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ABSTRACT 

This  report  describes  an  application  of  the  general  method  of 

integrating  initial  value  problems  by means  of  regular  splines 

for equations  with  movable  singularities.       By   defining  the 

families  of  functions  that  make  up  the  regular  splines  such 

that  they  closely  resemble  the  behaviour  of  the  solutions  of 

the  differential  equation,  it  is  possible  to  trace  the  location 

of  the  singularities  very  precisely. 

To  demonstrate  this  we  treat  Riccati  differential  equations. 

These  are  known  to  possess  solutions  with  poles,  usually  of  the 

first  order.       This  type  of  differential  equation  or  system 

arises  in  describing  chemical  or  biological  processes  or more 

general  control  processes. 

To make  the  report  self  contained  it  starts  with  an  introduction 

to  regular  splines  and  develops  the  algebraic  tools  for  the 
manipulation  of  rational  splines.       After  the  description  of  the 

integration  procedure,   the  asymptotic  behaviour  of  the  systematic 

error  is  investigated.       An  example  exhibits  the  results   obtained 

from  the  program  given  in  Appendix  A.       Then  Riccati  equations 

are  introduced  and  methods  for  the  determination  of  the  singularities 

are  developed.       These  methods  are  tested  numerically  with  several 

examples.       The  results  are  given  in  Appendix  B. 
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1.Introduction

The  word  spline   originated  from  a  device   used  by  the   draftsmen 
to   obtain   graphically   smooth   interpolations   of  a  given   set   of 
points   (xj,yj),  j=0,...   m  by   fitting  an  elastic   rod  to  these 
locations   on   a  piece   of  paper.   The   rod  would  then   satisfy  the 
physical   laws   of   elasticity,   i.e. 
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and y(xj )   =  yj y  =0,.. .,m. 

Assuming  y'(x)   to  be   small,   the   above  variational  problem 
is   usually   replaced  by 

                                ∫ = .mindt)''y( 2

 

Hence   the   Euler   equation  becomes 

  
yIV (x)   =   0   and   it   is   to  hold  between  the 

supporting  points   xi .   Furthermore  the  rod  is   linear   outside 

of   [x0 ,xm   ]. 
Hence   the   function  resulting   from  the   above   graphical 
interpolation  under  the   said  simplification  -   called  a 
natural   cubic   spline   —  may  be   specified   as: 

(1) i)      u(x)   ∈  C2(I)   ,     I=[x0 ,xm ]. 

ii)      In   each      subinterval      Ij     = [xj-1,xj ]  we  have 

u(x)   =   aj+  bj .z   +  ½   cj
2   z2(l+djz) ,with   z     =  x-xj-1 ,     

to   be   a  cubic   polynomial. 

iii)      The   function  u  is   interpolating ,  i.e. 

u(xj)   =  yj ,      j  =0,    ------ ,  m. 

iv)      The   function  u   is   a  natural   spline,   that   is   twice 
continuously     differentiable   in   (-∞  ,    + ∞  ), 
and 

u"(x)  ≡  0    for   x   ≤   xo    and     xm <   x. 
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There  are  many  different  ways   this   concept   of  spline  has  been 
generalised  and  we  refer  the  reader  to  the  bibliographies 
on   spline  literature  by  Schurer  et  al.[22,  7  and  28], 
Usually  u(x)   will   be  a  linear  combination,   depending  on  a  specified 
number  of  parameters   in  each  sub-interval  I..   In  this  paper  we 
deviate  from  almost  all  of  the  other  generalisations  by  replacing 
the  linear   expression   (1   ii)   by  a  nonlinear  one.   First  results   in 
this  direction  can  be  found  in  Arndt   [3],Braess-Werner  [8], 
Meder  [17],   Runge  [18],   Schaback  [19,20],Schomberg  [27],   Spath[23], 
Werner   [24,25,26]. 
Schaback  found  that  the  interpolating  rational  splines   could  be 
obtained  from  a  variational  problem  [19].This   property  was  put 
into  an  abstract  setting  by  Baumeister  [5] .  
To  illustrate  this  type  of  generalisation,  we  will  use  the  example 
of  special   rational   splines  with  a  quadratic  polynomial  being  the 
numerator  and  a  linear  polynomial  being  the  denominator.   In  every 
sub-interval  Ij.  we  may  write  this  function  as 
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c
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j
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Before  giving  the  definition  of  a  regular  spline,  we  establish 
some  properties  of  the  rational  splines.  
Equation  (2)   may  be  re-written  in  the  following  forms 
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From  (3)  respectively  (5)   (6),   (7)  we  read  off 
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Furthermore  from  (7)   and  (6)  we  conclude  that  the  higher  order 
derivatives  of  u(x)   are  functions  of  x  and  the  two  parameters  j

"u

together  with  either      j
"uorj

"u 1+

2.     Regular  splines

In  [20]  Schaback  discovered  that  only  few  properties  of  the  rational 
splines  were  really  used  in  the  construction  of  the  interpolating 
splines  and  gave  an  axiomatic  formulation.   The  axioms  were  further 
stream-lined  in  [26]  and  appended  in  [25]  to  suit    the  need  of 
Tschebyseheff  approximation.  The  properties  needed  for  the  application 
to  differential  equations  are  as  follows. 

Let  I  =  [α,ß]   denote  an  interval  of  the  real  axis     R,  let  x0  < x1  < ...,< xm

denote  points  of  I  and write  I.     =[xj-1.xj],hj     =xj-xj-1.    
Furthermore  assume  tj(x,c,d)   are  two-parametric  families  of  functions 
c ∈  D1, j ’   d ∈  D2 j .and   x ∈  Ij     We  assume  tj  to  he   (at  least)  k-times 
continuously    differentiable  with  respect  to  x.  Then  the  following 
definition  is  well  defined:  
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In  addition  we  ask  for  the  following  axioms  to  be  satisfied; 

Axioms

(A1)       k  -  Regularity
For  kth  order  derivates the  difference  )d,c,x(j

kt)d,c,x(j
kt − has 

less  than  two  zeros  in  I.  which  are  separated by  a point     in  which 
the  difference  is  different  from  zero. 

This  axiom makes  it  possible  to  introduce  the  kth  order  derivates  of  two 
different  points  of  Ij,  say  xj-1   and  xj, or  any  two  analogous     expressions 
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(e.g. as  the  natural  parametrisations of  the  families  t)j
'''uandj

''u j . 

Following  the  notation  of  cubic  splines  we  may  write  Mj 
 ≡ u(k) (xj)   and 

hence  tj (x,  Mj-1 ,  Mj) . 

We  further  make  some  quantitative  assumptions; 

(A2) k  -  Smoothness

The  functions  tj(x,  Mj-1,  Mj)  are  k  + ℓ  times  continuously 

differentiable  with  respect  to  x,  ℓ  being  ≥  2,  and have continuous 

partial  derivatives  with  respect  to  Mj-1       and  Mj . 

 (A3) k  -  Boundedness

The  derivatives  of  tj (x,  Mj-1, Mj)  of  order  k +.2. ...  ,   k +ℓ 

with  respect  to  x  depend  Lipschitzian  on  the  parameters 

(Mj-1 ,   Mj  )    or     (Mj-1 , (Mj -Mj-1 )/hj  )   or   (Mj , uj" )  . 
 

The  last  property  is  motivated   by  what  was  found  for  the  rational  splines 

at  the  end  of  the  previous  section. 

It  is  left  to  the  reader  to  find  out  that 

i)       t(x,c,d)   =  c(x+d)α     ,  α  real 

ii)       t(x,c,d)    =  c.exp(dx) 

iii)        t(x,c,d)    =  c.log(x+d) 

are  candidates   for  regular  families.   In  particular  for  α =3  we  obtain 
the  cubic  spline  from  i)  via  definition  (9). 
It  might  be  noted  that  another  property  called  stiffness  is  important 
if  one  concerns  oneself with  Tschebyscheff  approximation  by  classes 
of  regular  spline  functions,  compare  [24,25].This  is important  for  the 
closure  of  the  classes  of  regular  splines  under  uniform  convergence 
in  every  closed  sub-interval  of  (α,ß). 

 
3.    Lemmas  on  divided  differences  and  applications

Manipulation  of  regular  splines  is  easily  performed by  means  of 

divided  differences.  Hence  we  collect  some  formulas  for  these  expressions. 
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Among  other  properties  it  is  worth  noting  that  the  divided 

differences  are  invariant    under    permutations  of  the  arguments 

,xx
ki.,..,i 10 +

 compare  [27]. 

If  the  data  uj  stem  from  a  function  u(x),  defined  in  I  having 

derivatives  of  sufficiently high  order,  then  limits  xi→  xk   may be 

considered  and  the  following  conventions  may he  used:    uj  =  u(xi.), 

u’i  =  u'(xi),   ...  furthermore  

                                               ,'uu)x,x(xx
limu)x,x( ikiikii =Δ→=Δ 11

(11)  Δ 2(Xj, xj , xj+1)u   =    (Δ 1(xj+1,xj)u-uj)/hj+l , 

(12) Δ 2(xj-1  ,  xj , xj+1)u    =    (u’j  -   Δl (xj-1 , xj )u/hj, 

where  we  employ  the  notation  hj = xj-xj-1      already  introduced  in  the  

previous  section. 

An  immediate  consequence  of  (11)  and  (12)   is:  

 then,hh
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(13)   λ j  Δ2  (xj ,xj , xj)u  + µj  Δ2 (xj - 1 ,x j , xj+1 )u =   Δ2(xj-1 ,xj, xj+1 )u 

 

This  formula  may  be  generalised  to  higher  order  difference  quotients 

and  he  applied  to  solve  the  interpolation  problem,  compare  Arndt  [4]. 



- 6 -

 

Lemma 2:     Let  u  ∈   C4    [x ,x ].       Thenj j+1
 

,]u[R
"uj

"u
u)x,x,x()( jj +

+
=Δ 6

2
14 2  

dt)t(u])tx(h[)tx(.h

)(uh]u)x,x,x,x,x(u)x,x,x,x,x([h]u[R

IVx

jx

IV
jjjjj

⋅−−⋅−−=

ξ−=Δ+Δ−=

∫
− 222

2442

6

2423

 

with  some  intermediate  ξ . 

The  proof  follows  from  the  identity 
 
3  Δ2 (x j ,x j . ,x)u   =     [ 2Δ2   ( x j  ,  x j  ,  x j  )    + Δ2   (x,x,x) 
 

+  h(2 Δ3 (x j ,x j ,x j ,x )  -  Δ3 ( x j ,x j ,  x , x )  - Δ3  (x j ,x ,  x , x ))] u 
 
=    u”j  + ½u"-h2 [ 2 Δ4  (x j ,x j ,x j ,x, x)u +  Δ4  (x j ,x j ,x , x , x ) u] . 
 

 The  integral  representation  is  obtained  from  the  Peano    kernel 

    theorem,      as  
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where h = x-xj, u" =   u"(x)  and 

 
and      f  =(x-t)3+ for  xj  <  t  <  x        i.e.   fj = f'j = f”j =0   imply 
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In  the  following  the  arguments  of  the  divided  differences  are 

always  points  xj, xk   etc.  To  simplify  notation we write 
  

Δ1 (j,k)  instead  of  Δ1( x j ,xk)   etc. 
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An  easy  consequence  of  (11,),   (12),   (14),   is 

 
Lemma  3  ;     Let  u ∈ C6   ,  and  h=xj + 1  -xj  the  length  of  the  interval  [xj,xj+1]then 

  
(15) Δ2 ( j , j , j+l)u + Δ2(j , j+1,j+l) u=(u’j+1 – u’j) /h =  (u"j+1 + u"j) /2+R*

where     R*   = - h2 • [D4(j , j ,j , j+1, j + 1 )u +  
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The  result.  (15)   is  obtained by  adding  (1 4 )    for  j  and  j+1  with 
x    equal  to  xj+1 or  xj  respectively. 
One  should  observe  that  above  error  estimate  though  proved only 
for  x  >  xj     is  independent  of  this  relation  and  applies  for  x  <  xj

also,  if  the  differentiability  assumption  is  satisfied. 
As  was  said  before, we  use  the  rational  spline  for  demonstration 
and  as  a preparation  derive  the  following  formulas.  
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In  general  
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Since  apparently  determine  c,d  and  N  these "
1j

"
j uandu +

quatities   determine  every  derivative  and  divided  difference  of 

higher  order  in  a  very  simple  manner. 

Hence  we  note  for  further  use   that 

(18)        N  =  Δ2(j,j,j+1)u/ Δ2(j,j+1,j+l)u 

c   =  2   (Δ2(j,j,j + l)u)2/ Δ2(j,j + 1, j + l )u 

d  =  Δ3(j , j , j  + 1,j + l)u/ Δ2(j,j + 1,j + l)u . 

These  formulas   describe   c,d,N  in  terms   of  u  and  its   first   derivative 
at  xj  and  xj+1  . 

4. Some  remarks  on  interpolation

The  interpolation  problem  for  rational  splines  was   first  treated  by 

Schaback    when       k=2  in  his  Dissertation  [19].  The  generalisation 
to  regular  splines   and  some  improvements  were  given  in  [20],  and  this 
approach  was   generalised  by  Arndt[ 4]   to  k  > 2  . 
We  consider  here  the  case  k = 2  only,   i.e.   splines  that  are  twice 
continuously      differentiable. 

Problem:    Given     interpolation  data   ( x j , y j ) , j = 0 ,...,  m  and 

boundary  data       Mo   or  u'o     and    Mm    or     u'm,  find 

u(x)   ∈  S   satisfying  these   conditions. 

We  try  to  represent  u(x)   by  means   of  yo ,....  ym and  Mo  ,..., Mm    and 
derive  the  determining  equations   from this   representation. 
It  is  immediately  seen that  

(19)        u(x)   = t j ( x , M j - 1  ,M j )+ yj  +z Δ1 (j-1 ,j )y - tj  (xj ,Mj -1,Mj ) 
  
-   z .Δ1 (j- 1 ,j ) tj  (• ,Mj -1 ,Mj ) in Ij  , again  z = x - xj    • 
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Application of Lemma  1   furnishes  the equations 

λ j  Δ2( j-1, j , j )t j  (• , M j -1 , M j) +µj  Δ2(j,j,j +1)t j +1(• , M j ,M j +1) 
  

=     Δ2(j-l,j,j + 1)y, j =1 ,..., m-1, 

which transform to 

(20)    λ j  M j -1 + 2M j + µ j  M j +1 =  6· Δ2(j-1,j,j+1)y + R(j) j = 1,...,  m -1, 
 

The  boundary  data  either  enter  by  giving  Mo ( resp.Mm  )explicitly  or 

by  providing  Δ2 (0,0,l)y, ho = λ o   = 0,  µo = 1 ,   i.e.   adding  another  one 
to  the  above  equations   and  similarly  for  j  = m . 
R( j)may  be  obtained  from  Lemma  2.  It  is  of  order  h2     if  the  Mj   and 
Δ2 (j,j+1)M      are    in  a  closed  bounded  region  such  that  the  fourth 
order  derivatives  of  u(x)   stay  bounded. 
Now  the  left  hand  side  of  (20)   is  of  the  form 

                   with  a  matrix  A which  has  a  bounded  inverse. 
⎥
⎥
⎥

⎦

⎤

⎢
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⋅
⋅

⋅

m

o

M

M

A

If  the  fourth  order  derivatives  of  tj(x,Mj-1,Mj )   depend  Lipschitzian 

on  Mj-1 and  Mj ,   say,   the  right  hand  side  of   (20)   constitutes   a 

contracting  operator  in  some  norm  with  respect  to  the  vector  of  the 

Mj if  h  is   sufficiently  small;   that  is, the  mesh  generated  by  {xj}   in  I 
is  sufficiently  fine.  Hence  one  may  solve  for  the  Mj   by  iteration, 
if  the  values   of  Mj   are  admissible  as  parameters  of  the  families  tj. 
Assuming  this  assumption  to  be  met,  which  may  be  a  restriction  on 
y(x)   ∈   C5 , one  can  see  that  the  interpolating  splines   and    their 

derivatives  converge  to  y(x),due  to  the  formula 

u(v)(x)-y(v)(x)=     0(h4-V)       for    v=0,1,2,3, 

uniformly  in  each  Ij.     That  is  to  say  the  convergence  of  the  third 
order  derivative  is  uniform  in  each  subinterval  and  although  there 
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may  be   discontinuities   at   the   knots   xj,   the   jumps   there   are 
small   since   at   the   left   side   and  right   side   of  xj   the  values 
of  u'" (x)   are   close   to  that   of  the   continuous   function  y'"  (x). 

For   a  complete   proof  the  reader   is   referred  to  [26]. 

5 .      Integration   of   initial   value   problems. 

In  this   section  we   consider  the   classical   initial  value  problem 
for  ordinary   differential   equations. 
Given 

f(x,y)   in   a   domain  G,   sufficiently   smooth,   say 
four  times   differentiable, 
(xo,yo)   ∈ G, 

find     x +  >    xo     and  y(x)  ∈   C4  [xo   ,x+ ]  such   that 

y'(x)   =  f (x ,y(x) )    and 

y(xo)   =  yo  . 

Here  we   report   on   a  method   for   the   numerical   solution   of   this 
problem  by   regular  splines   as  worked  out   in  the   Dissertation 
of  Runge   C183  .    It   has   already  been  used  by  Loscalzo-Talbot   in  the 
special   case   of  the   cubic   spline   [16  ]  .      Lambert   &  Shaw  [12,13,14] 
used  rational   and  more   general   expressions   to   find  a  solution   of 
the   initial  value  problem, but  in     an  explicit  way  that  proved 
cumbersome   in  its   application.   We   give   an  explicit   set   of   formulas 
for  the   rational  splines   to   demonstrate  the  ease  of  application 
of  this   method  and  also   discuss   its   remarkable   accuracy. 
For   stability   reasons  we  use  k  =  2 .   Higher  k  require   additional 
efforts   for  numerical   stabilisation   and  will  be   dealt  with   in 
another  paper. 

Method: (a) To   initialise   the   solution  we        need          uo   ,  u'o      u"o . 
We   may   take 

(21)       uo =yo ,   u o' = f ( x o  , yo )  ,   uo"  = fx   (xo  , yo )  +  fy (xo  , yo )· u’o   . 

              If  it   is   inconvenient   to   calculate   fx  and  fy   ,  any   other 
 

initialisation  will   also   do. 
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(b)    Recursive  definition  of  u(x)   in  Ij+1  for  j  =0,1,...   . 

Prescribe  step  size  h,  let  xj+1  =  xj + h . 

Given  uj ,  u’j,   u”j  determine  u''j+1   such  that 
 

(22) u’j+1  =  f(xj+1 , uj+1) 

holds.              Determine  uj+1 , u'j+1 , u”j+1  from u(x),  x  ∈  Ij+1 =[xj,xj+1 ] 
to  get  data  for  next  step. 
This  now  has  to   be  turned  into  a  numerical  procedure. 
Example: 
First  we  will  set  up  the  algorithm  for  the  rational  splines. 

Apparently  from  (2)   and  (8)  the  equation 

dz
zj

"u
zj

'uu)x(u j −⋅++= 12
2

 

is  to  hold  in  Ij+1 and  d  has  to  he  chosen  to  satisfy  (22). 
          One  will  try  to  solve  (22)  by  an  iteration,   starting  with 

d(0) =0  if  j= 0 or a  value  d(0) derived  from  dj  that  was  obtained 
in  Ij .   Since  for this  interval  the  denominator  vanishes  at 

z=xpol - xj-1 = 1/dj , 
 one  would  try 

1/d(o)   =  xpol  - xj = 1/dj – h = (l - hdj )/dj ; 
i.e.  we  take 

(23)                             d(o)   =  dj  /Nj . 

(here  again  Nj .  =  1-hdj is  used). 

The  value  d(0)   is  iteratively  improved  by  means  of  equation  (22).Since  

                  ⎥
⎦

⎤
⎢
⎣

⎡
−

+−+=
−

⋅−+=

=
+=

22

2

1
1

1
1

1
21

2
2 )dh(dhhj

"u
'u

dz
dzzj

"u
'u)x('u j

hz

j

jxx

 

and     

,h..
jN
j
"u

)dh()dh(

hj
"u

d
'u

)( j 2
32

2
1 5121

2
1

1
224 ≈⎥

⎦

⎤
⎢
⎣

⎡
−

+
−

⋅
=∂

∂ +  

we may  calculate  the  change  δ   of  d(0) by (almost) Newton' s  method 
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 [ ] ( )[ ] ⋅+−−
⋅

=δ⋅ ++ Nj
"h'u))d,x(u,x(fh

N

j
"u.

Nh).( j
)(

jj
112

1
51

52 0
11  

We  may  now  continue  with  this   iteration  until  the  change  is  less 

than  a  prescribed  tolerance.   One  should  observe  that d
))d,x(u,x(f

∂
∂  

is  small  if  h  is   small.     If  h  is  not  very  small  it  may,  however, 
be  advisable  to  use  another  method,     e.g.  Regular  Falsi   (  Secant rule). 
See  Appendix  A  for  a  program. 
In  numerical  experiments   it  proved  better  to  use  the  above  crude 

value  of   d
'u j

∂
∂ +1 instead  of  the  precise  one.     In  fact, if  d  >  0 

we  take  a  value  of  the  derivative  that  will  be  slightly  smaller 
than  the  correct  one.   This  implies  we  are  getting  a  value  of  δ
from  (24)   that  has too  large  an  absolute  value.   If δ  >  0,  that  is 
d    becomes  larger,  then  the  exact  value  of  the  derivative  is  increasing. 
If   <   0,   d  becomes   smaller.   Then  the  value  of  the  derivative  is δ
decreasing  and  our  approach  tries  to  compensate  for  that. 
Since  we  switch  to  Regular  Falsi  in  the  next  step  it  is  better  in 
any  case  to  overshoot  the  solution  d  and  this  tends  to  happen  with 
the  above  approach. 

6.     Rate  of  convergence  of  integration  scheme

Numerical  results   (compare  Appendix  B)   indicate  that  fourth  order 
convergence     of  the  method  of  integration  described  by   (25)   is   expected. 
To  prove  this   fact  we  first   show  that  we  may  view  the  method  as  a  non- 
linear  two   step  method  by   establishing  a  relation  between  the  values 

   uj-1 ,  uj , uj+1   of  the  approximating  regular  spline. 
 If  uj    is  known,   then  u'j  =  f(xj  , u(xi  ))   is  also  available.     Hence    in 
each  subinterval  Ij     and  Ij+1     the  spline  u(x)   can  be  represented 
 by 

(26)     u(x)   =  uj  +  z • u'j  +  z2 •Δ2  (j , j , j ± 1 ) u + z2   (z  h) •  Δm 3( j , j , j±1, j±1 )u + 
 
+     z2    (z  h)m 2  • Δ4   (j, j ,j ± 1, j ± 1, x )  u ,           z = x - xj . 
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The  last  term  describes  the  remainder  term.  It  is  twice 
continuously  differentiable    with  respect  to  x  between  xj  and  x.j ± 1. 

We  differentiate  (26)   twice  and   let  x  tend  to  the  limit  x=xj, (z → 0), 
Then  every  term  containing  a  factor  z  will  disappear  so  that 

(27) 2
1  u"(xj ± 0)  = Δ 2( j,j,j ± l)u +  (  h) Δm  3(j,j,j ± 1,j ± 1)u + 

                                                 +    h2 • Δ4 (j,j,j,j ± 1,j ±1)u 

=  2 Δ 2( j , j , j ± l )u - Δ2( j , j ± 1, j ± l)u + h2  • Δ4 (...)u . 

We  may  resolve  that  identity  to  get  an  expression  in  terms  of  u  and 
its  first  derivative 

 
(28) 2

2h    u"(xj±0)= 2[uj±1 -uj- (±h) -u'j]-[(± h)uj+1 -uj±1 +uj] 
                                          +  h4  • Δ4(…)u   , 

keeping  in  mind    xj ±1 - xj = ± h. 
The  connection  between  the  two  restrictions  of  u(x)  to  Ij  and  Ij+1, 
respectively, is  given  by 

u"(xj-0)   =   u"(xj + 0)  . 

Substitution  of  (28)   into  this  equation  and  rearranging  terms  results 
In 

,]u[A)ju,jx(f)ju,jx(f)ju,jx(fh)juju()( +−−++++⋅=−−+ ⎥
⎦

⎤
⎢
⎣

⎡
1141111329  

 
where 

                                                A[u]=h4 [Δ4 (j,j,j,j-1,j-l)u -  Δ4(j,j,j,j+1,j+l)u]. 

We observe that the term A[u] on the right hand side looks like a 
perturbation term to the linear recurrence relation which happens 
to  be  the  Milne-Simpson  rule. 
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If  y(x)   Is   an  exact  solution  to  the  given  differential 
equation  and  is  five  times  continuously  differentiable,  then 
y'(xi)   =  f(xi ,y(xi) ),for  i  =j-1,j,j + 1   and  (29)   becomes   an 
identity  from which  we  conclude  that  

,),(,)t(Vy.h.)t(Vy)t(IVyh]y[A)( 1012
5

24
4

30 εθθ=+−−=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
 

with  intermediate  points   t , t- , t+  of  IJ  U  IJ+1  . 
To  get  some  preliminary  information  about  the  convergence  of  u(x,h) 
we  Start   from  identity   (28)   to  obtain 

(29')       3(uj+1 -uj-1 )=   h(uj'  +4u’j  +u'j-1)    

              +   h4 . [Δ 4 (j,j,j,j-1,j-l)  u  - Δ 4 (j,j,j,j + 1,j + l)u] , 

which  holds   for any twice  continuously  differentiable  function. 
In  contrast  to   (29)   the  first  derivatives   are  retained. 
We  apply   (29')   to  the  difference 

w(x,h)  =   u(x,h) -y(x) 

and use wj:=w(xj , h)   etc.  That  is.we  do  not  indicate the  dependence 
on h  explicitely although h will be varied in the  sequel. 
Since 

(31) w'j   =  u'(xj,h) -y'(xj) 

=  f(xj ,uj) -f(xj, yj) 

=  fy( xj,yj ) • wj   , 

we write 

.jAh)jwj|yfjwj|yfjwj|yf(h)jwjw()(

obtainand

w)j,j,j,j,j(w)j,j,j,j,j(:jA,)jy~,jx(yf:j|yf)(

⋅+−−++++=−−+

++Δ−−−Δ==

4
1141111333

11411432
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We  assume  that  x+   >   x0    and  h0     >   0     are  such  that  for 

 x0 ≤  x  ≤  x+ ,  h ≤  h0    the  solution  y(x)   exists  and  has  derivatives 

 y"(x)   and y'"(x),   such  that  t(x;xj,h,y"   (xj) ,y"' ( xj)) are  defined 

and  that  also  u(x,h)   exists  in  [x0 ,x+  ].     Under  these  assumptions 

we   derive  certain  a  priori   estimates. 

We  introduce 

(34) vj =   wj • h- K

 

with  an  integer    k    to  be  specified  later,  insert  vj   into   (32)   and  add 
up  for  j  =1,3,...,   2v-1,  to  find  
 

∑⋅+

++++

++⋅+=

−

−−−−

.Ah

)vfvfvf...

vfvfv|fy(hvv)(

j
k

|y|y|y

vv|yyv|yv

4

001122

2222121202

3
1

42

242335

 

Approximately  the  second  term  on  the  right  hand  side  looks  like 
Simpson's  rule  for  numerical  integration  of   f,dt)t(v))t(y,t(fy

n
x ⋅∫ 0

x
y  (t,y(t))-v(t)dt, 

if    y  is  replaced  by   y   and   v   tends  to  an  integrable  function  for 
h  → 0.   One  can  invoke  the  theory  of   compact;   operators   (compare 

Werner-Schaback  [27] Chapter  IV  to  derive   estimates  for  v  from  (35) , 
if  the  behaviour  of  h4-k •  Σ Aj   is  known.     This  is  related  to  the 

    proper  choice  of  k. 

If uj"  and uj"’   are  close  to  yj"  and  yj'"   there  is  control  of  their 

magnitude  and  by  Axiom  A3  the  fourth   (and  fifth)   order  derivatives 

of  w(x,h)   are  bounded  in  each  interval  Ij .     This  implies  a  uniform 

bound  for  the  quantities  Aj  and  since  their  number  grows  like  h
1    , 

the  expression  h • ΣAj    is  bounded.           From  this   consideration 
one  expects  to  get  an  estimate  of  v  for  k =3  at  least. 
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To   improve   the   order  k  of  convergence  a  sharper   estimate   for 
Σ  Aj   is  needed. 

If  w  were  five  times   continuously  differentiable,  Aj   would  be 
of  order  O (h)   as   is  seen   by  (32). In   general,  however,  w  is 
only  twice   continuously   differentiable.   Hence  

           

)j
IVw(jp)x~(wh)x~(wh

)j
IVw(jpw)j,j,j,j,j(

)x(!
w)x(!

ww)j,j,j,j,j(A

j
V

j
V

j

IV

j

IV

j

−⋅⋅θ−⋅⋅θ−=

−++Δ−

++−−−−Δ=

+− 21

4

4

11

040411

 

(36) 

where  we   introduced  the  jump  of  the  fourth  order  derivative 

of  w  in  xj ,   i.e. 
             .)x(w)x(w:)j

IVw(jp j
IV

j
IV 00 −−+=

This  jump  is   directly  related  to  the  values   of  the  second  and 
third  order   derivatives  of  u(x,h)   by  the  parameter is ation  of  the 
generating  family  t(xj ,xj ,h,u”j , uj"'  ).   Since   u"(x,h)   is 

continuous,the  problem  reduces   to   the   estimation  of  the   jump  for 
u'"    at   the  knots.                         The  next   section  is   devoted 
to  this   task. 

7.      Asymptotic   expansion  of  the   error. 

Again  we   use  the   above  representation  of  the   generating  function 
of  the  splines,   that   is    t (x;xj ,h,tj" ,tj'" ) ,and  assume   differentia- 

bility  with  respect   to  x  and  the  parameters   of  sufficiently  high 

order   (that  is   we   use   now  the  left   end  point   xj   and  the  length  h 
of  the  interval   Ij+1        and  the   second  and  third  derivative   for  the 

parameterisationy.  Also  we  assume  that  in  all  of  [xo ,x+ ]  the  same 

generating  functions   are  used,   since  we  will  have   to   compare 

tIV(xj –0 ; xj-1 , h,t"j-1 , t'"j-1   and  tIV(xj+0 ; xj , h, tj”, tj" )  . 
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We  observe  that  u(x,h)   and  its   derivatives  at  the  knots  are 

(recursively)   defined  functions  of  h.   It  is  left  to  the  reader 

to  verify  that  they  depend  continuously  differentially  on  h. 

For  j  = 0     by   construction 

w(x0 ,h)    =   w'(x0 , h)  =  w"(x0 ,h)  =  0. 

We  procede  by  induction  to  show 

 43210037 4 ,,,,i,)h()h,x(w
dx
d)( i

ji

i
== −

 

to  hold  uniformly  in  [x0 , x+ ] . 

Assume   (37)   to  hold  for  j  <  n  and  also  for  j = n  and  i =0,1,2. 

In  Ij+1       the  spline  is  determined  from  the  data  at  xj  and  equation  (22). 

this  implies  that  w(xj+1 , h)   satisfies   (31). 

Let    x = x0 + sh, and (with  k=4  in  (34)) 

(38) v (s , h) =   w(x ,h) • h-4 • 

Hence 

 (39)                           •h•)h,x(w
dx
d)h,s(v

ds
d i

i

i

i

i 4−=  

 In I j+1 ,   we  have 
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This  yields 
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'"v 0j

'"w →

'"
jy,"

jytotendIVy)"
ju,"

juh,,jx;1j(xIVtIVvIVwof"
ju,"

ju −+==  

 
respectively. 

The  equations   (41)   also  yield  the  recurrence  relations  for  the 

derivatives  of  lower  order.      In   the  limit  h—►   0,  we  have 
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Therefore 

    .)h(0j
IVv3

8
j
'"v4jv4'v2)1j

'"v(jp)46( "
j +−−−−=+  

 Omitting  the  terms  0(h),  using  v'j  = 0   and  (43)  we  find  the  recurrence 
      relations 
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for  the  leading  terms  of  the  error  w(x,h)   and  its  derivatives  at  x = xj+1 . 

This  proves  the  assertion  made  above  about  the  "behaviour  of  the  error. 

Since  we  are  interested  in  j →   ,  h → 0  such  that  x∞ 0 + h →  x   (fixed), 

we  consider  the  solution  of  (47 )   for  j → ∞ . 

This   is   an  inhomogeneous  system  of  difference  equations,  multiples 

of       being  the  inhomogeneous  parts.   The  general  solution  is  given  by  j
IVv

[ ] .1j
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The  proof  is  immediate  by  induction.
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From   (48)   we   conclude  that  the  Bj  are  uniformly  bounded  for   h →  0 ,  

.boundedis)j
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Using  interpolation  to  express  w(x,h)   in  each  Ij   and  the   estimates 

derived  from  (37),   (44),    (48)   for  w(x,h)   and  its   derivatives   in  the 

knots,   one  easily  finds     w(i) (x,h)  =  0(h 4-i )   to  hold  uniformally 

in  [xo   ,x+ ],   if  u(x,h)   exists . 

These  a  priori  estimates   show  that  any  solution  u(x,h)   and  its 

derivatives   up  to  the  third  order  are   close  to  the  corresponding 

values  of  y(x)   if  h  is   sufficiently  small. 

In  the  usual  way  one   can  specify  closed  domains   for  the  parameter 

t”j, tj”’    containing  y"(xj)   and  y"'(xj)   to  get   a  priori   estimates   for 

the   fourth and   fifth  order  derivatives   of  t   and  from  this   fix 

ho   and [xo  , x+]    so  as   to  guarantee  that   u(x,h)   and  its   derivatives   lie 

in  the   said  domains   such   that  the  a  priori   estimates   apply.   Hence   one 

can  finally  conclude  existence  of  the   spline  approximations  u(x,h)  . 

Thus   we   obtained  all  the   properties   that  were  needed  to  prove  4th

order  convergence, where  we  leave  technicalities  such  as   selecting  a  proper 

sub-interval   [x0 ,x+ ],h0     and  controlling  the  influence  of  the  0(h) 

terms   to  the   reader. 

It   is  worth  pointing   out,   that  w'(x,h)=0(h4 )   holds   at  the  knots 

because  of   (31),   but  only  0 ( h 3 )    within  the  intervals   Ij   as   can  be 

seen   from  (41 ) . 

8.     Numerical  Application

The  foregoing  considerations  have  practical  consequences   also. 
First  we  observe  that  the  boundedness   of  the  solutions  of  the 
homogeneous   system  to   (47)  will  prevent  numerical  instability. 
We  need  not  be  afraid  of  having  accumulation  of  round  off  errors. 
Secondly,   the   errors  w,  w",   w'"    show  an  oscillatory     behaviour  by 
(48)   which  is   also  visible  in  applications. 
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Nevertheless,   Richardson  Extrapolation   is   possible,   if  only 
values  with   even  indices   j   are   used.   This   is   illustrated  by 
the   following  examples,   taken   from  Appendix  B. 
In-the   first   example   the   exact   solution  is  tan  x. 
W e   get   the   following  table 

x h j   u(x,h)            w  = u(x,h)  - tan  x w. h-4

1.5 .4 3 13.6056    -.4958 -   19.4 

 .2 6 14.1521  .0508 31.7 
      . 1 12 14.1049  .0035 34.9 

1. 1  .4 2 1.978163 0.01340 .5236 

  .2 4 1.965815 0.00106 .6597 
 . 1 8 1.964833 0.00007 .7347 

This   shows   that   for   even  j   the   convergence   is   of  fourth  order, 
while   for  odd  j   the   expected  difference   arises. 
In  the  next  table  we  use  numbers   from  the  third  example   and 
apply  Richardson  Extrapolation.  

x h j u(x,h)    . extrap.values 
0.9 . 1 

        .05 
        .025 

6 
12 
24 

1.03771496 
1.03758845 
1.03758023 

 
 
 
1.03758002 
1.03757968  ±  4.10-8

1.3 0. 1 
0.05 
0.025 

10 
20 
40 

3.3398534 
3.3376001 
3.3374549. 

 
 
 
3.3374499 
3.3374452±   7-10-7

1.4 0.1 
0.05 
0.025 

11 
22 
44 

8.856543 
8.875228 
8.874017 

 
 
    8.876473     (poor  since  j  is odd!) 
    8.873936   ±   6.10-6

For   ease  of  comparison  the   extrapolated  value  of  the   first   two 

lines   is   placed  adjacent   to  the   computed  value  of  the  third  line. 

The   fourth   line   contains   the   extrapolated  value  of  the   second  and 

third  line. 

Some  estimated  error  bounds   are  added. 
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9.      An  Application  to   differential   equations  with  moveable
singularities    : 
Riccati   equations. 

The   solutions   of  non—linear  differential   equations   may  become 
infinite   in  places  where  the  differential   equation   is   given 
by  a  perfectly  smooth  right  hand  side.      Furthermore,   the 
singularity   depends   on   the   individual   solution,   and  there 
may  be  others  behaving  in  a  very  regular   fashion. 

As   an  example   consider  the  problem 

(49) y’  =   1   +  y2  , y(x0)  =  y0, 

with  the   solution 

y  =  tan (  x - x0    + arctan y0   ) . 
 

Obviously  the  poles   are  dependent  on  the  initial  data. 
It   is,   however,   remarkable   that  the  analytical   form  of  the 
singularity  is  well  determined  -  it   consists     of   1st   order 
poles   only.   This   property  is   shared(under  mild  assumptions) 
by  all  so-called  Riccati   differential  equations,   characterised 
by   a  right  hand  side 

(50) f (x,y)   =  f0(x)   +  f1 ,(x)·y  +   f2(x)·y2  . 

For  simplicity  we  assume  f0 (x ) ,    f1 (x) ,    f2(x)   to  be  holomorphic 
functions   of   x. 
These   equations   or   systems   of   such  equations   frequently   arise 
in  applications   to  chemistry,   biology   and  more   general   control 
theory. 

Theorem   :         Let   f(x,y)   have  the  form   (50)   with  holomorphic 

functions   f j ( x )    and  assume  f2(x)  ≠ 0   in   (α , ß). 
Then  every  solution  y(x)   of  the   differential 

equation  y'  =f(x,y)   is  holomorphic   in   (α , ß)  or 
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has  poles   of  tho   first   order.   If  y (x )    has   a  pole  at  x* 
the  residue  is   given  by 

 
(51) c-1   =  -  1 /f2(x*). 

Proof   :   It  is.  proved  in  standard  text  books   on  differential 
equations  that  solutions  of  ordinary  differential  equations 
with  analytic   f(x,y)   are  locally  analytic.   To  consider  the 
totality  of  the  solutions  in  a  neighbourhood  of  x* ,   assume 

 (x)   to  be  a  solution  with y (x*)=   0 , and  hence  regular  analytic y

for  x  sufficiently  close  to  x*   .   Let  y(x)   be  any  second 
solution  different  from y  (x) .   Let 

(52)               ))x(y)x(y/(1)x(v −=  

such  that 

 

.v/fv/yf2v/fyfyff

yfyff

equations
ldifferentatheofmeansbyandv/'v)x('y)x('y

derivationthe
for0)x(vassumewewhere,)x(v/1)x(y)x(y)53(

2
221

2
210

2
210

2

+−−++=

++=

+=

≠−=

     ,     

Hence  after  multiplication  with  v2 and  appropriate 
cancellations:  
 
 .v)yf2f(f'v)54( 212 ⋅+−=  

Now  assume  y(x)  → ∞  for  x →  x* .     By  (52)  this  implies 
v(x)  →  0   and  by  (54)  we  find 

(55) v 1 (x*)   =  f2(x*). 

This  proves,in  view  of  (53),the  statement  on  the  residue. ■  
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If  we  dispense  with  the  assumption  f2(x) ≠ 0,   the  solution  y 
may  have  poles  of  order  m. 

Then    v(x)   =   (x-x*  )m    • q(x)        ,     q(x* ) ≠  0   and  from  (54)  we  find 

(56) f2(x)   =  m(x-x * )m -1  .[q(x*  )  +  0(|x-x *  |)]. 

Hence  a  pole  of  order  m  of  a  solution  of  the  differential  equation 
at  x*   may  only  arise  if  f2    has  a  zero  of  order  m-1  at  x * .  

It  is  obvious  that  one  can  get  the  expansion  of  v(x)  from  (54)  of 
 (x) from the  differential  equation  and y  (x) =  0  and  hence  of y

y(x),   at  the  pole  x*  . 

For  example 
v"(x*)   =  f'2(x*)   -  f1(x*)·v '(x*) 

=  f1
2(x*)  -  f2 (x*) · f1(x*) 

and  hence 

.)|*xx(|0*)x(f2
*)x(f·*)x(f*)x('f)*)xx(*)x(f(

)57(

)|*xx(|0
...*)xx(2

"u*)x(f*)xx(
1)|*xx(|0)x(v/1)x(y

2

1221
2

2
2

−+
−

+−−=

−+
+−+−

−=−+−=

−

Needless  to  say,  rational  splines  should  provide  a  good  type 
of  approximation    to  the  solutions  of  the  Riccati  equations. 
The  quality  of  the  approximation  obtained  in  the  examples  given 
in  Appendix  B  will  become  apparent  from  the  application  in  the 
next  section. 

10.   The  estimation  of  location  of  poles  for  solutions  of 
Riccati  equations

To  find  the  movable  singularities  of  a  solution  of  an  initial  value 
problem we  propose  two  methods.    The  first  one  is  general  and  can 
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be  used whenever  a  pole  (of  first  order)   is  expected. 
The  second  one  uses  the  special  properties  of  Riccati  equations. 

Method  I  :     We  use  the  pole  of  the  rational  spline  solution  in 

the  interval  Ij.  closest  to  this  pole  as  an  estimate  for 
the  pole  of  exact  solution. 

That  is,  if  u(x)   is  given  by  (2)   in  Ij,  then  we  estimate 

(58)                              .jd/11jxpolex +−=                                   

To  get  an  appraisal  of  the  error  assume  that  the  exact  solution 
has  a  simple  pole  at  x*  . 

Let    t =  x  -  x*    and  in  particular  tj  =  xj – x* ,...  and w  =  u  -  y, 

then, 

 

.)h·||'w||(0

)h·||w(||0)|t|(0c
j
2t·1j

2t

c

w)...(y)...(u)x,x,x,x(

and
)h·||'w(||0

)h·||w||(0)|t|(0c
j
2tt

c

w(...)y...)(u)x,x,x(

Hence

....tctcct
c)x(y)59(

2

3
1j3

1

33
jj1j1j

3

1

2
1j2

1j

1

22
jj1j

2

2
210

1

−

−
−

−

−−

−

−
−

−

−

−

−

+

+++

−

−
=

Δ+Δ=Δ

+

+++=

Δ+Δ=Δ

++++=
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By  (18)  we  obtain 

.])j
2t·1j

2t·)h·||'w||h·||w[(||0)j
2t·1j

2t(0j
2t·t·c

c1(t

...j
2t·1j

2t·h·||w||(0)j
2t·|1j

3t(|0j
2t·1j

2t·cc

...j
2t·|t|·h·||w||(0)j

2t·1j
2t(0j

2t·t·cc
·

j
2t·t

j
2t·1j

2t

u)x,x,x,x(
u)x,x,x(

d
1)60(

23
1j

1

2
1j

3
31

1j
2

1j21

1j

jj1j1j
3

jj1j
2

j

−++−++−=

+−+−+−+

++−++−−=

Δ

Δ
=

−−
−

−
−

−
−

−
−

−−

−

−−

−

 

This  formula  expresses  xpole- xj-1 by  means  of  x* -x  j-1 plus  error  terms. 

Method  II From  (59)  we  obtain 

.
j
"wj

"u

)|j
4t|(0j

3tc2c2

jy

)|j
4t|(0j

3tc2c2
j
3t

hence

,)|t(|0c2
j
3t

c2
j
"y

21

"

21

j2
1

−

++
=

++
=

++=

−

−

−

 

Now  one  may  eliminate  c-1  by  (5)   i.e.  the  coefficient  f2(x)  of  y2    on 
the  right  hand  side  of  the  Riccati  equation  and  use  the  numerically 
obtained  value  of  u''j  to  express  tj 

:
  

.)|j
4t|(0

j
"u
j
"w

0j
3t·*)x(f·c1

j
"u·*)x(f

2
j
3t)61( 22

2 ⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

+
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

+−=−      

 

The  pole will  thus  be  approximated by  solving  the  equation  

.
)x(f·j

"u
2)xx()62(

pole2

3
jpole =−  
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Equation   (61)   gives  an  appraisal  of  the   error. 

From  (62)   we  obtain  

)xpole(f3
)xpole('f·)xx(

)x(f
)x('f

·
fj

"u
2·)3

1(x

Since

.)x(
2
3
1

f·
j
"u

2x:)x(x)63(

2

2jpole

pole2

pole2
3

2pole

pole3jpolepole

−
−=−=∂

φ∂

−+=φ=

 

becomes   small   for  xj  close  to  xpolo   equation   (63)   may  be   solved. 

by  iteration  in  the  usual  fashion. 
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Appendix  A:       Program  for  rational  spline  approximation  for  solution 
of  initial  value  problem.     The  program has  to  be  called by  a  driver 

program  and  the  right  hand  side  of  the  differential  equation  has  to 

be  available  as  a  function  subroutine. 

It  is  assumed  that  the  resulting  rational  spline  has  positive  second 
order  derivatives  throughout  the  interval  of  integration,     (It  is 

also  easy  to  adapt  it  to  the  case  that  this  derivative  is  always 

negative.)    If  this  derivative  changes  sign  it  could be  appropriate 

to  switch  to  cubic  splines.     No  provision  has  been  made  for  this 

case  except  the  printing  of  an  error  message. 

If  no  convergence  occurs  in  the  evaluation  of  d within  MAXIT  iterations 
(counter  ITER),the  step  size  will  be  halved  and  evaluation  of  d  starts 

again.     If  MHALB  step  size  halvings  have  been  performed(counter  ITERA) 

without  successful  calculation  of  d,the  program will  terminate  the 

integration  of  the  differential  equation.    The  program  should be  self 

explanatory  in  view  of  the  foregoing  text. 
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SUBROUTIN     NLINT    ( XANF , XEN D ,  YOA , Y2A , F, EPS , HA, MAXIT ,HALB ) 
SOLVES    THE    INITIAL   VALUE   PROBLEM 
        Y’    =    F (  X , Y )    ,        Y(  X A N F )     =    YOA   . 
IF POSSIBLE THE INTEGRATIONEXTENDSUP TO THE  POINT XEND. 
RATIONAL    SPLINE    FUNCTIONS    ARF    USED. 
NOT A T ION : 

XANE       =     INITIAL    VA LUE    OF    X 
XEND      =   ENDPOINT  OF  INTEGRATION UNLESS A PULE  ARISES 
YOA        =    Y(XANF) 
Y2A         =    Y"  (  XANF ) 
HA           =     INITIAL    STEP    SIZE 
MAXIT    =    MAXIMAL NUMBER OF  ITERATIONS ALLOWED IN  ONE    STEP 
EPS          =    THE    ACCURACY    USED    IN    VARIOUS    PLACES 
MHALB  =    MAXIMAL    NUMBER    OF    HALVING    OF    STEP    SIZE 
NI =    NUMBER  OF  DIFFERENT  STEP   SIZES   FOR   INTEGRATION 

WRI TE(  6, 1  )  

H0 = H A    *    4. 
N I = 3

D0  100  I=1,     NI 
H0 = H0/ 2. 
H = H0 
ITERA = 0 

I N I T I A L   VALUES
X = XANF 
Y0 = Y0A 
Yl - F  (  X,Y0) 
Y2 = Y2A 

 
INTEGRATION 

5    CONTINUE 
IF ( ITERA    .GE . MHALB ) 

ITERA =  ITERA   +   1 
DH =  0. 
H =   H/2. 

 WRITE  ( 6 , 2 )    H 

GO  TO  98 C 
C 
C 

C 
 
C 
     10    CONTINUE 
             INTER=0 
             GN     =0 .  
             XX     =X +  H 
             YN     =1 .  -  DH 
REGULA FALSI   
20 .CONTINUE 

IF  (MAXIT    .LT .  ITER )                     GO TO 5  
  ITER   =    ITER   +    1  
  W0      =    YO   +   H  *  (Y)  +H*Y2/YN/2 .  )  
  W1      =    F (XX,W0 )  
  G         =    (W1 –  Y1 )  /H  –  Y2*  (1 .  +DH/YN/2 . ) /YN 

IF(  ABS(G-GM) .LE.EPS)                   GO TO 30  
IF  (ABS(G)  .  GE.  10000000 . )         GO TO 96  
IF  ( ITER .EO.  1 )   
 ZE    =  YN*YN*G /Y2/1 .5   
IF  ( ITER    .GT.1)  
 ZE    =  G*(DHN – DH)/(G –  GN )  
 DHN = DH  
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* , X        =    XX 
YO       =    Y0   +  H* ( Y1   +   H*Y2/YN/2. ) 
Y1      =    F( X , Y0 ) 

IF ( YN        . LE.   EPS )                                                                                               GO     TO       96 
Y2      =   Y2/YN/YN/YN 

IF(Y2.LE. EPS)                                                                    GO   TO   94 
DH     =    DH/YN 

IF( ( DH. LT. 1. ) .AND. ( X . LE . XEND-EPS ) ) 
1                                               GO   TO    10  

  D =   DH/H 
WRITF(6,3)    X,Y0,Y1,Y2,D 

GO   TO   100 

ERROR MESSAGES 

94     WRITE (6, 95) 
  GO   10    100 

96    WRITE(6,97) 
 GO    10    100 

 98     WRITE(6,99) ITERA 
100 CONTI NUE 

    1.  FORMAT ( *0*,T8,*X* ,T19,*U(X) *, T33,*U1 ( X ) * , 147 , *U0 (X)*,T61,*D*) 
2   FORMAT (*0 H   =*,    F6.4/) 
3   FORMAT (    F12.5,    4F14.8,    15,    F20.8,    F14.8) 

95   FORMAT (*0 Y2    BECOMES   ZERO   OR   NEGATIVE*) 
97   FORMAT ( *0 G   BECOMES   TO   LARGE*) 
99   FORMAT (*0 FINISHED BECAUSE*, 15,  *  HALVINGS  OF  STEP  SIZE* ) 

RFTURN 
              END  

Remark:    For  practical  purposes  it  is  useful  to  replace 
DH.LT.1.      by 
DH.LT.0.8   , 

say,  to  avoid  overflow  in  case  the  pole  almost  coincides 
with  a  grid  point. 
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Appendix  B:     The  following  numerical  examples  are  obtained by  means  of 
the  above  program.     Calculation  was  started  at  x    =  0.3  and  continued 
with  the  step  size  H  until  x.   +  H would  transgress  the  estimated  pole. 
Listed  are  the  data  'and  d'u,'u,u,x jjjj J   such  that  u(x)  is  easily 

calculated  in  any  intermediate  point. 
The  program was  modified  so  as  to  give  some  additional  information 

that  demonstrates  the  performance  of  the  method. 

The  integer  following  d  gives  the  number  ITER  of  iterations  in 

solving  for  dj.     The  two  last  columns  give  the  estimated  values  of 

the  pole  of  the  solution.     In  the  last  column  the  theory  of  Riccati 

equations  based  upon  the  value  of  uj
"  is  used.     In  the  foregoing  column 

the  pole  was  determined  as  the  zero  of  the  denominator,  hence  it 

depended  essentially  on  dj  with  its  oscillatory  behaviour  and  linear 

convergence  (from  the  convergence  of  the  third  order  derivative). 

Obviously  in  the  first  case  the  exact  solution  is  y  =  tan  x  and  hence 

xpole=  1,57079633. 
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