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ABSTRACT

This report describes an application of the general method of
integrating initial value problems by means of regular splines
for equations with movable singularities. By defining the
families of functions that make up the regular splines such
that they closely resemble the behaviour of the solutions of
the differential equation, it is possible to trace the location

of the singularities very precisely.

To demonstrate this we treat Riccati differential equations.
These are known to possess solutions with poles, usually of the
first order. This type of differential equation or system
arises in describing chemical or biological processes or more

general control processes.

To make the report self contained it starts with an introduction

to regular splines and develops the algebraic tools for the
manipulation of rational splines. After the description of the
integration procedure, the asymptotic behaviour of the systematic
error is investigated. An example exhibits the results obtained
from the program given in Appendix A. Then Riccati equations
are introduced and methods for the determination of the singularities
are developed. These methods are tested numerically with several

examples. The results are given in Appendix B.






1.Introduction

The word spline originated from a device used by the draftsmen
to obtain graphically smooth interpolations of a given set of
points (Xj,yj), jJ=0,... m by fitting an elastic rod to these
locations on a piece of paper. The rod would then satisty the

physical laws of elasticity, i.e.

2
D AON dt =mi
J-[ ﬁ{_ y'(t)2] t min .

and y(Xi) = yj y =0,...,m.

Assuming y'(x) to be small, the above variational problem

is usually replaced by
" 2 <
j(y )"dt = min
Hence the Euler equation becomes

yW(x) = 0 and it is to hold between the
supporting points x;. Furthermore the rod is linear outside

of [Xo.,Xm |

Hence the function resulting from the above graphical
interpolation under the said simplification - called a
natural cubic spline — may be specified as:

M D ux e CO , =X Xa .

ii) In each subinterval L =[x;1,X;] we have
ux) = ajt+ bz + % Cj2 22(l+djz) ,with z = x-Xxj,

to be a cubic polynomial.

111)  The function u is interpolating, i.e.

u(XJ) =Y, J :Oa """ , 1.

iv)  The function u is a natural spline, that is twice
continuously  differentiable in (-0, + o),
and

u"'(x) =0 for x < x, and x,< X.






There are many different ways this concept of spline has been
generalised and we refer the reader to the bibliographies
on spline literature by Schurer et al.[22, 7 and 28],
Usually u(x) will be a linear combination, depending on a specified
number of parameters in each sub-interval I.. In this paper we
deviate from almost all of the other generalisations by replacing
the linear expression (1 1ii) by a nonlinear one. First results in
this direction can be found in Arndt [3],Braess-Werner [8],
Meder [17], Runge [18], Schaback [19,20],Schomberg [27], Spath[23],
Werner [24,25,26].
Schaback found that the interpolating rational splines could be
obtained from a variational problem [19].This property was put
into an abstract setting by Baumeister [5].
To illustrate this type of generalisation, we will use the example
of special rational splines with a quadratic polynomial being the
numerator and a linear polynomial being the denominator. In every
sub-interval I;, we may write this function as

¢

2) u(x) =a;+bz+ 5 22/(1—djz) . Z=X—X;.

Before giving the definition of a regular spline, we establish
some properties of the rational splines.
Equation (2) may be re-written in the following forms

3
C. cd.z
_ bl I
) u(x) = a;+bgz+ 572+ 21-dg)
or
C.
_ j 1
4) u(x) = aj+bjzj+ ZdZ{l_de (1+djz)} .
J
The last one is particular ly useful for the calculatio n of the derivative s:
5) W) = b -+ %
b2y 2d,1-dp)’ ’
(6) u"(x) = (lC(Ji)‘Q’ , and more general
—-dz
j
y vied 2
(7 u(x) = L , v=23,...

20-dz)"™



From (3) respectively (5) (6), (7) we read off

"
u .

(8) a; = uj, bj = u'j, cj:u"j,and dj: J,,
311j

Furthermore from (7) and (6) we conclude that the higher order

derivatives of u(x) are functions of x and the two parameters u j

together with either u jll or u}

2. Regular splines

In [20] Schaback discovered that only few properties of the rational
splines were really used in the construction of the interpolating
splines and gave an axiomatic formulation. The axioms were further
stream-lined in [26] and appended in [25] to suit the need of
Tschebyseheff approximation. The properties needed for the application
to differential equations are as follows.

Let I = [a,B] denote an interval of the real axis R, let xy <x; <...

m
denote points of I and write I. =[Xj.1.x;Lh;  =X-X.1.

Furthermore assume tj(x,c,d) are two-parametric families of functions

ce D;j> de D2jand xelj We assume t; to he (at least) k-times
continuously differentiable with respect to x. Then the following

definition is well defined:

(9) S(Xy, X, ity,nt ) =f{ulux) e C(I),

0o -
ux) = p;(x)+t;(x,¢;,d;) in Iy,
j=1,..,m,p; being a polynomial

of deg ree less than k.

In addition we ask for the following axioms to be satisfied;

Axioms

(A1)  k - Regularity
For kth order derivates the difference tlf(x,c,d) - tlﬁ(x,é,a) has
less than two zeros in I. which are separated by a point in which

the difference is different from zero.
This axiom makes it possible to introduce the kth order derivates of two

different points of I;, say x;; and xj, or any two analogous expressions
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"

(e.g. u} and u'j )as the natural parametrisations of the families t;.

Following the notation of cubic splines we may write M;j =y (xj) and
hence tj (x, Mj-1, Mj) .

We further make some quantitative assumptions;

(A2) k - Smoothness

The functions tj(x, Mj-1, Mj) are k + £ times continuously
differentiable with respect to x, £ being > 2, and have continuous
partial derivatives with respect to Mj-1 and M;j.

(A3) k - Boundedness
The derivatives of tj (x, Mj-1, M;) of order k+.2. ... , k+¢L

with respect to x depend Lipschitzian on the parameters

Mj.1, Mj) or (Mji1,(Mj-Mj1)hj ) or (Mj,u") .

The last property is motivated by what was found for the rational splines
at the end of the previous section.

It 1s left to the reader to find out that
i) t(x,c,d) = c(x+d)* , a real
11) t(x,c,d) = c.exp(dx)

iii)  t(x,c,d) = c.log(x+d)

are candidates for regular families. In particular for o =3 we obtain
the cubic spline from 1) via definition (9).

It might be noted that another property called stiffness is important

if one concerns oneself with Tschebyscheff approximation by classes
of regular spline functions, compare [24,25].This is important for the
closure of the classes of regular splines under uniform convergence

in every closed sub-interval of (a,B3).

3. Lemmas on divided differences and applications

Manipulation of regular splines is easily performed by means of

divided differences. Hence we collect some formulas for these expressions.



Denote Al(xi,xk)u = = : and
k+1 1 k
(10) A (Xio”"’xik+1)u = AC(XiO,Xik+1) A (c,xl,...,xik)u )

Among other properties it is worth noting that the divided
differences are invariant under permutations of the arguments

X. Xi
o k+1

> compare [27].
If the data u; stem from a function u(x), defined in I having
derivatives of sufficiently high order, then limits x;— xx may be

considered and the following conventions may he used: u; = u(x;.),

u’; = u'(x;), ... furthermore
1 llm 1 '
A(x,Xx,)u = X, — XiA (x,,x)u=u! ,
(11) AP(xi, Xj, XjeDu = (A (X xj)u-u)/hi
12) A(xj, X, xp)u = (W5 - A'(xi, x5 )wh,

where we employ the notation h; = x;-x;.;  already introduced in the
previous section.

An immediate consequence of (11) and (12) is:

Lemma 1: Let L. = L = A then
Lemma 1. i~ hoth M h,+h,,, °

(13) A D (XX, XU+ i A% (Xj-1,Xj, X u = A%(Xj1 ,Xj, Xjr u

This formula may be generalised to higher order difference quotients

and he applied to solve the interpolation problem, compare Arndt [4].
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Lemma?2: Letu e C* [x;xi1]. Then
5 2u i+ u"
(14) A*(xj,xx)u = ——— + R [u],
where h = x-xj, u" = u"(x) and
h2 4 4 h2 v
R[u] = _?[ZA (Xj,xj,xj,x,x)u-er (Xj,Xj,X,X,X)u]:_ u (g)

24

_ _h62j (x —t)-[h® = (x - )*]-u" (t)dt
Xj

with some intermediate & .
The proof follows from the identity
3 A%(xi,xi,x)u = [2A% (xi.x;.xi) +A% (x,x,X)
+ h(2 A’ (xj xjx;.x ) - A (xj.x;, x,x) - A (xj.%, x,x))] u

= i+ %u"h’[2 A" (xj,x.%,%x, x)u+ A (x5.x;.x,%x,x)u].

The integral representation is obtained from the Peano kernel

theorem, as

fo (2f'= 3A'(x ,x ) f + f"))
2h? h®

4
A(Xj,xj,x,x,x)f =

and f =(x-t)’+ for Xj <t<x ie. fi=1f;=1=0 imply

4 4 _ f" 3f
2A" (x X, x X, x )F + AT (x L, x5, x,x,x ) f = TR

Hence the kernel has the form

K(t,x):—h?z[zA“(X X, X X,X)+A4(Xj,Xj,X,X,X)]f=—%[(X—t)—(x_t)B]-

AR R

h2
In the following the arguments of the divided differences are
always points Xxj, Xy etc. To simplify notation we write

A' (k) instead of A'(xj.,xy) etc.



An easy consequence of (11,), (12), (14), is

Lemma 3 ; Let ue C° , and h=xj,, -x; the length of the interval [x;x;:]then

(15)  A(jojthu+ A2+ 1Li+H) u=(Wj — ) /h= (u'sr + ")) /24R
where  R™ =-h*"[DG,j.j,j+l,j+1)u+
2 X.+ X.
+A L J, i+ L+ 1)) :—g{uw 12“1)+0(hz)} .

The result. (15) is obtained by adding (14) for j and j+1 with
x equal to xji; or X; respectively.

One should observe that above error estimate though proved only
for x > x; 1s independent of this relation and applies for x < x;
also, if the differentiability assumption is satisfied.

As was said before, we use the rational spline for demonstration
and as a preparation derive the following formulas.

let v(x) = 1—ldx then

16 Al Lk)v = 1 and by induction
(16) GOV = ey @-de,) 4 by

_ d"
A0 KOV = g V@ —dx,)

In particular ,if

_ e (1 _q4_
u(x)—a+bc+2dZ(1_dZ 1-dz)

and N:l—d.(xj+1—xj) ,

, Z=X —X. ,

then e.g.
A (., u = 5
A, j.j+1)u = S5
NG, j+Lj+u =
A*(j+1,j+1,j+1)u=

AGLi,j+l,j+r1)u= <4 .




In general

k-2
(17 ) A (fo Goj+ 1, j+Du = & de for k > 2.

Since u; and u, apparently determine c,d and N these
quatities determine every derivative and divided difference of
higher order in a very simple manner.

Hence we note for further use that

(18) N = A*(j.j.j+Du/ A*(,j+1,j+D)u
c =2 (A(ujoi +Dw)?*/ A*(Guj+ 1Lj+1)u

d = A’(j.j,j + Li+Dw A%G,j +1,j +Du.

These formulas describe c¢,d,N in terms of u and its first derivative

at xj and Xj; .

4. Some remarks on interpolation

The interpolation problem for rational splines was first treated by

Schaback when k=2 in his Dissertation [19]. The generalisation

to regular splines and some improvements were given in [20], and this
approach was generalised by Armndt[ 4] to k >2 .

We consider here the case k=2 only, i.e. splines that are twice

continuously  differentiable.

Problem: Given interpolation data (xj,yj),j=0,..., m and

boundary data M, or u, and M,, or u\, find

u(x) € S satisfying these conditions.

We try to represent u(x) by means of y,,.... ynoand M, ,..., M,, and
derive the determining equations from this representation.

It is immediately seen that
(19)  ux) =tj(x,Mj.; ,Mj)+y; +z A (-1 .j)y -t (x;,Mj_.,M))

- z.A'G-1,))t (*. M1, M;)in]i ,again z=x-%xj *
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Application of Lemma 1 furnishes the equations
L A1, 3t (o, My, M)+ A%Gajaj + Dt (s, MM .)

= AG-lj,j+ Dy, j=1,..,m-1,
which transform to

(20) }\*J' Mj-l + 2MJ + Mj Mj+1 = 6 A20_19J9J+1)y + R(])_] = la"': m '19

The boundary data either enter by giving M, ( resp.M,, )explicitly or
by providing A? (0,0,)y,h,=1, =0, uo=1, i.e. adding another one

to the above equations and similarly for j =m.
R“¥may be obtained from Lemma 2. It is of order h®> if the M; and

A*(GjDM  are in a closed bounded region such that the fourth
order derivatives of u(x) stay bounded.
Now the left hand side of (20) 1is of the form

M

0

A .

| with a matrix A which has a bounded inverse.
M,
If the fourth order derivatives of tj(x,M;.;,M;) depend Lipschitzian
on M;;and M;, say, the right hand side of (20) constitutes a

contracting operator in some norm with respect to the vector of the

M;if h is sufficiently small; that is, the mesh generated by {x;} in I
is sufficiently fine. Hence one may solve for the M; by iteration,

if the values of M; are admissible as parameters of the families t;.
Assuming this assumption to be met, which may be a restriction on

y(x) e C°,one can see that the interpolating splines and their

derivatives converge to y(x),due to the formula
Wx)-yVx)= o0onh*Y) for v=0,1,2.3,

uniformly in each I;. That is to say the convergence of the third

order derivative is uniform in each subinterval and although there



may be discontinuities at the knots Xx;, the jumps there are
small since at the left side and right side of x; the values

of u'" (x) are close to that of the continuous function y" (x).

For a complete proof the reader is referred to [26].

5. Integration of initial value problems.

In this section we consider the classical initial value problem
for ordinary differential equations.
Given

f(x,y) in a domain G, sufficiently smooth, say

four times differentiable,
(Xo¥o) € G,

find x, > x, and yx) e C* [x, ,x; ] such that

y'(x) = f(x,y(x)) and

y(Xo) = Yo -

Here we report on a method for the numerical solution of this
problem by regular splines as worked out in the Dissertation

of Runge C183 . It has already been used by Loscalzo-Talbot in the
special case of the cubic spline [16 ] . Lambert & Shaw [12,13,14]
used rational and more general expressions to find a solution of

the initial value problem, but in an explicit way that proved
cumbersome in its application. We give an explicit set of formulas
for the rational splines to demonstrate the ease of application

of this method and also discuss its remarkable accuracy.

For stability reasons we use k = 2. Higher k require additional
efforts for numerical stabilisation and will be dealt with in

another paper.

Method: (a) To initialise the solution we need u, , u, u",.
We may take

21) Uo=Yo, Uo=f(Xo,¥ ), W" =f Xo,¥) + £ (X0 ,¥0) U

If it is inconvenient to calculate f, and fy , any other

initialisation will also do.
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(b) Recursive definition of u(x) in I;; for j =0,1,...

Prescribe step size h, let xj; = xj+h.

Given uj, u’j, u’j determine u"j;; such that

(22) u,j+1 = f(Xj+1 5 uj+1)

holds. Determine uj.q, U'jr, W5+ fromu(x), x e I =[X,X41 ]
to get data for next step.

This now has to be turned into a numerical procedure.

Example:

First we will set up the algorithm for the rational splines.

Apparently from (2) and (8) the equation

' u} z°
u(x):uj+ujz+7 1o dz

is to hold in Ij;; and d has to he chosen to satisfy (22).
One will try to solve (22) by an iteration, starting with

d® =0 if j=0ora value d® derived from d; that was obtained
in Ij. Since for this interval the denominator vanishes at

Z=Xpol - Xj.; = 1/d; ,

one would try

1/d = Xpol -xj=1/dj—h=(1-hd;)/d;
1.e. we take

(23) d? = d /N;j.
(here again N;. = 1-hd;is used).

The value d® is iteratively improved by means of equation (22).Since

" n

u . 2 u
\ o, ]J2z-2"-d | 1 1
u'(x) =u+ 5 e B uit— h|:l_dh+(1—dh)2:|
X=Xj+l
z=h

and

au" ull.'hz ull.
24 el ) 1 2 ~ L 15n%
(24) ad 2 L-dn)? (@1 =dn) N 2

J
we may calculate the change & of d by (almost) Newton's method
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(2.5 h-§ = 151‘.111,.. %&(xﬁl,u(xﬁl,d@)))—u'j]—%h'j(“Iﬁ)J'
]

We may now continue with this iteration until the change is less

than a prescribed tolerance. One should observe that Of(x, au d(X’ d))

1s small if h is small. If h is not very small it may, however,

be advisable to use another method, e.g. Regular Falsi ( Secant rule).
See Appendix A for a program.

In numerical experiments it proved better to use the above crude

u'i
od

we take a value of the derivative that will be slightly smaller
than the correct one. This implies we are getting a value of

from (24) that has too large an absolute value. If 8§ > 0, that is

d becomes larger, then the exact value of the derivative is increasing.
If < 0, d becomes smaller. Then the value of the derivative is
decreasing and our approach tries to compensate for that.

Since we switch to Regular Falsi in the next step it is better in

any case to overshoot the solution d and this tends to happen with
the above approach.

value of

instead of the precise one. In fact,if d > 0

6. Rate of convergence of integration scheme

Numerical results (compare Appendix B) indicate that fourth order
convergence of the method of integration described by (25) is expected.
To prove this fact we first show that we may view the method as a non-
linear two step method by establishing a relation between the values

uj.;, Uj,uj; of the approximating regular spline.

If uyj is known, then u'j = f(x; ,u(x; )) is also available. Hence in
each subinterval I; and Ij;; the spline u(x) can be represented

by
(26) ux) =+ zeuwj+ 2 A (G,j,jxl)u+z zFne A(j,j,jEl jEl u+

+ 2 @Fh oA Gijrlitlx)u,  z=x-x.



The last term describes the remainder term. It is twice

continuously differentiable with respect to x between x; and X.j. .

We differentiate (26) twice and let x tend to the limit x=x; (z — 0),

Then every term containing a factor z will disappear so that

27) 1 u"(£0) = A%(jjj=Du+ (Fh) A= Lj+ Du+

+ h* e A* (i + 1j*Du
_ 2A2 . . . 2, . . 2 4
= (j,j,jtlu-A%(j,jxl,jxhDu+h”+ A"(.)u.

We may resolve that identity to get an expression in terms of u and

its first derivative

(28) % u"(x=0)= 2[ujs; -uj- (+h) -u'j]-[(= h)ujs -uj +u)
+ h* < A*C

keeping in mind Xj.; - Xj==*h.
The connection between the two restrictions of u(x) to I; and Ij,

respectively, is given by
u"(x;-0) = u"(x;+0) .

Substitution of (28) into this equation and rearranging terms results
In

(29) 3(uj,q-uiq)=h- f(xj+1,uj+1)+4f(xj,uj)+f(xj_l,uj_l)}+A[u],

where
A[u]:h4 [A4 (J ’j 9j 9j -1 :j_l)u - A4(J 9j 9j a.]+1 ,_]+l)U] .

We observe that the term AJu] on the right hand side looks like a
perturbation term to the linear recurrence relation which happens

to be the Milne-Simpson rule.



If y(x) Is an exact solution to the given differential
equation and is five times continuously differentiable, then
v'(x) = f(xi,y(x;) ),for i =j-1,j,j+1 and (29) becomes an

identity from which we conclude that
_ ht[ v v _0n° ,V
(30) Aly] = QTY (t_) -y (t—l—) = T-y (t),0 ¢ (0,1),

with intermediate points t,t ,t. of I; U Iy .
To get some preliminary information about the convergence of u(x,h)
we Start from identity (28) to obtain

(29" 3(ujs1 -uj.p )= h(u' +4u’; +u'iy
+ h4' [A4(jaj9j9j_19j_l) u _A4(jaj:jaj + 1,]+1)U] s
which holds for any twice continuously differentiable function.

In contrast to (29) the first derivatives are retained.
We apply (29') to the difference

w(x,h) = u(x,h) -y(x)

and use wj:=w(X;, h) etc. That is.we do not indicate the dependence
on h explicitely although h will be varied in the sequel.

Since
(31) w'i = u'(x;,h) -y'(xj)
= (x5 ,u5) -1(xj, yi)
= fy( X,yiH)-wj ,
we write
32) f,.=f x.¥0. Ac=AGLi -1 i-Dw—AY (3.0, 1+ Dw
ylim oy i j
and obtain

4
(33) 3w, 4w, A w.+f wi_)+hhA

=h(f ,. W . + ) )
1) (Y|J+1 i+l Tyl yli-17g
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We assume that x, > X, and hy > 0 are such that for
x0< X < X4, h< hy the solution y(x) exists and has derivatives

y"(x) and y"'(x), such that t(x;x;,h,y" (x;),y" (X)) are defined

and that also u(x,h) exists in [Xy,x+ ]. Under these assumptions
we derive certain a priori estimates.

We introduce

(34) vi= wjeh®

with an integer k to be specified later, insert v; into (32) and add
up for j =1,3,..., 2v-1, to find

v

(35) Vou= Vot Bty [2v+4f,0 vy 1+ 2,0 , Vo

+ oo+ 2f v+ Af v+ V)
1, 4-k
+ @h 2 A
Approximately the second term on the right hand side looks like
Simpson's rule for numerical integration of [ f (ty(t)-v(t)dt, f, (ty(t)-v(t)dt,
if y is replaced by y and v tends to an integrable function for
h — 0. One can invoke the theory of compact; operators (compare

Werner-Schaback [27] Chapter IV to derive estimates for v from (35),

if the behaviour of h**e = A; is known. This is related to the
proper choice of k.

Ifui" and ui"” are close to y;" and yj'"" there is control of their
magnitude and by Axiom A3 the fourth (and fifth) order derivatives

of w(x,h) are bounded in each interval Ij. This implies a uniform
bound for the quantities Aj and since their number grows like % ,
the expression h *XAj is bounded. From this consideration
one expects to get an estimate of v for k=3 at least.



To improve the order k of convergence a sharper estimate for
X A; 1is needed.

If w were five times continuously differentiable, Aj would be
of order O (h) as 1is seen by (32).In general, however, w is

only twice continuously differentiable. Hence

v v

G6)  A; = A G- w = Y (= 0)+ Y (x4 0)

- AGhjbdbir LD w - jp (w Y

= -0, h-w' (X )-0,h-w' (X, )-jp (W I‘j’)

where we introduced the jump of the fourth order derivative

of w in xj, i.e.
jp(WI\j])::WIV (x;+0) — w 'Y (x;-0).

This jump i1s directly related to the values of the second and
third order derivatives of u(x,h) by the parameter is ation of the

generating family t(x;.x;,h,u”j,u"" ). Since u"(x,h) is

continuous,the problem reduces to the estimation of the jump for
u'" at the knots. The next section is devoted
to this task.

7. Asymptotic expansion of the error.

Again we use the above representation of the generating function

of the splines, that is t(x;x;.ht;" " ) ,and assume differentia-
bility with respect to x and the parameters of sufficiently high

order (that is we use now the left end point x; and the length h

of the interval Iy and the second and third derivative for the

parameterisationy. Also we assume that in all of [x,,x. ] the same

generating functions are used, since we will have to compare

tIV(Xj —0; xj1, ht"i;, t"; and tIV(Xj+O ; X, h, tj”, t") .
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We observe that u(x,h) and its derivatives at the knots are
(recursively) defined functions of h. It is left to the reader
to verify that they depend continuously differentially on h.

For j =0 by construction

w(xo,h) = W'(Xo,h) = w"(xo,h) =0

We procede by induction to show

1y i=01,234

37 .
37) i

to hold uniformly in [x¢,x:].

Assume (37) to hold for j < n and also for j=n and 1=0,1,2.

In I+ the spline is determined from the data at x; and equation (22).
this implies that w(x:;, h) satisfies (31).

Let x =X+ sh, and (with k=4 in (34))

(38) v(s,h)= w(x,h)sh™e
Hence
d' d' i-4

39 ——v(s,h) = . .
(39) ds’ (s, h) x|
InTj,, we have

= Vv'(s,h - ~
(40) hedovish) j+1( )s:jH:h.fy(x0+(J+1)h,yj+1

and
V(s,h):V+V(s—J)+—V (S—_]) +—V (S—J)

(41) L e A S CE ) RS ) RV G P P IO P

' _ ' : o 1 "_' _-2 LIV _-3
V(S,h)—Vj-l-VJ(S _])+2VJ(S J)+6V (s =1

+56 = DA G )V (= )AL Ls, )V,
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This yields

"L TV % VI 2 _
(42) V+VJ+2VJ+6VJ+5 Jh+wJ h

hef, (x .5 v+ v+ dv e Ly Ly Iy

2ViteVita vy t-l

j+l
For h — 0 this frunishes

, vt L u‘v L IV _ .
(43) Vj+VJ+2VJ+6VJ 0;

1.€. '; becomes a function of. A J,VI}/ It should he observed

that boundedness of v'} implies w j—>0 and thus the last two arguments.

u';-, u}of W v :VIV = tIV (X_]—I-l’XJ h, u'J' u )— v tend to y},y}'

respectively.
The equations (41) also yield the recurrence relations for the

derivatives of lower order. In the limit h—» 0, we have

(44) vy, = V;+V, +% VJ+éVJ+214VIV+O(h)
Vi - Vit v'j%vj +%v1}’ + 0(h) = 0(h),because of (43),
Vj"+1 = V'j+ V3'+% VI}/ +0(h)
V(i+1-0)" vit v rom

and from (43)

" " _ ' " 1.1V
(45) Vj+1 ’_V(j+l+0)__2vj+l_2vj+l 3 _]+1+0(h)



Therefore

(46) i (vj"+'1) = —2v - 4v - 4v".'—§v1\j’+0(h) .

Omitting the terms O(h), using v'j =0 and (43) we find the recurrence

relations
Vi =V, +év3 —717VI\J-/
(47) Vi = —V} +é—v1\j]
FREEEIY R R

for the leading terms of the error w(x,h) and its derivatives at X = Xjy; .
This proves the assertion made above about the "behaviour of the error.
Since we are interested in j— o , h— 0 such that xo+h — x (fixed),
we consider the solution of (47 ) for j — .

This is an inhomogeneous system of difference equations, multiples

of VI}] being the inhomogeneous parts. The general solution is given by

(48) V= vy o+ ﬁ I-(1)"1v, +71—2-Bj
V'j =0
VJ = vy Jr%-Bj
v o= - D 2vg-gv Y - 1B,
B, = (—1)1‘1L1}’—VIY+...+(—1)J"1.VJ-IY1 .

The proof is immediate by induction.
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From (48) we conclude that the B; are uniformly bounded for h— O,

0<j-h<x, -x,,since the difference VI}]—VjI_Yl = h'WV(ij) taking
appropriat e points X i

This in turn implies the boundednes s of the v; and v, Vi

J
Also ij(wj) = h- ij(vj) is bounded .

Using interpolation to express w(x,h) in each I; and the estimates
derived from (37), (44), (48) for w(x,h) and its derivatives in the
knots, one easily finds w" (x,h) = 0(h*') to hold uniformally

n [x, X+ ], if u(x,h) exists.

These a priori estimates show that any solution u(x,h) and its
derivatives up to the third order are close to the corresponding

values of y(x) if h is sufficiently small.

In the usual way one can specify closed domains for the parameter

t’, ;" containing y"(x;) and y"(x;) to get a priori estimates for

the fourth and fifth order derivatives of t and from this fix

h, and[x, ,X+] so as to guarantee that u(x,h) and its derivatives lie
in the said domains such that the a priori estimates apply. Hence one
can finally conclude existence of the spline approximations u(x.,h) .

Thus we obtained all the properties that were needed to prove 4"
order convergence, where we leave technicalities such as selecting a proper
sub-interval [X( ,x: l,hy and controlling the influence of the O(h)

terms to the reader.

It is worth pointing out, that w'(x,h)=0(h*) holds at the knots
because of (31), but only 0(h?) within the intervals I; as can be

seen from (41).

8. Numerical Application

The foregoing considerations have practical consequences also.

First we observe that the boundedness of the solutions of the
homogeneous system to (47) will prevent numerical instability.

We need not be afraid of having accumulation of round off errors.
Secondly, the errors w, w", w'" show an oscillatory behaviour by

(48) which is also visible in applications.
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Nevertheless, Richardson Extrapolation is possible, if only

values with even indices j are used. This is illustrated by

the following examples, taken from Appendix B.

In-the first example the exact solution is tan x.

We get the following table

X h j u(x,h) w =u(x,h) -tan x w. h™

1.5 4 13.6056 -.4958 - 194
2 6 14.1521 .0508 31.7
1 12 14.1049 .0035 34.9

1.1 4 1.978163 0.01340 5236
2 1.965815 0.00106 6597
1 8 1.964833 0.00007 7347

This shows that for even j the convergence is of fourth order,

while for odd j the expected difference arises.

In the next table we use numbers from the third example and

apply Richardson Extrapolation.

X h ] u(x,h) extrap.values
0.9 1 6 1.03771496
05 |12 1.03758845 ~__
A
025 |24 1.03758023 ~| 1.03758002
~A1.03757968 + 4.107°
1.3 0.1 10 3.3398534
0.05 |20 3.3376001\
0.025 1 49 3.337454 .
3.3374499
A 33374452+ 7-107
1.4 0.1 11 8.856543
005 |22 8.875228
0.025 | 44 8.874017\* 8.876473  (poor since j is odd!)
7 S -6
8.873936 + 6.10

For ease of comparison the extrapolated value of the first two

lines is placed adjacent to the computed value of the third line.

The fourth line contains the extrapolated value of the second and

third line.

Some estimated error bounds are added.



9. An Application to differential equations with moveable

singularities
Riccati equations.

The solutions of non—Ilinear differential equations may become
infinite in places where the differential equation is given
by a perfectly smooth right hand side. Furthermore, the
singularity depends on the individual solution, and there

may be others behaving in a very regular fashion.

As an example consider the problem

(49) y =1 + YZ , y(X0) = Yo,

with the solution

y =tan( X-Xo +arctanyy, ).

Obviously the poles are dependent on the initial data.

It is, however, remarkable that the analytical form of the
singularity is well determined - it consists of 1Ist order
poles only. This property is shared(under mild assumptions)

by all so-called Riccati differential equations, characterised

by a right hand side

(50) f(xy) = fox) + f1,(x)y + HX)Y .

For simplicity we assume f;(x), f;(x), f:(x) to be holomorphic
functions of x.

These equations or systems of such equations frequently arise
in applications to chemistry, biology and more general control

theory.

Theorem : Let f(x,y) have the form (50) with holomorphic
functions fj(x) and assume f)(x) #0 in (a, B).
Then every solution y(x) of the differential
equation y' =f(x,y) is holomorphic in (a,B) or
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has poles of tho first order. If y(x) has a pole at x*
the residue is given by

(51) e = - 1 /B,

Proof : It is. proved in standard text books on differential
equations that solutions of ordinary differential equations
with analytic f(x,y) are locally analytic. To consider the

totality of the solutions in a neighbourhood of x*, assume
y (x) to be a solution with y(x*)= 0,and hence regular analytic

for x sufficiently close to x* . Let y(x) be any second

solution different from y (x). Let

(52) v(x) = 1/(yx) - y(x))
such that

(53) y(x) = y(x)—1/v(x) , where we assume v(x)=0 for
the derivation

y'(x) = ' (X)+Vv'/V’ and by means of the differenta 1

equations )
=f, + fy+f,y’
=f, + £,y + £,y° —f/v-2fy/v + f,/v’ .

Hence after multiplication with v* and appropriate
cancellations:

(54) vl =f, —(f,+2f,y)-v .
Now assume y(x) — o for x —» x*. By (52) this implies
v(x) — 0 and by (54) we find

(55) vi(x*) = fHx*).

This proves,in view of (53),the statement on the residue. m
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If we dispense with the assumption fy(x) # 0, the solution y

may have poles of order m.

Then v(x) = (x-x* )" <q(x) , q(x*)# 0 and from (54) we find

(56)  H(x) = m(x-x*)"" [qx* ) + O(x-x * ]].

Hence a pole of order m of a solution of the differential equation

at x* may only arise if f;, has a zero of order m-1 at x *.

It is obvious that one can get the expansion of v(x) from (54) of
y (x) from the differential equation and y (x) = 0 and hence of
y(x), at the pole x* .

For example
v'(x*) = f(x*) - fi(x*)v'(x*)

= f(x*) - H(x*) - fi(x*)

and hence
y(x) = = I/vx)+0(|x—x*) = -1 + 0(x—x*)
(x—x*)fz(x*)+%(x—x*)2+...

r ' k) %k f %k
= - ) x-x*))" + f, x )Zfizg:*g (F) 0(lx—x*) .

(57)

Needless to say, rational splines should provide a good type
of approximation to the solutions of the Riccati equations.
The quality of the approximation obtained in the examples given
in Appendix B will become apparent from the application in the

next section.

10. The estimation of location of poles for solutions of

Riccati equations

To find the movable singularities of a solution of an initial value

problem we propose two methods. The first one is general and can
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be used whenever a pole (of first order) is expected.

The second one uses the special properties of Riccati equations.

Method I : We use the pole of the rational spline solution in

the interval I;. closest to this pole as an estimate for
the pole of exact solution.

That is, if u(x) is given by (2) in I, then we estimate

(58) x.1+l/d..
]

X pole ~ "j-

To get an appraisal of the error assume that the exact solution

has a simple pole at x* .

Let t= x - x* and in particular tj; = x;—x*,... andw = u -y,

then,
(59 y(x) = % +c¢, + ¢t + czt2 + ..
Hence
Az(xjfl,xj,xj)u = Az(...)y + N()w
c _
= 5 e + 0(lt, ) + O(lwllhT)
t t4
1]
+ O(w'-h™)
and
A3(xj_1,xj_l,xj,xj u o= A(..)y+A(...)w
_C —
= 5 e 001, + O(Iw]h )
t. t5
-1

+ 0(wlh) .
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By (18) we obtain

1 A(XJI, j»X)u
dJ A(lea Jlan:Xj)u

(60)

2 42 2 42 2
B +cth1tJ+0(tj t3) + 0(llwllh ™|ty |-t3
- 2 2 2 2 32

t, 3 c_1+c3-tj_1-tj+0(|t._1|-tj)+ o(| wlh™ -tj_l-

C
:—tj1(1+c_21-tj1-t%+0(tj A5)+0[( wh™ + Wb )t ot

This formula expresses Xpole- Xj.; by means of x* -x i plus error terms.

Method 11 From (59) we obtain
" 2c
y: = +2cz+0(\t\)
J t3
J
hence
2, +2¢,t3+0(| t4))
J v
J

2c_l+202t:j-+0(| tf]-‘ )

Now one may eliminate c; by (5) i.e. the coefficient fr(x) of y* on
the right hand side of the Riccati equation and use the numerically
obtained value of u"; to express t;°

©61) 3= 2 ¢, f(x*)t +

0(|t4
. ro(t4)

The pole will thus be approximated by solving the equation

3 _ 2

(62) n
u j'f2 (x

(Xpole - Xj
pole)
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Equation (61) gives an appraisal of the error.

From (62) we obtain

51
(63) Xpole = (I)(Xpole): = Xj+3 uzvf 23 (Xpole) .
J

Since

aXP()le u '_]' f2 f2(Xpole ) - 3f2 (xpole)

a(l) — (_%) . /T . f'2 (Xpole) _ (Xpole_xj) 'f'z (Xp()le)

becomes small for Xj close to Xpolo equation (63) may be solved.

by iteration in the usual fashion.
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Appendix A: Program for rational spline approximation for solution

of initial value problem. The program has to be called by a driver
program and the right hand side of the differential equation has to

be available as a function subroutine.

It i1s assumed that the resulting rational spline has positive second

order derivatives throughout the interval of integration, (It is

also easy to adapt it to the case that this derivative is always

negative.) If this derivative changes sign it could be appropriate

to switch to cubic splines. No provision has been made for this

case except the printing of an error message.

If no convergence occurs in the evaluation of d within MAXIT iterations
(counter ITER),the step size will be halved and evaluation of d starts
again. If MHALB step size halvings have been performed(counter ITERA)
without successful calculation of d,the program will terminate the
integration of the differential equation. The program should be self

explanatory in view of the foregoing text.
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SUBROUTIN NLINT (XANF,XEND, YOA,Y2A,F, EPS, HA, MAXIT ,HALB )
SOLVES THE INITIAL VALUE PROBLEM
Y = F(X,Y) , Y(XANF) = YOA .
IF POSSIBLE THE INTEGRATIONEXTENDSUP TO THE POINT XEND.
RATIONAL SPLINE FUNCTIONS ARF USED.

NOT A TION :
XANE = INITIAL VALUE OF X
XEND = ENDPOINT OF INTEGRATION UNLESS A PULE ARISES
YOA = Y(XANF)
Y2A = Y" ( XANF)
HA = INITIAL STEP SIZE
MAXIT = MAXIMAL NUMBER OF ITERATIONS ALLOWED IN ONE STEP
EPS = THE ACCURACY USED IN VARIOUS PLACES
MHALB = MAXIMAL NUMBER OF HALVING OF STEP SIZE
NI = NUMBER OF DIFFERENT STEP SIZES FOR INTEGRATION
WRITE( 6,1 )
HO = HA * 4.
NI = 3
DO 100 I=1. NI
HO = HO/2.
H = HO
ITERA = 0
INITIAL VALUES
X = XANF
YO = YOA
Y1 - F ( X.YO)
Y2 = Y2A
C GO TO 98

C INTEGRATION
C 5 CONTINUE
IF (ITERA .GE.MHALB)
ITERA = ITERA + 1
DH =0.
H = H/2.
c WRITE (6,2) H

10 CONTINUE

INTER=0

GN =0.

XX =X + H
YN =1. - DH

REGULA FALSI
20.CONTINUE

IF (MAXIT .LT.ITER) GO TO 5
ITER = ITER + 1
W0 = YO + H*(Y)+H*Y2/YN/2.)
W1 = F(XX,W0)
G = (W1-Y1)/H-Y2* (1. +DH/YN/2.)/YN
IF( ABS(G-GM) .LE.EPS) GO TO 30
IF (ABS(G) . GE. 10000000.) GO TO 96

IF (ITER .EO. 1)
ZE = YN*YN*G /Y2/1.5

IF (ITER .GT.1)
ZE = G*(DHN - DH)/(G - GN )
DHN = DH



1
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X = XX ,
YO = YO + H*(Yl + H*¥Y2/YN/2.)
Yl = F(X,Y0)
IF(YN .LE. EPS) GO TO 9%
Y2 = Y2/YN/YN/YN
IF(Y2.LE. EPS) GO TO 94
DH = DH/YN
0
IF( ( DH. LT.1.);.IAND.(X.LE.XEND—EPS))
¢ GO TO 10
D = DH/H
WRITF(6,3) X,Y0,Y1,Y2,D
GO TO 100
ERROR MESSAGES
94  WRITE (6, 95)
GO 10 100
96  WRITE(6,97)
GO 10 100

98  WRITE(6,99) ITERA
100 CONTI NUE

1. FORMAT ( *0*,T8,*X* ,T19,*U(X) *, T33,*U' (X ) *, 147, *U° (X)*,T61,*D*)

2 FORMAT (*0 H =* F6.4/)
3 FORMAT ( Fl12.5, 4F14.8, 15, F20.8, F14.8)
95 FORMAT (*0 Y2 BECOMES ZERO OR NEGATIVE*)

97 FORMAT (*0 G BECOMES TO LARGE®)

99 FORMAT (*0 FINISHED BECAUSE*, 15, * HALVINGS OF STEP SIZE*)

RFTURN
END
Remark: For practical purposes it is useful to replace
DH.LT.1. by
DH.LT.0.8 ,

say, to avoid overflow in case the pole almost coincides
with a grid point.
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Appendix B: The following numerical examples are obtained by means of

the above program. Calculation was started at x = 0.3 and continued
with the step size H until x. + H would transgress the estimated pole.
Listed are the data x;,u;,u’;,u;'""and d; such that u(x) is easily
calculated in any intermediate point.

The program was modified so as to give some additional information
that demonstrates the performance of the method.

The integer following d gives the number ITER of iterations in

solving for d;. The two last columns give the estimated values of
the pole of the solution. In the last column the theory of Riccati
equations based upon the value of uj" is used. In the foregoing column
the pole was determined as the zero of the denominator, hence it
depended essentially on d; with its oscillatory behaviour and linear
convergence (from the convergence of the third order derivative).
Obviously in the first case the exact solution is y = tan x and hence

Xpole= 1,57079633.
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