of the year) and allows to see the evolution of common

oscillatory patterns between DO and DIC in time. The y-axis represents the period of oscillation (in hours). Significant

synchronizations in oscillations between DO and DIC at a certain period are delimited by the black contours. Arrows

pointing to the left symbolize an anti-phase relationship. Notice the dominance of a synchronized anti-phase pattern

around 24-h frequency in most lakes.
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diel data, we concluded that on a 24-hourly scale,

the slope was indeed negative, which goes in line

with the anti-phase relationship between DO and

DIC expected from ecosystem metabolism.

Effect of Alkalinity on the Sensitivity
of DIC to Metabolism

Finally, we wanted to know how alkalinity affects

the sensitivity of DIC to metabolic changes in DO.

For this, we tested the three hypotheses using

dDIC/dttheoretical (equation 2) to see whether me-

tabolism is the only driver for changes in dDIC/dt

(Figure 5A), whether pelagic calcite precipitation

plays a role (Figure 5B) or whether pelagic and

benthic calcite precipitation both affect the sensi-

tivity of DIC to metabolism (Figure 5C). The ob-

served slopes did not fit the expected slope under

the first hypothesis, equal to - 1 in all lakes (Fig-

ure 5A). For the two last scenarios (Figure 5B and

Figure 4. Relationship between rates of change in DO (dDO/dt) calculated from the isolated diel signal of DO, and rates of

change in DIC (dDIC/dt) calculated from the isolated diel signal in DIC. All relationships are significant (p < 0.001), with

the slope and R2 values indicated in the top-right window of each plot. The lakes are ordered from low to high alkalinity

(top left to bottom right).

Table 3. Results of Linear Regression Models Testing the Effect of dDO/dt on dDIC/dt Using the Raw Data
(left) and the Isolated 24-h Signal Data (right)

Linear models using raw data Linear models using isolated diel signal

data

Lake Alkalinity Slope p value slope (** < 0.001) R2 Slope p value slope (** < 0.001) R2

Valguta Mustjärv 0.50 - 1.00 ** 0.25 - 0.89 ** 0.97

Erastvere 1.63 - 0.91 ** 0.92 - 0.91 ** 1.00

Mullutu Suurlaht 1.80 - 0.12 ** 0.03 - 0.46 ** 0.74

Saadjärv 2.47 0.46 ** 0.05 - 0.35 ** 0.91

Peipsi 2.80 - 0.22 ** 0.19 - 0.28 ** 0.97

Ülemiste 3.30 - 0.58 ** 0.46 - 0.23 ** 0.95

Võrtsjärv 3.61 - 0.47 ** 0.25 - 0.57 ** 0.95

Äntu Sinijärv 4.80 0.74 ** 0.53 0.11 ** 0.37
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C), the expected slopes of the dDO/dt versus dDIC/

dt relationships were very close to the observed

ones, especially when using the correction for

benthic metabolism (Hypothesis 3, Figure 5C). The

relationship between observed and expected slopes

had the highest R2 value for the third hypothesis

(Figure 5C).

DISCUSSION

Effects of Calcite Precipitation
on the Relationship Between DO and DIC

Comparing dDO/dt with dDIC/dt calculated from

the isolated 24-h signals is a way to assess the rel-

ative importance of metabolism in controlling car-

bon dynamics. The stoichiometry of photosynthesis

and respiration implies a 1:1 relationship between

changes in DIC and DO whereby 1 mol of DO re-

spired produces 1 mol of DIC, and inversely, 1 mol

of DIC is photosynthesized into 1 mol of DO

(Stumm and Morgan 1996). Due to this stoi-

chiometry, it is expected that a slope close to - 1 is

found in the linear relationship between dDO/dt

with dDIC/dt if aerobic metabolism is the main

driver of carbon dynamics (Stumm and Morgan

1996). Calcite precipitation/dissolution processes

can involve deviations from the metabolic slope of

- 1 due to its release/consumption of CO2 (Barrón

and others 2006; Gattuso and others 1999; Obrador

and Pretus 2013). Such deviations can also be

caused by anaerobic processes (Torgersen and

Branco 2007) or can be correlated with major

gradients of ecosystem level, substrate level, and

bacterial community level characteristics (Berggren

and others 2011).

Among the eight studied lakes, only two lakes,

Erastvere and Valguta Mustjärv, showed a slope

near - 1 for the dDO/dt–dDIC/dt relationship

(Figure 4). This implies that changes in dDIC/dt are

strongly negatively correlated, at an almost equal

molar ratio, with metabolic changes in dDO/dt.

These two lakes have the lowest alkalinity values

(1.6 and 0.5 meq L-1, respectively). In all other

lakes of higher alkalinity, the slopes between dDO/

dt and dDIC/dt decrease and gradually approach a

value of 0 at higher alkalinity (Figure 5A), which

involves a deviation from the metabolic 1:1 stoi-

chiometry between changes in DO and DIC. This

means that with increasing alkalinity, the impor-

tance of metabolism in driving changes in DIC

diminishes, as highlighted by Marcé and others

(2015). DIC dynamics in lakes of higher alkalinity

can be also affected by chemically enhanced uptake

of atmospheric CO2 (Kragh and Sand-Jensen

2018). However, our methods of isolating the me-

tabolic diel signal eliminates any physical effects

Figure 5. Effect of alkalinity on the sensitivity of dDIC/dt to changes in dDO/dt for each lake. Comparing the observed

slopes (corrected using Eq. 3) of the dDO/dt–dDIC/dt relationship with expected slopes (calculated using Eq. 2) for each

lake based on three different hypotheses: A metabolism is the only factor controlling carbon dynamics (a = 0), B the a
parameter (as defined in Marcé and others 2015) is added to the metabolism equation to account for effects of pelagic

calcite precipitation on carbon dynamics, C the value of a is corrected for each lake for its benthic fraction to account for

the effect of pelagic calcite precipitation and benthic calcifying macrophytes.
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such as gas exchanges or water movements and

therefore chemically enhanced uptake of atmo-

spheric CO2 is unlikely to be the cause of the ob-

served deviations from the metabolic 1:1

stoichiometry.

Because of the chemical stoichiometry of respi-

ration and photosynthesis, our studied lakes had an

anti-phase coupling between the diel signals of DO

and DIC, but with deviations from the 1:1 stoi-

chiometry at increasing alkalinity, suggesting that

although the anti-phase is tightly linked to photo-

synthetic or respiratory processes, deviations from

this are influenced by the carbonate equilibrium

system. The most plausible explanation of this

mechanism is calcite precipitation, as it is tightly

linked to alkalinity and photosynthetic activity.

High alkalinity lakes are likely to precipitate larger

quantities of calcite due to the high content of

bicarbonates and carbonates. Photosynthesis raises

the pH, influencing the carbonic acid equilibrium

and shifting the balance toward oversaturation of

carbonates (Minder-Zürich 1922; Dittrich and Obst

2004). Therefore, calcite precipitation has been

reported to peak with high summer rates of pri-

mary production (Müller and others 2016). Addi-

tionally, picoplankton and cyanobacteria can act as

nucleation sites for calcite precipitation (Stabel

1986; Dittrich and Obst 2004; Obst and others

2009). The relationship between primary produc-

tion and calcite precipitation has rarely been

quantified in freshwater systems. The few studies

that do so have suggested that depending on the

lake alkalinity, 1 mol of DIC consumed to produce

1 mol of O2 through photosynthesis induces be-

tween 0.2 and 1 mol of calcite precipitation (Me-

gard 1968; Mcconnaughey and others 1994;

McConnaughey and Whelan 1997) and that below

an alkalinity threshold of 1 meq L-1, calcification is

unlikely to occur (Marcé and others 2015). This

range is consistent with the a values used in this

study. A similar range is reported in marine

planktonic assemblages (Riebesell and others

2000).

The chemical equation describing calcite precip-

itation implies that for each mole of calcite that

precipitates, there is a loss of 1 mol of DIC and

2 mol of TA (equation 1). The combined effect of

metabolism and calcite precipitation results in a net

loss of - 1 to - 2 mol of DIC per mole of DO

produced. However, the observed slopes of the

dDO/dt–dDIC/dt relationships in the 8 studied lakes

ranged between - 1 and 0.1, which is inconsistent

with the theoretical slope of - 1 to - 2. This

inconsistency can easily be explained by the

methods used to calculate DIC. The high variability

in alkalinity caused by the limited sensitivity of

field pH sensors made it impossible to use diurnal

changes in alkalinity. Instead, the alkalinity values

were averaged and used in combination with pH to

calculate DIC. Correcting dDIC/dt for theoretical

changes in alkalinity (equation 3) results in slopes

that are in the correct range between - 1 and - 2.

This highlights the importance of considering

diurnal changes in alkalinity for correct estimations

of DIC, something still challenging with current

sensor technologies.

Here, we show that the slopes clearly deviated

from the metabolic slope of - 1, especially at

higher alkalinity (Figure 5A). Accounting for pe-

lagic calcite precipitation showed a positive rela-

tionship (R2 = 0.47) between the observed slopes

and the expected slopes (Figure 5B). However, in

the case of two lakes, Mullutu Suurlaht and Äntu

Sinijärv, the difference between observed and ex-

pected slope was still relatively high compared to

the other lakes (Figure 5B, alkalinity 1.8 and

4.8 meq L-1, respectively). These two lakes share

the common characteristics of being shallow and

having a thick layer of calcifying macrophytes of

the genus Chara at their bottom floor. An approx-

imate 1:1 calcification to photosynthesis ratio

(a = 1) in such organisms has been reported

(McConnaughey 1991; Mcconnaughey and others

1994; McConnaughey and Whelan 1997). This is

due to their ability to use HCO3- instead of CO2 for

photosynthesis and due to an efficient coupling

between carbon uptake at the acidic part of the cell

surface and CaCO3 precipitation at the alkaline

surface of the cell (Mcconnaughey and others

1994). The benthic fraction of primary production

for these two lakes is 46% for Mullutu Suurlaht

and 94% for Äntu Sinijärv (Table 2) (Cremona and

others 2016). In these two lakes, correcting the a
values for the BF of primary production increased

the fit between observed and expected slopes

(Figure 5C). This suggests that benthic calcification

by macrophytes can be equally or more important

than pelagic calcite precipitation in driving changes

in dDIC/dt in lakes that have a high fraction of

primary production of benthic origin, and high-

lights the need to be spatially inclusive and include

all metabolic components (benthic and pelagic)

when addressing ecosystem-scale DIC dynamics

(Obrador and Pretus 2013). This is especially rele-

vant in shallow oligotrophic systems where benthic

charophytes can reach similar production rates as

pelagic phytoplankton communities under highly

eutrophic conditions (Christensen and others

2013).
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Besides calcite precipitation, other factors may

lead to deviations from the metabolic slope of - 1,

such as physical processes or anaerobic respiration.

However, any physical effects such as gas ex-

changes, water movements, or external inputs of

DIC due to storm events can be discarded because

the metabolic diel signals were isolated from any

non-metabolic signal. As for anaerobic respiration,

the vertical distributions of temperature, DO and

CO2 presented in Laas and others (2016) for each

lake during the same measurement period as this

study, suggest that anaerobic processes have no

major effect on surface waters at the measuring

depths that were used for this study, especially

considering the absence or very weak presence of

gradient in CO2 concentrations in the surface water

layer. Two strong evidences suggest that calcite

precipitation is the main mechanism causing these

deviations: firstly, the observed slopes are strongly

correlated with the expected slopes under calcite

precipitation conditions, and secondly, the degree

of deviation from the metabolic slope is positively

correlated with lake alkalinity. Several other stud-

ies in other aquatic systems have suggested that

calcite precipitation/dissolution is responsible for

such deviations due to the CO2 release/consump-

tion (Gattuso and others 1999; Barrón and others

2006; Obrador and Pretus 2013).

Recent evidence suggests that in lakes of high

alkalinity, large pools of DIC support higher rates of

primary production, whereas in lakes of low alka-

linity, primary production can be strongly DIC-

limited (Kragh and Sand-Jensen 2018). Consider-

ing the coupling between primary production and

calcite precipitation, it is likely that high production

in lakes of high alkalinity during summer produc-

tion peaks results in high rates of calcite precipita-

tion that compensates photosynthetic DIC

depletion by releasing CO2. However, this mecha-

nism is likely irrelevant in low alkalinity lakes,

where DIC limitation minimizes primary produc-

tion and calcite precipitation.

This study focuses on inorganic carbon dynamics

within the aquatic systems without directly

addressing questions related to CO2 emissions to

the atmosphere. An interesting addition to this

work would be to relate the observed and expected

sensitivity of DIC to metabolic changes in DO, to

CO2 emissions. Even though there is a net loss of

1 mol of DIC per mole of calcite that precipitates,

the process of calcification is acknowledged to in-

crease CO2 supersaturation in surface waters be-

cause it also releases 1 mol of CO2, thereby acting

as a carbon source to the atmosphere (Opdyke and

Walker 1992; Frankignoulle and others 1995; Su-

zuki 1998). Considering that DIC dynamics are

largely driven by calcite precipitation in lakes of

high alkalinity, this process is likely to be an

important driver of CO2 supersaturation in these

lakes. Marcé and others (2015) suggested a

threshold of 1 meq L-1 above which metabolism

alone is not enough in explaining DIC dynamics.

This threshold seems consistent with our results

(Figure 5), but only one lake at alkalinity lower

than 1 meq L-1 is represented in this study and

therefore we cannot clearly identify and confirm

this threshold. Marcé and others (2015) further

suggested that 57% and 34% of the global area

occupied by lakes have alkalinity values above

1 meq L-1 and 2 meq L-1, respectively, which

implies an important global contribution of calcite

precipitation to CO2 supersaturation in lakes. Our

results agree well with this statement, as all of the

lakes above 1 meq L-1 (7 out of 8 lakes) show clear

deviations from the - 1 metabolic slope, with a

tendency of stronger deviations at higher alkalinity

(Figure 5B and C). Therefore, calcite precipitation

may have a major contribution in global atmo-

spheric CO2 emissions from surface waters.

Numerical Considerations

The periodograms for DO and DIC showed a large

number of signals with oscillations at shorter time

periods than the 24-h metabolic diel signal (Fig-

ures 1 and 2), but the spectrum was so weak that it

seemed of minor importance. However, when cal-

culating rates of change from the raw DO and DIC

data, these signals at shorter period were amplified

to the extent where the diel signal became hidden

in shorter oscillations of high amplitude (Supple-

mentary Figures S1 and S2). These short time

period signals cannot be explained by the metabolic

balance between photosynthesis and respiration

and are caused by non-metabolic processes. All the

studied lakes have a large amount of noise in their

DO and DIC data resulting from the high frequency

in measurements that capture noisy random sig-

nals, and imprecisions in the pH sensors that create

substantial errors when calculating DIC values due

to the exponential scale of pH. Other physical

processes may also cause the random short time

period signals observed in these lakes, such as

atmospheric or internal gas exchanges (Wissel and

others 2008; Antenucci and others 2013), as well as

water movements caused by convection, turbu-

lence, minor mixing events or seiches. The cross-

wavelets for DO and DIC reveal that significant

oscillatory signals are commonly found between 1-

and 8-h frequency. This cannot be classified as
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noise and needs to be linked to internal processes of

the lakes. One explanation could be found in the

seasonal pattern of internal seiches which corre-

sponds well to the 1- to 8-h frequency in oscillation

(Bernhardt and Kirillin 2013). Despite the amount

of noise and non-metabolic signals, the cross-wa-

velets revealed a clear anti-phase coupling between

DO and DIC around the 24-h period in most of the

lakes, which is to be expected if aerobic metabolism

is the main driver of both DO and DIC dynamics

(Figure 3). In some lakes, this coupling was weak

or interrupted, especially in Äntu Sinijärv where it

was almost totally absent due to the particularities

of this lake (DIC dynamics are mostly driven by

groundwater DIC-rich inputs).

Despite the amount of noise and sometimes

weak diel signals, Singular Spectrum Analysis is an

efficient tool that allowed us to enhance the me-

tabolic diel signal-to-noise ratio, by isolating and

extracting the diel signals for DO and DIC. In

contrast to a smoothing function which would

smooth out the noisy signals without getting rid of

them, SSA identifies the fundamental oscillations

within a time series. Therefore, the diel signals that

are isolated using this tool are not affected by un-

wanted signals such as noise or non-metabolic

processes.

CONCLUSIONS

� Calcite precipitation is an important process in

driving carbon dynamics in lakes of high alka-

linity, which represents more than half of the

global area occupied by lakes and reservoirs.

Acknowledged to act as a carbon source to the

atmosphere, it is likely that calcite precipitation is

an important driver of CO2 fluxes in lakes

globally.

� The importance of calcification in driving carbon

dynamics can be assessed using an alkalinity-

dependent parameter (a). In lakes that have a

high benthic fraction of primary production, a
must be corrected to account for calcification by

macrophytes.

� Considering diurnal changes in alkalinity is

mandatory for precise estimations of DIC con-

centrations and dynamics.

� The problem of noisy high-frequency measure-

ments datasets can be effectively overcome using

Singular Spectrum Analysis to enhance the

signal-to-noise ratio by extracting the signal of

interest, such as diel signals.
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