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Introduction

Traditional   numerical  methods   of   solution   of  heat   flow  problems 
are   subject   to   inaccuracies   near   sharp   corners,   where   the 
derivatives   of  the  exact   solution  may  "become  unbounded   (Jeffreys1). 

2Previous  methods   of  overcoming  this   difficulty   (Motz ,  Woods3, 
4Bell   and   Crank )   have   tended  to  be   elaborate   and   computationally 

time   consuming.      The   simple  procedure  presented  in  this  paper 
dovetails   easily   into   standard   finite-difference   schemes   and   is 
computationally   efficient.      The   results   for   a  model  problem  compare 
favourably  with  those   obtained  by  more   sophisticated  approaches. 

A  Model   Problem

Consider   the   problem   of  heat   conduction   in   the   region   illustrated 
in   figure   1,  where   T(x,y,t)   represents   the  temperature   at   any 
point   in  the   region,   K   is   the   diffusivity,   assumed  constant,   and 
the   following  conditions   hold, 
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T(O,y,t)      =     1000               
 
T(2ℓ,y,t)   =     0 

and     3T/¶n   =   0   on  all   other  boundaries,  where      ∂ /∂ n     is  the 
derivative   normal  to  the  boundary. 

Figure   1.      Model  Problem. 
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The  initial  condition  is  taken  to  be 

2
1

3T(x,y, τ)     -     10 erfc{x/2(κτ) }              ,                       (2) 

where     (κτ)  =  0.0005.     This  corresponds  to  a  small-time  solution 
5in  a  plane  semi-infinite  medium   (see   Carslaw  and  Jacger )   and  it 

is   assumed  that  the  difference  between   (2)   and  the  solution  after 
such   a  small-time,   τ,  when  T(x,y,0)   =  0   is  negligible. 

The  problem  possesses   a  steady—state  solution  which  is 

anti-symmetric  about  the  line  x  =  . l
 

The  Finite-Difference  Procedure

The  region  in  figure   1   is   covered  by  a  square  grid  of  size  h 

where  h  is   chosen  such  that  all  boundary  lines  are  mesh  lines. 

Denoting  the  temperature  at  a  point   (i,j)  on  the  grid,  after  a 
ntime  nót,  by  T .  ,  the  usual  explicit  discretisation  of ij

equation   (1)   is 
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4Bell  and  Crank   showed  that   (3)  accounts  for  the  first  singular 
term  in  the  local  solution  about  a  re-entrant  corner. 

In  fact,  a  five-point  replacement  which  satisfies  all  the 
2singular  terms   in  the  local  solution  and  is  of  order  h   accuracy 

is   easily  seen  to  be 
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where   and   arc  the  temperatures   at  the 3210
nT,nT,nT,nT 4

nT

points   indicated  in  figure  2. 

 

A
Figure  2.

B 

Bell6  noticed  that  the  expression  given  in  (4)  was  exactly 
the  same  as  that  produced  by  the  approximation  of  a  heat-balance 
relationship   (Crank7)   at  the   corner.     For  a  corner  whose 
interior  angle  is  a  multiple  of  /4,  the  heat-balance  method π
always  produces   a  replacement  that  satisfies  the  singular 
terms  in  the  local  solution. 

Thus,   a  possible   improvement  to  the  simple  scheme  outlined  in 
the  previous   section  is  to  use  the   replacement   (4),  instead  of 
(3),  at  the  points  P1    and  P2.     Clearly  such  a  procedure  does 
not  entirely  eliminate  the  errors   associated  with  sharp  corners. 
The  derivatives  of  the  solution  are  large  though  not  unbounded 
in  a  neighbourhood  of  each  corner  and  the  special  replacement 
(4)  merely  represents  the  behaviour  at  the  most  critical  point 
in  each  neighbourhood. 
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A  Method  of  Modified  Replacements

4Bell and Crank  obtained a local solution about a re-entrant 

corner, P, in polar coordinates and expressed it as a single 

power  series  which  can  be  written  as                  
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In  the   following  method  an   approximation,  based  on  the   first 

three  terms   of   (5),   is  used  to  estimate  the  radial  second 

derivative  of  T  at  points   adjacent  to  a  re-entrant   corner. 

The  transverse   second  derivative,  which  completes  the 

expression  on  the  right  hand  side  of  equation   (1),   is  replaced 

by  the  usual  difference  approximation.     It  is   assumed  that 

the  transverse  second  derivative  is  well  behaved  in  comparison 

with  the  second  derivative  in  the  radial  direction.     To 

illustrate  the  scheme  consider  the  approximation  of  (1)   at  the 

point  marked  2  in  figure  2.     In  this   case,  the  transverse 
2 2component  of   (1)   is   ∂ T/∂ x   and  this   is  approximated  in  the 

usual  way  by 
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where  B  and  C  are  as   indicated. 

To  obtain  an  approximation  for  the   radial  component,   ∂2 2T/∂y , 

the   form of the   solution   in   the   radial  direction   is  taken OA

to be 
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where  the  α ' s   are  unknown   functions   of  time. 
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Thus , 
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The   a's   are   evaluated  at,   each  time  level   in  terms   of  the 
temperatures   T0,   T2   and  T       .   Substituting   for  the  values  of A
α  into  the   above   and  rearranging  gives   the  modified  replacement 
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A  suitable   approximation  to  equation   (l)   at  the  point   2  is, 
therefore, 
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              (8)                 

Since  the   solution   about  O   along  the  other  three  mesh  lines  has 
the   same   form  as   (6),   the   replacement   (8),  with  suitable   changes 
of  suffix,   can  be   applied  at  the   other   adjacent  points   (i.e.   1, 
3  and  4   in   figure   2).      Incorporating  the   above  treatment   of 
adjacent  points  with  the  use  of   (4)  produces  a  scheme  in  which 
the  behaviour  of  the   solution,   at  points   close  to   a  comer,  has 
been   represented  by   a  system  of  modified  finite—difference 
replacements.      The   combined  scheme  will  be  referred  to  as  the 
Modified  Replacement   Method   (MRM). 

The   replacement   (8)   is  written   in  terms   of  an  explicit  procedure 
but  the   implicit   extension  is   straightforward.     It   is  thought 
that   the   implementation   of  the  MRM  will  not  effect   the 
unconditional   stability   of  the   implicit   finite-difference  process. 
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A  suitable   explicit  algorithm  is  as   follows:      1.     let  the 
initial  condition  be   .   and  put  n  =  0   :     2.       compute   . ijT 0

ij
nT 1+

at  all  points   in  the  region  using  equation   (3)   ;     3.     overwrite 
the  values  of  .     at  the  points  to  be  treated,  using   (4)  at  the ij

nT 1+

corner  points   and   (8)   at  the  four  points  adjacent  to  each 
corner;     4.       let  n  become  n+1   and  return  to  stage  2,  continuing 
until  the  required  time  level  is  reached. 

Results

(a) Time-dependent  problem. 

The  results  obtained  from  the  time-dependent  Motz  procedure 
developed  by  Bell  and  Crank4  are  considered,  throughout  the 
following  discussion,  to  be  the  ideal  solution.     The  values 
of  the  parameters  defining  the  model  problem  are  specfied  in 
Table   1. 

(i) Solutions  were  computed  corresponding  to  a  small  time 

solution   (nκδt  =  0.05).     The  results   of  the  MRM  scheme  were 
compared  with  the  ideal  solution.     It  was  observed  that  at 
this   initial  stage  of  the  time  process  there  was  little  to 
choose  between  them. 

(ii)       At  an  intermediary  stage   (nκδt  =  0.1)  Table   1   shows  the 
results  of  the  MRM  are  in  good  agreement  with  those  of  Bell 

4and  Crank . 

(iii)     At  large  times,   (nκδt  —  0.5),  when  the  solution  is 
tending  to  steady-state  values,  the  accuracy  produced  by  the 
MRM  is  also  good.     The  largest  absolute  difference  between  the 
results  obtained  and  the  ideal  solution,  at  any  point,  is  three 
degrees.     Generally,  the  discrepancy  is  much  less.     Thus,  by 
slightly  modifying  the  usual  explicit  finite-difference  process, 
a  considerable  improvement  in  accuracy  has  been  achieved. 
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(b)        Steady-state   problem. 

When ∂T/∂t = 0 in the model problem there is anti-symmetry 
about the line x = 1 and it is sufficient to consider only 
the  left-hand  half  of  the   region   illustrated  in   figure   1. 

After   a  suitable   change   of  notation,   the  MRM  can  be  written 
in  terms   of  a  Gauss—Scidel   iterative   procedure   for  Laplace's 
equation.      In   Table   1   the   MRM  results   are   compared  with  those 
produced  by   Papainichael   and  whiteman8,9   using  a  conformal 
transformation  method.      The   agreement   is   good. 

The   computational  procedure   for  the   Gauss—Seidel   version   of 
the   MRM  is   not   as   neat   as   that   described   earlier   for  the 
transient   problem,   but   the   computing  involved  is   still  quite 
acceptable.      Although  the  method  has   been   developed  in  terms 
of  a  model  problem,  with  simple  boundary  conditions,   the 
essence   of  the   approach  is   applicable  to   all  problems   of  this 
type. 



TABLE  1.    Mid-time and steady-state conditions, 
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